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1 Introduction

Centralized exchanges for cryptocurrencies like Binance, Coinbase, FTX, and Kraken intermediate

trade with a central limit order book. A central limit order book is constructed from participants’

posts of quantity and price pairs they are willing to trade. This facilitates price discovery through

matching buy and sell orders. Like similar mechanisms we see for trading equities (NASDAQ

for example), settlement of cryptocurrency trades at limit order books happens later and not di-

rectly on the cryptocurrency’s ledger. For example, Bitcoin trades at Coinbase are recorded only

by Coinbase. Updates to the Bitcoin ledger happen only infrequently when traders deposit or

withdraw from the exchange.

In contrast, decentralized finance (DeFi) exchanges facilitate trade directly using a blockchain.

The computer codes that control the DeFi exchange, called smart contracts, and the messages

traders use to execute transactions are recorded “on-chain” in the blockchain by the decentralized

network of ledger validators (“miners”). This technology is currently incapable of replicating a

central limit order book. The volume and speed of messages needed to implement a limit order

book is not practical and is prohibitively expensive with most blockchains. As a consequence,

decentralized exchanges, such as those developed by Uniswap or Curve, have created Automated

Market Makers (AMMs) to intermediate trade. These alternatives to centralized markets now

account for a large volume of cryptocurrency trade. From January 2024 to May 2025, decentralized

exchanges processed an average of roughly $210 billion of cryptocurrency spot transactions per

month. As of May 2025, decentralized exchange spot transaction volume is approximately 20% of

the cryptocurrency spot transaction volume on centralized exchanges.

To intermediate trade on blockchain with (far) fewer messages than a centralized exchange,

AMMs limit traders to posting only quantities. The smart contract code defines trade in a liq-

uidity pool with functions for adding (minting), removing (burning), or exchanging (swapping)

the two coins (or tokens) that constitute the pool. Liquidity providers (LPs) supply a portfolio

of two tokens to the AMM pool using the mint function. Liquidity takers (LTs) may swap one

token for the other. The rate of this swap—effectively, the relative price of the two tokens—is a

coded function of relative quantities of the tokens posted and swapped to date. For example, the

constant-product market maker (CPMM) implies the marginal relative price of the two tokens is

the ratio of the current balance of tokens.1

1The CPMM, defined below in equation 1, keeps the product of the two token quantities to be constant. The origin
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To understand how DeFi markets facilitate price discovery and to measure price impact of

trades, we study the dynamic provision of cryptocurrency quantities to a liquidity pool. Specifi-

cally, we focus on liquidity providers as they play an active and strategic role in price discovery

by choosing the liquidity they supply in response both to information about coin values and to

information about the distribution of future liquidity trades. Additionally, through our model we

see that liquidity providers play an important role in understanding the price impact of AMM

trades as their liquidity supply and thus prices respond directly to trades conducted by liquidity

takers.

To motivate our study of the strategic behavior of liquidity providers, we use data from Uniswap

v2 (“version 2") where the liquidity provision functions in the Uniswap smart contract are partic-

ularly stark and limited to adding (“mint”) or removing (“burn”) coins at the current ratio of coins

in the pool. Here, liquidity mints or burns do not change the marginal price of the coins in the

pool. We document that many liquidity providers are active in the price-setting process. Trades

by LPs do constitute a small percent of the overall trade as most of the trade is swaps by LTs.

However, the majority of the liquidity providers are active in the sense that a sizable proportion of

their transactions involve the swap transaction (liquidity taking). When liquidity providers swap

against their own pool, they directly impact prices faced by other liquidity takers at the AMM

exchange.

Uniswap has augmented their pricing functions to offer liquidity providers additional control

over their liquidity in Uniswap v3 and most recently v4. We view the data from v2 as particularly

insightful since the limited choices liquidity providers allows us to measure their degree of active-

ness with their swap transaction behavior. The marginal tradeoffs we consider in our model are

also relevant in the v3 and v4 settings.

To better understand how liquidity providers set prices and therefore explore the impact of

trades on liquidity providers’ price setting behavior, we build a dynamic model of AMM liquid-

ity provision. The basic tradeoff in our model for the liquidity provider is familiar. We assume

liquidity takers may be “informed” or “uninformed” giving rise to a classic form of adverse se-

lection in asset markets (as in Glosten and Milgrom (1985) or Kyle (1985)). With AMMs, what

creates this structure is timing. We posit that liquidity providers are “slow.” They post their coins

to an AMM and then a liquidity taker trades. Liquidity takers are “fast” and able to attain priority

of the CPMM is a blog post of Vitalik Buterin and Martin Koppelmann in 2016. See https://www.reddit.com/r/
ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/.
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for blockchain execution. The liquidity taker may be trading for reasons that are orthogonal to

public information (akin to a private value). Alternatively, the trader may be trading having seen

an update to public information about coin prices (a common value)—sometimes referred to as

“impermanent loss” in AMM documentation. In either case, the liquidity provider cannot avoid

the “fast” liquidity taker.

Introducing this conventional friction allows us to explore how adverse selection distorts the

liquidity contributed by providers who must balance profits they earn from uninformed liquidity

takers (noise traders) with the losses that arise from trading with informed liquidity takers. Our

results provide AMM analogs to those in Glosten and Milgrom (1985) in a smart contract setting

and offer a new interpretation of impermanent loss—committing to trade with informed liquidity

takers at “stale” prices—stemming from a traditional notion of adverse selection. While in Glosten

and Milgrom (1985) liquidity providers distort prices directly to protect themselves from informed

trading losses, on AMMs such distortions may only manifest in the quantities of deposits liquidity

providers post.

The risk of trading against a better informed liquidity taker is an important consideration

for the liquidity provider. However, our model does not assume perfect and continuous “arbi-

trageurs” whose AMM trades reflect a single agreed-upon external “market price.” In our set-

ting, some traders may trade for reasons orthogonal to current market prices should they require

liquidity—i.e., the very reason the market might exist. Our setting allows for traders’ beliefs to be

updated by new information that, say, reflects information from a posted price on a centralized

exchange. If the risk of that happening is sufficiently high, the liquidity provider will choose not to

post liquidity. However, we do not model that event as an arbitrage. The costs to moving tokens

between exchanges and decentralized exchanges (an on-chain transaction) is not trivial. Perhaps

more importantly, a coin owned indirectly on an exchange is not a perfect substitute for owning

the same coin directly on a blockchain. The bankruptcy of an exchange (FTX and others) or the

loss of a private key are distinct risks. We are agnostic as to whether ownership through an ex-

change is better or worse than ownership on-chain. Security, convenience, and liquidity properties

can all differ. Our point here is simply that they are not identical. Lastly, there is a large number

of tokens, some of which have a sizable implied market capitalization, that are not listed on any

centralized exchange. For these tokens, there is no applicable “market price” from a centralized

exchange and our theory provides guidance on the price discovery process for such tokens.

Our model has interesting implications for the dynamics of liquidity provision. We show that
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our model generates endogenous inactivity by liquidity providers. More precisely, even though

the liquidity providers have the option to re-balance their liquidity on deposit after each trade by

a liquidity taker, often they optimally do not do so. This endogenous inactivity arises because of

our assumption that the LP is risk neutral and (despite the convexity arising from the exogenous

pricing function) finds it optimal to supply her entire endowment of tokens for a range of relative

prices—a maximal supply region. If an LT trade leaves the LP in this maximal supply region, then

she will not re-balance her liquidity deposit. If an LT trade results in LP (ex post) balances outside

of this region, then the LP will re-balance back to the boundary of the maximal supply region.

While this inaction region does not respond to uninformed trades at the AMM, it does shift

when informed trades arrive. As a result, the extent of endogenous inaction depends on the rela-

tive proportion of informed versus uninformed trading. Indeed, these model dynamics give rise

to predictions for the behavior of LPs. First, liquidity providers typically trade against liquidity

takers; LP trades (when they happen) tend to move relative prices at the AMM in the opposite

direction of trades completed by LTs. Second, liquidity providers are more likely to be active—are

more likely to re-balance deposits—in markets with more uninformed trade.

The empirical dynamics of liquidity provider behavior in Uniswap v2 are consistent with these

model predictions. Swaps—price setting behavior—completed by liquidity providers tend to im-

pact relative prices in the opposite direction of (cumulative) trades completed by liquidity takers.

Further, we adopt an empirical strategy used to identify informed trading in the Ethereum ecosys-

tem as suggested by Capponi, Jia and Yu (2024) and aligned with ideas from the high-frequency

trading literature.2 The idea is that informed traders are more likely to be price sensitive. As a

result, they should demand more blockchain priority and be more willing to pay (gas fees to) val-

idators to prioritize their transactions. In AMM periods and markets where liquidity takers pay

lower average gas fees—suggestive of less price sensitivity of traders and hence more uninformed

trading—we find liquidity providers transact more frequently, consistent with our model.

We then use our model to explore how the shape of the pricing function impacts gains to trade

and liquidity provider’s profits. Analogous to results in Milionis, Moallemi and Roughgarden

(2023b), we find that in the presence of only uninformed traders, convex prices impede ex-post

trading volumes and reduce ex-ante profits of liquidity providers. Hence, in such a case, linear

pricing is optimal. However, the presence of informed traders complicates this analysis because

2See Aquilina, Budish and O’neill (2022) and Brugler and Hendershott (2023) for recent papers that exploit the
timing of trades or orders on centralized exchanges to identify high-frequency, informed trading.
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convex prices also limit the losses liquidity providers realize from informed trades. Nonethe-

less, we show that reducing the (local) convexity of the pricing function improves the liquidity

provider’s profits as long as liquidity provision is profitable. Specifically, we construct a pertur-

bation of the pricing function that decreases its convexity around the liquidity provider’s deposit

point and scales the gains from uninformed trades at the same rate as losses from adverse selec-

tion. If the original constant-product market maker (CPMM) function induces positive ex-ante

gains for the liquidity traders, then less locally convex prices increase ex-ante gains for both liq-

uidity providers and liquidity traders, thus improving efficiency.

1.1 Related Literature

Much of the research on AMMs has focused on examining how AMMs perform alongside the

presence of deep, liquid, centralized exchanges. One of the earliest examples is Angeris and

Chitra (2020) who obtain conditions under which a class of AMM mechanisms reflect “true"

prices—those observed on an infinitely deep centralized limit order book. Angeris et al. (2021)

presents a more specific analysis of the leading AMM, Uniswap, and show that the exchange rate

on Uniswap matches the exogenous prices after accounting for fees. Aoyagi (2022) extends these

frameworks to consider the effect of information asymmetry in AMMs shows that the equilibrium

liquidity supply is stable under the assumptions that liquidity provision is perfectly competitive

and one token in the pool is stable (its value has zero volatility).

Also under the assumption of a known, true price of tokens, Fabi and Prat (2023) demonstrate

how to use consumer choice theory to study how liquidity providers and liquidity takers exert

externalities on each other. They use their framework to examine how the shape of constant func-

tion market makers impacts adverse selection costs faced by liquidity providers and execution

costs faced by liquidity takers. More recently, Lehar and Parlour (2023) show how AMM fees can

balance losses imposed by liquidity traders who conduct such an arbitrage. They argue that pool

sizes should decrease with the severity of this arbitrage risk and find empirical support for this

observation.

Similar to our model, Aquilina et al. (2024) considers heterogeneity among liquidity providers

using size or external information to classify liquidity providers and study their empirical behav-

ior on UniSwap V3 data. They classify liquidity providers with exceptionally large token positions

or identified as VCs, asset managers, etc., as “sophisticated" and find that they provide majority of

5



the liquidity, actively manage their positions, and interact with multiple pools. In contrast, “unso-

phisticated" liquidity providers earn significantly smaller fees, and struggle to adapt their liquid-

ity strategies during periods of high volatility. Lehar, Parlour and Zoican (2023), who also focus

on UniSwap V3, find that larger liquidity providers dominate low-fee pools, while small liquidity

providers dominate high-fee pools. As in our model, liquidity providers in their model adjust

their pool positions after trades as well but only because the structure of contracts in Uniswap V3

prevents informed traders from fully arbitraging prices from centralized exchanges.

Directly supporting our assumption that trades can be categorized as informed and unin-

formed, Capponi, Jia and Yu (2024) provide empirical evidence showing that high-fee DEX trades

contain more private information. Informed traders bid high fees both to mitigate execution risks

from blockchain congestion and to secure execution priority. We build on these important papers

by showing how liquidity providers directly impact decentralized exchange prices and then by

building a dynamic, quantitative model where there is a role for liquidity providers to set prices.

One of our contributions is to relax the assumption of perfect arbitrage with centralized exchanges

and examine optimal liquidity provision when price discovery in some other market is not perfect.

A related literature has emerged studying the costs imposed by traders who arbitrage between

centralized exchange prices and AMM prices. For example, Capponi and Jia (2021) studies com-

petition for priority among traders who would like to conduct such an arbitrage and characterizes

the joint determination of gas fees and liquidity pool sizes. Hasbrouck, Rivera and Saleh (2023)

study the impact of trading fees on trading volume and show how an increase in the fees, by at-

tracting more liquidity provision and thus reducing traders’ execution costs may lead to increased

trading volumes. Milionis et al. (2022) use a continuous-time Black-Scholes analysis to estimate

these arbitrage losses for liquidity providers using a stablecoin pool and decomposes the losses

into risky and predictable components.

Milionis, Moallemi and Roughgarden (2023a) extend the model to involve trading fees and

provide results on the arbitrager’s behavior and profits accordingly. They also conduct a cost-

benefit analysis on the LP’s side with the new features. In our model in the absence of a true

price, the AMM generates gains to trade and so liquidity provision may be sustained even in the

absence of direct fees. Cao et al. (2023) develop a structural model where a platform sets the fee

level to maximize liquidity in the pool with one token as a stablecoin. Like much of the earlier

literature, they study this problem under an assumption that a true price is known and the fee
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is designed to maximize rents from uninformed trades. They find that the optimal AMM fee

structure dynamically adjusts to volatility, leading to better trade.

In terms of the design and efficiency of the price function, Park (2023) demonstrates that con-

stant function market makers may cause economically meaningless and costly trading, such as

front running. Front-running is a substantial concern that liquidity takers manage in practice by

encoding a range of prices they are willing to trade at, known as “slippage”, but we abstract from

front-running in our model as we focus on the interaction between liquidity providers and (an

aggregate of) liquidity takers. Bergault et al. (2023) shows that the return of LP is always smaller

than holding by duality theorem and a constant product formula with a proportional fee is not ef-

ficient from a mean-variance perspective. Goyal et al. (2023) focus on the design of convex pricing

functions that maximize the fraction of trades with only uninformed trades. Milionis, Moallemi

and Roughgarden (2023b) uses the optimal auction framework to show that a linear price curve

maximizes the expected return of the liquidity provider when one token is a stablecoin. Our re-

sults on the optimal shape of the design function are similar to those in Milionis, Moallemi and

Roughgarden (2023b) but hold under a wider set of assumptions on traders’ beliefs about the

token valuations.

The remainder of the paper is organized as follows. In Section 2, we look at the empirical

behavior of liquidity providers and document their active role in price setting on AMMs. We

describe our model in Section 3. In Section 4, we focus on the one period model and analyze

the resulting equilibrium and the welfare properties. Section 5 looks at the dynamics of liquidity

provision in our model and compares these dynamics to the empirical evidence. Finally, Section 6

concludes.

2 Liquidity Provider Behavior

An AMM uses blockchain-based smart contracts so individuals can exchange cryptocurrencies (or

tokens). Smart contracts are computer code stored on the blockchain. A feature of the Ethereum

blockchain is that the functions in the code are transparent, verifiable, and immutable.3 Traders

post transactions, calls to functions in the smart contracts, that are then executed by a decentral-

ized network of validators (or “miners”). The typical AMM smart contract for a pool is specific to

3You can see the functions for a Uniswap contract at https://etherscan.io/address/
0x0d4a11d5EEaaC28EC3F61d100daF4d40471f1852#code.
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two coins. To characterize the empirical behavior of liquidity providers, we pull data for Uniswap

v2 pools. Specifically, we look at v2 pools created prior to 2020-07-01 that have more than 100,000

transactions. The sample period is from 2020-07-01 to 2024-06-30 and contains 19.2 million trans-

actions across 31 pools.4

For context, Figure 1 shows the evolution of trading volume for the Uniswap v2 and v3 con-

tract pools (v1 and v4 both have negligible volumes). Note the volumes are denominated in Bit-

Figure 1: Uniswap v2 and v3 Trading Volume
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coin to help control for the large variation in the dollar-denominated value of cryptocurrencies

over this period. The data from v2 are particularly relevant since these smart contracts limit the

transaction space to a swap, a mint, or a burn. This limited smart contract functionality allows us

to explore the behavior of liquidity providers in a straightforward and tractable fashion. Given the

evidence we present below of active liquidity management, the smart contract modifications that

follow in v3 (and now v4) that offer more active control for liquidity providers are understandable.

A transaction in a Uniswap v2 pool is a call to one of three functions defined by the pool

contract. The functions are a swap, a mint, or a burn. The most commonly called AMM function

is the swap transaction. Here, a trader deposits a quantity of one coin, say A, and withdraws a

quantity of the other coin, say B. The rate (or price) of this exchange is calculated by the smart

contract based on the reserve balance of coins currently on deposit at the pool. To calculate the rate

Uniswap v2 uses the constant product market maker (CPMM). The rate of exchange is determined

4We use the Etherscan API Pro Services to collect the data.
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so that the product of the quantity of coins A and B before and after the exchange is constant. In

the absence of fees, this implies the marginal rate for the exchange depends only on the relative

quantities of coin A and coin B in the pool. The swap is “taking” liquidity from the pool in the

sense that the swap necessarily changes the relative quantities of coinA and coin B in the pool and

thus distorts the marginal exchange rate faced by subsequent traders. We refer to a trader who

only uses the swap function as a Liquidity Taker (denoted LT).

The liquidity provision portions of the smart contract happen through the mint and burn func-

tions in the code. In a mint transaction, the trader deposits both coins A and B. Here, the mint

refers to the creation of pool tokens that denominate the traders proportional claim to liquidity in

the pool. Since this transaction provides more coins to the pool for use in swap transactions, we

call this trader a Liquidity Provider (LP). In a burn transaction, the LP uses some or all of their

pool tokens to withdraw some or all of their share of coins from the pool’s liquidity reserves. Both

of these functions, by design, increase or decrease the size of the pool proportionally. This feature

is hardcoded into the smart contract: mints and burns do not change the ratio of the quantity of

coin A to B and so do not change the implied marginal price on offer at the pool.

Given the trading environment defined by these smart contract functions, how do liquidity

providers behave? The general view is that LPs are passive in that they trade (post a transaction

to the smart contract) infrequently and use only the liquidity provision functions mint and burn.

They are akin to “buy-and-hold” investors. Uniswap in their documentation for v2, for example,

highlights that the passive aspect is a feature that may increase participation of liquidity providers

by removing the need for the sophisticated infrastructure and algorithms of a liquidity provider—

a market maker—in a limit order book market.5

Table 1 characterizes traders’ behavior with transaction counts. (In Section 5.3 below we also

explore the price impact of these trades once we have used our model to highlight relevant mea-

sures of price impact in the data.) To construct the table, we tag each transaction as coming from

a liquidity provider (LP) or a liquidity taker (LT). We tag a transaction as coming from an LP if

the trader, at the time of the transaction, owns a pool token. That is, the transaction is by someone

who owns a proportionate claim to the pool.6 LTs own no pool tokens at the time of the trans-

5See https://docs.uniswap.org/contracts/v2/concepts/core-concepts/pools. See also the discussions in Ma-
linova and Park (2024) and Lehar and Parlour (2023).

6More precisely, we classify a transaction as belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses
involved in the transaction have a positive balance of that pool’s tokens at the time of the transaction; or (c) the swap
transaction is paired with a mint transaction. We describe the process we use to measure paired transactions below.
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action. Since mints and burns both imply pool token ownership, LT transactions are exclusively

swaps.

Table 1: Transaction Counts

burn mint swap Total Percent

Full Sample: 2020-07-01 - 2024-06-30

LP 149, 911 196, 128 108, 802 454, 841 2.4%
LT 0 0 18, 742, 272 18, 742, 272 97.6%
Total 149, 911 196, 128 18, 851, 074 19, 197, 113 100.0%

v2 Dominant Contract: 2020-07-01 - 2021-05-31

LP 112, 762 157, 363 80, 696 350, 821 3.7%
LT 0 0 9, 142, 338 9, 142, 338 96.3%
Total 112, 762 157, 363 9, 223, 034 9, 493, 159 100.0%

v3 Dominant Contract: 2021-06-01 - 2024-06-30

LP 37, 149 38, 765 28, 106 104, 020 1.1%
LT 0 0 9, 599, 934 9, 599, 934 98.9%
Total 37, 149 38, 765 9, 628, 040 9, 703, 954 100.0%

A transaction is classified as belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses involved in the
transaction have a positive balance of that pool’s tokens at the time of the transaction; or (c) the swap transaction
is paired with a mint transaction. Each transaction can involve several addresses (both wallets and contracts).
A transaction is paired if all the addresses on both transactions match and the transactions both occur within a
three-minute interval. Data is pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and have
more than 100,000 transactions. There are 31 pools. The sample period is from 2020-07-01 to 2024-06-30. The total
number of transactions is 19.2 million. A transaction is defined as a unique call to a Uniswap pool contract as a
swap, mint, or burn, and involves multiple addresses (wallets and contracts) and token transfers.

Focusing on the full sample for a moment (in the top panel of Table 1 ), we can see that most

of the transactions are from LTs. LPs are passive in that across all transactions, they transact

infrequently. Trades by LPs are 2.4% of the total transactions. However, in contrast to the “buy-

and-hold” passive characterization, liquidity providers are not completely passive. A significant

proportion of liquidity provider transactions are swaps (108,802/454,841). Since every swap di-

rectly impacts the token exchange rate offered by the pool, when liquidity providers interact with

their pools, 23.9% of the time they take actions that directly impact the pool’s exchange rate. We

view these swaps by liquidity providers as evidence that at least some LPs play an active role in

price setting and price discovery in AMM markets. Finally, the different panels in Table 1 show

the transaction counts across subsample periods. The impact of the introduction of v3 contracts
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on v2 volume and use is clear. However, the activeness of the LPs (the percentage of transactions

as swaps) is similar across the subsamples.

Table 2: Uniswap LP Counts

Unique
Trader

ID Total
Transactions

Liquidity
Provisions

Liquidity
Takings

Full Sample: 2020-07-01 - 2024-06-30

LP Active 44, 636 201, 162 45.9% 54.1%
LP Passive 64, 127 253, 679 100.0% 0.0%

v2 Dominant Contract: 2020-07-01 - 2021-05-31

LP Active 37, 267 148, 115 45.5% 54.5%
LP Passive 53, 519 202, 706 100.0% 0.0%

v3 Dominant Contract: 2021-06-01 - 2024-06-30

LP Active 7, 743 51, 330 45.2% 54.8%
LP Passive 12, 318 52, 690 100.0% 0.0%

A transaction is classified as belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses involved in the
transaction have a positive balance of that pool’s tokens at the time of the transaction; or (c) the swap transaction
is paired with a mint transaction. Active liquidity providers are defined as having more than 1 percent of their
trades as swaps. Data is pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and have more
than 100,000 transactions. There are 31 pools. The sample period is from 2020-07-01 to 2024-06-30. The total
number of transactions is 19.2 million. A transaction is defined as a unique call to a Uniswap pool contract as a
swap, mint, or burn, and involves multiple addresses (wallets and contracts) and token transfers.

Table 2 highlights that the percentage of LP transactions that are swaps differs across traders

and shows that 41.0% of LPs in our sample have swap transactions while the remainder of traders

are completely passive. The number of LPs does decline after the introduction of Uniswap v3, but

the percentage of active LPs remains about the same at 38.6%. For the active LPs, about half of

their trades are swaps. Figure 7(a) highlights that the swap percentage for LPs also differs across

pools. (We will return to 7(b) below.)

While we describe behavior at the level of “traders” (LP or LT), we do not directly observe

individuals. On the blockchain, activity is recorded at the level of addresses (public keys), and

a given transaction typically involves multiple addresses. Addresses on Ethereum can be wal-

lets or smart contracts. For example, an individual might trade by connecting her wallet to the

Uniswap web-app. This creates a trade involving her wallet ID and a Uniswap router contract.
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Larger traders often trade using their own smart contracts.7 We make the simplifying (and con-

servative) assumption of treating the set of addresses involved in a transaction on a specific pool

as a single unit (effectively concatenating pool address and all addresses in the the transaction to

define a unique trader ID). This approach will under-count liquidity providers who also use swap

transactions in cases where one trader (person) uses multiple wallets or modalities for different

transaction types.

Since mint and burn transactions do not impact the token exchange rate by the pool, an LP who

wishes to supply liquidity at a different price than the current price offered in the pool is likely

to engage in a paired transaction that either swaps tokens (to change the price) and then mint

(or vice-versa). Using our conservative definition of a unique “trader” as the concatenation of all

addresses used in the trade, we count how often an LP actively changes marginal pool prices (with

a swap) just prior to adding liquidity (with a mint). Specifically, we pair LP transactions when a

swap and a mint (or burn) occur in a three minute window.8 Table 6 shows that almost all the

paired transactions are swaps connected to mints. Focusing on the subsample where Uniswap v2

was the dominant contract, 10.7% of the mints were preceded by a swap transaction (by the same

LP) and 21.0% of all swaps conducted by LPs were in support of a subsequent mint transaction

(again, by the same LP).9 Figure 7(b) shows that the percentage of mints paired with a swap differs

across pools similarly to the raw frequency of swap transactions by LP. Many of the summary

statistics we have calculated here are similar across the subsample periods. Interestingly, this is

not the case for paired transactions. Figure 8 shows the percentage of mints paired with a swap is

declining over the Uniswap v2 era. After the introduction of v3 with more fine grained liquidity

choices, the frequency of mints paired with a swap goes to near zero for most pools.10

In summary, we have presented evidence from Uniswap v2 that some liquidity providers play

an active role in setting (marginal) relative prices by swapping against their own liquidity. Next,

we build a dynamic model with frictions that provides liquidity providers incentives to actively

set prices at an AMM. We use this model to develop insights into optimal active liquidity provision

and to establish a lens to study the dynamics of the swap behavior of liquidity providers. We

explore this dynamic behavior in Section 5.3 below.
7This is done for many reasons. For example, this can add a layer of security to the trading where first coins are

transferred to a trader’s smart contract and then the smart contract is called in a second transaction.
8Defining pairs as happening in a three-minute interval is arbitrary. The specific numerical results change with

different windows, say 0.5 to 5.0 minutes, but the general proportions are quantitatively similar.
9While not immediate from Table 6, almost all the paired transactions are where the swap precedes the mint.

10Oddly, in the brief window 2023/0/01 to 2022/06/30, in WETH-USDC and USDC-USDT the swap-then-mint pair
accounts for about 75% of the mint transactions. As we saw, there are also fewer overall transactions in this period.
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3 Model

We develop a model where traders’ relative valuation of coins consists of both a private and a

common value component. The private value component motivates gains to trade. The common

value component is public information that evolves over time. We model the arrival of trading

opportunities as sequential and so some traders will be “informed” in that they have arrived at

the same time as new information. The public, common value component creates the potential

for an “adverse selection” cost. This cost is sometimes called “impermanent loss” in the AMM

setting.

Our model is in discrete time, t = 0, 1, 2, . . . and features two types of agents: liquidity takers

(traders) and liquidity providers (or market makers). Liquidity takers are short-lived, have deep

pockets, and care about net trading profits. Liquidity providers are long-lived, discount the future

at rate δ ∈ (0, 1), and begin in period t = 0 with a fixed endowment of tokens or coin balances. We

focus on a representative liquidity taker (in each period) and a representative liquidity provider.

Information. We study a model with two coins (or tokens), i ∈ {A,B}. Each coin i has a value

at (the end of) date t given by exp(pi,t). We interpret the common value component, exp(pi,t), as

either the “price" of token i at time t or possibly the service flow attainable by spending 1 unit of

coin i. For example, 1 unit of the Ethereum cryptocurrency may be “spent” on the execution of

smart contracts on the Ethereum blockchain or 1 unit of the stablecoin USDC may be redeemed

for 1 US dollar by trading with the company Circle who issues USDC (Circle (2023)). We assume

the “price” or common payoff of coin i at time t evolves according to

pi,t =

t∑
s=0

di,s

with the public information at each date di,s.

In particular, assume public information {di,t} arrives independently across time and across

tokens. For each token i, with probability π̂, di,t = 0. With probability 1 − π̂, di,t ∈ {−∆l,+∆h}

where each is equally likely. We assume ∆l,∆h are positive and 1
2e

−∆l + 1
2e

∆h = 1 such that the

expected value after the realization of public information is the same as it is before this information

is realized. At the beginning of each period t, both LPs and LTs have beliefs about the common
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value component of each token given by µi,t−1 where

µi,t−1 = E[exp(pi,t)|d0, . . . ,dt−1] ≡ Et−1[exp(pi,t)].

Timing. At the beginning of each period, with probability β ∈ (0, 1), the LP exogenously exits

the game and realizes the current payoff of her endowment of tokens. If the LP does not exit, then,

before the arrival of any public information, the LP decides how much of each token to deposit

in the AMM smart contract. Once the LP deposits tokens, public information is realized. After

public information is realized, LTs value the tokens according to

νi,t = E[exp(pi,t)|d0, . . . ,dt]exp(ηi,t) ≡ Et[exp(pi,t)]exp(ηi,t)

where ηi,t reflects a private value component of owning token i realized by the LT that trades

in period t. The important timing assumption is that the LT trades before the LP can withdraw

or adjust their deposits to the AMM. Once the LT trades, a new period begins and the LP may

re-balance the liquidity supplied to the AMM.

We further specialize the information setting of our model to highlight the key forces at play.

Note that in any period, before the arrival of public information, both the liquidity providers and

liquidity takers have the same beliefs given by µi,t−1. Once public information arrives, the LT who

trades in period t has valuation νi,t distinct from µi,t−1 because she has more public information

and because of her private value shock. We impose a particular correlation between the public

information and the LT’s private value shocks. Since there are two coins, it is with probability

1 − π̂2 that the LT has superior public information since di,t ∈ {−∆l,∆h} for some token i. For

such realizations, we impose ηA = ηB = 0.

Under this specification, our model features two types of information events as in Glosten and

Milgrom (1985). The first type of information event—analogous to uninformed trading in Glosten

and Milgrom (1985)—occurs when dA,t = dB,t = 0 and represents a case where the LT’s new

beliefs of the tokens’ values, νi,t are uncorrelated with the LP’s beliefs. That is, the LP believes the

value of each token i will yield terminal value according to Et[exp(pi,t)] = Et−1[exp(pi,t)] while

the LT believes the value of each token i is distributed according to νi,t = Et[exp(pi,t)]exp(ηi,t).

When ηi,t ̸= 0, there are gains to trade between the LP and the LT. Following the literature, we

interpret such an event as a “pure noise” trade where trade occurs for reasons orthogonal to the
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LP’s beliefs about the potential returns to her tokens. We denote π = π̂2 ∈ [0, 1] as the probability

of this first type of information event which we describe as a trade for tastes or uninformed trade.

Instead, the second type of information event—analogous to informed trading in Glosten and

Milgrom (1985)—occurs when di,t ∈ {−∆l,∆h} (for some token i) and represents a case where the

LT’s new beliefs are correlated with the LP’s new beliefs. In such a case both the LP and the LT

now believe the value of each token has mean νi,t = Et[exp(pi,t)] and hence there are no gains

to trade between the LT and the LP. For notational simplicity, we assume νi,t follow the same

distributions under the two events.11 Following the literature, we interpret such an event as pure

information event that we describe as an informed trade. The correlation between the information

arrival and private values of the LT that we impose allows us isolate the idea that liquidity takers

may trade for “information” or may trade for “tastes.”

Denote (EA,t−1,EB,t−1) as the amount of tokens the LP owns at the end of each period t− 1.

If the LP does not exit in period t, she chooses the amount of tokens (eA,t, eB,t) to deposit in

the AMM. After her deposit, public information is realized and the LT trades in the AMM. Let

(xA,t, xB,t) denote the amount of tokens remaining in the AMM after the LT’s trade. Post-trade,

the LP owns (EA,t,EB,t) = (EA,t−1 − eA,t + xA,t,EB,t−1 − eB,t + xB,t) tokens.

With probability π, the LT’s trade is uninformed and the LP’s valuation of each token remains

unchanged. Alternatively, with probability 1 − π, the trade is informed and the LP’s valuation of

each token updates to that of the LT.

Suppose that the LP has deposited a portfolio (eA,t, eB,t) with the smart contract of the AMM.

We let G(·) be the embedded pricing function. That is, if the LT wishes to deposit (withdraw)

qA units of token A then the function specifies an amount qB units of token B that the LT may

withdraw (deposit) where qB = G(qA|eA, eB). The most common implementation of automated

markets imposes the constant product market maker (CPMM):

(eA + qA)(eB − qB) = eAeB (1)

The simple function, although ad-hoc, has the attractive property that marginal prices are convex.

The more you withdraw, the higher the marginal price. It also imposes that the contract pool

will “run out” of either token, as marginal prices approach infinity as the withdrawal amount

11Allowing νi,t to follow different distributions does not substantively change our theoretical results. We do allow
for different distributions in our numerical results in Section 5.2 below.
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approaches the token balance in the pool. In practice, the CPMM function includes a transaction

fee paid to the pool. In our analysis, we abstract from transaction fees.

Next, we define the problem of the liquidity provider and liquidity taker working backwards

from the LT’s problem in each period. We maintain the Constant Product Market Making rule

specified in Equation (1) through Section 3.1, 3.2, 4, and 5 below.

3.1 The Liquidity Taker’s Problem

In each period, the LT—whether uninformed or informed—observes liquidity on deposit at the

AMM as well as the realization of νi. From their perspective, the LT perceives a favorable trading

opportunity as prices in the AMM do not automatically adjust to their own valuation. Since the

LT is short-lived, we omit time subscripts when describing the LT’s behavior.

The LT maximizes the expected value of her tokens:

max
qA,qB

− νAqA + νBqB (2)

s.t. (eA + qA)(eB − qB) = eAeB.

When qA > 0, the LT’s problem given in (2) represents a case where the LT “buys” token B

from the AMM by depositing tokenA. She may wish to set qA < 0 in which case she buys tokenA

from the exchange by depositing some amount of token B. The constraint represents the effective

price that she faces in any trade. Under the Constant Product rule, the LT would have to deposit

infinitely much of one token to withdraw all of the other (i.e. setting qB = eB, requires qA → −∞)

and hence the implicit capacity constraints are slack under such a rule.

The solution to the LT’s problem is straightforward, and, in terms of ex-post reserves remain-

ing in the pool after the LT’s trade implies

eA + qA =

√
νB
νA
eAeB, eB − qB =

√
νA
νB
eAeB. (3)

More succinctly, for any beliefs νi, the LT will trade up until the relative price at the AMM equals

her relative valuation of the tokens or

νB
νA

=
eA + qA
eB − qB

. (4)
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Figure 2: Liquidity Taker’s Optimal Trade
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1
The liquidity taker’s optimal trade is characterized by the tangency of their relative valuations (red line) and the con-
stant product market making curve (orange line).

Notice that xA = eA + qA and xB = eB − qB are the post-trade AMM positions so that (1) and (4)

imply that the post-trade positions satisfy

xAxB = eAeB (5)

νAxA = νBxB. (6)

The liquidity provider internalizes that for any realization of beliefs of the LT, νi, her ex-post

portfolio will satisfy (5)–(6). We may represent this behavior graphically as in Figure 2.

The convex curve represents the constant product market-making rule, and the point (eA, eB)

represents the liquidity deposited by the LP. Any trade by the LT will move the LP’s ex-post

portfolio along the convex curve. Once the LT realizes her beliefs νi, she will trade up until the

relative price at the AMM equals her relative valuation of the tokens (represented by the dashed

line with slope −νA/νB).

3.2 The Liquidity Provider’s Problem

Given µA,0,EA,0,µB,0,EB,0, the problem of the LP at time 0 can be written as:

max
{eA,t,eB,t}

∞
t=1

∞∑
t=0

δtβ (1 −β)t E [µA,tEA,t + µB,tEB,t] (7)
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where for t = 1, 2, 3...

xA,txB,t =eA,teB,t

νA,txA,t =νB,txB,t

Ei,t =xi,t + (Ei,t−1 − ei,t)

µi,t =

µi,t−1 with prob π

νi,t with prob 1 − π

0 ⩽ei,t ⩽ Ei,t−1

The first two constraints embed the LT’s behavior in each period. The third and fourth constraints

reflect the law of motion for the LP’s endowments and her beliefs. The final set of constraints

reflect feasibility constraints for the LP.

We now formulate the LP’s problem as a stationary, dynamic program. Suppose the LP starts

a given period with endowments (EA,EB) and beliefs about these token’s values, (µA,µB). Then

the Bellman equation is given by

V(EA,EB;µA,µB) =β [µAEA + µBEB]

+ (1 −β)δ max
eA,eB

(
πEV(E ′

A,E ′
B;µA,µB) + (1 − π)EV(E ′

A,E ′
B;νA,νB)

)
(8)

subject to

0 ⩽ ei ⩽ Ei (9)

xAxB = eAeB (10)

νAxA = νBxB (11)

E ′
i = xi + (Ei − ei) . (12)

With probability β, the LP exits and enjoys the expected utility of her endowment. Should the LP

not exit, then she chooses the quantities of tokens to deposit on the exchange, ei, subject to the

feasibility constraints (9). The constraints (10) and (11) summarize the behavior of the liquidity

taker for any realization of the public information or the private taste shock (νA,νB) which in turn

dictate how the LP’s endowment will evolve into the subsequent period as summarized in (12).

Given her liquidity deposits (eA, eB), with probability π there is no public information event so

that the LP’s beliefs remain constant at (µA,µB). Alternatively, if there is a public information
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event, which occurs with probability (1 − π), then the LP’s beliefs evolve and are consistent with

those of the LT given by (νA,νB).

4 AMM Liquidity: Insights from a One-Shot Model

In this section, we focus on a one-period model to highlight the key results that emerge from

our dynamic model. Exactly as in the dynamic model, at the beginning of the period, the LP

deposits a portfolio (eA, eB) with the AMM given a pricing function G(·) and her beliefs (µA,µB).

Next, the type of information event is realized according to π and the LT realizes a shock to her

beliefs specified by (νA,νB). With probability π the LT is uninformed and the LP’s beliefs remain

(µA,µB). With probability 1 − π the LT is informed and the LP’s beliefs also shift to (νA,νB). In

either case, once information is realized the LT then chooses an amount to trade with the AMM.

Finally, values and payoffs are realized according to the terminal portfolios of the LP and LT. Here

we set δ = 1 (no discounting) and β = 1 (the LP exits and enjoys the terminal value of the tokens

after one period.).

In the one-shot game, we solve for the LP’s optimal liquidity supply and show how it de-

pends on the LP’s beliefs about the probability of informed versus uninformed trading. We use

this simple model to examine the usefulness of the conventional wisdom from existing automated

marketplaces—that liquidity providers should deposit liquidity in equal (dollar) values—and find

that such behavior is typically inconsistent with profit-maximizing behavior. It is optimal for

the representative liquidity provider only when informed trading is so severe that the liquidity

provider prefers to supply no liquidity. We demonstrate how adverse selection distorts the quan-

tities of liquidity deposited by providers on automated exchanges. Finally, we examine how the

shape of the AMM pricing function impacts gains to trade realized by liquidity providers.
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4.1 The Liquidity Provider’s Problem in the One-Shot Model

Anticipating the behavior of the liquidity taker, the LP chooses her liquidity deposit to solve the

following program.

max
eA,eB

π(µAE[xA − eA] + µBE[xB − eB])+ (13)

(1 − π)(EνA[xA − eA] + EνB[xB − eB])

s.t. (5)–(6),

0 ⩽ ei ⩽ Ei, ∀i

where π is the probability of an uninformed trading event. Notice, regardless of whether the LP

experiences an uninformed or informed trading event, the beliefs of the liquidity taker will result

in an ex-post portfolio of the LP according to (5)–(6). These events differ, however, in how the

LP perceives the value of these ex-post portfolios. When the LT represents an uninformed trade,

the LP continues to value her ex-post portfolio according to her prior beliefs, µi. Instead, when

the LT represents an informed trade, the LP values her ex-post portfolio according to the realized

beliefs of the LT, νi. As we show below, the LP will trade off profits she earns on uninformed

trades with losses on informed trades. Unlike in standard models of exchange subject to adverse

selection where market makers post prices that reflect the extent of adverse selection, blockchain

market makers must distort their quantity choices for liquidity provision to protect themselves

from possible adverse selection.

4.2 Liquidity Provision with Uninformed Trade Only

Suppose first that π = 1 so that there are only uninformed trades. The LP’s problem (13) simplifies

to

max
eA,eB

µA

(
E

√
νB
νA
eAeB − eA

)
+ µB

(
E

√
νA
νB
eAeB − eB

)
s.t. 0 ⩽ ei ⩽ Ei, ∀i.

Since the LP’s deposit quantities, ei, are not random, her objective may be written as(
Eω+ E

1
ω

− 2
)√

µAeA
√
µBeB − (

√
µAeA −

√
µBeB)

2 (14)
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where ω =
√

νA/µA

νB/µB
. Equation (14) shows how an LP facing only uninformed trade chooses

the optimal liquidity to provide. By changing the quantities of tokens A and B she deposits, she

adjusts the position of the pricing curve the LT will face ex-post.

To better understand (14), consider one possible (suboptimal) deposit choice for the LP: an

equal value deposit, or eA and eB that satisfy µAeA = µBeB. Notice that all possible ex-post

portfolios for the LP lie on the constant product price function that runs through the point (eA, eB).

Moreover, at (eA, eB), the constant product price function has slope −µA/µB. Since the constant

product price function is convex, any trade by the LT will appear to happen at favorable prices

from the perspective of the LP—that is, terms of trade are better than −µA/µB for the LP regardless

of whether the LT is buying token A or token B. As a result, for such a deposit choice, the LP only

stands to gain and suffers no losses.

Panel (a) of Figure 3 illustrates this result. Given the LP’s beliefs are fixed, facing only un-

informed trades, the straight (blue) line with slope −µA/µB reflects the LP’s indifference curve.

Since all terminal portfolios lie on the constant product price function, and this function lies above

the LP’s preferences, such a deposit choice by the LP ensures the LP only stands to gain from

trade.

Figure 3: Liquidity Provider’s Deposit Choice
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êA

êB
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(a) “No-Loss” Deposit
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(b) Optimal Deposit

Panel (a) illustrates a deposit choice of the LP that ensures zero losses if she only faces uninformed liquidity takers. The
straight (blue) line shows the indifference curve an LP assuming her beliefs are given by (µA,µB) and do not change
when trade takes place. The (orange) curve shows the set of possible ex-post allocations. Panel (b) shows an LP’s
optimal deposit is (typically) not a no loss deposit.

Should the LP provide liquidity different from an equal value deposit, then for small differ-

ences in beliefs from her own, the constant product price function will provide prices that appear
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unfavorable from the perspective of the LP and yield second-order losses. For this reason, the LP

faces a loss function—the second term in (14)—that depends on how her portfolio differs from an

equal value (µAeA = µBeB) portfolio.

To the extent νi differs from µi, there are gains to trade. The value of these gains depend on

the term Eω+E 1
ω − 2 ⩾ 0. (The inequality follows directly from Jensen’s inequality.) As a result,

from any equal value deposit, a small perturbation that raises eA or eB on the margin will induce

second-order losses but incur first-order gains by supporting more trading with uninformed LTs

at typically favorable pricing. As a result, equal-value deposits are generically not optimal for

the LP. In general, the LP desires to provide as much liquidity as possible to facilitate gains to

trade, and thus, her budget constraint must bind (either eA = EA or eB = EB). We then have the

following proposition.

Proposition 1: Optimal Liquidity with only Uninformed Trade. With only uninformed trade, the

optimal liquidity deposit satisfies:


e∗A = EA, e∗B = min

{(
Eω+E 1

ω

2

)2
µA

µB
EA,EB

}
, if µAEA ⩽ µBEB

e∗A = min
{(

Eω+E 1
ω

2

)2
µB

µA
EB,EA

}
, e∗B = EB, if µAEA > µBEB.

Generically, the LP will prefer a deposit choice different from the equal value portfolio to max-

imize intermediation profits with uninformed traders. Such a choice is illustrated in Panel (b) of

Figure 3 where, according to Proposition 1 typically, we expect either eA = EA or eB = EB.

4.3 Liquidity Provision with Informed Trade Only

Suppose next that π = 0 so that there are only informed trades. The LP’s problem (13) simplifies

to

max
eA,eB

EνA

(√
νB
νA
eAeB − eA

)
+ EνB

(√
νA
νB
eAeB − eB

)
(15)

s.t. 0 ⩽ ei ⩽ Ei, ∀i (16)
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If we impose a mild assumption that νi is a mean preserving spread of µi, i.e. Eνi

µi
= 1, the LP’s

objective may be written as

(2Eψ− 2)
√
µAeA

√
µBeB − (

√
µAeA −

√
µBeB)

2 (17)

where ψ =
√

νA

µA

νB

µB
. Equation (17) shows how an LP facing only informed trade chooses the

optimal liquidity to provide.

Since the LP and the LT hold the same ex-post belief, any gains of the LT must reflect losses

borne by the LP. Moreover, since the LT only trades when it is beneficial for herself, all trades hurt

the LP. As a result, the case of only informed trading reflects a case of pure adverse selection and

induced losses for the LP relative to what the value of her wealth would have been had she simply

held her portfolio rather than providing liquidity.12

The Cauchy-Schwarz inequality implies Eψ ⩽
√

EνA

µA
EνB

µB
and holds with equality only when

νA and νB are perfectly correlated. Since we impose Eνi/µi = 1, the above inequality implies

Eψ ⩽ 1. Therefore, the LP’s objective function is necessarily non-positive for any deposit amount,

yielding our next proposition.

Proposition 2: No Liquidity Provision with Only Informed Trade. The optimal liquidity deposit

satisfies: e∗A = e∗B = 0.

Proposition 2 is consistent with the conventional view in the nascent literature on AMMs: if

arbitrageurs have frictionless access to a centralized exchange where price discovery for the to-

kens takes place as well as the AMM, then in the absence of fees LPs cannot profit from supplying

liquidity to the AMM. Fees must then be imposed by the AMM to make liquidity provision sus-

tainable. In contrast, when arbitrageurs face enough frictions, which occurs in our model when π

is not too small, then the market may be sustainable even in the absence of fees.

4.4 Liquidity Provision with Uninformed and Informed Trading

We now use these results to understand better the general problem (13) with arbitrary π. We once

again simplify the LP’s objective function as[
π

(
Eω+ E

1
ω

)
+ (1 − π)2Eψ− 2

]√
µAeA

√
µBeB − (

√
µAeA −

√
µBeB)

2 (18)

12Since we implicitly assume LPs are “slow” traders, we do not consider the opportunity cost of trading at an AMM
herself. See Milionis et al. (2022) for such an analysis.
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As before, we may write the LP’s objective as the sum of a revenue function less losses that depend

on how the LP’s deposit portfolio differs from an equal value portfolio. The revenue function

now reflects the probability of realizing an informed versus an uninformed trade. Similar to the

previous cases, when uninformed trades occur the LP realizes profits and when informed trades

occur, the LP realizes losses. If the gains from uninformed trades are larger than the loss from

informed trades, i.e. π
(
Eω+ E 1

ω

)
+ (1 − π)2Eψ ⩾ 2, then the LP will be willing to provide

as much liquidity as possible—up to their ex-ante resource constraint. Otherwise, the LP will

optimally choose to provide no liquidity. We summarize this result in the next proposition.

Proposition 3: Optimal Liquidity. The optimal liquidity deposit with π proportion of uninformed

trade and 1 − π proportion of informed trade satisfies
e∗A = EA, e∗B = min

{(
π
(

EUω+EU
1
ω

2

)
+ (1 − π)EIψ

)2
µA

µB
EA,EB

}
, if µAEA ⩽ µBEB

e∗A = min
{(
π
(

EUω+EU
1
ω

2

)
+ (1 − π)EIψ

)2
µB

µA
EB,EA

}
, e∗B = EB, if µAEA > µBEB

if π
(
Eω+ E 1

ω

)
+ (1 − π)2Eψ ⩾ 2 and

e∗A = e∗B = 0

otherwise.

We write Π = π
(

EUω+EU
1
ω

2

)
+ (1 − π)EIψ to represent the LP’s expected profit margin from

liquidity provision. According to Proposition 3, if Π > 1, then the optimal value ratio µAe∗A/µBe
∗
B

satisfies

µAe
∗
A

µBe
∗
B

=



1
Π2 if EA ⩽ 1

Π2
µB

µA
EB

µAEA

µBEB
if 1

Π2
µB

µA
EB < EA < Π

2 µB

µA
EB

Π2 if Π2 µB

µA
EB ⩽ EA

. (19)

We illustrate Proposition 3 in Figure 4 for cases where the optimal deposit is strictly positive

(so Π > 1). We slowly vary the LP’s endowments of tokens (EA,EB) making token A relatively

more plentiful as we move from Panel A to Panel C. Initially, when the LP’s endowment of tokenA

is relatively scarce (shown in Panel A), she deposits all of tokenA and an interior amount of token

B. When the LP’s endowments are tokens are relatively balanced (near µAEA = µBEB shown
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Figure 4: Liquidity Provider’s Optimal Deposit Choice
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The figures illustrate different cases of the optimal liquidity deposit (e∗A, e∗B) described in Proposition 3 for various
possible initial endowment points (EA,EB). Moving from Panel A to Panel C, we slowly increase the LP’s initial
endowment of tokenAmaking it relatively more plentiful and highlighting how according to Proposition 3, differences
in her relative endowments impacts which token she supplies completely.

in Panel B), she deposits all of both tokens. When the LP’s endowment of token A is relatively

abundant (shown in Panel C), she deposits all of token B and an interior amount of token A.

Next, we use Proposition 3 to explore the optimality of the conventional wisdom that liquidity

providers should deposit portfolios with equal values. Notice that when Π > 1, the optimal de-

posit ratio, µAEA/µBEB is only 1 if the LP’s endowments are relatively balanced (as in Panel B of

Figure 4) and her endowment satisfies µAEA = µBEB. This suggests that the conventional wisdom

the liquidity providers should deposit portfolios with equal values is typically not profit maximiz-

ing for liquidity providers. Furthermore, Proposition 3 reveals that as Π→ 1 then µAe∗A → µBe
∗
B

for all values of EA,EB. In other words, only when the gains from uninformed trades exactly off-

set the losses from informed trades, then it is optimal for the LP to deposit a portfolio with equal

values.

Proposition 3 also suggests an important feature of optimal liquidity provision in our model.

The liquidity provider optimally supplies her entire endowment to the AMM when the ratio of

her endowments (in token quantities) EA/EB lies in a region that depends on her relative value

of tokens µA/µB as well as the profit margin Π. If we interpret the LP’s endowment in the static

model as having arisen from past trades by liquidity takers, then should her endowment lie in this

region, she will not “re-balance” her deposits—she will simply leave her entire endowment on the

AMM. We return to this point in Section 5 when we study dynamics of liquidity provision below.

Note also that the LP’s expected profit margin Π is increasing in the probability that trades are
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uninformed, π. Hence, there is a minimal value π such that Π = 1. We then have the following

Corollary.

Corollary 1: Optimal Value Share. Let π be such that Π = 1 and assume µAEA ̸= µBEB.13 The

equal value deposit µAeA = µBeB is optimal only when π = π.

4.5 Break Even Proportion of Uninformed Trading

The threshold π also sheds light on the extent to which liquidity provision is profitable. The value

of π such that Π = 1 depends critically on the distribution of the LT’s beliefs specified by Hi.

Since the termω+ 1
ω is not globally convex in νi, a mean preserving spread of the LT’s beliefs νi

could increase or decrease the threshold π. We instead explore how the profitability of liquidity

provision varies with the distribution of the LT’s beliefs via a numerical example.

To simplify the numerical analysis, consider a special case where one token is a stablecoin

whose value does not fluctuate over time such as USDC or Tether.14 We let token B represent the

stable coin and set νB = µB = 1 and hB(νB) = 1 if νB = 1. Then we have ω = ψ =
√

νA

µA
. We

assume νA

µA
is a log-normally distributed random variable with E[νA/µA] = 1 and Var[νA/µA] =

σ2
A. As a benchmark, we impose σ2

A = 0.8 consistent with variation in the daily price of ETH–the

native cryptocurrency of the Ethereum blockchain–from 2018 October to 2023 October.15 Around

this benchmark, we explore how changes in the variance of beliefs about ETH prices change the

threshold probability for liquidity provision to be profitable, π. We plot how this threshold varies

with the variance of the LT’s beliefs in Figure 9, which shows that increases in variance typically

decrease this threshold. 16 In other words, liquidity provision becomes more profitable (LPs can

tolerate more informed trading) as ETH price risk increases.

13If the LP happens to be endowed with an equal value portfolio and profits from liquidity provision are increasing,
then she may deposit in equal value simply because she is constrained. We rule out this uninteresting case with this
assumption.

14In practice, the value of stablecoins do fluctuate at specific points in time, such as when USDC de-pegged for a
short window in April 2023. For our example, we assume liquidity providers and takers believe the stablecoin peg will
hold with certainty.

15Based on the Coinbase ETH index price obtained from fred.stlouisfed.org.
16We experimented with several other distributional assumptions for νA

µA
and found similar results. Details are

available upon request.
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4.6 Efficiency Losses from Constant Product Market Making

Finally we examine how the shape of the AMM pricing function impacts gains to trade realized by

liquidity providers. We focus on the (local) convexity of the CPMM price function and leave a full

mechanism design perspective for future work (see Milionis, Moallemi and Roughgarden (2023b)

for such an approach applied in an environment with only one risky token and endowment limits

for the LTs.) Specifically, we consider perturbing the CPMM price formula and study a class of

pricing functions given by

(eA + (1 − τ)qA) (eB − (1 − τ)qB) = eAeB (20)

where τ ∈ [0, 1). Notice that this class of price functions admits the CPMM function when τ = 0.

For values of qi close to zero, an increase in τ reduces the convexity of the price function. For larger

values of qi, it is possible that the price function becomes more convex. Moreover, for any τ > 0,

there exist values of qi such that the implied ex-post portfolio of the LP would have a negative

amount of tokenA or B so we must impose the boundary conditions, eA ⩾ qA and eB ⩾ qB. Such

boundary conditions also tend to increase the global convexity of the price function.

We illustrate how an increase in τ impacts the price function locally in Figure 5 below. The

solid curve represents the standard CPMM with τ = 0. Around a given deposit point, (eA, eB),

the dashed curve represents how the CPMM function changes when τ increases. If we impose the

LP’s ex-post token holdings (xA = eA + qA and xB = eB − qB) then we may re-write (20) as

((1 − τ)xA + τeA) ((1 − τ)xB + τeB) = eAeB. (21)

The price function (20) is convex and smoothly decreasing when x > 0. The convexity of the

function is decreasing in τ. The boundary conditions on qi simply imply xi ⩾ 0.

For a given the realization of the LT’s beliefs, (νA,νB), (21) implies that the LP’s net proceeds

from trade satisfy

x− eA =
1

1 − τ

[√
νB
νA
eAeB − eA

]
, y− eB =

1
1 − τ

[√
νA
νB
eAeB − eB

]
. (22)

Since net proceeds for both tokens scale by the same factor 1/(1 − τ), the LP’s expected returns

also scale by 1
1−τ . Moreover, gains from uninformed trading and losses from informed trading

scale by the same ratio so that the break-even proportion π does not change with τ. As a result,
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Figure 5: CPMM with change in local convexity

The figure illustrates a perturbation of the CPMM curve that decreases the (local) convexity at the LP’s deposit point.
The CPMM curve with τ = 0 is displayed as the solid, orange curve while the CPMM curve with τ > 0 is displayed as
the dashed, blue curve.

increased (local) convexity of the CPMM hinders trading volume and reduces gains to trade for

both the LP and the LT.

However, eliminating (global) convexity of the CPMM is not costless. When τ > 0, equation

21 has finite positive intercepts: (0, 1+τ
τ eB) and ( 1+τ

τ eA, 0). For such values of τ, trading volume

cannot increase beyond the two intercepts, even for more extreme beliefs of the LT. Holding the

LP’s choice of liquidity fixed, we argue that relaxing the local convexity of the pricing function

may be detrimental to the LP’s ex-ante profits.

To see this, consider a piece-wise linear approximation to the convex pricing function that runs

through the LP’s (fixed) choice of liquidity deposit. With piece-wise linear prices, liquidity takers

either do not trade or trade up to one of the intercept points. For example, suppose ph represents

the (minus the) slope of the price function for values of xA between 0 and eA the amount of token

A deposited by the LP. If the beliefs of the LT are more optimistic than ph (so if νA/µA > ph), then

the LT will trade up to the intercept where xA = 0—the LT will buy all of token A in the pool at

the prevailing price, ph. Otherwise, for ph > νA/µA > 1, the LT will not trade.

Consider a marginal increase in ph (in absolute value). Such a change increases the region of

no trade by the LT and thus reduces trading volume on the extensive margin. Recall that the LP

only loses expected value from informed trades (and earns exactly zero losses on the marginal

informed LT who is just indifferent between trading at ph and not trading). Therefore, decreasing
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the volume of trade reduces the LP’s expected losses from informed trading. Among uninformed

trades, reducing volume is costly on the extensive margin, but raising the intercept implies the

LP realizes increased gains to trade for all beliefs where the LT continues to trade. An analogous

argument occurs if beliefs of the LT are sufficiently low so that the LT trades to the point where

xB = 0. Consequently, it is possible that the gains from increasing the global convexity of a piece-

wise linear price function outweigh the costs, implying some degree of convexity is desirable. We

show this result both for piece-wise linear prices as well as for the continuously differentiable

price function in (20) in Appendix B.

If the distribution of the LT’s beliefs has bounded support, then the potential losses from re-

duced (global) convexity for extremal beliefs may be limited with an appropriate choice of τ. In

other words, when the LT’s beliefs have bounded support, then there exists τ > 0 that increases

the LP’s expected returns. In fact, we generalize these results beyond the CPMM formula in the

next Proposition (proved in Appendix A).

Proposition 4: Pareto Improvement. Consider a convex and smoothly decreasing price function

y = G(x). Assume the distributions of the LT’s valuations of the tokens (νA,νB) have bounded

support such that a trade that exhausts one token never happens under the price function G(x).

Then there exists τ = τ̂ ∈ (0, 1) such that the new price function (1 − τ̂)y+ τ̂eB = G((1 − τ̂) x+

τ̂eA) is less convex at (eA, eB), the LP’s optimal deposit is the same at τ = τ̂ as at τ = 0, and τ = τ̂

increases both the LP’s and the LT’s expected returns proportionally by τ
1−τ .

In particular, if G(x) is the CPMM function and if
[
µi,µi

]
is the support of the distribution of

νi, then the result of Proposition 4 holds for all τ ⩽ τ̄ = min
{√

µBeB

µAeA
,
√

µAeA

µBeB

}
with τ̄ > 0.

We see that with bounded beliefs, convexity hurts the LP’s expected returns. In fact, with some

additional conditions, the optimal price function for the LP is the linear price function:plxA + xB = pleA + eB, x ⩾ eA

phxA + xB = pheA + eB, x < eA
(23)

where again ei are the LP’s deposit and xi are the tokens left in the pool after the LT’s trad-

ing. Similar to the results in Milionis, Moallemi and Roughgarden (2023b), we have the following

proposition (proved in Appendix C).

Proposition 5: LP’s Optimal Pricing Function Assume the distributions of the values of the tokens

have bounded support and the LT has a budget limit on at least one token, i.e. her endowment
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of either token A or B is finite. Given the LP’s deposit (eA, eB), the optimal pricing formula is the

linear pricing formula if one of the following conditions is satisfied:

1. All trades are uninformed trading, i.e. π = 1;

2. The LT’s value (νA,νB) follows the same distribution for both informed and uninformed

trading, one of the two tokens is a stablecoin (i.e. if token A is stable then νA = µA for sure)

and π ̸= 0 (i.e. there exists some uninformed trading).

5 AMM Liquidity: Insights from the Dynamic Model

In this section, we solve for and simulate the optimal supply of liquidity in the dynamic model. We

show how the LP’s dynamic problem, which is a function of four state variables (her endowment

of each token and her beliefs about the value of each token), may be simplified using an auxiliary

dynamic problem with a single endogenous state variable and a single exogenous state variable.

We use this approach to solve and simulate the dynamic supply of liquidity.

We use our simulations to study the dynamics of optimal liquidity—that is, we study how

optimal liquidity responds to trading by liquidity takers. First, we show that the LP’s responses

typically feature action and inaction regions. For trades (informed or uninformed) that have lit-

tle price impact, LPs typically do not re-balance their liquidity. For large trades, however, LPs

typically re-balance. Moreover, LPs are more likely to re-balance when trading is uninformed.

Finally, we explore our empirical evidence on AMM trades and liquidity provider behavior and

demonstrate similar patterns exist in the data.

5.1 The Dynamic Model Solution

Although the liquidity provider has linear (risk-neutral) preferences, the evolution of her endow-

ments is not immediately linear given the convex pricing curveG and the behavior of the liquidity

takers in each period. Nonetheless, we are able to simplify our dynamic model which naturally

has four state variables.

Towards this end, observe that EA,t,EB,t,µA,t,µB,t only show up in the objective function (7)

as products µA,tEA,t and µB,tEB,t. We now show that the same holds in the LP’s constraints in
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each period. Define (rA,t, rB,t) =
(

νA,t
µA,t−1

, νB,t
µA,t−1

)
as the rates of change in the LT’s valuations

relative to the LP’s. Let Xi,t = µi,tEi,t represent the expected value of each token the LP has at

the end of each period t and Yi,t = µi,t−1ei,t represent the expected value of each token the LP

deposits into the pool at the beginning of period t.

Now, suppose that (rA,t, rB,t) follows the distribution Ht, which is independent of the current

beliefs (µA,t−1,µB,t−1). Then, there is a one-to-one mapping from the initial values {EA,0,EB,0,µA,0,µB,0}

and the sequence of {EA,t,EB,t,µA,t,µB,t, eA,t, eB,t}
∞
t=1, to the initial values {XA,0,XB,0,µA,0,µB,0}

and a sequence of {XA,t,XB,t, rA,t, rB,t, YA,t, YB,t}
∞
t=1 where

Ei,t =
Xi,t

µi,t
, µi,t = µi,0

t∏
s=1

ri,t, ei,t =
Yi,t

µi,t−1
.

In other words, assuming the change in beliefs is independent of the level of beliefs renders the

LP’s optimal liquidity supply in each period independent of the level of beliefs. Her payoffs, of

course, depend on these levels so we must track their values, but they do not influence the LP’s

optimal supply.

Using notation similar to that from the one-shot model, ωt =
√

rA,t
rB,t

and ψt =
√
rA,trB,t, we

may re-write the LP’s dynamic problem as

max
{YA,t}

∞
t=1,{YB,t}

∞
t=1

∞∑
t=0

δtβ (1 −β)t E [XA,t +XB,t]

where for t = 1, 2, 3...

(
XA,t

XB,t

)
=



 1
ωt

√
YA,tYB,t + (XA,t−1 − YA,t)

ωt

√
YA,tYB,t + (XB,t−1 − YB,t)

 with prob π ψt

√
YA,tYB,t + rA,t (XA,t−1 − YA,t)

ψt

√
YA,tYB,t + rB,t (XB,t−1 − YB,t)

 with prob 1 − π

0 ⩽ Yi,t ⩽ Xi,t−1

given µA,0,XA,0,µB,0,XB,0. We leave a detailed proof in Appendix D. This result implies that we

may re-write the sequential problem as a dynamic program with value function V (XA,t,XB,t)

(rather than as V (EA,t,EB,t|µA,t,µB,t)).

Next, we argue that this value function is homogeneous with degree one (constant return to

scale).
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Proposition 7: Constant Return to Scale. For any Xk
A,0 = kXA,0 and Xk

B,0 = kXB,0, V
(
Xk
A,0,Xk

B,0

)
=

V (kXA,0,kXB,0) = kV (XA,0,XB,0) for any k > 0.

Proposition 7 implies that we may use two one-dimensional functions Vi : (0, 1] → R+ to

represent the value function instead of one two-dimensional function V : R2
+ → R+.

V (XA,0,XB,0) =

XA,0V
(

1, XB,0
XA,0

)
XA,0 ⩾ XB,0

XB,0V
(
XA,0
XB,0

, 1
)

XA,0 < XB,0

≡

XA,0V
B
(

XB,0
XA,0

)
XA,0 ⩾ XB,0

XB,0V
A
(
XA,0
XB,0

)
XA,0 < XB,0

. (24)

Being able to reduce the value function into the form of a two-dimensional function with domain

(0, 1] allows us to numerically solve the value functions and policy functions through policy func-

tion iteration.

5.2 Simulated Dynamics of Liquidity Provider Behavior

We now explore the features of the dynamics of optimal liquidity using simulated data from our

model. Specifically, we consider the case of one risky coin and one stable coin. We assume the rate

of change of beliefs of the risky coin follows a truncated normal distribution. We first examine

what fraction of each token the LP deposits as a function of the ratio of the expected value of each

token the LP has at the beginning of each period. Numerical experiments across a wide range of

parameters suggest that at least one corner constraint always binds as in our static model.17

Figure 10 displays an illustration of the LP’s optimal deposit strategy for a typical numerical

example (we provide the numerical details in the figure’s description). In the example, token A

is a risky coin and token B is a stable coin whose value never fluctuates. On the left-hand side

of the panel, the LP owns risky coins with lower expected value relative to the stable coins she

owns. In this case, she deposits all of her risky coins with the AMM and retains a portion of her

stable coins. The fraction of stable coins she deposits on the AMM grows as the ratio of the value

of her endowment of token tends towards one. We see the inverse behavior when instead the LP

owns risky coins with greater expected value relative to the stable coins she owns. In this case,

she deposits all of her stable coins and only a fraction of her risky coins. In this example, the full

17 Our simulation results below (Figures 6, 10, 11) assume π = 0.8, rB,t = 1 (token B is a stable coin), rA,t follows
a normal distribution where the distribution for uninformed trades has mean 1 and standard deviation 0.5 while for
informed trades has mean 1 and standard deviation 0.25 (both distributions are truncated to a range of 0.5 to 1.5),
δ = 0.99, β = 0.01. We simulate conduct 20,000 simulations of activity at the AMM in our model with each simulation
lasting for 500 periods.
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deposit region—when the LP deposits all of her endowment of both tokens—is when the expected

value of her risky coin endowment is slightly bigger than that of her stable coin endowment (when

XB/XA is close to 1).

Using numerically solved dynamic optimal policy functions, we conduct Monte Carlo exper-

iments to simulate the dynamic behavior of the LP under different parameterizations. As shown

in Section 2, liquidity providers transact at the AMM rarely compared to liquidity takers. Our

model generates this inactivity endogenously since an LP who deposits their whole endowment

may still do so even after a trade by the liquidity taker.

To understand this inaction, recall from our discussion following Proposition 3 that there is

a range of relative token endowments (given the LP’s beliefs) where the LP finds it optimal to

deposit her entire endowment. Suppose in some period t the LP deposits her entire endowment

and there is subsequently an uninformed trade. If this trade is small—it shifts the LP’s ex-post

endowment very little—then the LP is likely to remain in the region where she finds it optimal

to supply her entire endowment. (With uninformed trades, the LP’s relative valuations µA,t and

µB,t do not adjust.) When a large uninformed trade takes place, the LP is likely to find herself

outside of the maximal supply region and will adjust her balance. However, when a large informed

trade takes place, the LP’s maximal supply region also shifts (simulations suggest this shift is

typically in the same direction as the LT’s trade) and so sometimes the LP will remain in the (new)

maximal supply region. This result suggests that LP’s will trade more frequently when there is

more uninformed trade.

Figure 11 explores this inactivity numerically by examining how the extent of the LP’s inaction

depends on the severity of informed trading. This figure shows that an increase in π—the degree

of uninformed trade—leads to a higher probability that the LP will re-balance her deposits in any

given period.18 In other words, we should expect more LP transactions in pools that feature less

informed trading (or less adverse selection).

Regardless of whether the LP faces informed or uninformed trades, when trades are suffi-

ciently large we expect the liquidity provider to re-balance her deposits in such a way that adjusts

relative prices in the opposite direction of the liquidity taker’s realized trades. Moreover, it is

more likely for the LP to re-balance her deposits following an LT swap after an uninformed trade

relative to an informed trade.
18While we display the percentage of periods the LP trades, the level of this value is not determined in our model as

we may assume an arbitrary amount of trades by LTs in each period before the LP has the opportunity to re-balance.
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To study how LPs adjust prices empirically, we construct measures of price impact by LTs and

LPs at AMMs. Recall, that the ratio of the quantity of coin A to coin B defines the marginal price

in the liquidity pool. Motivated by this feature of the AMM, we define the price impact of an LT

trade at time t as

λLTt = log (xA,t/xB,t) − log (eA,t/eB,t) (25)

where ei,t are the quantities prior to the trade and xi,t are quantities immediately after the trade,

as in 7. Similarly, we define the price impact of the LP swap after an LT trade at time t as

λLPt = log (eA,t+1/eB,t+1) − log (xA,t/xB,t) . (26)

We expect these measures of price impact to be negatively correlated and that the correlation

is more negative for uninformed trades than informed trades. Figure 6 illustrates this result in

our numerical simulations. Each panel displays the scatter plot of λLPt against λLTt (panel (a)

shows this relationship following informed trades and panel (b) shows this relationship following

uninformed trades). In a given period, the LT experiences a shock to her valuation of token A

relative to the LP’s beliefs at the start of the period rA,t (recall token B in this simulation is a

stable coin). When rA,t is larger than 1, the LT becomes relatively optimistic about token A and so

withdraws token A from the pool and deposits token B. From (25), this swap induces a negative

price impact (λLTt < 0). Conversely, when rA,t is smaller than 1, the LT is relatively pessimistic

about token A and will induce a positive price impact (λLTt > 0).

In the figure, darker colors with larger positive LT price impact are associated with lower

values of rA,t (more pessimistic views of the LT) while lighter colors with larger negative LT

price impact are associated with higher values of rA,t (more optimistic views of the LT). There is

variation in the implied price impact for a given level of rA,t because the state of the AMM at the

time of the shock varies (and because the colors represent bins of the belief update distribution).

For a given level of rA,t, whether trades are informed or uninformed, we observe a negative

correlation between the LT’s price impact and the LP’s price impact caused through deposit re-

balancing. (In both plots for a given color, we see a strong negative relationship.) However, for

any level of rA,t, when trades are informed, the LP is less likely to re-balance their deposits, and,

as a result, the distribution of LP price impacts is (roughly) centered at no price impact. Instead,

LPs respond more aggressively to large trades by uninformed LTs. When examining the overall

correlation of the price impact of swaps by LTs and LPs, we expect a much weaker correlation for
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informed trading than for uninformed trading as shown in Figure 6.

Figure 6: LP Swap Slope against LT Trade Slope

(a) Informed Trade (b) Uninformed Trades

Scatterplot of price impact of LT swaps (λLT ) with price impact of subsequent LP swaps (λLP) from numerical simu-
lation where the value of token A follows a truncated normal distribution and the value of token B is fixed or stable.
Different colors represents different rates of change in the LT’s valuation of token A relative to the LP’s at the beginning
of each period (rA,t). Panel (a) shows the cases of informed trades. Panel (b) shows the cases of uninformed trades. For
detailed choices of parameters, see 17.

5.3 Empirical Dynamics of Liquidity Provider Behavior

In Section 2, we used data from Uniswap v2 contract to show that even with a limited set of

actions, many liquidity providers are actively involved in price setting. Specifically, we observed

that many liquidity providers execute swap transactions in pools where they had also provided

liquidity. We also found that many mint transactions, which add liquidity to a pool, were preceded

by swaps that adjust the marginal price in the pool.

In our dynamic model, building on the static framework shown in Figure 4, we characterized

how liquidity providers “set prices” (by posting quantities) based on their beliefs. As liquidity

takers post swap transactions, liquidity providers may want to adjust their positions. Whether

they do so depends on the nature of the LT trade. Any LT swap, by definition, changes the relative

quantities of pool tokens and, given the CPMM function, the relative marginal token price. If the

swap came from a LT who is uninformed, the beliefs of the LP are unchanged. So, to move the

pool back towards the LP optimal position, they would need to swap in the opposite direction. In
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contrast, if the LT trade came from an informed trade, then the beliefs of the LP have updated. In

this case, the LP may wish to swap to attain the optimal position. However, given the new beliefs

centered at those motivating the last LT trade, there is no bias for the LP to swap in one direction

or the other.

We can use the transaction data for the Uniswap v2 data to examine this behavior empirically.

We begin by defining an empirical counterpart to our measures of price impact as

λt = log (qA,t1/qB,t1) − log (qA,t0/qB,t0)

where t0 are the quantities prior to a swap and t1 are quantities immediately after the swap. We

are interested in the price impact of the swap of an LP, λLPt , and how that compares to LT swaps

prior to t.

In Table 3 we present summary statistics on the typical size of LP and LT price impacts in our

Uniswap data. Note in this table we focus on individual rather than cumulative trades.

Table 3: Price Impact

Standard
Mean Deviation Min Max

LP 0.002958 0.010522 -0.526232 0.326240
LT 0.001911 0.014523 -7.496103 6.977194

The table presents the average and standard deviation of the absolute value of price impact by LPs and LTs. The
table also includes the smallest and largest price impacts by LPs and LTs. Data is pulled from all Uniswap v2
pools that were created prior to 2020-07-01 and have more than 100,000 transactions. There are 31 pools. The
sample period is from 2020-07-01 to 2024-06-30.

Given our focus on transaction counts in Section 2 above, it is interesting to note that a typical

swap by an LP is of a comparable size (by price impact) to a typical swap by an LT. We view this

as supporting evidence that LP swap behavior is meaningful for overall price discovery at AMMs.

Additionally, our model suggests that the response of the LP to LT trade as measured by the

correlation between λLPt and λLTt should vary with the extent of informed trading in the market.

We pursue an approach to identify the extent of informed trading behavior in AMMs motivated

by ideas in Capponi, Jia and Yu (2024) who use blockchain gas fees (transaction costs) paid on

swaps to categorize informed and uninformed trades. The logic is that a LT with information that
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is short-lived will pay a higher mining (gas) fee to increase the priority of her transaction and

ensure it is added to the blockchain quickly.19 Building on this idea, we categorize a transaction

by an LT as an informed trade if the gas fee is high. We define “high” as a gas fee paid in a specific

pool that is in the top 25% decile over the prior (rolling) seven day window in that pool.

Using this categorization, we find that the average (absolute) price impact of an informed trade

is roughly 0.0029 and of the same order of magnitude as an LP swap as reported in Table 3 while

the average (absolute) price impact of an uninformed trade is slightly smaller and roughly 0.0016.

Focusing on one specific pool, Table 4 shows the distribution of the size of trades in the largest

pool in our sample, the WETH–USDT pool where traders may swap WETH for the Tether stable

coin USDT.20

Table 4: Price Impact in the WETH-USDT Pool.

Trader Type 5% 50% 95% Min Max

LP -0.000361 0.000000 0.000535 -0.278843 0.273400
LT -0.000330 -0.000001 0.000327 -0.232827 0.322526
Informed -0.000737 -0.000002 0.000700 -0.232827 0.322526
Noise -0.000241 -0.000001 0.000246 -0.230243 0.234302

The table presents distributional statistics of price impact by LPs and LTs. The table also shows distributional
statistics of price impact by LT trades classified as Informed trades compared to those classified as uninformed
trades. Trades are classified as informed if the gas fee associated with the swap transaction is in the top 25%
quartile of gas fees paid for swaps over the prior (rolling) seven day window in that pool. Data is pulled from all
Uniswap v2 pools that were created prior to 2020-07-01 and have more than 100,000 transactions. There are 31
pools. The sample period is from 2020-07-01 to 2024-06-30.

Table 7 shows similar results for all pools in our sample. Consistently, we observe the price

impact of a typical swap by an LP is comparable to the price impact of a typical swap by an LT.

While this result holds across most pools for a wide range of the distribution, from the 5th to the

95th percentile, for some pools we do observe that the LT swaps with the largest price impact in

absolute value tend to be larger than those for LP swaps. We view this evidence as consistent

with our assumption that a typical liquidity provider is “slow”—they wish to trade less often and

would obtain less transactional priority should they trade—compared to the typical trader. Table 7

shows similar results for all pools in our sample.

19To expedite the processing of an Ethereum transaction, an LT can increase the gas fee, effectively offering a higher
amount of ETH as an incentive for miners to include it in the next block. This prioritization mechanism ensures that,
during periods of network congestion, transactions with higher fees are processed ahead of those with lower fees.

20WETH represents “wrapped” ETH which is a smart-contract based representation of the native cryptocurrency of
the Ethereum blockchain, ETH.
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Consistently, we observe the price impact of a typical swap by an LP is comparable to the price

impact of a typical swap by an LT. While this result holds across most pools for a wide range of the

distribution, from the 5th to the 95th percentile, for some pools we do observe that the LT swaps

with the largest price impact in absolute value tend to be larger than those for LP swaps. We view

this evidence as consistent with our assumption that a typical liquidity provider is “slow”—they

wish to trade less often and would obtain less transactional priority should they trade—compared

to the typical trader.

We now use this evidence to understand if the dynamics of LP behavior in the data are consis-

tent with our theory. In our data, we typically have multiple LT swaps in a row (recall from Table 1

that LT transactions are, by far, the most common). Instead of focusing on the price impact of a sin-

gle trade by a liquidity taker, then, we define λLTt as the cumulative price impact of LT trades after

the previous LP swap and prior to t. In other words, the impact of all the LT swaps between two LP

swaps. More precisely, recall that we have labeled all swap transactions as coming from a LP or a

LT. Define TLT = {τ | the trade at time τ is by an LT} and TLP = {t | the trade at time t is by an LP}.

So, the date of the last swap by an LP prior to t is ρ(t) = max{τ ∈ TLP | τ < t}. Hence, the cumu-

lative price impact of all intervening LT trades prior to date t is

λLTt =
∑

τ∈TLT :ρ(t)<τ<t

λτ.

Then the price impact λLTt is informed if any of the intervening LT swaps were informed. This is

captured in the indicator function It as:

It =

{
1 if ∃ τ ∈ TLT : ρ(t) < τ < t and gasτ is high
0 otherwise

Table 5 reports the results of the following regression

λLPt = b0 + b1It + b2λ
LT
t + b3λ

LT
t It + ϵt.

The focus of our analysis is the reaction of the LP to prior trades of the LT. For LT trades

classified as noise trades, this reaction is b2 and for LT trades classified as informed, the reaction is

b2 +b3. The finding that b2 is negative implies the LT actively adjusts marginal prices in a direction

opposite that of the noise trader LT. The finding that b2 + b3 is approximately zero implies that

when the intervening swaps are informed, the LP swap is, on average, directionless. (See table 5
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Table 5: LP swap reaction to LT trade

Sample Period Full v2 era v3 era Full v2 era v3 era Full Full

Intercept b0 0.00010 0.00009 0.00030 – – – – –
(0.00008) (0.00008) (0.00030)

Intercept Informed b1 0.00010 0.00010 −0.00008 0.00010 0.00020 −0.00030 0.00010 0.00006
(0.00008) (0.00009) (0.0003) (0.00008) (0.00009) (0.0003) (0.00009) (0.00008)

LT Price Impact b2 −0.2284 −0.2302 −0.1725 −0.2204 −0.2227 −0.1422 −0.2200 −0.2063
(0.0170) (0.017) (0.096) (0.017) (0.017) (0.080) (0.017) (0.018)

LT Price Impact × has_informed b3 0.2264 0.2053 0.1721 0.2187 0.1985 0.1422 0.2184 0.2039
(0.017) (0.019) (0.096) (0.010) (0.019) (0.080) (0.017) (0.018)

Pool fixed effect No No No Yes Yes Yes Yes No
Month fixed effect No No No No No No Yes No
Pool – Month fixed effect No No No No No No No Yes

# of observations 75,047 64,312 10,735 75,047 64,312 10,735 75,047 75,047
R2 0.025 0.036 0.007 0.045 0.054 0.081 0.046 0.156

λLPt is the price impact of LP swap at t. λLTt is the price impact of all LT swaps at between the last LP swap and prior
to t. It is an indicator that is one if the LT swap is identified to be informed. LT swaps are tagged as informed if
their gas fee (transaction cost) is high (top 25% decile of past seven days, by pool). Standard Errors (in parentheses are
heteroscedasticity-robust (HC2). A transaction is classified as belonging to an LP if: (a) it is a mint or burn; (b) any of
the addresses involved in the transaction have a positive balance of that pool’s tokens at the time of the transaction; or
c the swap transaction is paired with a mint transaction. Each transaction can involve several addresses (both wallets
and contracts). A transaction is paired if all the addresses on both transactions match and the transactions both occur
within a three-minute interval. Data is pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and
have more than 100,000 transactions. There are 31 pools. The sample period is from 2020-07-01 to 2024-06-30. The total
number of transactions is 19.2 million. A transaction is defined as a unique call to a Uniswap pool contract as a swap,
mint, or burn, and involves multiple addresses (wallets and contracts) and token transfers.

for results using the full sample as well as on partial samples that include the periods before and

after the introduction of Uniswap v3.) Additionally, we run the regression with fixed effects for

pools, months, and the pool-month combination. The main result that b2 < 0 and b2 + b3 ≈ 0 is

consistent across all these specifications.

These findings on the dynamic behavior of liquidity providers in Uniswap v2 are consistent

with our theoretical model’s predictions for this same behavior. The fact that there is system-

atic variation in how liquidity providers actively set prices on AMMs suggests the importance

of better understanding the role liquidity providers in AMMs play in aiding price discovery for

cryptocurrencies.

6 Conclusion

In this paper, we have explored how the innovative market structure featured in most decen-

tralized exchanges transmits new information into prices and how prices respond when traders
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demand liquidity. Our empirical approach is facilitated by the stark, limited message space for

Uniswap v2. We can identify (define) LPs directly by their mint and burn transactions that sup-

ply or remove tokens to the pool. These transactions are constrained by the code to not change

marginal token prices. We can also track LPs ownership tokens in the pool (the result of a mint).

We exploit this feature of decentralized exchanges to document LPs’ active price setting behavior.

Our model also guides our empirical measure of price impact. The dynamic strategy of an LP

in our model features a cone of inaction and so LPs do not necessarily re-balance their position

after each LT trade. When they do find it optimal to re-balance it is typically in the opposite

direction as the LT trade. The direction and size of these LT trades by the LP is central to evaluating

price impact in these markets. Importantly, the LP is more likely to re-balance her position when

the prior trades were from uninformed LTs. We are able to confirm this in the data when we proxy

for the informedness of LTs by their willingness to incur a higher transaction (gas) fee (a measure

suggested Capponi, Jia and Yu (2024)).

DeFi markets and AMMs continue to evolve. Uniswap v3, released in May 2021, gives LPs

the control of setting a range for allowable transactions. In v2, once liquidity is posted, all future

trades follow constant-product curve across the entire domain. In v3, LPs instead choose bounds,

so that the constant-product rule applies only inside that interval. The same tradeoffs we explore

in our model still apply in this new setting since the marginal tradeoffs within the active range

follow the same mechanics. What is new and interesting is how the ability to choose those bounds

introduces an extensive-margin decision.

Our model also abstracts from execution risk such as sandwich attacks that impact LT profits

and, presumably, behavior. If LTs anticipate higher execution costs, their demand to trade may

fall or become more selective. That in turn alters the flow of fees to LPs and could change the

incentives to post liquidity. This channel raises a further question about protocol design. In March

2023 Uniswap changed its default slippage tolerance from a static value to a dynamic setting. The

goal of this policy was to balance the risk of failed trades against vulnerability to manipulation.

Exploring how such design choices affect both sides of the market, the willingness of LTs to trade

and the willingness of LPs to provide liquidity, would be a natural extension of our framework.
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A Proof of Optimal Liquidity Provision

The LP’s optimal deposit problem is

max
eA,eB

π(µAE[xA − eA] + µBE[xB − eB])+

(1 − π)(EνA[xA − eA] + µBEνB[xB − eB])

s.t. (5)–(6),

0 ⩽ ei ⩽ Ei, ∀i

Based on equation (5)–(6), we can write down the post-trade portfolio of the LP as

xA =

√
νB
νA
eAeB, xB =

√
νA
νB
eAeB

Then we can write the post-trade net value gains from each token in the hand of the LP by

depositing as

µA(xA − eA) =

√
νB/µB
νA/µA

µAµBeAeB − µAeA

µB(xB − eB) =

√
νA/µA
νB/µB

µAµBeAeB − µBeB

for uninformed trades and

νA(xA − eA) =

√
νAνB
µAµB

µAµBeAeB − νAeA

νB(xB − eB) =

√
νAνB
µAµB

µAµBeAeB − νBeB

for informed trades.

Denoteω =
√

νA/µA

νB/µB
andψ =

√
νA

µA

νB

µB
. With assumptions that Eνi = µi, LP’s optimal deposit

problem becomes

max
eA,eB

[
π

(
Eω+ E

1
ω

)
+ (1 − π)2Eψ

]√
µAeA

√
µBeB − µAeA − µBeB

s.t. 0 ⩽ ei ⩽ Ei, ∀i

Further denote Π = π
Eω+E 1

ω

2 + (1 − π)Eψ. We can use the standard Lagrangian method to solve
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the above constraint optimization problem. The FOCs are

∂L

∂eA
: µA

(
Π

√
µBeB
µAeA

− 1
)
+ ηA − ξA = 0

∂L

∂eB
: µB

(
Π

√
µAeA
µBeB

− 1
)
+ ηB − ξB = 0

where ηi is the Lagrangian multiplier for 0 ⩽ ei and ξi is the Lagrangian multiplier for ei ⩽ Ei.

If Π < 1, the above FOCs only hold when eA = eB = 0. In this case ηi > 0 and ξi = 0.

If Π > 1, the solution is always at the corner, i.e. at least one of the ξi > 0. To see this, consider

the interior cases where ηi = 0 and ξi = 0. For the FOCs to hold, we need Π
√

µBeB

µAeA
= Π

√
µAeA

µBeB
=

1, which is impossible. Since Π > 1, if one of Π
√

µBeB

µAeA
and Π

√
µAeA

µBeB
equals to 1, then the other

one must be bigger than 1. And it needs the corresponding ξi to be positive for the FOCs to hold.

Therefore, we have the following optimal deposit of the LPe
∗
A = EA, e∗B = min

{
Π2 µA

µB
EA,EB

}
, if µAEA ⩽ µBEB

e∗A = min
{
Π2 µB

µA
EB,EA

}
, e∗B = EB, if µAEA > µBEB

if Π > 1 and

e∗A = e∗B = 0

if Π < 1.

B Proof of Pareto Improvement

Let y = G(x) be a convex and smoothly decreasing price function where eB = G(eA). Consider a

uniform stretch of the function around the initial deposit point (eA, eB): (1 − τ)y+ τeB = G((1 −

τ)x+τeA) where τ ∈ (0, 1). Then the second order derivatives is d2y
dx2 = (1−τ)2G ′′((1−τ)x+τeA).

Therefore, the transformation is less convex around the initial deposit point (eA, eB) as τ increases.

Now we can write the LT’s problem as:

max
eA,eB

νA(eA − x) + νB(eB − y)

s.t. (1 − τ)y+ τeB = G((1 − τ)x+ τeA)
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Assume the distributions of the LT’s values of the tokens (νA, νB) have bounded support such that

a trade that exhausts one token never happens. Then the first order condition becomes G ′((1 −

τ)x+ τeA) = −νA

νB
. Similar to the CPMM case, the LP’s post-trade portfolio satisfies

(1 − τ)y+ τeB = G((1 − τ)x+ τeA)

G ′((1 − τ)x+ τeA) = −
νA
νB

Let (x0,y0) be the post-trade portfolio for the original function, i.e., when τ = 0. Let (xτ,yτ)

be the portfolio for some τ ∈ (0, 1). Then given νA

νB
, the ex post portfolios satisfy

(1 − τ)xτ + τeA = x0

(1 − τ)yτ + τeA = y0

which can be written as

xτ − eA =
1

1 − τ
(x0 − eA)

yτ − eB =
1

1 − τ
(y0 − eB)

Therefore, the trading volume is proportionally increased by 1 − 1
1−τ = τ

1−τ for every ex post

scenario.

Given the probability of uninformed trading π, the LP’s expected return with the transformed

price function is

Rτ =E[(πµA + (1 − π)νA)(xτ − eA) + (πµB + (1 − π)νB)(yτ − eB)]

=
1

1 − τ
E[(πµA + (1 − π)νA)(x0 − eA) + (πµB + (1 − π)νB)(y0 − eB)]

Since the objective is just scaled up by a constant, the optimal deposit decision (e∗A, e∗B) shouldn’t

change as well.

C Cost of Convexity

Again let token B represent a stable coin and set νB = µB = 1 and hB(νB) = 1 if νB = 1. Denote

rA = νA/µA. Assume rA follows a distribution with CDF F(rA). For simplicity, assume µAeA

µBeB
= 1.
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The results still go through when µAeA

µBeB
equals to some constant other than 1.

C.1 Piece-wise Linear

Consider the piece-wise linear prices 23. The region of belief where a trade happens with price ph

is when rA ⩾ ph. From the LP’s perspective, the trading volume in this region is −eA for token A

and pheA for token B. The expected return of the LP from uninformed trading is∫∞
ph

(ph − 1)dF(rA)µAeA

with derivative as [1 − F(ph) − (ph − 1)f(ph)]µAeA. The first term represents the increased gains

to trade for all beliefs where the LT continues to trade. The second term represents the reduced

trading volume on the margin.

On the other hand, the expected return (negative) of the LP from informed trading is∫∞
ph

(ph − rA)dF(rA)µAeA

with derivative as (1− F(ph))µAeA. Since on the marginal informed LT is just indifferent between

trading and not, the second term in the case of uninformed trades is not here.

Given the proportion of uninformed trades π, the marginal benefits of increasing ph (increas-

ing convexity) is

[1 − F(ph) − π(ph − 1)f(ph)]µAeA

which has finite number of roots. It implies that some degree of convexity is desirable.

C.2 Continuously Differentiable Price

Now consider the continuously differentiable price function in 21. Similarly, the region of belief

where a trade happens with price ph is when rA ⩾ 1
τ2 . From the LP’s perspective, the trading

volume in this region is −eA for token A and 1
τeB for token B. Denote c = 1

τ ∈ (1,∞). So,

increasing c increases the local convexity. The expected return of the LP from uninformed trading

is ∫∞
c2
(c− 1)dF(rA)µAeA
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with derivative as [1 − F(c2) − (c − 1)f(c2)]µAeA. Again the first term represents the increased

gains to trade for all beliefs where the LT continues to trade. The second term represents the

reduced trading volume on the margin.

On the other hand, the expected return (negative) of the LP from informed trading is∫∞
c2
(c− rA)dF(rA)µAeA

with derivative as [1 − F(c2) + c(c− 1)f(c2)]µAeA. Since c > 1 there is an additional gain for the

LP from reducing the trading volume further.

Given the proportion of uninformed trades π, the marginal benefits of increasing ph (increas-

ing convexity) is

[1 − F(c2) + (c− 1)((1 − π)c− π)f(c2)]µAeA

which is always positive for c ⩾ π
1−π . In these cases, increasing (local) convexity is always ben-

eficial for trades induced by extremal beliefs. However, it reduces the trading volume and the

returns from mild beliefs.

D Proof of Optimal Pricing Function

We can consider the optimal design problem as the LP post the ending position of the pool given

the new valuation of the LT (νA,νB) such that the LT is willing to participate (Individual Rational)

and truthfully report the values (Incentive Compatible).

Assume the LT’s value (νA,νB) follows the same distribution for both informed and unin-

formed trading. Also, assume the LT has at most lB token B to trade in.

Let tA = eA − x and tB = eB − y be the net amount of token the LP loses by trading. With the

percentage of uninformed trading π, the problem can be written as:

max
x,y

E{νA,νB}
[− (πµA + (1 − π)νA) tA (νA,νB) − (πµB + (1 − π)νB) tB (νA,νB)]

s.t. νAtA (νA,νB) + νBtB (νA,νB) ⩾ νAtA
(
ν ′
A,ν ′

B

)
+ νBtB

(
ν ′
A,ν ′

B

)
νAtA (νA,νB) + νBtB (νA,νB) ⩾ 0

tA (νA,νB) ⩽ eA, −lB ⩽ tB (νA,νB) ⩽ eB
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Since only p = νB

νA

eB

eA
matters in the constraints, the problem can be written as

max
tA,tB

Ep

[(
−
tA (p)

eA
−

(πµB + (1 − π)νB)

(πµA + (1 − π)νA)

eB
eA

tB (p)

eB

)
(πµA + (1 − π)νA)

]
eA

s.t.
tA (p)

eA
+ p

tB (p)

eB
⩾
tB (p̂)

eB
+ p

tB (p̂)

eB
tA (p)

eA
+ p

tB (p)

eB
⩾ 0

tA (p)

eA
⩽ 1, −

lB
eB

⩽
tB (p)

eB
⩽ 1

Under one of the two conditions, i.e. π = 0 or νA = µA for sure, we know πµA + (1 − π)νA

is a constant. So the objective can be simplified. Let −tA(p)
eA

+ 1 = y (p), tB(p)
eB

= x (p) and
(πµB+(1−π)νB)
(πµA+(1−π)νA)

eB

eA
= π (p0,p). The problem then has the same expression as Milionis, Moallemi

and Roughgarden (2023b).

max
x,y

Ep [y (p) − π (p0,p) x (p)]

s.t. px (p) − y (p) ⩾ px (p̂) − y (p̂)

px (p) − y (p) ⩾ 0

y (p) ⩾ 0, −c ⩽ x (p) ⩽ 1

E Dimension Reduction of the Dynamic Model

E.1 Proof of Total Value Equivalence

We see that EA,t,EB,t,µA,t,µB,t only show up in the objective function (7) as products µA,tEA,t

and µB,tEB,t. We need to show that this is also the case for the constraints.

Remember that (rA,t, rB,t) =
(

νA,t
µA,t−1

, νB,t
µA,t−1

)
are the rate of belief change, Xi,t = µi,tEi,t are the

total value of each token LP has at the end of time t and Yi,t = µi,t−1ei,t are the total value of each

token LP deposits into the pool at the beginning of time t. We also assume that (rA,t, rB,t) follows

the distributionGt, which is independent of the current belief of valuations (µA,t−1,µB,t−1). Then
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we have the following mappings:

Ei,t =
Xi,t

µi,t

µi,t = µi,0

t∏
s=1

ri,t

ei,t =
Yi,t

µi,t−1

First we can pin down (xA,t, xB,t)–the pool position after trade at time t–using Constant Prod-

uct and LT’s optimality:

(
xA,t

xB,t

)
=

 √
νB,t
νA,t

eA,teB,t√
νA,t
νB,t

eA,teB,t

 =

 1
µA,t−1

√
νB,t/µB,t−1
νA,t/µA,t−1

√
µA,t−1eA,tµB,t−1eB,t

1
µB,t−1

√
νA,t/µA,t−1
νB,t/µB,t−1

√
µA,t−1eA,tµB,t−1eB,t


Combining with Accounting, we have the post-trade token in the hand of LP as

(
EA,t

EB,t

)
=

 √
νB,t
νA,t

eA,teB,t + (EA,t−1 − eA,t)√
νA,t
νB,t

eA,teB,t + (EB,t−1 − eB,t)



Similar to the static problem, we can write the post-trade values of each token in the hand of

LP as (
µA,tEA,t

µB,tEB,t

)
=

 √
νB,t/µB,t−1
νA,t/µA,t−1

√
µA,t−1eA,tµB,t−1eB,t + µA,t−1 (EA,t−1 − eA,t)√

νA,t/µA,t−1
νB,t/µB,t−1

√
µA,t−1eA,tµB,t−1eB,t + µB,t−1 (EB,t−1 − eB,t)


for uninformed trades, and(

µA,tEA,t

µB,tEB,t

)
=

 √
νA,t

µA,t−1

νB,t
µB,t−1

√
µA,t−1eA,tµB,t−1eB,t +

νA,t
µA,t−1

µA,t−1 (EA,t−1 − eA,t)√
νA,t

µA,t−1

νB,t
µB,t−1

√
µA,t−1eA,tµB,t−1eB,t +

νB,t
µB,t−1

µB,t−1 (EB,t−1 − eB,t)


for informed trades.

Therefore, with the assumption that (rA,t, rB,t) =
(

νA,t
µA,t−1

, νB,t
µB,t−1

)
is independent of the state

variables EA,t−1,EB,t−1,µA,t−1,µB,t−1, we can use a notation similar to that of the static model,

ωt =
√

rA,t
rB,t

and ψt =
√
rA,trB,t. And the constraints become:

(
µA,tEA,t

µB,tEB,t

)
=

(
1
ωt

√
µA,t−1eA,tµB,t−1eB,t + (µA,t−1EA,t−1 − µA,t−1eA,t)

ωt
√
µA,t−1eA,tµB,t−1eB,t + (µB,t−1EB,t−1 − µB,t−1eB,t)

)
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for uninformed trades, and(
µA,tEA,t

µB,tEB,t

)
=

(
ψt

√
µA,t−1eA,tµB,t−1eB,t + rA,t (µA,t−1EA,t−1 − µA,t−1eA,t)

ψt
√
µA,t−1eA,tµB,t−1eB,t + rB,t (µB,t−1EB,t−1 − µB,t−1eB,t)

)

for informed trades.

Now we have that EA,t,EB,t,µA,t,µB,t only show up in both the objective function and the

constraints as products µA,tEA,t and µB,tEB,t. By changing the sequence of variables {EA,t,EB,t,µA,t,µB,t, eA,t, eB,t}
∞
t=1

to {XA,t,XB,t, rA,t, rB,t, YA,t, YB,t}
∞
t=1 as we define above, the problem can be written as:

max
{YA,t}

∞
t=1,{YB,t}

∞
t=1

∞∑
t=0

δtβ (1 −β)t E [XA,t +XB,t]

where for t = 1, 2, 3...

(
XA,t

XB,t

)
=



 1
ωt

√
YA,tYB,t + (XA,t−1 − YA,t)

ωt

√
YA,tYB,t + (XB,t−1 − YB,t)

 with prob π ψt

√
YA,tYB,t + rA,t (XA,t−1 − YA,t)

ψt

√
YA,tYB,t + rB,t (XB,t−1 − YB,t)

 with prob 1 − π

0 ⩽ Yi,t ⩽ Xi,t−1

given µA,0,XA,0,µB,0,XB,0.

E.2 Proof of Constant Returns to Scale

We need to show that for any Xk
A,0 = kXA,0 and Xk

B,0 = kXB,0, it must be V
(
Xk
A,0,Xk

B,0

)
=

V (kXA,0,kXB,0) = kV (XA,0,XB,0) for any k > 0.

To do that, we can show that for any realization of {rA,t, rB,t}
∞
t=1, we have

{
Xk
A,t,Xk

B,t

}∞
t=1

=

{kXA,t,kXB,t}
∞
t=1, then the objective function implies the above statement directly.

Notice that the assumption of {rA,t, rB,t}
∞
t=1 is an independent process of the pool position and

LP’s move is needed here.

Let
{
Y∗A,t, Y∗B,t

}∞
t=1

be the optimal deposits for XA,0,XB,0, {rA,t, rB,t}
∞
t=1 and together they in-

duce {XA,t,XB,t}
∞
t=1.
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We can do this by two steps.

1. The first step is to show that
{
kY∗A,t,kY∗B,t

}∞
t=1

is a feasible sequence of deposit for Xk
A,0,Xk

B,0,

and they induce {kXA,t,kXB,t}
∞
t=1, which implies that V

(
Xk
A,0,Xk

B,0

)
⩾ kV (XA,0,XB,0);

2. The second step is to show that there’s no other deposit for Xk
A,0,Xk

B,0 that can achieve higher

value than kY∗A,t,kY∗B,t induce, i.e. V
(
Xk
A,0,Xk

B,0

)
⩽ kV (XA,0,XB,0).

Let us first show that V
(
Xk
A,0,Xk

B,0

)
⩾ kV (XA,0,XB,0).

Given {rA,t, rB,t}
∞
t=1, it is easy to see that kY∗A,t,kY∗B,t is feasible given

(
Xk
A,t−1,Xk

B,t−1

)
=

(kXA,t−1,kXB,t−1).

0 ⩽ Y∗i,t ⩽ Xi,t−1 ⇒ 0 ⩽ kY∗i,t ⩽ kXi,t−1

then it implies for next period

(
Xk
A,t

Xk
B,t

)
=



 √
rB,t
rA,t
kY∗A,tkY

∗
B,t +

(
kXA,t−1 − kY

∗
A,t

)
√

rA,t
rB,t
kY∗A,tkY

∗
B,t +

(
kXB,t−1 − kY

∗
B,t

)
 with prob π

 √
rA,trB,tkY

∗
A,tkY

∗
B,t + rA,t

(
kXA,t−1 − kY

∗
A,t

)
√
rA,trB,tkY

∗
A,tkY

∗
B,t + rB,t

(
kXB,t−1 − kY

∗
B,t

)
 with prob 1 − π

=

(
kXA,t

kXA,t

)

Therefore, we construct a feasible sequence
{
Xk
A,t,Xk

B,t

}∞
t=1

= {kXA,t,kXB,t}
∞
t=1 by depositing{

kY∗A,t,kY∗B,t

}∞
t=1

for any realization {rA,t, rB,t}
∞
t=1. We don’t know if this is optimal for Xk

A,0,Xk
B,0.

But at least it implies that V
(
Xk
A,0,Xk

B,0

)
⩾ kV (XA,0,XB,0).

Next we show that V
(
Xk
A,0,Xk

B,0

)
⩽ kV (XA,0,XB,0). In other words, no deposit can achieve

higher value.

Suppose for some realization {rA,t, rB,t}
∞
t=1, there exist

{
Y∗kA,t, Y∗kB,t

}∞
t=1

, such that the corre-

sponding X∗k
i,t yields

∞∑
t=0

δtβ (1 −β)t
(
X∗k
A,t +X

∗k
B,t
)
>

∞∑
t=0

δtβ (1 −β)t (kXA,t + kXB,t)
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Then for (XA,0,XB,0), we can use deposit 1
kY

∗k
i,t , which by the same logic as in step one, is feasible

and yields
(

1
kX

∗k
A,t, 1

kX
∗k
B,t

)
. And it gives

∞∑
t=0

δtβ (1 −β)t
(

1
k
X∗k
A,t +

1
k
X∗k
B,t

)
>

∞∑
t=0

δtβ (1 −β)t (XA,t +XB,t)

which contradicts the definition that
{
Y∗A,t, Y∗B,t

}∞
t=1

is optimal.

Therefore, together we have V (kXA,0,kXB,0) = kV (XA,0,XB,0).

F Additional Tables and Figures

Table 6: LP Transactions - Paired

burn mint swap

Full Sample: 2020-07-01 - 2024-06-30

Naked 149, 855 169, 015 81, 686
Paired 56 27, 113 27, 116
Total 149, 911 196, 128 108, 802

v2 Dominant Contract: 2020-07-01 - 2021-05-31

Naked 112, 719 140, 452 63, 789
Paired 43 16, 911 16, 907
Total 112, 762 157, 363 80, 696

v3 Dominant Contract: 2021-06-01 - 2024-06-30

Naked 37, 136 28, 563 17, 897
Paired 13 10, 202 10, 209
Total 37, 149 38, 765 28, 106

A transaction is classified as belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses involved in the
transaction have a positive balance of that pool’s tokens at the time of the transaction; or (c) the swap transaction
is paired with a mint transaction. Each transaction can involve several addresses (both wallets and contracts).
A transaction is paired if all the addresses on both transactions match and the transactions both occur within a
three-minute interval. Data is pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and have more
than 100,000 transactions. There are 31 pools. The sample period is from 2020-07-01 to 2024-06-30. The total number
of transactions is 19.2 million. A transaction is defined as a unique call to a Uniswap pool contract as a swap, mint, or
burn, and involves multiple addresses (wallets and contracts) and token transfers.
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Figure 7: Swap Trades by LPs

(a) Swaps

(b) Swaps Paired with Mints

Panel (a) shows the proportion of LP transactions that are swaps. Panel (b) shows the proportion of mint transactions
that are paired with a swap transaction. A transaction is classified as belonging to an LP if: (a) it is a mint or burn;
(b) any of the addresses involved in the transaction have a positive balance of that pool’s tokens at the time of the
transaction; or c the swap transaction is paired with a mint transaction. Each transaction can involve several addresses
(both wallets and contracts). A transaction is paired if all the addresses on both transactions match and the transactions
both occur within a three-minute interval. Data is pulled from all Uniswap v2 pools that were created prior to 2020-
07-01 and have more than 100,000 transactions. This subsample is the period where v2 was the dominant contract.
There are 31 pools. The sample period is from 2020-07-01 to 2021-05-31. The total number of transactions is 9.5 million.
A transaction is defined as a unique call to a Uniswap pool contract as a swap, mint, or burn, and involves multiple
addresses (wallets and contracts) and token transfers.
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Figure 8: Share of Paired Transactions

The proportion of mint transactions that are paired with a swap transaction by month. A transaction is classified as
belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses involved in the transaction have a positive
balance of that pool’s tokens at the time of the transaction; or c the swap transaction is paired with a mint transaction.
Each transaction can involve several addresses (both wallets and contracts). A transaction is paired if all the addresses
on both transactions match and the transactions both occur within a three-minute interval. Data is pulled from all
Uniswap v2 pools that were created prior to 2020-07-01 and have more than 100,000 transactions. There are 31 pools.
The sample period is from 2020-07-01 to 2024-06-30. The total number of transactions is 19.2 million. A transaction is
defined as a unique call to a Uniswap pool contract as a swap, mint, or burn, and involves multiple addresses (wallets
and contracts) and token transfers.
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Figure 9: π against variance of νA

The break even proportion of uninformed trade for liquidity provision against the variance of the value change of
token A, given token B is a stable coin. It shows that the break even level goes down with the variance, which suggests
liquidity provision becomes more profitable as liquidity traders’ beliefs become more disperse.
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Figure 10: Optimal Policy Functions

The figure displays the LP’s optimal deposit policy functions for various values of her state, represented as the ratio
of the value of her endowment of token A to the value of her endowment of token B at the start of the period (or its
inverse). Each panel displays the fraction of her endowment of tokens A and B that she deposits at the AMM as a
function of this state variable. These policy functions were obtained for a numerical simulation. For detailed choices of
parameters, see Footnote 17.

Figure 11: Inactivity of Liquidity Providers

The figure displays the percentage of all swaps conducted by LPs in our numerical simulation as a function of the extent
of uninformed trading, π. When this percentage is smaller than 0.5, it reflects periods in the simulation where the LP
does not adjust her portfolio following previous trade by the LT. In this numerical simulation, token B is set as a stable
coin and the values of token A follow a truncated normal distribution. For detailed choices of parameters, see 17.
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Table 7: Price Impact of LPs and LTs by Pool.

Pool Type 5% 50% 95% Min Max

CEL-WETH

LP -0.019008 -0.000088 0.019823 -0.124251 0.101654
LT -0.025152 -0.000095 0.025556 -1.222129 2.320158

Informed -0.034065 -0.000158 0.033186 -0.895435 2.320158
Noise -0.021682 -0.000083 0.022608 -1.222129 0.663037

COMP-WETH

LP -0.005833 0.000174 0.022375 -0.076514 0.115606
LT -0.013155 0.000013 0.013184 -7.496103 2.783089

Informed -0.018981 -0.000000 0.018419 -4.216026 1.102276
Noise -0.010440 0.000018 0.010974 -7.496103 2.783089

DAI-MKR

LP 0.022853 0.024274 0.029212 0.022695 0.029761
LT -0.002773 -0.000147 0.002229 -0.684456 4.471649

Informed -0.003569 -0.000517 0.002788 -0.684456 0.499704
Noise -0.002496 -0.000069 0.002021 -0.277409 4.471649

DAI-USDC

LP -0.002194 0.000003 0.006046 -0.007676 0.011746
LT -0.002277 0.000001 0.002241 -0.178995 0.221806

Informed -0.003420 0.000001 0.003305 -0.176501 0.221806
Noise -0.001842 0.000001 0.001835 -0.178995 0.135151

DAI-USDT

LP -0.004179 -0.000004 0.003937 -0.011912 0.007690
LT -0.003262 0.000000 0.003272 -5.489722 1.176629

Informed -0.004558 -0.000000 0.004693 -1.560066 1.176629
Noise -0.002826 0.000000 0.002788 -5.489722 0.512787

DAI-WETH

LP -0.001208 -0.000000 0.001294 -0.141629 0.144807
LT -0.001548 -0.000000 0.001594 -1.054344 1.545626

Informed -0.002662 -0.000000 0.002718 -0.682491 0.419199
Noise -0.001064 -0.000000 0.001103 -1.054344 1.545626

HEX-USDC

LP -0.006601 0.001632 0.024926 -0.060493 0.140660
LT -0.016694 -0.000261 0.018381 -6.502482 6.977194

Informed -0.020806 -0.000296 0.027118 -6.498733 6.977194
Noise -0.015019 -0.000250 0.015279 -6.502482 2.701488

HEX-WETH

LP -0.003425 -0.000030 0.005687 -0.055129 0.060230
LT -0.009227 -0.000206 0.010673 -3.839029 4.952318

Informed -0.013632 -0.000252 0.019413 -2.526518 4.952318
Noise -0.007484 -0.000195 0.008219 -3.839029 2.466702

LINK-WETH

LP -0.001386 0.000022 0.001994 -0.051710 0.058549
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Table 7 – continued from previous page

Pool Type 5% 50% 95% Min Max

LT -0.004160 0.000002 0.004120 -2.645252 1.573756
Informed -0.005813 -0.000001 0.005716 -0.756233 0.891011

Noise -0.003555 0.000002 0.003497 -2.645252 1.573756

LRC-WETH

LP -0.003021 0.000096 0.017321 -0.057972 0.057807
LT -0.023721 -0.000006 0.023445 -2.417452 1.441687

Informed -0.029764 0.000258 0.032368 -2.417452 1.441687
Noise -0.021543 -0.000015 0.019676 -2.345306 1.228012

MANA-WETH

LP -0.018598 0.003434 0.032088 -0.053487 0.080270
LT -0.020260 -0.000000 0.020070 -2.960467 1.719663

Informed -0.028621 -0.000014 0.030003 -2.960467 1.719663
Noise -0.016974 -0.000000 0.016343 -2.687419 1.711054

MATIC-WETH

LP -0.017385 -0.000073 0.012818 -0.099014 0.084713
LT -0.009910 -0.000025 0.010137 -3.689463 3.431068

Informed -0.015221 -0.000027 0.016651 -2.018141 3.431068
Noise -0.007794 -0.000025 0.007464 -3.689463 1.711428

MKR-WETH

LP -0.006637 -0.000598 0.049773 -0.023171 0.080592
LT -0.007169 0.000000 0.006948 -0.431381 0.454065

Informed -0.009965 -0.000000 0.009685 -0.302546 0.454065
Noise -0.006113 0.000000 0.005965 -0.431381 0.290323

PAXG-WETH

LP -0.022055 -0.000284 0.021186 -0.059943 0.059336
LT -0.009833 -0.000009 0.010149 -0.372182 0.386372

Informed -0.013534 -0.000016 0.015665 -0.312674 0.320812
Noise -0.008736 -0.000008 0.008392 -0.372182 0.386372

QNT-WETH

LP -0.019505 0.001533 0.028131 -0.122191 0.218000
LT -0.028062 -0.000339 0.029270 -3.155449 4.539785

Informed -0.036108 -0.000500 0.039161 -2.856490 4.539785
Noise -0.024025 -0.000308 0.025175 -3.155449 1.209371

REN-WETH

LP -0.011550 -0.000028 0.009614 -0.043950 0.026732
LT -0.015423 -0.000038 0.015180 -0.791739 0.834232

Informed -0.020305 -0.000120 0.020391 -0.532673 0.834232
Noise -0.013353 -0.000031 0.013068 -0.791739 0.765245

RNDR-WETH

LP -0.045083 0.036478 0.157010 -0.193828 0.299502
LT -0.056394 -0.000467 0.057643 -4.619541 2.397623

Informed -0.072629 -0.000059 0.079192 -3.097615 1.758754
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Table 7 – continued from previous page

Pool Type 5% 50% 95% Min Max

Noise -0.049457 -0.000547 0.048709 -4.619541 2.397623

RSR-WETH

LP -0.005970 -0.000041 0.008135 -0.024516 0.096186
LT -0.013662 -0.000151 0.014059 -0.505260 0.533010

Informed -0.019359 -0.000202 0.017951 -0.505260 0.533010
Noise -0.011294 -0.000139 0.012153 -0.399528 0.416920

SNX-WETH

LP -0.009840 -0.000063 0.006957 -0.135156 0.141418
LT -0.011296 -0.000029 0.011529 -1.777572 2.181157

Informed -0.014557 -0.000031 0.015854 -0.739633 0.635834
Noise -0.009860 -0.000029 0.009867 -1.777572 2.181157

STAKE-WETH

LP -0.006568 -0.000390 0.006901 -0.060975 0.102807
LT -0.015172 -0.000143 0.015630 -0.661681 1.390066

Informed -0.019871 -0.000228 0.020297 -0.661681 1.390066
Noise -0.012978 -0.000127 0.013479 -0.407096 0.374979

UBT-WETH

LP -0.013436 -0.000046 0.017058 -0.056210 0.041197
LT -0.023418 -0.000272 0.024239 -2.173492 0.684236

Informed -0.028200 -0.000318 0.030909 -2.173492 0.530942
Noise -0.021631 -0.000260 0.021349 -0.611111 0.684236

USDC-USDT

LP -0.003526 -0.000000 0.002146 -0.016443 0.010921
LT -0.001345 -0.000003 0.001394 -0.415557 0.396513

Informed -0.002029 -0.000007 0.002096 -0.415557 0.396513
Noise -0.001137 -0.000002 0.001157 -0.154831 0.145328

USDC-WETH

LP -0.000452 -0.000001 0.000285 -0.013262 0.044963
LT -0.000362 -0.000000 0.000368 -0.445412 0.422483

Informed -0.000828 -0.000000 0.000936 -0.445412 0.422483
Noise -0.000253 -0.000000 0.000242 -0.351411 0.349653

WBTC-WETH

LP -0.001434 -0.000002 0.001369 -0.038737 0.039957
LT -0.001605 -0.000002 0.001647 -2.622859 1.285458

Informed -0.002635 -0.000003 0.002659 -2.622859 1.285458
Noise -0.001204 -0.000002 0.001203 -1.056087 0.848669

WETH-DMG

LP -0.015085 0.000169 0.010431 -0.050471 0.065274
LT -0.015825 0.000177 0.014510 -4.025062 0.618852

Informed -0.018714 0.000306 0.018980 -0.769612 0.618852
Noise -0.014540 0.000145 0.012645 -4.025062 0.564875
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Table 7 – continued from previous page

Pool Type 5% 50% 95% Min Max

WETH-ENJ

LP -0.011665 -0.000202 0.010551 -0.045953 0.034753
LT -0.020387 0.000021 0.020311 -4.485019 2.492653

Informed -0.028719 0.000014 0.027724 -4.485019 1.763173
Noise -0.017228 0.000023 0.017054 -2.771008 2.492653

WETH-FOX

LP -0.005538 -0.000014 0.000939 -0.192240 0.239064
LT -0.006630 -0.000054 0.006748 -0.426760 0.417105

Informed -0.008960 -0.000053 0.008903 -0.406457 0.357383
Noise -0.005380 -0.000054 0.005436 -0.426760 0.417105

WETH-HEX2T

LP -0.048888 0.000292 0.051842 -0.526232 0.326240
LT -0.032260 0.000276 0.030335 -4.693004 4.824305

Informed -0.050251 0.000744 0.049012 -4.693004 4.824305
Noise -0.025834 0.000207 0.022002 -2.669469 2.209537

WETH-USDT

LP -0.000361 0.000000 0.000535 -0.278843 0.273400
LT -0.000330 -0.000001 0.000327 -0.232827 0.322526

Informed -0.000737 -0.000002 0.000700 -0.232827 0.322526
Noise -0.000241 -0.000001 0.000246 -0.230243 0.234302

XOR-WETH

LP -0.011513 -0.000186 0.009555 -0.103902 0.096408
LT -0.070346 -0.000247 0.083216 -6.086125 5.036696

Informed -0.055550 0.000024 0.119308 -6.086125 5.036696
Noise -0.075187 -0.000353 0.067829 -3.353420 1.164287

XRT-WETH

LP -0.043845 0.001514 0.048237 -0.203818 0.209805
LT -0.025771 -0.000424 0.026596 -0.651707 0.575380

Informed -0.033454 -0.000695 0.033175 -0.651707 0.575380
Noise -0.021270 -0.000382 0.022934 -0.406637 0.455064

The table presents distributional statistics of price impact by LPs and LTs and by Informed and
Uninformed LT swaps for each AMM pool in our sample. Trades are classified as informed if the
gas fee associated with the swap transaction is in the top 25% quartile of gas fees paid for swaps
over the prior (rolling) seven day window in that pool. Data is pulled from all Uniswap v2 pools
that were created prior to 2020-07-01 and have more than 100,000 transactions. The sample period
is from 2020-07-01 to 2024-06-30.
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