(* Title: Gauss.thy
Authors: Jeremy Avigad, David Gray, and Adam Kramer
*)
header {* Gauss' Lemma *}
theory Gauss = Euler:;
locale GAUSS =
fixes p :: "int"
fixes a :: "int"
fixes A :: "int set"
fixes B :: "int set"
fixes C :: "int set"
fixes D :: "int set"
fixes E :: "int set"
fixes F :: "int set"
assumes p_prime: "p ∈ zprime"
assumes p_g_2: "2 < p"
assumes p_a_relprime: "~[a = 0](mod p)"
assumes a_nonzero: "0 < a"
defines A_def: "A == {(x::int). 0 < x & x ≤ ((p - 1) div 2)}"
defines B_def: "B == (%x. x * a) ` A"
defines C_def: "C == (StandardRes p) ` B"
defines D_def: "D == C ∩ {x. x ≤ ((p - 1) div 2)}"
defines E_def: "E == C ∩ {x. ((p - 1) div 2) < x}"
defines F_def: "F == (%x. (p - x)) ` E";
subsection {* Basic properties of p *}
lemma (in GAUSS) p_odd: "p ∈ zOdd";
by (auto simp add: p_prime p_g_2 zprime_zOdd_eq_grt_2)
lemma (in GAUSS) p_g_0: "0 < p";
by (insert p_g_2, auto)
lemma (in GAUSS) int_nat: "int (nat ((p - 1) div 2)) = (p - 1) div 2";
by (insert p_g_2, auto simp add: pos_imp_zdiv_nonneg_iff)
lemma (in GAUSS) p_minus_one_l: "(p - 1) div 2 < p";
proof -;
have "p - 1 = (p - 1) div 1" by auto
then have "(p - 1) div 2 ≤ p - 1"
apply (rule ssubst) back;
apply (rule zdiv_mono2)
by (auto simp add: p_g_0)
then have "(p - 1) div 2 ≤ p - 1";
by auto
then show ?thesis by simp
qed;
lemma (in GAUSS) p_eq: "p = (2 * (p - 1) div 2) + 1";
apply (insert zdiv_zmult_self2 [of 2 "p - 1"])
by auto
lemma zodd_imp_zdiv_eq: "x ∈ zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)";
apply (frule odd_minus_one_even)
apply (simp add: zEven_def)
apply (subgoal_tac "2 ≠ 0")
apply (frule_tac b = "2 :: int" and a = "x - 1" in zdiv_zmult_self2)
by (auto simp add: even_div_2_prop2)
lemma (in GAUSS) p_eq2: "p = (2 * ((p - 1) div 2)) + 1";
apply (insert p_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 [of p], auto)
by (frule zodd_imp_zdiv_eq, auto)
subsection {* Basic Properties of the Gauss Sets *}
lemma (in GAUSS) finite_A: "finite (A)";
apply (auto simp add: A_def)
thm bdd_int_set_l_finite;
apply (subgoal_tac "{x. 0 < x & x ≤ (p - 1) div 2} ⊆ {x. 0 ≤ x & x < 1 + (p - 1) div 2}");
by (auto simp add: bdd_int_set_l_finite finite_subset)
lemma (in GAUSS) finite_B: "finite (B)";
by (auto simp add: B_def finite_A finite_imageI)
lemma (in GAUSS) finite_C: "finite (C)";
by (auto simp add: C_def finite_B finite_imageI)
lemma (in GAUSS) finite_D: "finite (D)";
by (auto simp add: D_def finite_Int finite_C)
lemma (in GAUSS) finite_E: "finite (E)";
by (auto simp add: E_def finite_Int finite_C)
lemma (in GAUSS) finite_F: "finite (F)";
by (auto simp add: F_def finite_E finite_imageI)
lemma (in GAUSS) C_eq: "C = D ∪ E";
by (auto simp add: C_def D_def E_def)
lemma (in GAUSS) A_card_eq: "card A = nat ((p - 1) div 2)";
apply (auto simp add: A_def)
apply (insert int_nat)
apply (erule subst)
by (auto simp add: card_bdd_int_set_l_le)
lemma (in GAUSS) inj_on_xa_A: "inj_on (%x. x * a) A";
apply (insert a_nonzero)
by (simp add: A_def inj_on_def)
lemma (in GAUSS) A_res: "ResSet p A";
apply (auto simp add: A_def ResSet_def)
apply (rule_tac m = p in zcong_less_eq)
apply (insert p_g_2, auto)
apply (subgoal_tac [1-2] "(p - 1) div 2 < p");
by (auto, auto simp add: p_minus_one_l)
lemma (in GAUSS) B_res: "ResSet p B";
apply (insert p_g_2 p_a_relprime p_minus_one_l)
apply (auto simp add: B_def)
apply (rule ResSet_image)
apply (auto simp add: A_res)
apply (auto simp add: A_def)
proof -;
fix x fix y
assume a: "[x * a = y * a] (mod p)"
assume b: "0 < x"
assume c: "x ≤ (p - 1) div 2"
assume d: "0 < y"
assume e: "y ≤ (p - 1) div 2"
from a p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
have "[x = y](mod p)";
by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
with zcong_less_eq [of x y p] p_minus_one_l
order_le_less_trans [of x "(p - 1) div 2" p]
order_le_less_trans [of y "(p - 1) div 2" p] show "x = y";
by (simp add: prems p_minus_one_l p_g_0)
qed;
lemma (in GAUSS) SR_B_inj: "inj_on (StandardRes p) B";
apply (auto simp add: B_def StandardRes_def inj_on_def A_def prems)
proof -;
fix x fix y
assume a: "x * a mod p = y * a mod p"
assume b: "0 < x"
assume c: "x ≤ (p - 1) div 2"
assume d: "0 < y"
assume e: "y ≤ (p - 1) div 2"
assume f: "x ≠ y"
from a have "[x * a = y * a](mod p)";
by (simp add: zcong_zmod_eq p_g_0)
with p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
have "[x = y](mod p)";
by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
with zcong_less_eq [of x y p] p_minus_one_l
order_le_less_trans [of x "(p - 1) div 2" p]
order_le_less_trans [of y "(p - 1) div 2" p] have "x = y";
by (simp add: prems p_minus_one_l p_g_0)
then have False;
by (simp add: f)
then show "a = 0";
by simp
qed;
lemma (in GAUSS) inj_on_pminusx_E: "inj_on (%x. p - x) E";
apply (auto simp add: E_def C_def B_def A_def)
apply (rule_tac g = "%x. -1 * (x - p)" in inj_on_inverseI);
by auto
lemma (in GAUSS) A_ncong_p: "x ∈ A ==> ~[x = 0](mod p)";
apply (auto simp add: A_def)
apply (frule_tac m = p in zcong_not_zero)
apply (insert p_minus_one_l)
by auto
lemma (in GAUSS) A_greater_zero: "x ∈ A ==> 0 < x";
by (auto simp add: A_def)
lemma (in GAUSS) B_ncong_p: "x ∈ B ==> ~[x = 0](mod p)";
apply (auto simp add: B_def)
apply (frule A_ncong_p)
apply (insert p_a_relprime p_prime a_nonzero)
apply (frule_tac a = x and b = a in zcong_zprime_prod_zero_contra)
by (auto simp add: A_greater_zero)
lemma (in GAUSS) B_greater_zero: "x ∈ B ==> 0 < x";
apply (insert a_nonzero)
by (auto simp add: B_def A_greater_zero mult_pos)
lemma (in GAUSS) C_ncong_p: "x ∈ C ==> ~[x = 0](mod p)";
apply (auto simp add: C_def)
apply (frule B_ncong_p)
apply (subgoal_tac "[x = StandardRes p x](mod p)");
defer; apply (simp add: StandardRes_prop1)
apply (frule_tac a = x and b = "StandardRes p x" and c = 0 in zcong_trans)
by auto
lemma (in GAUSS) C_greater_zero: "y ∈ C ==> 0 < y";
apply (auto simp add: C_def)
proof -;
fix x;
assume a: "x ∈ B";
from p_g_0 have "0 ≤ StandardRes p x";
by (simp add: StandardRes_lbound)
moreover have "~[x = 0] (mod p)";
by (simp add: a B_ncong_p)
then have "StandardRes p x ≠ 0";
by (simp add: StandardRes_prop3)
ultimately show "0 < StandardRes p x";
by (simp add: order_le_less)
qed;
lemma (in GAUSS) D_ncong_p: "x ∈ D ==> ~[x = 0](mod p)";
by (auto simp add: D_def C_ncong_p)
lemma (in GAUSS) E_ncong_p: "x ∈ E ==> ~[x = 0](mod p)";
by (auto simp add: E_def C_ncong_p)
lemma (in GAUSS) F_ncong_p: "x ∈ F ==> ~[x = 0](mod p)";
apply (auto simp add: F_def)
proof -;
fix x assume a: "x ∈ E" assume b: "[p - x = 0] (mod p)"
from E_ncong_p have "~[x = 0] (mod p)";
by (simp add: a)
moreover from a have "0 < x";
by (simp add: a E_def C_greater_zero)
moreover from a have "x < p";
by (auto simp add: E_def C_def p_g_0 StandardRes_ubound)
ultimately have "~[p - x = 0] (mod p)";
by (simp add: zcong_not_zero)
from this show False by (simp add: b)
qed;
lemma (in GAUSS) F_subset: "F ⊆ {x. 0 < x & x ≤ ((p - 1) div 2)}";
apply (auto simp add: F_def E_def)
apply (insert p_g_0)
apply (frule_tac x = xa in StandardRes_ubound)
apply (frule_tac x = x in StandardRes_ubound)
apply (subgoal_tac "xa = StandardRes p xa")
apply (auto simp add: C_def StandardRes_prop2 StandardRes_prop1)
proof -;
from zodd_imp_zdiv_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 have
"2 * (p - 1) div 2 = 2 * ((p - 1) div 2)";
by simp
with p_eq2 show " !!x. [| (p - 1) div 2 < StandardRes p x; x ∈ B |]
==> p - StandardRes p x ≤ (p - 1) div 2";
by simp
qed;
lemma (in GAUSS) D_subset: "D ⊆ {x. 0 < x & x ≤ ((p - 1) div 2)}";
by (auto simp add: D_def C_greater_zero)
lemma (in GAUSS) F_eq: "F = {x. ∃y ∈ A. ( x = p - (StandardRes p (y*a)) & (p - 1) div 2 < StandardRes p (y*a))}";
by (auto simp add: F_def E_def D_def C_def B_def A_def)
lemma (in GAUSS) D_eq: "D = {x. ∃y ∈ A. ( x = StandardRes p (y*a) & StandardRes p (y*a) ≤ (p - 1) div 2)}";
by (auto simp add: D_def C_def B_def A_def)
lemma (in GAUSS) D_leq: "x ∈ D ==> x ≤ (p - 1) div 2";
by (auto simp add: D_eq)
lemma (in GAUSS) F_ge: "x ∈ F ==> x ≤ (p - 1) div 2";
apply (auto simp add: F_eq A_def)
proof -;
fix y;
assume "(p - 1) div 2 < StandardRes p (y * a)";
then have "p - StandardRes p (y * a) < p - ((p - 1) div 2)";
by arith
also from p_eq2 have "... = 2 * ((p - 1) div 2) + 1 - ((p - 1) div 2)";
by (rule subst, auto)
also; have "2 * ((p - 1) div 2) + 1 - (p - 1) div 2 = (p - 1) div 2 + 1";
by arith
finally show "p - StandardRes p (y * a) ≤ (p - 1) div 2";
by (insert zless_add1_eq [of "p - StandardRes p (y * a)"
"(p - 1) div 2"],auto);
qed;
lemma (in GAUSS) all_A_relprime: "∀x ∈ A. zgcd(x,p) = 1";
apply (insert p_prime p_minus_one_l)
by (auto simp add: A_def zless_zprime_imp_zrelprime)
lemma (in GAUSS) A_prod_relprime: "zgcd((setprod id A),p) = 1";
by (insert all_A_relprime finite_A, simp add: all_relprime_prod_relprime)
subsection {* Relationships Between Gauss Sets *}
lemma (in GAUSS) B_card_eq_A: "card B = card A";
apply (insert finite_A)
by (simp add: finite_A B_def inj_on_xa_A card_image)
lemma (in GAUSS) B_card_eq: "card B = nat ((p - 1) div 2)";
by (auto simp add: B_card_eq_A A_card_eq)
lemma (in GAUSS) F_card_eq_E: "card F = card E";
apply (insert finite_E)
by (simp add: F_def inj_on_pminusx_E card_image)
lemma (in GAUSS) C_card_eq_B: "card C = card B";
apply (insert finite_B)
apply (subgoal_tac "inj_on (StandardRes p) B");
apply (simp add: B_def C_def card_image)
apply (rule StandardRes_inj_on_ResSet)
by (simp add: B_res)
lemma (in GAUSS) D_E_disj: "D ∩ E = {}";
by (auto simp add: D_def E_def)
lemma (in GAUSS) C_card_eq_D_plus_E: "card C = card D + card E";
by (auto simp add: C_eq card_Un_disjoint D_E_disj finite_D finite_E)
lemma (in GAUSS) C_prod_eq_D_times_E: "setprod id E * setprod id D = setprod id C";
apply (insert D_E_disj finite_D finite_E C_eq)
apply (frule setprod_Un_disjoint [of D E id])
by auto
lemma (in GAUSS) C_B_zcong_prod: "[setprod id C = setprod id B] (mod p)";
thm setprod_same_function_zcong;
apply (auto simp add: C_def)
apply (insert finite_B SR_B_inj)
apply (frule_tac f = "StandardRes p" in setprod_reindex_id);
apply force;
apply (erule subst);
apply (rule setprod_same_function_zcong);
by (auto simp add: StandardRes_prop1 zcong_sym p_g_0);
lemma (in GAUSS) F_Un_D_subset: "(F ∪ D) ⊆ A";
apply (rule Un_least)
by (auto simp add: A_def F_subset D_subset)
lemma two_eq: "2 * (x::int) = x + x";
by arith
lemma (in GAUSS) F_D_disj: "(F ∩ D) = {}";
apply (simp add: F_eq D_eq)
apply (auto simp add: F_eq D_eq)
proof -;
fix y; fix ya;
assume "p - StandardRes p (y * a) = StandardRes p (ya * a)";
then have "p = StandardRes p (y * a) + StandardRes p (ya * a)";
by arith
moreover have "p dvd p";
by auto
ultimately have "p dvd (StandardRes p (y * a) + StandardRes p (ya * a))";
by auto
then have a: "[StandardRes p (y * a) + StandardRes p (ya * a) = 0] (mod p)";
by (auto simp add: zcong_def)
have "[y * a = StandardRes p (y * a)] (mod p)";
by (simp only: zcong_sym StandardRes_prop1)
moreover have "[ya * a = StandardRes p (ya * a)] (mod p)";
by (simp only: zcong_sym StandardRes_prop1)
ultimately have "[y * a + ya * a =
StandardRes p (y * a) + StandardRes p (ya * a)] (mod p)";
by (rule zcong_zadd)
with a have "[y * a + ya * a = 0] (mod p)";
apply (elim zcong_trans)
by (simp only: zcong_refl)
also have "y * a + ya * a = a * (y + ya)";
by (simp add: zadd_zmult_distrib2 zmult_commute)
finally have "[a * (y + ya) = 0] (mod p)";.;
with p_prime a_nonzero zcong_zprime_prod_zero [of p a "y + ya"]
p_a_relprime
have a: "[y + ya = 0] (mod p)";
by auto
assume b: "y ∈ A" and c: "ya: A";
with A_def have "0 < y + ya";
by auto
moreover from b c A_def have "y + ya ≤ (p - 1) div 2 + (p - 1) div 2";
by auto
moreover from b c p_eq2 A_def have "y + ya < p";
by auto
ultimately show False;
apply simp
apply (frule_tac m = p in zcong_not_zero)
by (auto simp add: a)
qed;
lemma (in GAUSS) F_Un_D_card: "card (F ∪ D) = nat ((p - 1) div 2)";
apply (insert F_D_disj finite_F finite_D)
proof -;
have "card (F ∪ D) = card E + card D";
by (auto simp add: finite_F finite_D F_D_disj
card_Un_disjoint F_card_eq_E)
then have "card (F ∪ D) = card C";
by (simp add: C_card_eq_D_plus_E)
from this show "card (F ∪ D) = nat ((p - 1) div 2)";
by (simp add: C_card_eq_B B_card_eq)
qed;
lemma (in GAUSS) F_Un_D_eq_A: "F ∪ D = A";
apply (insert finite_A F_Un_D_subset A_card_eq F_Un_D_card)
by (auto simp add: card_seteq)
lemma (in GAUSS) prod_D_F_eq_prod_A:
"(setprod id D) * (setprod id F) = setprod id A";
apply (insert F_D_disj finite_D finite_F)
apply (frule setprod_Un_disjoint [of F D id])
by (auto simp add: F_Un_D_eq_A)
lemma (in GAUSS) prod_F_zcong:
"[setprod id F = ((-1) ^ (card E)) * (setprod id E)] (mod p)";
proof -;
have "setprod id F = setprod id (op - p ` E)";
by (auto simp add: F_def)
then have "setprod id F = setprod (op - p) E";
apply simp
apply (insert finite_E inj_on_pminusx_E)
by (frule_tac f = "op - p" in setprod_reindex_id, auto)
then have one:
"[setprod id F = setprod (StandardRes p o (op - p)) E] (mod p)";
apply simp
apply (insert p_g_0 finite_E)
by (auto simp add: StandardRes_prod)
moreover have a: "∀x ∈ E. [p - x = 0 - x] (mod p)";
apply clarify
apply (insert zcong_id [of p])
by (rule_tac a = p and m = p and c = x and d = x in zcong_zdiff, auto)
moreover have b: "∀x ∈ E. [StandardRes p (p - x) = p - x](mod p)";
apply clarify
by (simp add: StandardRes_prop1 zcong_sym)
moreover have "∀x ∈ E. [StandardRes p (p - x) = - x](mod p)";
apply clarify
apply (insert a b)
by (rule_tac b = "p - x" in zcong_trans, auto)
ultimately have c:
"[setprod (StandardRes p o (op - p)) E = setprod (uminus) E](mod p)";
apply simp
apply (insert finite_E p_g_0)
by (frule setprod_same_function_zcong [of E "StandardRes p o (op - p)"
uminus p], auto);
then have two: "[setprod id F = setprod (uminus) E](mod p)";
apply (insert one c)
by (rule zcong_trans [of "setprod id F"
"setprod (StandardRes p o op - p) E" p
"setprod uminus E"], auto);
also have "setprod uminus E = (setprod id E) * (-1)^(card E)";
apply (insert finite_E)
by (induct set: Finites, auto)
then have "setprod uminus E = (-1) ^ (card E) * (setprod id E)";
by (simp add: zmult_commute)
with two show ?thesis
by simp
qed;
subsection {* Gauss' Lemma *}
lemma (in GAUSS) aux: "setprod id A * -1 ^ card E * a ^ card A * -1 ^ card E = setprod id A * a ^ card A";
by (auto simp add: finite_E neg_one_special)
theorem (in GAUSS) pre_gauss_lemma:
"[a ^ nat((p - 1) div 2) = (-1) ^ (card E)] (mod p)";
proof -;
have "[setprod id A = setprod id F * setprod id D](mod p)";
by (auto simp add: prod_D_F_eq_prod_A zmult_commute)
then have "[setprod id A = ((-1)^(card E) * setprod id E) *
setprod id D] (mod p)";
apply (rule zcong_trans)
by (auto simp add: prod_F_zcong zcong_scalar)
then have "[setprod id A = ((-1)^(card E) * setprod id C)] (mod p)";
apply (rule zcong_trans)
apply (insert C_prod_eq_D_times_E, erule subst)
by (subst zmult_assoc, auto)
then have "[setprod id A = ((-1)^(card E) * setprod id B)] (mod p)"
apply (rule zcong_trans)
by (simp add: C_B_zcong_prod zcong_scalar2)
then have "[setprod id A = ((-1)^(card E) *
(setprod id ((%x. x * a) ` A)))] (mod p)";
by (simp add: B_def)
then have "[setprod id A = ((-1)^(card E) * (setprod (%x. x * a) A))]
(mod p)";
apply (rule zcong_trans)
by (simp add: finite_A inj_on_xa_A setprod_reindex_id zcong_scalar2)
moreover have "setprod (%x. x * a) A =
setprod (%x. a) A * setprod id A";
by (insert finite_A, induct set: Finites, auto)
ultimately have "[setprod id A = ((-1)^(card E) * (setprod (%x. a) A *
setprod id A))] (mod p)";
by simp
then have "[setprod id A = ((-1)^(card E) * a^(card A) *
setprod id A)](mod p)";
apply (rule zcong_trans)
by (simp add: zcong_scalar2 zcong_scalar finite_A setprod_constant
zmult_assoc)
then have a: "[setprod id A * (-1)^(card E) =
((-1)^(card E) * a^(card A) * setprod id A * (-1)^(card E))](mod p)";
by (rule zcong_scalar)
then have "[setprod id A * (-1)^(card E) = setprod id A *
(-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)";
apply (rule zcong_trans)
by (simp add: a mult_commute mult_left_commute)
then have "[setprod id A * (-1)^(card E) = setprod id A *
a^(card A)](mod p)";
apply (rule zcong_trans)
by (simp add: aux)
with this zcong_cancel2 [of p "setprod id A" "-1 ^ card E" "a ^ card A"]
p_g_0 A_prod_relprime have "[-1 ^ card E = a ^ card A](mod p)";
by (simp add: order_less_imp_le)
from this show ?thesis
by (simp add: A_card_eq zcong_sym)
qed;
theorem (in GAUSS) gauss_lemma: "(Legendre a p) = (-1) ^ (card E)";
proof -;
from Euler_Criterion p_prime p_g_2 have
"[(Legendre a p) = a^(nat (((p) - 1) div 2))] (mod p)";
by auto
moreover note pre_gauss_lemma;
ultimately have "[(Legendre a p) = (-1) ^ (card E)] (mod p)";
by (rule zcong_trans)
moreover from p_a_relprime have "(Legendre a p) = 1 | (Legendre a p) = (-1)";
by (auto simp add: Legendre_def)
moreover have "(-1::int) ^ (card E) = 1 | (-1::int) ^ (card E) = -1";
by (rule neg_one_power)
ultimately show ?thesis;
by (auto simp add: p_g_2 one_not_neg_one_mod_m zcong_sym)
qed;
end;
lemma p_odd:
GAUSS p a ==> p ∈ zOdd
lemma p_g_0:
GAUSS p a ==> 0 < p
lemma int_nat:
GAUSS p a ==> int (nat ((p - 1) div 2)) = (p - 1) div 2
lemma p_minus_one_l:
GAUSS p a ==> (p - 1) div 2 < p
lemma p_eq:
GAUSS p a ==> p = 2 * (p - 1) div 2 + 1
lemma zodd_imp_zdiv_eq:
x ∈ zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)
lemma p_eq2:
GAUSS p a ==> p = 2 * ((p - 1) div 2) + 1
lemma finite_A:
GAUSS p a ==> finite {x. 0 < x ∧ x ≤ (p - 1) div 2}
lemma finite_B:
GAUSS p a ==> finite ((%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2})
lemma finite_C:
GAUSS p a ==> finite (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2})
lemma finite_D:
GAUSS p a ==> finite (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2})
lemma finite_E:
GAUSS p a ==> finite (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x})
lemma finite_F:
GAUSS p a ==> finite (op - p ` (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}))
lemma C_eq:
GAUSS p a ==> StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} = StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2} ∪ StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}
lemma A_card_eq:
GAUSS p a ==> card {x. 0 < x ∧ x ≤ (p - 1) div 2} = nat ((p - 1) div 2)
lemma inj_on_xa_A:
GAUSS p a ==> inj_on (%x. x * a) {x. 0 < x ∧ x ≤ (p - 1) div 2}
lemma A_res:
GAUSS p a ==> ResSet p {x. 0 < x ∧ x ≤ (p - 1) div 2}
lemma B_res:
GAUSS p a ==> ResSet p ((%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2})
lemma SR_B_inj:
GAUSS p a ==> inj_on (StandardRes p) ((%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2})
lemma inj_on_pminusx_E:
GAUSS p a ==> inj_on (op - p) (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x})
lemma A_ncong_p:
[| GAUSS p a; x ∈ {x. 0 < x ∧ x ≤ (p - 1) div 2} |] ==> ¬ [x = 0] (mod p)
lemma A_greater_zero:
[| GAUSS p a; x ∈ {x. 0 < x ∧ x ≤ (p - 1) div 2} |] ==> 0 < x
lemma B_ncong_p:
[| GAUSS p a; x ∈ (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} |] ==> ¬ [x = 0] (mod p)
lemma B_greater_zero:
[| GAUSS p a; x ∈ (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} |] ==> 0 < x
lemma C_ncong_p:
[| GAUSS p a; x ∈ StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} |] ==> ¬ [x = 0] (mod p)
lemma C_greater_zero:
[| GAUSS p a; y ∈ StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} |] ==> 0 < y
lemma D_ncong_p:
[| GAUSS p a; x ∈ StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2} |] ==> ¬ [x = 0] (mod p)
lemma E_ncong_p:
[| GAUSS p a; x ∈ StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x} |] ==> ¬ [x = 0] (mod p)
lemma F_ncong_p:
[| GAUSS p a; x ∈ op - p ` (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) |] ==> ¬ [x = 0] (mod p)
lemma F_subset:
GAUSS p a ==> op - p ` (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) ⊆ {x. 0 < x ∧ x ≤ (p - 1) div 2}
lemma D_subset:
GAUSS p a ==> StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2} ⊆ {x. 0 < x ∧ x ≤ (p - 1) div 2}
lemma F_eq:
GAUSS p a ==> op - p ` (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) = {x. ∃y∈{x. 0 < x ∧ x ≤ (p - 1) div 2}. x = p - StandardRes p (y * a) ∧ (p - 1) div 2 < StandardRes p (y * a)}
lemma D_eq:
GAUSS p a ==> StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2} = {x. ∃y∈{x. 0 < x ∧ x ≤ (p - 1) div 2}. x = StandardRes p (y * a) ∧ StandardRes p (y * a) ≤ (p - 1) div 2}
lemma D_leq:
[| GAUSS p a; x ∈ StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2} |] ==> x ≤ (p - 1) div 2
lemma F_ge:
[| GAUSS p a; x ∈ op - p ` (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) |] ==> x ≤ (p - 1) div 2
lemma all_A_relprime:
GAUSS p a ==> ∀x∈{x. 0 < x ∧ x ≤ (p - 1) div 2}. zgcd (x, p) = 1
lemma A_prod_relprime:
GAUSS p a ==> zgcd (setprod id {x. 0 < x ∧ x ≤ (p - 1) div 2}, p) = 1
lemma B_card_eq_A:
GAUSS p a ==> card ((%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2}) = card {x. 0 < x ∧ x ≤ (p - 1) div 2}
lemma B_card_eq:
GAUSS p a ==> card ((%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2}) = nat ((p - 1) div 2)
lemma F_card_eq_E:
GAUSS p a ==> card (op - p ` (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x})) = card (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x})
lemma C_card_eq_B:
GAUSS p a ==> card (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2}) = card ((%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2})
lemma D_E_disj:
GAUSS p a ==> StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2} ∩ (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) = {}
lemma C_card_eq_D_plus_E:
GAUSS p a ==> card (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2}) = card (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2}) + card (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x})
lemma C_prod_eq_D_times_E:
GAUSS p a ==> setprod id (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) * setprod id (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2}) = setprod id (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2})
lemma C_B_zcong_prod:
GAUSS p a ==> [setprod id (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2}) = setprod id ((%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2})] (mod p)
lemma F_Un_D_subset:
GAUSS p a ==> op - p ` (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) ∪ StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2} ⊆ {x. 0 < x ∧ x ≤ (p - 1) div 2}
lemma two_eq:
2 * x = x + x
lemma F_D_disj:
GAUSS p a ==> op - p ` (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) ∩ (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2}) = {}
lemma F_Un_D_card:
GAUSS p a ==> card (op - p ` (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) ∪ StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2}) = nat ((p - 1) div 2)
lemma F_Un_D_eq_A:
GAUSS p a ==> op - p ` (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) ∪ StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2} = {x. 0 < x ∧ x ≤ (p - 1) div 2}
lemma prod_D_F_eq_prod_A:
GAUSS p a ==> setprod id (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. x ≤ (p - 1) div 2}) * setprod id (op - p ` (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x})) = setprod id {x. 0 < x ∧ x ≤ (p - 1) div 2}
lemma prod_F_zcong:
GAUSS p a ==> [setprod id (op - p ` (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x})) = -1 ^ card (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) * setprod id (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x})] (mod p)
lemma aux:
GAUSS p a ==> setprod id {x. 0 < x ∧ x ≤ (p - 1) div 2} * -1 ^ card (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) * a ^ card {x. 0 < x ∧ x ≤ (p - 1) div 2} * -1 ^ card (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x}) = setprod id {x. 0 < x ∧ x ≤ (p - 1) div 2} * a ^ card {x. 0 < x ∧ x ≤ (p - 1) div 2}
theorem pre_gauss_lemma:
GAUSS p a ==> [a ^ nat ((p - 1) div 2) = -1 ^ card (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x})] (mod p)
theorem gauss_lemma:
GAUSS p a ==> Legendre a p = -1 ^ card (StandardRes p ` (%x. x * a) ` {x. 0 < x ∧ x ≤ (p - 1) div 2} ∩ {x. (p - 1) div 2 < x})