Developing Efficient SMT Solvers

CMU May 2007

Leonardo de Moura

leonardo@microsoft.com

Microsoft Research

Credits

Slides inspired by previous presentations by: Clark Barrett, Harald Ruess, Natarajan Shankar, Cesare Tinelli, Ashish Tiwari

Special thanks to:

Clark Barrett, Cesare Tinelli (for contributing some of the material) and the Ed Clarke (for the invitation).

- Satisfiability Modulo Theories (SMT)
 - The next generation of verification engines.
 - SAT solvers + Theories
 - Arithmetic
 - Arrays
 - Uninterpreted Functions
 - Some problems are more naturally expressed in SMT.
 - More automation.

Applications

- Applications have different requirements.
- Predicate abstraction
 - Fast when unsat.
 - May be incomplete.
 - Examples: *Microsoft SLAM/SDV (device driver verification).*
- Testing
 - Fast when sat.
 - Model generation.
 - May be unsound.
 - Examples: *Microsoft MUTT and Sage.*

Applications (cont.)

- Extended Static Checking.
 - Fast when sat & unsat.
 - Must be sound.
 - "Counterexamples" (execution trace).
 - ▶ Incompleteness ~→ false alarms.
 - Examples: ESC/Java, *Microsoft Spec# and ESP*.
- **b** Bounded Model Checking (BMC) & k-induction.
- Planning & Scheduling.
- Symbolic Simulation.
- Equivalence Checking.

Background

- Architecture
- Implementation Techniques
- Applications

- A signature Σ is a finite set of: function symbols $\Sigma_F = \{f, g, ...\}$, predicate symbols $\Sigma_P = \{p, q, ...\}$, and an *arity* function $\Sigma \mapsto N$.
- Function symbols with arity 0 are called constants.
- A countable set \mathcal{V} of *variables* $\{x, y, \ldots\}$ disjoint of Σ .
- Terms:

$$t := f(t_1, \ldots, t_n) \mid x$$

Formulas:

 $\phi := p(t_1, \dots, t_n) \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid \exists x : \phi_1 \mid \forall x : \phi_1$

- Free (occurrences) of variables in a formula are those not bound by a quantifier.
- A sentence is a first-order formula with no free variables.

- A *(first-order) theory* \mathcal{T} (over a signature Σ) is a set of (deductively closed) sentences (over Σ and \mathcal{V}).
- Let $DC(\Gamma)$ be the deductive closure of a set of sentences Γ .
 - For every theory \mathcal{T} , $\mathit{DC}(\mathcal{T}) = \mathcal{T}$.
- A theory \mathcal{T} is *consistent* if *false* $\notin \mathcal{T}$.
- We can view a (first-order) theory \mathcal{T} as the class of all *models* of \mathcal{T} (due to completeness of first-order logic).

- $\blacktriangleright \ {\rm A \ model} \ M \ {\rm is \ defined \ as:}$
 - > Domain S: set of elements.
 - Interpretation $f^M: S^n \mapsto S$ for each $f \in \Sigma_F$ with $\operatorname{arity}(f) = n$.

• Interpretation $p^M \subseteq S^n$ for each $p \in \Sigma_P$ with *arity*(p) = n.

• Assignment $x^M \in S$ for every variable $x \in \mathcal{V}$.

- A formula ϕ is true in a model M if it evaluates to true under the given interpretations over the domain S.
- M is a model for the theory \mathcal{T} if all sentences of \mathcal{T} are true in M.

Satisfiability and Validity

A formula $\phi(\vec{x})$ is *satisfiable* in a theory \mathcal{T} if there is a model of $DC(\mathcal{T} \cup \exists \vec{x}.\phi(\vec{x}))$. That is, there is a model M for \mathcal{T} in which $\phi(\vec{x})$ evaluates to true, denoted by,

$$M \models_{\mathcal{T}} \phi(\vec{x})$$

- This is also called \mathcal{T} -satisfiability.
- A formula $\phi(\vec{x})$ is *valid* in a theory \mathcal{T} if $\forall \vec{x}.\phi(\vec{x}) \in \mathcal{T}$. That is $\phi(\vec{x})$ evaluates to true in every model M of \mathcal{T} .
- \mathcal{T} -validity is denoted by $\models_{\mathcal{T}} \phi(\vec{x})$.
- The quantifier free T -satisfiability problem restricts ϕ to be quantifier free.

Combination of Theories

- ▶ In practice, we need a combination of theories.
- Examples:

•
$$x+2 = y \Rightarrow f(read(write(a, x, 3), y-2)) = f(y-x+1)$$

• $f(f(x) - f(y)) \neq f(z), x+z \le y \le x \Rightarrow z < 0$

Given

$$\begin{split} \Sigma &= \Sigma_1 \cup \Sigma_2 \\ \mathcal{T}_1, \mathcal{T}_2 &: \text{ theories over } \Sigma_1, \Sigma_2 \\ \mathcal{T} &= \textit{DC}(\mathcal{T}_1 \cup \mathcal{T}_2) \end{split}$$

• Is \mathcal{T} consistent?

Given satisfiability procedures for conjunction of literals of ${\cal T}_1$ and ${\cal T}_2$, how to decide the satisfiability of ${\cal T}$?

Preamble

- Disjoint signatures: $\Sigma_1 \cap \Sigma_2 = \emptyset$.
- Stably-Infinite Theories.
- Convex Theories.

Stably-Infinite Theories

- A theory is stably infinite if every satisfiable QFF is satisfiable in an infinite model.
- Example. Theories with only finite models are not stably infinite. $T_2 = DC(\forall x, y, z. (x = y) \lor (x = z) \lor (y = z)).$
- The union of two consistent, disjoint, stably infinite theories is consistent.

A theory \mathcal{T} is *convex* iff

for all finite sets Γ of literals and for all non-empty disjunctions $\bigvee_{i \in I} x_i = y_i$ of variables, $\Gamma \models_{\mathcal{T}} \bigvee_{i \in I} x_i = y_i$ iff $\Gamma \models_{\mathcal{T}} x_i = y_i$ for some $i \in I$.

- Every convex theory \mathcal{T} with non trivial models (i.e., $\models_T \exists x, y. \ x \neq y$) is stably infinite.
- All Horn theories are convex this includes all (conditional) equational theories.
- Linear rational arithmetic is convex.

Convexity (cont.)

- Many theories are not convex:
 - Linear integer arithmetic.

$$y = 1, z = 2, 1 \le x \le 2 \models x = y \lor x = z$$

Nonlinear arithmetic.

$$x^2 = 1, y = 1, z = -1 \models x = y \lor x = z$$

- Theory of Bit-vectors.
- Theory of Arrays.

$$v_1 = \operatorname{read}(\operatorname{write}(a, i, v_2), j), v_3 = \operatorname{read}(a, j) \models v_1 = v_2 \lor v_1 = v_3$$

Convexity: Example

- Let $T = T_1 \cup T_2$, where T_1 is EUF (O(nlog(n))) and T_2 is IDL (O(nm)).
- ${\mathcal T}_2$ is not convex.
- Satisfiability is NP-Complete for $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2$.
 - Reduce 3CNF satisfiability to \mathcal{T} -satisfiability.
 - For each boolean variable p_i add the atomic formulas: $0 \le x_i, x_i \le 1.$
 - For a clause $p_1 \vee \neg p_2 \vee p_3$ add the atomic formula: $f(x_1, x_2, x_3) \neq f(0, 1, 0)$

Nelson-Oppen Combination

- Let \mathcal{T}_1 and \mathcal{T}_2 be consistent, stably infinite theories over disjoint (countable) signatures. Assume satisfiability of conjunction of literals can decided in $O(T_1(n))$ and $O(T_2(n))$ time respectively. Then,
 - 1. The combined theory ${\mathcal T}$ is consistent and stably infinite.
 - 2. Satisfiability of quantifier free conjunction of literals in \mathcal{T} can be decided in $O(2^{n^2} \times (T_1(n) + T_2(n)))$.
 - 3. If \mathcal{T}_1 and \mathcal{T}_2 are convex, then so is \mathcal{T} and satisfiability in \mathcal{T} is in $O(n^4 \times (T_1(n) + T_2(n)))$.

Nelson-Oppen Combination Procedure

- The combination procedure:
 - **Initial State:** ϕ is a conjunction of literals over $\Sigma_1 \cup \Sigma_2$.
 - **Purification:** Preserving satisfiability transform ϕ into $\phi_1 \wedge \phi_2$, such that, $\phi_i \in \Sigma_i$.
 - Interaction: Guess a partition of $\mathcal{V}(\phi_1) \cap \mathcal{V}(\phi_2)$ into disjoint subsets. Express it as conjunction of literals ψ . Example. The partition $\{x_1\}, \{x_2, x_3\}, \{x_4\}$ is represented as $x_1 \neq x_2, x_1 \neq x_4, x_2 \neq x_4, x_2 = x_3$.
 - Component Procedures : Use individual procedures to decide whether $\phi_i \wedge \psi$ is satisfiable.

Return: If both return yes, return yes. No, otherwise.

Purification:

 $\phi \wedge P(\dots, s[t], \dots) \rightsquigarrow \phi \wedge P(\dots, s[x], \dots) \wedge x = t$, t is not a variable.

- Purification is satisfiability preserving and terminating.
- As most of the SMT developers will tell you, the purification step is not really necessary.
- Given a set of mixed (impure) literal Γ, define a shared term to be any term in Γ which is alien in some literal or sub-term in Γ.
- In our examples, these were the terms replaced by constants.
- Assume that each satisfiability procedure treats alien terms as constants.

- Each step is satisfiability preserving.
- Say ϕ is satisfiable (in the combination).
 - Purification: $\phi_1 \wedge \phi_2$ is satisfiable.

- Each step is satisfiability preserving.
- Say ϕ is satisfiable (in the combination).
 - Purification: $\phi_1 \wedge \phi_2$ is satisfiable.
 - Iteration: for some partition ψ , $\phi_1 \wedge \phi_2 \wedge \psi$ is satisfiable.

- Each step is satisfiability preserving.
- Say ϕ is satisfiable (in the combination).
 - Purification: $\phi_1 \wedge \phi_2$ is satisfiable.
 - Iteration: for some partition ψ , $\phi_1 \wedge \phi_2 \wedge \psi$ is satisfiable.
 - Component procedures: $\phi_1 \wedge \psi$ and $\phi_2 \wedge \psi$ are both satisfiable in component theories.

- Each step is satisfiability preserving.
- Say ϕ is satisfiable (in the combination).
 - Purification: $\phi_1 \wedge \phi_2$ is satisfiable.
 - Iteration: for some partition ψ , $\phi_1 \wedge \phi_2 \wedge \psi$ is satisfiable.
 - Component procedures: $\phi_1 \wedge \psi$ and $\phi_2 \wedge \psi$ are both satisfiable in component theories.
 - Therefore, if the procedure return unsatisfiable, then ϕ is unsatisfiable.

- Suppose the procedure returns satisfiable.
 - Let ψ be the partition and A and B be models of $\mathcal{T}_1 \wedge \phi_1 \wedge \psi$ and $\mathcal{T}_2 \wedge \phi_2 \wedge \psi$.

- Suppose the procedure returns satisfiable.
 - Let ψ be the partition and A and B be models of ${\mathcal T}_1 \wedge \phi_1 \wedge \psi$ and ${\mathcal T}_2 \wedge \phi_2 \wedge \psi$.
 - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).

- Suppose the procedure returns satisfiable.
 - Let ψ be the partition and A and B be models of ${\mathcal T}_1 \wedge \phi_1 \wedge \psi$ and ${\mathcal T}_2 \wedge \phi_2 \wedge \psi$.
 - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
 - Let *h* be a bijection between S_A and S_B such that $h(x^A) = x^B$ for each shared variable.

- Suppose the procedure returns satisfiable.
 - Let ψ be the partition and A and B be models of ${\mathcal T}_1 \wedge \phi_1 \wedge \psi$ and ${\mathcal T}_2 \wedge \phi_2 \wedge \psi$.
 - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
 - Let *h* be a bijection between S_A and S_B such that $h(x^A) = x^B$ for each shared variable.
 - Extend B to \overline{B} by interpretations of symbols in Σ_1 : $f^{\overline{B}}(b_1, \ldots, b_n) = h(f^A(h^{-1}(b_1), \ldots, h^{-1}(b_n)))$

- Suppose the procedure returns satisfiable.
 - Let ψ be the partition and A and B be models of ${\mathcal T}_1 \wedge \phi_1 \wedge \psi$ and ${\mathcal T}_2 \wedge \phi_2 \wedge \psi$.
 - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
 - Let *h* be a bijection between S_A and S_B such that $h(x^A) = x^B$ for each shared variable.
 - Extend B to \overline{B} by interpretations of symbols in Σ_1 : $f^{\overline{B}}(b_1, \ldots, b_n) = h(f^A(h^{-1}(b_1), \ldots, h^{-1}(b_n)))$
 - \bar{B} is a model of:

 $\mathcal{T}_1 \wedge \phi_1 \wedge \mathcal{T}_2 \wedge \phi_2 \wedge \psi$

NO deterministic procedure

Instead of *guessing*, we can *deduce* the equalities to be shared.
 Purification: no changes.

Interaction: Deduce an equality x = y:

$$\mathcal{T}_1 \vdash (\phi_1 \Rightarrow x = y)$$

Update $\phi_2 := \phi_2 \wedge x = y$. And vice-versa. Repeat until no further changes.

- **Component Procedures** : Use individual procedures to decide whether ϕ_i is satisfiable.
- ▶ Remark: $\mathcal{T}_i \vdash (\phi_i \Rightarrow x = y)$ iff $\phi_i \land x \neq y$ is not satisfiable in \mathcal{T}_i .

- Assume the theories are convex.
 - Suppose ϕ_i is satisfiable.

- Assume the theories are convex.
 - Suppose ϕ_i is satisfiable.
 - Let *E* be the set of equalities $x_j = x_k$ ($j \neq k$) such that, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$.

- Assume the theories are convex.
 - Suppose ϕ_i is satisfiable.
 - Let *E* be the set of equalities $x_j = x_k$ ($j \neq k$) such that, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$.
 - By convexity, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$.

- Assume the theories are convex.
 - Suppose ϕ_i is satisfiable.
 - Let *E* be the set of equalities $x_j = x_k$ ($j \neq k$) such that, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$.
 - By convexity, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$.

•
$$\phi_i \wedge \bigwedge_E x_j \neq x_k$$
 is satisfiable.

- Assume the theories are convex.
 - Suppose ϕ_i is satisfiable.
 - Let *E* be the set of equalities $x_j = x_k$ ($j \neq k$) such that, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$.
 - By convexity, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$.

•
$$\phi_i \wedge \bigwedge_E x_j \neq x_k$$
 is satisfiable.

The proof now is identical to the nondeterministic case.

- Assume the theories are convex.
 - Suppose ϕ_i is satisfiable.
 - Let *E* be the set of equalities $x_j = x_k$ ($j \neq k$) such that, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$.
 - By convexity, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$.
 - $\phi_i \wedge \bigwedge_E x_j \neq x_k$ is satisfiable.
 - The proof now is identical to the nondeterministic case.
 - Sharing equalities is sufficient, because a theory \mathcal{T}_1 can assume that $x^B \neq y^B$ whenever x = y is not implied by \mathcal{T}_2 and vice versa.

Background

- Implementing SMT solvers
- Applications

- Preprocessor/Simplifier.
- SAT solver.
- Blackboard: "bus" used to connect the theories.
- Theories:
 - Arithmetic,
 - Bit-vectors,
 - Arrays,
 - etc.
- Heuristic quantifier instantiation.

Preprocessor/Simplifier

- Apply simplification rules:
 - Normalization:
 - Sort arguments of commutative operators.
 - Flat associative operators:

 $\textit{or}(p_1,\textit{or}(p_2,p_3)) \rightsquigarrow \textit{or}(p_1,p_2,p_3)$

Rewrite arithmetic expressions as sums of monomials.

$$x(y+3) = 5 \rightsquigarrow 3x + xy = 5$$

Hash-consing.

Lift term if-then-else.

$$\bullet \ x = t \wedge C[x] \rightsquigarrow C[t].$$

etc.

Preprocessor/Simplifier

CNF translation.

- Rewrite formula to simplify atoms that are asserted during the search.
- Example:

$$x \ge 0 \land (x + y \le 2 \lor x + 2y \ge 6) \land (x + y = 2 \lor x + 2y > 4)$$

$$\rightsquigarrow$$

$$(s_1 = x + y \land s_2 = x + 2y) \land$$

$$(x \ge 0 \land (s_1 \le 2 \lor s_2 \ge 6) \land (s_1 = 2 \lor s_2 > 4))$$

- Only *bounds* (e.g., $s_1 \leq 2$) are asserted during the search.
- Unconstrained variables can be eliminated before the beginning of the search.

SMT solvers before SAT breakthrough

- Ad-hoc support for boolean combination of literals.
- Ad-hoc support for (non-convex) theories.
- "Case-splits" should be avoided.
- Few real benchmarks.
- Breakthrough in SAT solving changed everything.

Breakthrough in SAT solving

- Breakthrough in SAT solving influenced the way SMT solvers are implemented.
- Modern SAT solvers are based on the DPLL algorithm.
- Modern implementations add several sophisticated search techniques.
 - Backjumping
 - Learning
 - Restarts
 - Watched literals

The Original DPLL Procedure

- DPLL tries to *build* incrementally a *satisfying truth assignment* M for a CNF formula F.
- M is grown by
 - deducing the truth value of a literal from M and F, or
 - *guessing* a truth value.
- If a wrong guess leads to an inconsistency, the procedure backtracks and tries the opposite one.

Lazy approach: SAT solvers + Theories

- This approach was independently developed by several groups: CVC (Stanford), ICS (SRI), MathSAT (Univ. Trento, Italy), and Verifun (HP).
- It was motivated also by the breakthroughs in SAT solving.
- SAT solver "manages" the boolean structure, and assigns truth values to the atoms in a formula.
- Efficient theory solvers are used to validate the (partial) assignment produced by the SAT solver.
- When theory solver detects unsatisfiability → a new clause (*lemma*) is created.

- Example:
 - Suppose the SAT solver assigns

$$\{x = y \to T, y = z \to T, f(x) = f(z) \to F\}.$$

- Theory solver detects the conflict, and a *lemma* is created $\neg(x = y) \lor \neg(y = z) \lor f(x) = f(z)$.
- Some theory solvers use the "proof" of the conflict to build the lemma.
- Problems in these tools:
 - The lemmas are imprecise (not minimal).
 - The theory solver is "passive": *it just detects conflicts*. There is no propagation step.
 - Backtracking is expensive, some tools restart from scratch when a conflict is detected.

- The Blackboard/Bus stores the equalities/disequalities known by the solver.
- The set of known equalities is represented as a set of equivalence classes.
 - Union-Find data structure.
- The bus is used to connect the theories.

Combining theories in practice

- Propagate all implied equalities.
 - Deterministic Nelson-Oppen.
 - Complete only for convex theories.
 - It may be expensive for some theories.
- Delayed Theory Combination.
 - Nondeterministic Nelson-Oppen.
 - Create set of interface equalities (x = y) between shared variables.
 - Use SAT solver to guess the partition.
 - Disadvantage: the number of additional equality literals is quadratic in the number of shared variables.

Combining theories in practice (cont.)

- Common to these methods is that they are *pessimistic* about which equalities are propagated.
- Model-based Theory Combination
 - Optimistic approach.
 - Use a candidate model M_i for one of the theories T_i and propagate all equalities implied by the candidate model, hedging that other theories will agree.

if $M_i \models \mathcal{T}_i \cup \Gamma_i \cup \{u = v\}$ then propagate u = v .

- If not, use backtracking to fix the model.
- It is cheaper to enumerate equalities that are implied in a particular model than of all models.

$$x = f(y - 1), f(x) \neq f(y), 0 \le x \le 1, 0 \le y \le 1$$

Purifying

$$x = f(z), f(x) \neq f(y), 0 \le x \le 1, 0 \le y \le 1, z = y - 1$$

$\mathcal{T}_{\mathcal{E}}$		${\mathcal T}_{\mathcal A}$		
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, f(z)\}$	$x^{\mathcal{E}} = *_1$	$0 \le x \le 1$	$x^{\mathcal{A}} = 0$
$f(x) \neq f(y)$	$\{y\}$	$y^{\mathcal{E}} = *_2$	$0 \le y \le 1$	$y^{\mathcal{A}} = 0$
	$\{z\}$	$z^{\mathcal{E}} = *_3$	z = y - 1	$z^{\mathcal{A}} = -1$
	$\{f(x)\}$	$f^{\mathcal{E}} = \{ *_1 \mapsto *_4, $		
	$\{f(y)\}$	$*_2 \mapsto *_5,$		
		$*_3 \mapsto *_1,$		
		$\textit{else} \mapsto \ast_6 \}$		

$\mathcal{T}_{\mathcal{E}}$		${\mathcal T}_{\mathcal A}$		
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, y, f(z)\}$	$x^{\mathcal{E}} = *_1$	$0 \le x \le 1$	$x^{\mathcal{A}} = 0$
$f(x) \neq f(y)$	$\{z\}$	$y^{\mathcal{E}} = *_1$	$0 \le y \le 1$	$y^{\mathcal{A}} = 0$
x = y	$\{f(x), f(y)\}$	$z^{\mathcal{E}} = *_2$	z = y - 1	$z^{\mathcal{A}} = -1$
		$f^{\mathcal{E}} = \{ *_1 \mapsto *_3, $	x = y	
		$*_2 \mapsto *_1,$		
		$\textit{else}\mapsto *_4\}$		

Unsatisfiable

$\mathcal{T}_{\mathcal{E}}$			${\mathcal T}_{\mathcal A}$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, f(z)\}$	$x^{\mathcal{E}} = *_1$	$0 \le x \le 1$	$x^{\mathcal{A}} = 0$
$f(x) \neq f(y)$	$\{y\}$	$y^{\mathcal{E}} = *_2$	$0 \le y \le 1$	
$x \neq y$	$\{z\}$	$z^{\mathcal{E}} = *_3$	z = y - 1	$z^{\mathcal{A}} = -1$
	$\{f(x)\}$	$f^{\mathcal{E}} = \{ *_1 \mapsto *_4, $	$x \neq y$	
	$\{f(y)\}$	$*_2 \mapsto *_5,$		
		$*_3 \mapsto *_1,$		
		$\textit{else}\mapsto *_6\}$		

Backtrack, and assert $x \neq y$. $\mathcal{T}_{\mathcal{A}}$ model need to be fixed.

${\mathcal T}_{\mathcal E}$		${\mathcal T}_{\mathcal A}$		
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, f(z)\}$	$x^{\mathcal{E}} = *_1$	$0 \le x \le 1$	$x^{\mathcal{A}} = 0$
$\int f(x) \neq f(y)$	$\{y\}$	$y^{\mathcal{E}} = *_2$	$0 \le y \le 1$	$y^{\mathcal{A}} = 1$
$x \neq y$	$\{z\}$	$z^{\mathcal{E}} = *_3$	z = y - 1	$z^{\mathcal{A}} = 0$
	$\{f(x)\}$	$f^{\mathcal{E}} = \{ *_1 \mapsto *_4, $	$x \neq y$	
	$\{f(y)\}$	$*_2 \mapsto *_5,$		
		$*_3 \mapsto *_1,$		
		$\textit{else} \mapsto \ast_6 \}$		

Assume x = z

${\cal T}_{\cal E}$			${\mathcal T}_{\mathcal A}$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, z, f(x), f(z)\}$	$x^{\mathcal{E}} = *_1$	$0 \le x \le 1$	$x^{\mathcal{A}} = 0$
$f(x) \neq f(y)$	$\{y\}$	$y^{\mathcal{E}} = *_2$	$0 \le y \le 1$	$y^{\mathcal{A}} = 1$
$x \neq y$	$\{f(y)\}$	$z^{\mathcal{E}} = *_1$	z = y - 1	$z^{\mathcal{A}} = 0$
x = z		$f^{\mathcal{E}} = \{ *_1 \mapsto *_1, $	$x \neq y$	
		$*_2 \mapsto *_3,$	x = z	
		$\textit{else}\mapsto *_4\}$		

Satisfiable

$\mathcal{T}_{\mathcal{E}}$			$\mathcal{T}_{\mathcal{A}}$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, z, f(x), f(z)\}$	$x^{\mathcal{E}} = *_1$	$0 \le x \le 1$	$x^{\mathcal{A}} = 0$
$f(x) \neq f(y)$	$\{y\}$	$y^{\mathcal{E}} = *_2$	$0 \le y \le 1$	$y^{\mathcal{A}} = 1$
$x \neq y$	$\{f(y)\}$	$z^{\mathcal{E}} = *_1$	z = y - 1	$z^{\mathcal{A}} = 0$
x = z		$f^{\mathcal{E}} = \{ *_1 \mapsto *_1, $	$x \neq y$	
		$*_2 \mapsto *_3,$	x = z	
		$\textit{else}\mapsto *_4\}$		

Let h be the bijection between $S_{\mathcal{E}}$ and $S_{\mathcal{A}}$.

$$h = \{ *_1 \mapsto 0, *_2 \mapsto 1, *_3 \mapsto -1, *_4 \mapsto 2, \ldots \}$$

	${\mathcal T}_{\mathcal E}$		$\mathcal{T}_{\mathcal{A}}$
Literals	Model	Literals	Model
x = f(z)	$x^{\mathcal{E}} = *_1$	$0 \le x \le 1$	$x^{\mathcal{A}} = 0$
$\int f(x) \neq f(y)$	$y^{\mathcal{E}} = *_2$	$0 \le y \le 1$	$y^{\mathcal{A}} = 1$
$x \neq y$	$z^{\mathcal{E}} = *_1$	z = y - 1	$z^{\mathcal{A}} = 0$
x = z	$f^{\mathcal{E}} = \{ *_1 \mapsto *_1, $	$x \neq y$	$f^{\mathcal{A}} = \{0 \mapsto 0$
	$*_2 \mapsto *_3,$	x = z	$1\mapsto -1$
	$\textit{else}\mapsto *_4\}$		$\textit{else}\mapsto 2\}$

Extending \mathcal{A} using h.

$$h = \{ *_1 \mapsto 0, *_2 \mapsto 1, *_3 \mapsto -1, *_4 \mapsto 2, \ldots \}$$

Simplex: a model base theory solver

• Tableau: \mathcal{B} and \mathcal{N} denote the set of basic and nonbasic variables.

$$x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j \quad x_i \in \mathcal{B},$$

- Solver stores upper and lower bounds l_i and u_i, and a mapping β that assigns a value β(x_i) to every variable.
- The bounds on nonbasic variables are always satisfied by β , that is, the following invariant is maintained

$$\forall x_j \in \mathcal{N}, \ l_j \leq \beta(x_j) \leq u_j.$$

Bounds constraints for basic variables are not necessarily satisfied by β , but pivoting steps can be used to fix bounds violations.

Simplex: a model based theory solver

- The current model for the simplex solver is given by β .
- Bound propagation
 - Equations + Bounds can be used to derive new bounds.

• Example:
$$x = y - z, \ y \le 2, \ z \ge 3 \rightsquigarrow x \le -1.$$

Opportunistic equality propagation

- Efficient (and incomplete) methods for propagating equalities.
- Notation
 - A variable x_i is *fixed* iff $l_i = u_i$.
 - A linear polynomial $\sum_{x_j \in \mathcal{V}} a_{ij} x_j$ is fixed iff x_j is fixed or $a_{ij} = 0$.
 - Given a linear polynomial $P = \sum_{x_j \in \mathcal{V}} a_{ij} x_j$, $\beta(P)$ denotes $\sum_{x_j \in \mathcal{V}} a_{ij} \beta(x_j)$.

Opportunistic equality propagation

Equality propagation in arithmetic:

FixedEq

$$l_i \le x_i \le u_i, \ l_j \le x_j \le u_j \Longrightarrow \ x_i = x_j \ \text{if} \ l_i = u_i = l_j = u_j$$

EqRow

$$x_i = x_j + P \implies x_i = x_j$$
 if P is fixed, and $\beta(P) = 0$

EqOffsetRows

$$\begin{aligned} x_i &= x_k + P_1 \\ x_j &= x_k + P_2 \end{aligned} \implies x_i = x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1) &= \beta(P_2) \end{cases} \end{aligned}$$

EqRows

$$\begin{aligned} x_i &= P + P_1 \\ x_j &= P + P_2 \end{aligned} \implies x_i = x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1) &= \beta(P_2) \end{cases} \end{aligned}$$

Opportunistic theory/equality propagation

- These rules can miss some implied equalities.
- Example: z = w is detected, but x = y is not because w is not a fixed variable.

x = y + w + sz = w + s $0 \le z$ $w \le 0$ $0 \le s \le 0$

Remark: bound propagation can be used imply the bound $0 \le w$, making w a fixed variable.

Non Stably-Infinite Theories in practice

- Bit-vector theory is not stably-infinite.
- How can we support it?
- Solution: add a predicate is-bv(x) to the bit-vector theory (intuition: is-bv(x) is true iff x is a bitvector).
- The result of the bit-vector operation op(x, y) is not specified if $\neg is-bv(x)$ or $\neg is-bv(y)$.
- The new bit-vector theory is stably-infinite.

Lemma:

$$\{a_1 = T, a_1 = F, a_3 = F\}$$
 is inconsistent $\rightsquigarrow \neg a_1 \lor a_2 \lor a_3$

- An inconsistent A set is *redundant* if $A' \subset A$ is also inconsistent.
- Redundant inconsistent sets ~> Imprecise Lemmas ~> Ineffective pruning of the search space.
- Noise of a redundant set: $A \setminus A_{min}$.
- The imprecise lemma is useless in any context (partial assignment) where an atom in the noise has a different assignment.
- Example: suppose a_1 is in the noise, then $\neg a_1 \lor a_2 \lor a_3$ is useless when $a_1 = F$.

Precise Lemmas

- Simple approach: track dependencies.
- Record the antecedents ψ_1, \ldots, ψ_n of a consequent ϕ .
- It is the same approach used in SAT solvers:

Record the clause $C \vee l$ used to imply a literal l.

It may be imprecise.

$$\begin{array}{rcl}
x + w + 3 &=& 0 & (1) \\
x + z + 1 &=& 0 & (2) \\
x + y + 1 &=& 0 & (3)
\end{array}$$

x + w + 3 = 0	(1)
x + z + 1 = 0	(2)
x + y + 1 = 0	(3)
-w + z - 2 = 0	(4) = (2) - (1)
-w + y - 2 = 0	(5) = (3) - (1)
y-z = 0	(6) = (5) - (4)

Example: assume equations (1), (2) and (3) were asserted into the logical context.

x + w + 3 = 0	(1)
x + z + 1 = 0	(2)
x + y + 1 = 0	(3)
-w + z - 2 = 0	(4) = (2) - (1)
-w + y - 2 = 0	(5) = (3) - (1)
y-z = 0	(6) = (5) - (4)

• Equation (6) implies that y = z. It depends on (1), (2), and (3).

x + w + 3 = 0	(1)
x + z + 1 = 0	(2)
x + y + 1 = 0	(3)
-w + z - 2 = 0	(4) = (2) - (1)
-w + y - 2 = 0	(5) = (3) - (1)
y-z = 0	(6) = (5) - (4)

- Equation (6) implies that y = z. It depends on (1), (2), and (3).
- Equation (1) is not necessary to derive y = z.

Precise Lemmas: auxiliary variables

Use auxiliary/zero variables to "name" linear polynomials.

$$x + w + 3 = s_1$$
$$x + z + 1 = s_2$$
$$x + y + 1 = s_3$$

Precise Lemmas: auxiliary variables

Use auxiliary/zero variables to "name" linear polynomials.

$$x + w + 3 = s_1$$

$$x + z + 1 = s_2$$

$$x + y + 1 = s_3$$

$$-w + z - 2 = s_2 - s_1$$

Use auxiliary/zero variables to "name" linear polynomials.

$$x + w + 3 = s_1$$

$$x + z + 1 = s_2$$

$$x + y + 1 = s_3$$

$$-w + z - 2 = s_2 - s_1$$

$$-w + y - 2 = s_3 - s_1$$

Use auxiliary/zero variables to "name" linear polynomials.

$$x + w + 3 = s_1$$

$$x + z + 1 = s_2$$

$$x + y + 1 = s_3$$

$$-w + z - 2 = s_2 - s_1$$

$$-w + y - 2 = s_3 - s_1$$

$$y - z = s_3 - s_1 - s_2 + s_1$$

Use auxiliary/zero variables to "name" linear polynomials.

x + w + 3	=	s_1
x + z + 1	=	s_2
x + y + 1	=	s_3
-w + z - 2	—	$s_2 - s_1$
-w+y-2	=	$s_3 - s_1$
y-z	=	$s_3 - s_2$

• The last equation implies y = z when s_2 and s_3 are equal to 0.

Use auxiliary/zero variables to "name" linear polynomials.

$$x + w + 3 = s_1$$

$$x + z + 1 = s_2$$

$$x + y + 1 = s_3$$

$$-w + z - 2 = s_2 - s_1$$

$$-w + y - 2 = s_3 - s_1$$

$$y - z = s_3 - s_2$$

- The last equation implies y = z when s_2 and s_3 are equal to 0.
- This is the approach used in the Simplex based solver.
- A similar approach is used to implement incremental SAT solvers.

What is the "explanation" for the implied equality below?

What is the "explanation" for the implied equality below?

EqOffsetRows

$$\begin{aligned} x_i &= x_k + P_1 \\ x_j &= x_k + P_2 \end{aligned} \implies x_i = x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1) &= \beta(P_2) \end{cases} \end{aligned}$$

What is the "explanation" for the implied equality below?

EqOffsetRows

$$\begin{aligned} x_i &= x_k + P_1 \\ x_j &= x_k + P_2 \end{aligned} \implies x_i = x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1) &= \beta(P_2) \end{cases} \end{aligned}$$

• Explanation: P_1 and P_2 are fixed and $\beta(P_1) = \beta(P_2)$.

What is the "explanation" for the implied equality below?

EqOffsetRows

$$\begin{aligned} x_i &= x_k + P_1 \\ x_j &= x_k + P_2 \end{aligned} \implies x_i = x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1) &= \beta(P_2) \end{cases} \end{aligned}$$

1

• Explanation: P_1 and P_2 are fixed and $\beta(P_1) = \beta(P_2)$.

The union of the explanations for the lower and upper bounds of $x \in vars(P_1) \cup vars(P_2)$.

What is the "explanation" for the implied equality below?

EqOffsetRows

$$\begin{aligned} x_i &= x_k + P_1 \\ x_j &= x_k + P_2 \end{aligned} \implies x_i = x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1) &= \beta(P_2) \end{cases} \end{aligned}$$

1

• Explanation: P_1 and P_2 are fixed and $\beta(P_1) = \beta(P_2)$.

- The union of the explanations for the lower and upper bounds of $x \in vars(P_1) \cup vars(P_2)$.
- Valley proof problem. Example: arithmetic propagated x₁ = x₂ and x₁ = x₃ using the rule above.

What is the "explanation" for the implied equality below?

EqOffsetRows

$$\begin{aligned} x_i &= x_k + P_1 \\ x_j &= x_k + P_2 \end{aligned} \implies x_i = x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1) &= \beta(P_2) \end{cases} \end{aligned}$$

1

• Explanation: P_1 and P_2 are fixed and $\beta(P_1) = \beta(P_2)$.

- The union of the explanations for the lower and upper bounds of $x \in vars(P_1) \cup vars(P_2)$.
- Valley proof problem. Example: arithmetic propagated x₁ = x₂ and x₁ = x₃ using the rule above.
- What is the "explanation" for $x_2 = x_3$?

Efficient Backtracking

- One of the most important improvements in SAT was efficient backtracking.
- Until recently, backtracking was ignored in the design of theory solvers.
- Extreme (inefficient) approach: restart from scratch on every conflict.
- Other approaches:
 - Functional data-structures.
 - Backtrackable data-structures
 - Trail-stack.
- Restore to a logically equivalent state.

Reduction Functions

- A *reduction function* reduces the satisfiability problem for a theory T_1 to the satisfiability problem of a simpler theory T_2 .
- Reduction functions simplify the implementation.
- Potential disadvantages:
 - "Information loss".
 - Eager addition of irrelevant information.
- Theory of commutative functions.
 - Deductive closure of: $\forall x, y. f(x, y) = f(y, x)$
 - Reduction to ${\mathcal T}_{{\mathcal E}}$.
 - For every f(a, b) in ϕ , add the equality f(a, b) = f(b, a).

Reduction Functions: Ackermann's reduction

- Ackermann's reduction is used to remove uninterpreted functions.
 - For each application $f(\vec{a})$ in ϕ create a fresh variable $f_{\vec{a}}$.
 - For each pair of applications $f(\vec{a})$, $f(\vec{c})$ in ϕ add the clause $\vec{a} \neq \vec{c} \lor f_{\vec{a}} = f_{\vec{c}}$.

• Replace $f(\vec{a})$ with $f_{\vec{a}}$ in ϕ .

- It is used in some SMT solvers to reduce $T_{LA} \cup T_{E}$ to T_{LA} .
- Main problem: quadratic number of new clauses.
- It is also problematic to use this approach in the context of several theories and when combining SMT solvers with quantifier instantiation.

Reduction Functions: Ackermann's reduction

Congruence closure based algorithms miss the following inference rule

$$f(\overline{n}) \neq f(\overline{m}) \implies \bigvee n_i \neq m_i$$

Following simple formula takes $\mathcal{O}(2^N)$ time to be solved using SAT + Congruence closure.

$$\bigwedge_{i=1}^{N} (p_i \lor x_i = v_0), \ (\neg p_i \lor x_i = v_1), \ (p_i \lor y_i = v_0), \ (\neg p_i \lor y_i = v_1), \\ f(x_N, \dots, f(x_2, x_1) \dots) \neq f(y_N, \dots, f(y_2, y_1) \dots)$$

- It can be solved in polynomial time with Ackermann's reduction.
- A similar behavior is also observed in several pipeline verification problems.

Dynamic Ackermann's reduction

- This performance problem reflects a limitation in the current congruence closure algorithms used in SMT solvers.
- It is not related with the theory combination problem.
- Dynamic Ackermannization: clauses corresponding to Ackermann's reduction are added when a congruence rule participates in a conflict.

	CC		Ack		Dyn Ack	
	conflicts	time (s)	conflicts	time (s)	conflicts	time (s)
c10bi	217232	143.87	6880	6.09	5885	1.75
f10id	> 8752181	> 1800	22038	16.20	21220	7.20

Modularity issues

- Modular implementations are attractive.
- Potential problem: theories fail to share relevant information.
 - Arithmetic: i = s + 1, j = s + 2
 - Array theory:
 - $v_1 = read(write(a_0, i, v_0), j), v_2 = read(a_0, j).$
 - Arithmetic implies $i \neq j$. If this disequality is shared with array theory, then $v_1 = v_2$.
- It is infeasible to propagate all implied disequalities.
- Blackboard solution:
 - Theories post on the blackboard the equations they are "interested".

Delaying inference rules

- A commonly used approach: delay the application of "expensive" inference rules.
- Examples:
 - Inference rules that produce new case-splits.
 - Non-linear arithmetic.
- Potential problem: solver may waste time searching an infeasible part of the search space.

Heuristic Quantifier Instantiation

- Semantically, $\forall x_1, \ldots, x_n$. *F* is equivalent to the infinite conjunction $\bigwedge_{\beta} \beta(F)$.
- Solvers use heuristics to select from this infinite conjunction those instances that are "relevant".
- The key idea is to treat an instance $\beta(F)$ as relevant whenever it contains enough terms that are represented in the solver state.
- Non ground terms p from F are selected as *patterns*.
- E-matching (matching modulo equalities) is used to find instances of the patterns.
- Example: f(a, b) matches the pattern f(g(x), x) if a and g(b) are in the same equivalence class.
- Disadvantage: it is not refutationally complete.

- Background
- Architecture
- Applications

Spec#: Extended Static Checking

- http://research.microsoft.com/specsharp/
- Superset of C#
 - non-null types
 - pre- and postconditions
 - object invariants
- Static program verification
- Example:

Spec#: Architecture

Verification condition generation:

Spec# compiler: Spec# ~> MSIL (bytecode).

Bytecode translator: MSIL ~> Boogie PL.

V.C. generator: Boogie PL \rightsquigarrow SMT formula.

- SMT solver is used to prove the verification conditions.
- Counterexamples are traced back to the source code.
- The formulas produces by Spec# are not quantifier free.

SLAM: device driver verification

- http://research.microsoft.com/slam/
- SLAM/SDV is a software model checker.
- Application domain: *device drivers*.
- Architecture

c2bp C program → boolean program (*predicate abstraction*).
bebop Model checker for boolean programs.
newton Model refinement (*check for path feasibility*)

- SMT solvers are used to perform predicate abstraction and to check path feasibility.
- c2bp makes several calls to the SMT solver. The formulas are relatively small.

MUTT: MSIL Unit Testing Tools

- http://research.microsoft.com/projects/mutt
- Unit tests are popular, but it is far from trivial to write them.
- It is quite laborious to write enough of them to have confidence in the correctness of an implementation.
- Approach: *symbolic execution*.
- Symbolic execution builds a path condition over the input symbols.
- A path condition is a mathematical formula that encodes data constraints that result from executing a given code path.

MUTT: MSIL Unit Testing Tools

- When symbolic execution reaches a if-statement, it will explore two execution paths:
 - 1. The if-condition is conjoined to the path condition for the then-path.
 - 2. The negated condition to the path condition of the else-path.
- SMT solver must be able to produce models.
- SMT solver is also used to test path *feasibility*.

Conclusion

- SMT is the next generation of verification engines.
- More automation: it is push-button technology.
- SMT solvers are used in different applications.
- The breakthrough in SAT solving influenced the new generation of SMT solvers:
 - Precise lemmas.
 - Theory Propagation.
 - Incrementality.
 - Efficient Backtracking.

- [Ack54] W. Ackermann. Solvable cases of the decision problem. *Studies in Logic and the Foundation of Mathematics*, 1954
- **[ABC⁺02]** G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT based approach for solving formulas over boolean and linear mathematical propositions. In *Proc. of CADE'02*, 2002
- [BDS00] C. Barrett, D. Dill, and A. Stump. A framework for cooperating decision procedures. In 17th International Conference on Computer-Aided Deduction, volume 1831 of Lecture Notes in Artificial Intelligence, pages 79–97. Springer-Verlag, 2000
- [BdMS05] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories Competition. In Int. Conference on Computer Aided Verification (CAV'05), pages 20–23. Springer, 2005
- [BDS02] C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas by incremental translation to SAT. In Ed Brinksma and Kim Guldstrand Larsen, editors, *Proceedings of the* 14th *International Conference on Computer Aided Verification (CAV '02)*, volume 2404 of *Lecture Notes in Computer Science*, pages 236–249. Springer-Verlag, July 2002. Copenhagen, Denmark
- [BBC⁺05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and
 R. Sebastiani. Efficient satisfiability modulo theories via delayed theory combination. In *Int. Conf. on Computer-Aided Verification (CAV)*, volume 3576 of *LNCS*. Springer, 2005
- [Chv83] V. Chvatal. *Linear Programming*. W. H. Freeman, 1983

- **[CG96]** B. Cherkassky and A. Goldberg. Negative-cycle detection algorithms. In *European Symposium on Algorithms*, pages 349–363, 1996
- [DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. *Communications of the ACM*, 5(7):394–397, July 1962
- [DNS03] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking. Technical Report HPL-2003-148, HP Labs, 2003
- [DST80] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the Common Subexpression Problem. Journal of the Association for Computing Machinery, 27(4):758–771, 1980
- [dMR02] L. de Moura and H. Rueß. Lemmas on demand for satisfiability solvers. In *Proceedings of the Fifth International Symposium on the Theory and Applications of Satisfiability Testing (SAT 2002).* Cincinnati, Ohio, 2002
- **[DdM06]** B. Dutertre and L. de Moura. Integrating simplex with DPLL(T). Technical report, CSL, SRI International, 2006
- [GHN⁺04] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast decision procedures. In R. Alur and D. Peled, editors, *Int. Conference on Computer Aided Verification (CAV* 04), volume 3114 of *LNCS*, pages 175–188. Springer, 2004

- [MSS96] J. Marques-Silva and K. A. Sakallah. GRASP A New Search Algorithm for Satisfiability. In *Proc.* of *ICCAD*'96, 1996
- **[NO79]** G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. *ACM Transactions* on *Programming Languages and Systems*, 1(2):245–257, 1979
- [NO05] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation and its application to difference logic. In *Int. Conference on Computer Aided Verification (CAV'05)*, pages 321–334. Springer, 2005
- [**Opp80**] D. Oppen. Reasoning about recursively defined data structures. J. ACM, 27(3):403–411, 1980
- **[PRSS99]** A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by small domains instantiations. *Lecture Notes in Computer Science*, 1633:455–469, 1999
- **[Pug92]** William Pugh. The Omega test: a fast and practical integer programming algorithm for dependence analysis. In *Communications of the ACM*, volume 8, pages 102–114, August 1992
- [RT03] S. Ranise and C. Tinelli. The smt-lib format: An initial proposal. In Proceedings of the 1st International Workshop on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR'03), Miami, Florida, pages 94–111, 2003

- **[RS01]** H. Ruess and N. Shankar. Deconstructing shostak. In *16th Annual IEEE Symposium on Logic in Computer Science*, pages 19–28, June 2001
- [SLB03] S. Seshia, S. Lahiri, and R. Bryant. A hybrid SAT-based decision procedure for separation logic with uninterpreted functions. In *Proc. 40th Design Automation Conference*, pages 425–430. ACM Press, 2003
- [Sho81] R. Shostak. Deciding linear inequalities by computing loop residues. *Journal of the ACM*, 28(4):769–779, October 1981