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Overview

Settings

Quantifier-free arithmetic
where we can say things about any number but not all of them

First-order arithmetic
where we can say things about all the numbers

Second-order arithmetic
where we can talk about sets of numbers too



Overview

Cast of Characters

Primitive recursive arithmetic
an explication of “finitistic” reasoning à la Hilbert and Bernays

IΣ1
a fragment of first-order arithmetic based on Σ1 induction

RCA0
a fragment of second-order arithmetic for reasoning about

computable sets

WKL0
a fragment of second-order arithmetic with an additional

compactness principle



Overview

In the early 1920s, Hilbert proposed a means of securing modern,
infinitary methods: prove consistency using only a safe, finitistic
part.

Gödel’s second incompleteness theorem rules that out.

A modified Hilbert’s program: interpret as much mathematics as
you can in theories that are more meager than full-blown set theory.

Characterize those theories in terms of their “concrete”
combinatorial and computational consequences.



Overview

Twentieth century proof theory showed:
• We can interpret a lot of mathematics in theories that are not

very strong.
• We can characterize their computational and combinatorial

strength in various ways.

The latter has informed developments in computer science and
mathematics.

We have subsystems of second-order arithmetic, RCA0, WKL0,
ACA0, ATR0, and Π1

1-CA0, and reverse mathematics.

We have double-negation translations, ordinal analysis, realizability
and functional interpretation, and more.



Theorems

Theorem (Parsons, Mints, Takeuti). IΣ1 is Π2 conservative
over PRA.

Theorem (Ignatovic, Solovay). There is an iterated exponential
speedup in the previous results.

Theorem. RCA0 is interpretable in IΣ1 and hence Π1
1 conservative

over it without speedup.



Theorems

Theorem (Friedman). WKL0 is Π2 conservative over PRA.

Theorem (Harrington). WKL0 is Π1
1 conservative over RCA0.

Theorem (Hájek, Avigad). WKL0 is interpretable in RCA0, so
there is no speedup in the previous result.

Interesting mathematics can be carried out in WKL0 and related
theories.

The results say something about the logical strength of common
patterns of mathematical reasoning.

The elimination of compactness is central to Kohlenbach’s Proof
Mining program.



Table of contents

• Overview
• The relevant theories
• An interpretation of WKL0 in RCA0.



A personal note

The fact that there is no speedup between WKL0 and RCA0 was
one of my first published results.

Now, many years later, I am about to send a textbook called
Mathematical Logic to the Cambridge University Press.

It contains a streamlined proof of that result.



Primitive recursive arithmetic

The set of primitive recursive functions includes
• zero, 0
• successor, S(x) = x + 1
• projections, pn

i (x1, . . . , xn) = xi

and are closed under
• composition: f (~x) = h(g1(~x), . . . , gn(~x))
• primitive recursion:

f (0,~z) = g(~z), f (x + 1,~z) = h(f (x ,~z), x ,~z)



Primitive recursive arithmetic

Primitive recursive arithmetic is an axiomatic theory, with
• 0 6= S(x), S(x) = S(y)→ x = y
• defining equations for the primitive recursive functions
• quantifier-free induction:

A(0) A(x)→ A(x + 1)
A(t)

Variables range over arbitrary numbers, but we can’t quantify over
them explicitly.



Primitive recursive arithmetic

All reasonable computable functions are primitive recursive, and all
reasonable facts about them can be proved in PRA.

(I hope the book makes this vague claim compelling.)

PRA can also be presented as a first-order theory (classical or
intuitionistic). Herbrand’s theorem tells us this a conservative
extension.

It is surprisingly hard to find ordinary mathematical theorems that
can be stated in the language of PRA but not proved there.

So we can think of PRA as a robust theory for reasoning about
finite objects.



First-order arithmetic

First-order arithmetic is essentially PRA plus induction. Peano
arithmetic (PA) is classical, Heyting arithmetic (HA) is
intuitionistic.

Language: 0,S,+,×, <.

Axioms: quantifier-free defining axioms, induction.

A formula is
• ∆0 if every quantifier is bounded, ∀x < t A or ∃x < t A.
• Σ1 if of the form ∃~x A, A ∈ ∆0
• Π1 if of the form ∀~x A, A ∈ ∆0
• ∆1 if equivalent to Σ1 and Π1

Primitive recursive functions and relations have ∆1 definitions.



Conservativity of IΣ1 over PRA

IΣ1 is the restriction of PA with induction for only Σ1 formulas.

This theory suffices to define the primitive recursive functions, and
hence interpret PRA. Conversely:

Theorem (Parsons, Mints, Takeuti). IΣ1 is conservative over
PRA for Π2 sentences: if

IΣ1 ` ∀x ∃y A(x , y),

with A is ∆0, then
PRA ` A(x , f (x))

for some function symbol f .



Conservativity of IΣ1 over PRA

There are various ways to prove this theorem.

Syntactic proofs:
• Using cut elimination or normalization.
• Using the Dialectica interpretation (plus normalization).

Model-theoretic proofs:
• A model-theoretic argument due to Friedman.
• Another one in the book.



Speedup of IΣ1 over PRA

Theorem (Ignatovic). There are a polynomial p(n) and a
sequence of quantifier-free formulas A0,A1, . . . ,An−1 such that for
every n:
• There is a proof of An in IΣ1 of length p(n).
• The smallest proof of An in PRA has length 20

n.
Here 2k

n is the iterated exponential, 2k
0 = k, 2k

n+1 = 22k
n .

The proof uses Solovay’s method of shortening of cuts to construct
efficient consistency proofs of PRAn in IΣ1.



Speedup of IΣ1 over PRA

John Burgess has pointed out, correctly, that this speaks against
thinking of the result as a finitistic reduction.

Responses:
• Accept finitism plus a reflection principle.
• Accept finitism with higher types.
• Give up Σ1 induction.
• In practice, the speedup isn’t nearly so bad.
• We still get primitive recursive bounds.



Second order arithmetic

The language is two-sorted:
• variables x , y , z , . . . and functions 0, S,+,× on one sort
• variables X ,Y ,Z , . . . on the other sort
• a relation t ∈ X between the two sorts

Axioms:
• axioms of PA, with induction extended to the bigger language
• comprehension: ∃X ∀y (y ∈ X ↔ A(y ,~z))

The “standard model” is (N,P(N), . . .), but there are smaller ones.

An ω-model is a model where the first-order part is standard, i.e. N.



Second order arithmetic

From a proof-theoretic perspective, second-order arithmetic is very
strong.

We obtain weaker systems by:
• restricting comprehension
• restricting induction



Subsystems of second-order arithmetic

The big five:

• RCA0: recursive (∆0
1) comprehension

(formalized computable analysis)
• WKL0: weak König’s lemma

(a form of compactness)
• ACA0: arithmetic comprehension

(analytic principles like the least-upper bound principle.)
• ATR0: transfinitely iterated arithmetic comprehension

(transfinite constructions)
• Π1

1−CA0: Π1
1 comprehension

(strong analytic principles)

We will focus on the first two.



RCA0

The axioms of RCA0 are as follows:
• quantifier-free axioms for 0, S,+,×, <
• induction, restricted to Σ1 formulas (with both number and

set parameters):

A(0) ∧ ∀x (A(x)→ A(x + 1))→ ∀x A(x)

• the recursive comprehension axiom, (RCA):

∀x (A(x)↔ B(x))→ ∃Y ∀x (x ∈ Y ↔ A(x))

where A is Σ1 and B is Π1.



RCA0

Notice that the induction schema includes set induction:

0 ∈ Y ∧ ∀x (x ∈ Y → x + 1 ∈ Y )→ ∀x (x ∈ Y ).

It is slightly stronger.

Since RCA0 includes IΣ1, we can act as though primitive recursive
arithmetic is “built-in.”



RCA0

(RCA) says that a set exists if it has a computably enumerable
definition as well as a co-computably enumerable definition
(relative to others sets in the universe).

Roughly, it allows you to define computable sets and relations.

Let REC denote the set of recursive sets. Then (N,REC, . . .) is the
minimal ω-model.

Analysis in RCA0 is roughly “formalized computable analysis.”

It is straightforward to interpret RCA0 in IΣ1, by interpreting the
set variables as ranging over computer programs.



Synopsis

Where we are:
• PRA is a robust theory of finitistic reasoning.
• IΣ1 is Π2 conservative over PRA, but with speedup.
• RCA0 is Π1

1 conservative over IΣ1, with no speedup.

What’s left:
• I’ll tell you about WKL0.
• I’ll tell you why it is Π1

1 conservative over RCA0, without
speedup.



Binary trees

If σ and τ are finite binary sequences, write σ ⊆ τ to mean that σ
is an initial segment of τ .

A binary tree is a set of finite binary sequences closed under initial
segments.

·

0

00 01

010

1

11

In a formal theory of arithmetic, finite binary sequences can be
represented by numbers.



Binary trees

Binary trees can be infinite.

A path through a binary tree is a maximal set of compatible nodes.

An infinite path corresponds to an infinite binary sequence, which
corresponds to a set of natural numbers.

Every infinite binary tree has an infinite path: just step through the
tree maintaining the property that there are infinitely many
descendents.

This is Kőnig’s lemma for binary trees.



WKL0

We can express these in the language of second-order arithmetic:

Tree(T ) ≡ ∀σ, τ (τ ∈ T ∧ σ ⊆ τ → σ ∈ T ).

We can say T is infinite as follows:

Infinite(T ) ≡ ∀n ∃σ (σ ∈ T ∧ length(σ) = n).

Write σ ⊂ P for

∀i < length(σ) (i ∈ P ↔ (σ)i = 1).

Then define
Path(P,T ) ≡ ∀σ ⊂ P (σ ∈ T ).



WKL0

Weak König’s lemma (WKL) says that every infinite binary tree
has a path:

∀T (Tree(T ) ∧ Infinite(T )→ ∃P Path(P,T )).

The theory WKL0 is RCA0 + (WKL).

We will see that there are computable trees with no computable
path. So RCA0 doesn’t prove (WKL).

Theorem (Harrington). WKL0 is Π1
1 conservative over RCA0.



WKL0

Over RCA0, (WKL) is equivalent to each of these:
• the Heine-Borel theorem (for [0, 1])
• Every open cover of {0, 1}ω has a finite subcover.
• Every continuous function on [0, 1] is uniformly continuous
• Every continuous function on [0, 1] is bounded

Here, [0, 1] can be replaced by any compact space.



Table of contents

• Overview
• The relevant theories
• An interpretation of WKL0 in RCA0.



Conservativity of WKL0

Harrington’s original argument was a forcing argument.

Start with a model M of RCA0. Suppose T is an infinite binary
tree in the model with no infinite path.

We want to add a set, X , that is a path through T , and all the
sets computable from it. Call that M[X ].

That can break some axioms, in particular, Σ1 induction.

The idea: add a generic path through T , to preserve Σ1 induction.



Conservativity of WKL0

Dolly Parton: “It costs me a lot of money to look this cheap.”

It takes a lot of work to add an X that is bland and innocuous.

Build it as a limit of nodes of T , σ0 ⊆ σ1 ⊆ σ2 · · · .

Make sure that the only properties that it has are those it is forced
to have at some finite stage of the construction.

In particular, Σ1 properties of the generic set can be described in
the original model.

This adds one path through a tree. Now iterate.



Computable binary trees

If we represent binary sequences as natural numbers, a binary tree
is just a set of numbers.

Theorem (Kleene). There is a computable infinite binary tree T
with no computable path.

In other words, T is a computable set, but no path P through T is
a computable set.

Definition. A set is A computably enumerable (c.e.) if it is the
range of a computable function, A = {ϕe(0), ϕe(1), ϕe(2), . . .}.

A computably enumerable set is definable by a Σ1 formula, and
vice versa.



Computable binary trees

Theorem. There are disjoint computably enumerable sets A and
B that are computably inseparable, i.e. there is no computable set
C such that A ⊆ C and B ⊆ C .

Proof. The sets A = {n | ϕn(n) ↓= 1} and B = {n | ϕn(n) ↓= 0}
will do.

Build the Kleene tree T as follows: put σ in T if and only if,
running Turing machines at most length(σ) steps, it is consistent
that σ is the initial segment of a separation of A from B.

Then any path P through T will be a separation of A from B, and
hence not computable.



Computable binary trees

In fact, there is a close connection between paths through
computable trees and separations of computably enumerable sets.

Given disjoint c.e. sets A and B, there is a computable infinite
binary tree T such that a separation of A from B can be computed
from any path through T .

Conversely, given a computable infinite binary tree, T , there are
disjoint c.e. sets A and B such that a path through T can be
computed from any separation of A from B.

Everything I have said relativizes, i.e. we can replace “computable”
by “computable in X” and “computably enumerable” by
“computably enumerable in X .”



The low basis theorem

If X is any set, X ′ denotes the Turing jump of X , that is, the
halting problem relative to X .

It is a complete computably enumerable (Σ1-definable) set.

Saying that there are only finitely many nodes in T extending σ is
Σ1.

So it is easy to show that any path through T can be computed
from T ′.

Harrington was inspired by the Jockush–Soare low basis theorem:

Theorem. There is a path P through T such that P ′ can be
computed from T ′.



The low basis theorem

The proof is an iterative construction. Define

σ0 ⊆ σ1 ⊆ σ2 ⊆ · · ·

At stage e:
• Take another step through the tree.
• Try to restrict the tree so that for any path P, ϕP

e (0) ↑.

In the end, for any e, ϕP
e is defined at 0 if and only if this was

forced at stage e.

Translated to the language of subsystems of second-order
arithmetic, this says we can expand any model M by adding a
path through a tree.



Conservativity of WKL0 over RCA0

To turn this into an interpretation of WKL0 in RCA0, we need to
carry out the iteration internally.

• Hájek used a universal construction, but still needed a fiddly
iteration.
• In my dissertation, I internalized an iterated forcing.
• In 2016, Tin Lok Wong used an arithmetized completeness

theorem to avoid the iteration entirely.
• The book proof is a combination of Hájek’s and Wong’s

approach.



Conservativity of WKL0 over RCA0

Let A = {(e, x) | ϕX
e (x) ↓= 0} and B = {(e, x) | ϕX

e (x) ↓= 1}.

Theorem. A and B are universal computably inseparable c.e. sets
in X , in the following sense: if A0 and B0 are any two sets that are
disjoint and computably enumerable in X , then for any separation
C of A from B there is a separation C0 of A0 from B0 such that C0
is many-one reducible to C .

Given the connection between computable inseparable c.e. sets and
paths through trees, we have this following:

Theorem. For any set X , there is an infinite binary tree T
computable from X , such that if T0 is any infinite binary tree
computable in X , a path P0 through T0 can be computed from
any path P through T .



Conservativity of WKL0 over RCA0

This isn’t enough: after we add P, we still have to worry about all
the infinite binary trees computable from P.

Hájek wrote down a complicated formula describing the iterative
construction.

In 2016, Wong used a path through an infinite binary tree to
obtain a nonstandard model of arithmetic.

He showed that one can find a model of WKL0 coded in that
model.



Conservativity of WKL0 over RCA0

An ω-model of WKL0 is a collection S of sets with the following
property:
• Whenever X and Y are in S, so is X ⊕ Y .
• Whenever X is in S and Y ≤T X , then Y is in S.
• Whenever T is an infinite binary tree in S, there is a P in S

such that P is a path through T .

A set X of numbers can code a sequence of sets (Yi )i∈N.



Conservativity of WKL0 over RCA0

Theorem. There is a computable infinite bintary tree T such that
if P is any path through T , then the set S = {(P)i | i ∈ N} is an
ω-model of WKL0.

Proof. Just write down the requirements on P, in terms of finite
approximations.

Relativizing the construction to an arbitrary set and formalizing it
yields an interpretation of WKL0 in RCA0.


