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Sequence of lectures

1. Mathematical Understanding

2. The History of Dirichlet’s Theorem

3. Formalization and Interactive Theorem Proving

4. The Role of the Diagram in Euclid’s Elements

5. Modularity in Mathematics



Mathematical Understanding

Overview:

• General epistemological questions

• An example: sums of squares

• Talking about mathematical understanding

• Towards a general theory



Epistemological questions

Since Plato, the philosophy of mathematics has been concerned
with:

• the nature of mathematical objects, and

• the appropriate justification for mathematical knowledge.

But we employ other normative judgments as well:

• some theorems are interesting

• some questions are natural

• some concepts are fruitful, or powerful

• some proofs provide better explanations than others

• some historical developments are important

• some observations are insightful

. . . and so on.



The problem of multiple proofs

On the standard account, the value of a mathematical proof is that
it warrants the truth of the resulting theorem.

Why, then, do we often value a new proof of a previous established
theorem?

For example, Gauss published six proofs of the law of quadratic
reciprocity in his lifetime, and left us two unpublished versions as
well.

Franz Lemmermeyer has documented 233 proofs (available online,
with references).



The problem of multiple proofs

This question not new. For example:

It might be said: “—that every proof, even of a
proposition which has already been proved, is a
contribution to mathematics”. But why is it a
contribution if its only point was to prove the
proposition? Well, one can say: “the new proof shews (or
makes) a new connexion”. — Wittgenstein, Remarks on
the Foundations of Mathematics, III–60

Indeed, it is not a great mystery. There is a lot we can say about
what we learn from different proofs.

But the philosophy of mathematics has had relatively little to say
about the matter.



The problem of conceptual possibility

It is often said that some mathematical advance was “made
possible” by a prior conceptual development.

For example, Riemann’s introduction of the complex zeta function
and the use of complex analysis made it possible for Hadamard and
de la Vallée Poussin to prove the prime number theorem in 1896.

What is the sense of “possibility” here?

Intuition: a certain “understanding” guides us. (But let’s focus on
the phenomena, not the word.)



Epistemological questions

What the questions have in commmon:

• They have a generally epistemological flavor, involving
“knowledge” or “understanding.”

• They invoke normative considerations.

This is a starting point for philosophical inquiry.



Sums of squares

To prod our intuitions, let’s consider an example.

In the Arithmetic, Diophantus notes that

• 5 = 22 + 12

• 13 = 32 + 22

• 5× 13 = 65 = 82 + 12 = 72 + 42.

Theorem. If x and y can each be written as a sum of two integer
squares, then so can xy .



Sums of squares

Proof #1. Suppose x = a2 + b2, and y = c2 + d2. Then

xy = (ac − bd)2 + (ad + bc)2,

a sum of two squares. �

In more detail:

(ac − bd)2 + (ad + bc)2

= a2c2 − 2abcd + b2d2 + a2d2 + 2abcd + b2d2

= a2c2 + b2d2 + a2d2 + b2d2

= (a2 + b2)(c2 + d2)

Note: (ac + bd)2 + (ad − bc)2 works just as well.



Sums of squares

Pros: elementary, general.

Cons: mysterious, “unmotivated,” hard to remember, have to
calculate.



Sums of squares

Define the Gaussian integers:

Z[i ] = {a + bi | a, b ∈ Z}

If α = u + vi , define the conjugate:

α = u − vi .

We have αβ = α · β.

Define the norm:

N(α) = αα = (u + iv)(u − iv) = u2 − i2v2 = u2 + v2.

Then

N(αβ) = αβ · αβ = α · β · α · β = αα · ββ = N(α)N(β).



Sums of squares

Proof #2. Suppose x = N(α) and y = N(β) are sums of two
squares. Then xy = N(αβ), a sum of two squares. �



Sums of squares

Features:

• The norm (and its square root, the modulus, or absolute
value) are generally useful. For example, the Gaussian integers
are a Euclidean domain.

• The proof is easy to remember and reconstruct.

• It avoids calculation.

• Generalizations to the quaternions and octonians give product
rules for sums of 4 and 8 squares — and there are no others.

• Conjugates and norms lie at the heart of algebraic number
theory.

• They provide, for example, a general theory of quadratic forms
(expressions ax2 + bxy + cy2).



Sums of squares

. . . the complex numbers of Gauss, Jacobi, and
M. Kummer force themselves upon our consideration, not
because their properties are generalizations of the
properties of ordinary integers, but because certain of the
properties of integral numbers can only be explained by a
reference to them. (H. J. S. Smith, Report on the Theory
of Numbers, 1860.)



Sums of squares

In Sur la théorie des nombres entiers algébrique (1877), Dedekind
emphasized concepts over calculation:

Even if there were such a theory, based on calculation, it
still would not be of the highest degree of perfection, in
my opinion. It is preferable, as in the modern theory of
functions, to seek proofs based immediately on
fundamental characteristics, rather than on calculation,
and indeed to construct the theory in such a way that it
is able to predict the results of calculation. . .



Sums of squares

Proof #3. Suppose x = a2 + b2 and y = c2 + d2. Then

xy = (a2 + b2)(c2 + d2)

= (a + bi)(a− bi)(c + di)(c − di)

= (a + bi)(c + di)(a− bi)(c − di)

= ((ac − bd) + (ad + bc)i)((ac − bd)− (ad + bc)i)

= (ac − bd)2 + (ad + bc)2,

a sum of two squares. �

This was given by Euler in 1770.



Morals

• There’s a lot one can say about what we like about different
proofs.

• Only some of it has to do with correctness.

• Judgments can depend on context, including:
• background
• goals
• personal preference

• Proofs generally convey things (knowledge? understanding?)
that are useful for other purposes.



Instructions in proofs

Even everyday proof language has procedural elements:

• “. . . the first law may be proved by induction on n.”

• “. . . by successive applications of the definition, the associative
law, the induction assumption, and the definition again.”

• “By choice of m, P(k) will be true for all k < m.”

• “Hence, by the well-ordering postulate. . . ”

• “From this formula it is clear that. . . ”

• “This reduction can be repeated on b and r1. . . ”

• “This can be done by expressing the successive remainders ri
in terms of a and b. . . ”



Instructions in proofs

• “By the definition of a prime. . . ”

• “On multiplying through by b. . . ”

• “. . . by the second induction principle, we can assume P(b)
and P(c) to be true. . . ”

• “Continue this process until no primes are left on one side of
the resulting equation. . . ”

• “Collecting these occurrences, . . . ”

• “By definition, the hypothesis states that. . . ”

• “. . . Theorem 10 allows us to conclude . . . ”



Morals

It is hard to characterize everything we get from a proof in terms
of propositional knowledge.

We seem to value various forms of procedural knowledge: methods,
heuristics, perspectives, ways of proceeding, means of analysis.

Reading a good proof makes me a better mathematician.

What we really want is to understand.



Talking about understanding

Mathematics is hard.

Mathematical solutions, proofs, and calculations involve long
sequences of steps, that have to be chosen and composed in
precise ways.

To compound matters, there are too many options; among the
many steps we may plausibly take, most will get us absolutely
nowhere.

And we have limited cognitive capacities — we can only keep track
of so much data, anticipate the result of a few small steps,
remember so many background facts.

We rely on our understanding to help us and to guide us.



Intuitions

Does understanding the demonstration of a theorem consist in
examining each of the syllogisms of which it is composed in
succession, and being convinced that it is correct and conforms to
the rules of the game? In the same way, does understanding a
definition consist simply in recognizing that the meaning of all the
terms employed is already known, and being convinced that it
involves no contradiction?

. . . Almost all are more exacting; they want to know not only
whether all the syllogisms of a demonstration are correct, but why
they are linked together in one order rather than in another. As
long as they appear to them engendered by caprice, and not by an
intelligence constantly conscious of the end to be attained, they do
not think they have understood.

(Poincaré, Science et méthod)



Intuitions

Logic teaches us that on such and such a road we are sure of not
meeting an obstacle; it does not tell us which is the road that leads
to the desired end. (Ibid.)

Discovery consists precisely in not constructing useless
combinations, but in constructing those that are useful, which are
an infinitely small minority. Discovery is discernment, selection.
(Ibid.)



Intuitions

It seems to me, then, as I repeat an argument I have learned, that
I could have discovered it. This is often only an illusion; but even
then, even if I am not clever enough to create for myself, I
rediscover it myself as I repeat it. (Ibid.)



Intuitions

Now, in calm weather, to swim in the open ocean is as easy to the
practised swimmer as to ride in a spring-carriage ashore. But the
awful lonesomeness is intolerable. The intense concentration of self
in the middle of such a heartless immensity, my God! who can tell
it? Mark, how when sailors in a dead calm bathe in the open
sea–mark how closely they hug their ship and only coast along her
sides.

(Melville, Moby Dick, Chapter 93)



Intuitions

The sea had jeeringly kept his finite body up, but drowned the
infinite of his soul. Not drowned entirely, though. Rather carried
down alive to wondrous depths, where strange shapes of the
unwarped primal world glided to and fro before his passive eyes;
and the miser-merman, Wisdom, revealed his hoarded heaps; and
among the joyous, heartless, ever-juvenile eternities, Pip saw the
multitudinous, God-omnipresent, coral insects, that out of the
firmament of waters heaved the colossal orbs. He saw God’s foot
upon the treadle of the loom, and spoke it; and therefore his
shipmates called him mad. So man’s insanity is heaven’s sense;
and wandering from all mortal reason, man comes at last to that
celestial thought, which, to reason, is absurd and frantic; and weal
or woe, feels then uncompromised, indifferent as his God.



Towards a theory of understanding

General outlook:

• Beyond knowledge, we look to mathematics for modes of
understanding.

• Understanding involves not just factual knowledge, but
something more dynamic: ways of proceeding, modes of
analysis, capacities for thought.

• We value mathematical resources for conferring
understanding.

• Some mathematical resources are overtly syntactic:
definitions, theorems, proofs, questions.

• These give rise to resources that are harder to characterize
precisely: concepts, methods, heuristics, guiding intuitions, . . .



Towards a theory of understanding

Philosophical goal: to develop a robust theory of mathematical
understanding

General questions:

• How can we / should we talk about things like concepts,
methods, heuristics, and guiding intuitions?

• To what extent do we need to model the cognizing agent?

• Is this really philosophy, or cognitive science?

• Do we need a theory of syntax, or semantics?

• What is the relationship between mathematics and language?



A methodological stance

To make progress, we have to pick a “scientific framework”:

• a way of thinking about mathematics

• a language for talking about the objects of mathematical
understanding

• a way of posing questions precisely (or at least trying to)

• precise, disciplined ways of answering them

We just have to do it, and see what happens.



A methodological stance

We are looking for:

• a coherent theory

• satisfying answers

• a theory that can inform (and are informed by) other pursuits:

• history of mathematics
• interactive theorem proving and automated reasoning
• psychology and cognitive science
• mathematics education
• mathematics itself

I’ll describe one perspective, and (over the coming lectures) try to
convince you that it is fruitful.



A methodological stance

What is the relationship between mathematics and language?

What characterizes mathematics with respect to other scholarly
disciplines is its level of rigor: there are precise norms that govern
how to make meaningful mathematical claims, and how to
establish their truth.

We can (and have) studied these norms in syntactic terms, with
great success.

A closer look at the syntactic components of mathematics —
definitions, theorems, proofs, theories, and so on — shows them to
be highly structured objects.



A methodological stance

When one studies the history of mathematics, or tries to model
real mathematical proofs formally, one has the sense that
mathematical language is beautifully designed to extend our
cognitive reach, make it possible for us to solve increasingly more
difficult problems, construct more elaborate proofs.

The more abstracts objects of understanding — concepts,
methods, intuitions, etc. — are manifested in the linguistic
artifacts.

(I have borrowed the term “artifact” from Ken Manders.)



A methodological stance

Do we need a theory of syntax, or semantic objects?

At least, let’s start with the syntax: that is the raw data, and there
is a lot going on there.

I expect that the more abstract objects of understanding —
concepts, methods, intuitions, and so on — will be best described
in terms of quasi-syntactic representations and quasi-algorithmic
ways of acting on them.

(At heart, I am a proof theorist in the Hilbert tradition, and
skeptical of anything that is not ultimately grounded in syntax.)



A methodological stance

Is this really philosophy, or cognitive science?

We need a healthy interaction between these two disciplines that is
mindful of the differences between them:

• data: psychology studies human behavior, phil math studies
mathematics (a shared practice)

• normativity: psychology describes what people do, phil math
explains what people should do

• method: psychologists conduct experiments, philosophers
(should) study the mathematics



A methodological stance

To what extent do we need to model the cognizing agent?

I am less sure of this.

One can get pretty far with a crude characterization: we are
cognitively bounded agents, trying to carry out complex tasks
efficiently.

As needed, we can develop better measures of complexity,
simplicity, difficulty, . . .



A methodological stance

We can look for a suitable division of labor:

• philosophy explains why certain methodological strategies are
advantageous, for agents with certain (idealized) cognitive
capacities and constraints.

• psychology tells more about the specifically human capacities
and constraints.

Although computers face difference constraints, to some extent, we
are up against the same thing, combinatorial explosion.



A methodological stance

A priori, a mathematical knowledge is a relationship between the
knowing agent and the object known.

Conventional theories of mathematical knowledge boil down to
theories of mathematical inference and proof.

• We start with a notion of proposition.

• We characterize relations between propositions, like
entailment.

The role of the agent disappears.

By analogy, a theory of mathematical understanding might take
the notion of a mathematical ability or capacity as basic.

A theory of understanding could then amount to a theory of
mathematical capacities, and how they interact.



A methodological stance

How can we / should we talk about things like capacities, abilities,
concepts, methods, heuristics, or intuitions?

I don’t know.

But I know a few ways to get started.



Strategies

One strategy: look to the history of mathematics.

Find an important historical development (what Ken Manders calls
a “big deal difference”).

This suggests that we were in

• a certain epistemological state beforehand, and

• a certain epistemological state after,

and that they are different in some important way.

Explain the difference.



Strategies

One can do the same with contemporary mathematics, and smaller
differences.

For example, one compare alternative proofs, or textbook
presentations, with an eye towards explaining

• the structuring of information, and

• the understanding or expertise that is conveyed.

We need to rely on what mathematicians do rather than their self
assessments.



Strategies

Look to interactive theorem proving and automated reasoning.

“Proof languages” provide expressive models of ordinary
mathematical language, designed to convey knowledge (and
expertise) efficiently.

Understanding what is needed to develop mathematics formally
provides insight into how the informal languages work as well.



Mathematical Understanding

Overview:

• General epistemological questions

• An example: sums of squares

• Talking about mathematical understanding

• Towards a general theory
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