
Proof Theory and Subsystems of

Second-Order Arithmetic

1. Background and Motivation

Why use proof theory to study theories of arith-
metic?

2. Conservation Results

Showing that if a theory T1 proves ϕ, then a seem-
ingly weaker theory T2 proves it as well.

3. Functional Interpretations

Characterizing the computable functions that a the-
ory T can prove to be total.

4. Combinatorial Independences

Finding finitary combinatorial assertions that are
true but not provable in T .

5. Summary
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Two Views of Mathematics

Classical: Mathematical objects exist in an indepen-
dent “Platonic realm.”

• The law of the excluded middle (tertium non datur)
holds.

• Proof by contradiction (reductio ad absurdum) is
valid.

Constructive: Mathematical truth cannot be divorced
from practice.

• A statement is neither true nor false until we’ve
demonstrated it to be one or the other.

• To prove existence, one needs to construct an ex-
plicit witness.
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Hilbert’s Program

Hilbert felt that classical reasoning played an indispen-
sible part in mathematics. He proposed proving that
such reasoning could not lead to a contradiction, using
“finitistic” arguments that were acceptable to everyone.

Gödel (1931): Any reasonable theory of arithmetic
cannot prove its own consistency.

This implied that finitistic methods could not even jus-
tify themselves, let alone any stronger theory.
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Proof Theory’s Goals

Modified Hilbert’s Program: Prove the consistency
of classical reasoning using constructive (rather than
finitary) means.

Kreisel’s Program: Extract constructive, computa-
tional information from classical reasoning.

Line of attack:

1. Describe formal theories that model classical rea-
soning about some portion of the mathematical uni-
verse.

2. Use mathematical techniques to study these theo-
ries as formal objects.
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Languages for Arithmetic

The language of first-order arithmetic:

• Constants: 0, S, +, ×

• Logical Symbols: ∧, ∨, →, ¬, ∀, ∃

• Variables x1, x2, x3, . . . range over natural numbers

In this language one can code other finitary objects, like
sequences and strings.

The language of second-order arithmetic:

• Constants: 0, S, +, ×

• Logical Symbols: ∧, ∨, →, ¬, ∀, ∃

• Variables x1, x2, x3, . . . range over natural numbers

• Variables X1, X2, X3, . . . range over sets of numbers

Using these sets, one can code countably infinite ob-
jects, like real numbers and continuous functions.
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Peano Arithmetic

PA is a theory in the language of first-order arithmetic,
based on the following:

• Logical axioms and rules

• Defining equations for S, +, and ×

• An induction axiom

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(Sx))→ ∀x ϕ(x)

for every formula ϕ(x).

In PA one can formalize most finitary arguments in num-
ber theory and combinatorics.
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Arithmetic Comprehension

ACA0 is a theory in the language of second-order arith-
metic, based on the following:

• Logical axioms and rules

• Defining equations for S, +, and ×

• A single induction axiom

0 ∈ Y ∧ ∀x (x ∈ Y → Sx ∈ Y )→ ∀x (x ∈ Y )

• A comprehension axiom

∃Y ∀x (x ∈ Y ↔ ϕ(x))

for every arithmetic formula ϕ.

In the last axiom Y represents the set

{x ∈ N | ϕ(x)}.

In ACA0 one can formalize a good deal of calculus, linear
algebra, topology, and more.
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A Conservation Result

Definition: Say that a theory T1 is conservative over T2

for formulas in Γ if, whenever T1 proves some formula ϕ
in Γ, T2 proves it as well.

Theorem (folklore): ACA0 is conservative over PA for
arithmetic formulas.

Proof: If PA doesn’t prove ϕ, there is a model M of
PA+ ¬ϕ. Expand this to a model M ′ of ACA0 + ¬ϕ by
taking the arithmetic sets of M to be the second-order
part.

In fact, if M is recursively saturated, M ′ also satisfies a
Σ1

1 axiom of choice.

The above proof does not provide an effective transla-
tion of proofs in ACA0 to proofs in PA. This can be
obtained using a straightforward cut-elimination argu-
ment.
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Consequences

1. A constructive consistency proof for PA yields a
constructive consistency proof for ACA0.

2. ACA0 and PA prove the same computable functions
to be total.

3. Though calculus, linear algebra, and topology may
be useful in proving finitary theorems, they are inessen-
tial.
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A Speedup Result

On the other hand, we have

Theorem (Solovay): There is a polynomial p(n) and a
sequence of formula ϕn, such that for every n there is a
proof of ϕn in ACA0 using p(n) symbols, but any proof
of ϕn in PA requires at least 20

n symbols.

Proof: Let ψ(n) say “there is a truth definition for Σ0
n

formulas.” Then ACA0 proves ψ(0) and

∀x (ψ(x)→ ψ(x+ 1)).

With a bit of cleverness, we can use this to get short
proofs of Con(IΣ20

n
).

As a result we can say that ACA0 has a superexponential
(in fact, non-elementary) speedup over PA.
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Another Conservation Result

RCA0 is a weak subsystem of ACA0, which includes
a restricted form of induction and comprehension for
recursive sets. It is conservative over primitive recursive
arithmetic (PRA).

WKL+0 adds a weak version of König’s lemma (as-
serting that every infinite binary tree has a path) and
a version of the Baire category theorem. It is strong
enough to prove, for example, the Heine-Borel theorem,
as well as the completeness and compactness of first-
order logic.

Theorem (Harrington, Brown and Simpson): The
theory WKL+0 is conservative over RCA0 for Π1

1 for-
mulas.
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A Noneffective Proof

Lemma: Given a model M of RCA0, and a tree T ∈
M one can add a “generic” path through T , and get
another model of RCA0.

M |= RCA0  M [G] |= RCA0

Lemma (Harrington): Every countable model M of
RCA0 can be expanded to a model M ′ of WKL0 with
the same first order part.

Proof: Keep adding paths through trees.

M = M0 ⊆M1 ⊆M2 ⊆ . . . ⊆Mω

Lemma (Brown and Simpson): Ditto for WKL+0.

Proof: Force to add generic Cohen reals.
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An Effective Version

Theorem (Avigad): There is an effective translation
of WKL+0-proofs to RCA0-proofs in which the increase
in length is polynomially-bounded.

Proof: Formalize forcing in RCA0. Then if WKL+0

proves ϕ, RCA0 proves “ϕ is forced,” and hence, for Π1
1

formulas, ϕ is true.

Difficulties:

1. Need to formalize forcing in RCA0 (proper class
forcing for (WKL))

2. Need to use strong forcing for (BCT ) to keep com-
plexity down

3. Need to name sets that are recursive in the generic

4. Need to iterate the forcing (i.e. define 2-forcing,
3-forcing, etc.)

5. Need to do the iteration uniformly and generically
(and keep complexity down)

6. Need to restrict to a definable cut (RCA0 doesn’t
have enough induction)
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Yet Another Conservation Result

ATR0 is an extension of ACA0 which allows one to it-
erate arithmetic constructions transfinitely, along any
well-ordering. It is strong enough to prove some results
from descriptive set theory, including Lusin’s theorem,
open determinacy, and the assertion that open sets are
Ramsey.

ÎD<ω is a first-order theory that augments Peano Arith-
metic with constants to denote fixed-points of arith-
metic inductive definitions.

Theorem (Avigad): ATR0 is conservative over ÎD<ω

for arithmetic formulas, but there is a non-elementary
speedup.

2nd-order RCA0 WKL0 ACA0 ATR0 Π1
1 − CA0

1st-order IΣ1 IΣ1 PA ÎD<ω ID<ω

Speedup? No No Yes Yes Yes
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ATR0 and ÎD<ω

ATR0 extends ACA0 with a schema that allows one to
define sets by Arithmetic Transfinite Recursion:

∀≺ (WO(≺)→ ∃X ∀z (Xz = {y | ϕ(y,Xz)}))

Definition: A positive arithmetic operator is given
by arithmetic formula ϕ(x, Y ) in which the predicate Y
occurs positively.

Idea: Γϕ(Y ) = {x|ϕ(x, Y )} satisfies

Y ⊆ Z → Γϕ(Y ) ⊆ Γϕ(Z)

ÎD<ω is a theory in the language of first-order arithmetic
with extra constants Pϕ, and axioms

Pϕ = {x | ϕ(x, Pϕ)}.

Lemma: (ATR) is equivalent to a second-order version

of the ÎD axioms, namely

(FP ) ∀Z ∃Y (Y = {x|ϕ(x, Y, Z)})

Proof: Assuming (FP ), show how to build hierarchies
along ≺ inductively. Conversely, assuming (ATR), show
how to get fixed points of positive arithmetic operators
by modeling the classical proof, and using a “pseudo-
hierarchy.”
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Functional Intepretations

Suppose we know that

∀x ∃y ϕ(x, y),

where x and y range over natural numbers and ϕ is some
“finitely checkable” property. Then

f(x) = the least y such that ϕ(x, y)

defines a total recursive (computable) function.

If a theory T proves ∀x ∃y ϕ(x, y), we can then say that
T proves that the function f is total.

Goal: Characterize the types of recursive functions that
a theory T can prove to be total.
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A Class of Functionals

The finite types are defined inductively as follows:

• N is a finite type

• if A and B are finite types, so is A→ B

The Primitive Recursive Functionals of Finite Type:

• Include 0 and S

• Are closed under explicit definition

• Are closed under primitive recursion:{
F (0) = G1

F (Sx) = G2(x, F (x))
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The Dialectica Interpretation

Theorem (Gödel): The provably total recursive func-
tions of PA are exactly the primitive recursive function-
als of type N→ N.

Proof: Write down a functional (quantifier-free) theory
T whose terms denote the primitive recursive functionals
of finite type. From a proof of

∀x ∃y ϕ(x, y)

in PA, one can extract a term f and a proof of

ϕ(x, f(x))

in T .

2nd-order 1st-order functions

WKL0, RCA0 IΣ1 primitive recursive functions

ACA0 PA primitive recursive functionals

ATR0 ÎD<ω ???

Question: What kind of computational schema can we
use to characterize the provably total recursive functions
of stronger theories?
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Predicative Functionals

Answer: Use Martin-Löf’s notion of universes of types,
which allow for a kind of “predicative” polymorphism.

Theorem (Avigad): The provably total recursive

functions of ATR0 and ÎD<ω are exactly the ones that
can be defined using these universes.

More precisely, one can define theories Pn that axioma-
tize primitive recursive functionals with n such universes.
P0 is just (a logic-free variant of) T and each Pn is just
a stripped-down version of MLn.

Theorem: The provably total recursive functions of
ÎDn are exactly the ones that are represented by terms
of Pn.
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The Interpretations

In the theories below, the superscript i denotes an in-
tuitionist variant that avoids the law of the excluded
middle. First,

ATR0  ÎD<ω

via a cut-elimination. Then,

PA  PAi

 P0

is essentially the Dialectica interpretation.

ÎD1  Σ1
1-AC

 Σ1
1-ACi

 Frege-PAi

 P1.

The last step internalizes the interpretation of PAi in
P0.
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Iterating, we get

ÎD2  Σ1
1-AC(ÎD1)

 Σ1
1-ACi(ÎD

i+

1 )

 Frege-ÎD
i+

1

 P2.

where the last step internalizes the interpretation of

ÎD
i+

1 to P1.

ÎD3  Σ1
1-AC(ÎD2)

 Σ1
1-ACi(ÎD

i+

2 )

 Frege-ÎD
i+

2

 P3.

And so on . . .
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Combinatorial Independences

For any consistent theory T that includes basic arith-
metic, Gödel showed how to construct a statement about
natural numbers that is true but not provable in T . This
statement encodes logical notions, like provability in T
itself.

Question: Can we find more natural combinatorial state-
ments that can’t be proven in T?
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The Paris-Harrington Theorem

If a and b are natural numbers and a < b, use [a, b] to
denote the set

{a, a+ 1, a+ 2, . . . , b}.

Paris and Harrington define a predicate PH(a, b) which
says that the interval [a, b] has a certain Ramsey-theoretic
property. The assertion

∀a ∃b PH(a, b)

can be proven using the infinitary version Ramsey’s the-
orem.

Theorem (Paris-Harrington): Suppose a and b are
nonstandard elements of a model M of true arithmetic,
and

M |= PH(a, b).

Then there is an initial segment I of M containing a but
not b, such that

I |= PA.

) ) )
0 ω a I |= PA b M

Corollary: PA doesn’t prove

∀a ∃b PH(a, b)
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The Paris-Harrington Statement

Definition: A set X ⊂ N is large if |X| > min(X).

For example, {4,9,23,46,78} is large because it has 5
elements, the smallest of which is 4.

Definition: Say

[a, b]→∗ (m)lr
if, no matter how you r-color the l-tuples from [a, b],
there is a large homogeneous subset of size at least m.

The Paris-Harrington Statement:

∀m, l, r, a ∃b [a, b]→∗ (m)lr.

This assertion follows from the infinitary version of Ram-
sey’s theorem by a short compactness argument.

PH(a, b) is the predicate

[a, b]→∗ (a)aa.
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Another Combinatorial Independence

For any ordinal notatation α, Ketonen and Solovay show
how to define the finitary combinatorial notion “[a, b] is
α-large.”

Theorem (K-S, Paris, Sommer): Suppose a and b are
nonstandard elements of a model M of true arithmetic,
and

M |= [a, b] is ε0-large.

Then there is an initial segment I of M containing a but
not b, such that

I |= PA.

) ) )
0 ω a I |= PA b M

Suprisingly, one can extract all the consequences of a
traditional ordinal analysis from this construction.
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Current Work

Sommer and I have extended these constructions to a
number of important predicative theories. Using appro-
priately large intervals we can obtain sharp upper bounds
for the proof theoretic ordinals of RCA0, WKL0, ACA0,
Σ1

1-AC0, (Π0
1-CA)<α, ACA, Σ1

1-AC, ÎDn, ATR0, ATR.
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The World According to a Proof Theorist

Very strong theories are designed to explore powerful
assumptions about the mathematical universe.

Strong theories like Zermelo-Fraenkel set theory can
formalize most mathematical arguments, and are ac-
ceptable to most mathematicians.

Theories of “ordinary strength” correspond roughly
to the types of arguments that most mathematicians
actually use in day-to-day practice.

Weak theories are concerned with “feasibly computable”
objects and are relevant to complexity theory.

27



Some Subsystems of Analysis

1. RCA0: Recursive Comprehension

∀x (ϕ(x)↔ ψ(x))→ ∃X ∀y (y ∈ X ↔ ϕ(y))

2. WKL0: Weak König’s Lemma

∀T (T an infinite binary tree→
∃P (P a path through T ))

3. ACA0: Arithmetic Comprehension

∃X ∀y (y ∈ X ↔ ϕ(y))

4. ATR0: Arithmetic Transfinite Recursion

∀≺ (WO(≺)→ ∃X ∀z (Xz = {y | ϕ(y,Xz)}))

5. Π1
1-CA0: Π1

1 Comprehension

∃X ∀y (y ∈ X ↔ ϕ(y))
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Representative Theorems

1. RCA0: Recursive Comprehension

recursive mathematics, intermediate value theorem

2. WKL0: Weak König’s Lemma

Heine-Borel theorem, compactness and
completeness of first-order logic

3. ACA0: Arithmetic Comprehension

Bolzano-Weierstrass theorem, least upper bound
theorem, Ramsey’s theorem for N3

4. ATR0: Arithmetic Transfinite Recursion

comparability of well-orderings, Lusin’s theorem,
open determinacy, open sets are Ramsey

5. Π1
1-CA0: Π1

1 Comprehension

Cantor-Bendixson theorem, Silver’s theorem,
Fσ ∩Gδ sets are Ramsey, Kruskal’s theorem
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The Theories (ω-Models)

1. RCA0: Recursive Comprehension

Turing ideals; the recursive sets

2. WKL0: Weak König’s Lemma

Scott sets; no minimal

3. ACA0: Arithmetic Comprehension

Closure under Turing jump; the arithmetic sets

4. ATR0: Arithmetic Transfinite Recursion

no minimal; all contain HY P

5. Π1
1-CA0: Π1

1 Comprehension

no minimal; all contain HY P
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Proof Theory’s Methods

1. Study alternate axiomatizations, theorems, inter-
pretations, conservative extensions, natural models

2. Reverse mathematics

3. Ordinal analysis

4. Functional interpretations

5. Combinatorial independences
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What next?

1. Extend model-theoretic ordinal analysis to impred-
icative theories.

2. Find combinatorial independences for impredicative
theories, e.g. using the Galvin-Prikry theorem.

3. Give functional interpretations to impredicative the-
ories.

4. Explore model-theoretic and proof-theoretic appli-
cations to proof complexity and weak fragments of
arithmetic.

5. Explore recursive analogs of large-cardinal axioms
and reflection properties.
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