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Epistemological concerns

The question of the consistency of modern mathematical methods
was salient in the early twentieth century “crisis of foundations.”

But lurking beneath the surface was an even deeper concern,
namely, the extent to which modern methods are meaningful, and
appropriate to mathematics.

After all, if mathematics is “about” symbolic calculation and
explicitly computable results, then “nonconstructive mathematics”
is a contradiction in terms.

So it is not surprising that the question as to the “computational
content” of classical methods has long been central to proof theory.



Peano arithmetic

Classical first-order (Peano) arithmetic at first seems like a toy
theory.

But it interprets a surprisingly large portion of ordinary
mathematical reasoning fairly directly, and even more by various
proof-theoretic reductions.

Question: suppose PA proves ∀x ∃y R(x , y), where R is decidable.
Is there necessarily an algorithm to compute such a y?

Answer: 0f course. Just search.



The computational content of arithmetic

Better question: do proofs in PA provide more explicit algorithms?

Answer:

• (Gentzen) ≺ε0-recursive functions
• Cut elimination or normalization, with ordinal analysis

• (Gödel) Primitive recursive functionals of finite type
• Double-negation translation following by the Dialectica

interpretation.
• Double-negation translation followed by the Friedman-Dragalin

translation and realizability.

These give two different characterizations of the algorithmic
content.



The computational content of arithmetic

In comparison:

• Ordinal analysis is most easily applied directly to classical
theories.

• Functional interpretation passes through intuitionistic
arithmetic (HA).

Also:

• Proofs in intuitionistic arithmetic yield canonical results
(confluence, E-stability).

• Proofs in classical arithmetic are “nondeterministic.”

I will focus on interpretations that involve a double-negation
translation.



Outline

Topics I will discuss:

• A particularly efficient double-negation translation.

• An interesting, but awkward, double-negation translation.

• Nondeterminism in classical logic.



Double-negation translations

The Gödel-Gentzen translation maps formulas ϕ to ϕN :

⊥N ≡ ⊥
θN ≡ ¬¬θ, if θ is atomic

(ϕ ∧ ψ)N ≡ ϕN ∧ ψN

(ϕ ∨ ψ)N ≡ ¬(¬ϕN ∧ ¬ψN)

(ϕ→ ψ)N ≡ ϕN → ψN

(∀x ϕ)N ≡ ∀x ϕN

(∃x ϕ)N ≡ ¬∀x ¬ϕN

Theorem

1. Classical logic proves ϕ↔ ϕN

2. If Γ proves ϕ in classical logic, then ΓN proves ϕN in minimal
logic.

3. Ditto for PA and HA.



Representing classical logic

Use negation normal form:

• Start with literals, A, Ā.

• Close under ϕ ∧ ψ, ϕ ∨ ψ, ∀x ϕ, ∃x ϕ.

Take classical negation ∼ϕ to be a defined operation.

A one-sided calculus:

Γ,A, Ā

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ
Γ, ϕi

Γ, ϕ0 ∨ ϕ1

Γ, ϕ

Γ,∀x ϕ

Γ, ϕ[t/x ]

Γ, ∃x ϕ

Γ, ϕ Γ,¬ϕ
Γ



Another double-negation translation

This variant applies to negation-normal form formulas:
Define ϕM to be ¬(∼ϕ)M , where:

AM ≡ A

ĀM ≡ ¬A

(ϕ ∨ ψ)M ≡ ϕM ∨ ψM

(ϕ ∧ ψ)M ≡ ¬(∼ϕ ∨ ∼ψ)M

(∃x ϕ)M ≡ ∃x ϕM

(∀x ϕ)M ≡ ¬(∃x ∼ϕ)M .

Note that of any two formulas, ϕM and (∼ϕ)M , one is the
negation of the other.



Another double-negation translation

Theorem
For every formula ϕ in negation-normal form, ϕM ↔ ϕN is provable
in minimal logic. Hence PA proves ϕ if and only if HA proves ϕM .

In fact, it is easy to translate proofs: if

{ϕ1, . . . , ϕn}

is provably classically (resp. in PA), then

(∼ϕ1)M , . . . , (∼ϕn)M ⇒ ⊥

is provable in intuitionistic logic (resp. in HA).



Another double-negation translation

If Γ is {ψ1, . . . , ψn}, write (∼Γ)M for {(∼ψ1)M , . . . , (∼ψn)M}.

The cut rule

Γ, ϕ Γ,∼ϕ
Γ

translates to

(∼Γ)M , (∼ϕ)M ⇒ ⊥
(∼Γ)M ⇒ ¬(∼ϕ)M

(∼Γ)M , ϕM ⇒ ⊥
(∼Γ)M ⇒ ¬ϕM

(∼Γ)M ⇒ ⊥



Another double-negation translation

The ∧ rule,

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ
translates to

(∼Γ)M , (∼ϕ)M ⇒ ⊥ (∼Γ)M , (∼ψ)M ⇒ ⊥
(∼Γ)M , (∼ϕ)M ∨ (∼ψ)M ⇒ ⊥

and the ∨ rule,

Γ, ϕ

Γ, ϕ ∨ ψ
translates to

(∼Γ)M , (∼ϕ)M ⇒ ⊥
(∼Γ)M ⇒ ¬(∼ϕ)M ¬(ϕM ∨ ψM)⇒ ¬ϕM

(∼Γ)M ,¬(ϕM ∨ ψM)⇒ ⊥



Another double-negation translation

Two variations:

• Translate (ϕ ∧ ψ)M to ϕM ∧ ψM instead of ¬(∼ϕ ∨ ∼ψ)M .

• In PA/HA, use an atomic equivalent Ā for ¬A.

The result maps ϕ to ϕM = ¬(∼ϕ)M , where

θM ≡ θ, if θ is atomic or negated atomic

(ϕ ∨ ψ)M ≡ ϕM ∨ ψM

(ϕ ∧ ψ)M ≡ ϕM ∧ ψM

(∃x ϕ)M ≡ ∃x ϕM

(∀x ϕ)M ≡ ¬∃x (∼ϕ)M .

This is very sparing with intuitionistic negations, which is
important to the realizing terms.



Classical realizability

Fix a predicate A(x).

a realizes θ ≡ θ, if θ is atomic

a realizes ϕ ∧ ψ ≡ ((a)0 realizes ϕ) ∧ ((a)1 realizes ϕ)

a realizes ϕ ∨ ψ ≡ ((isleft(a) ∧ left(a) realizes ϕ)∨
(isright(a) ∧ right(a) realizes ψ))

a realizes ∃x ϕ(x) ≡ (a)1 realizes ϕ((a)0)

Take a refutes ϕ to be the formula ∀b (b realizes ϕ→ A(a(b))).

a realizes ∀x ϕ(x) ≡ a refutes ∃x ∼ϕ(x)

From a proof of ∃y A(y), we obtain a term a that refutes ∀y Ā(y).
But the identity function realizes ∀y Ā(y). So A(a(id)).



A classical Dialectica interpretation

Maps each formula ϕ to a formula ϕD of the form ∀x ∃y ϕD(x , y).

Assuming ψD is ∀u ∃v ψD(u, v):

θD ≡ θ, if θ is atomic

(ϕ ∧ ψ)D ≡ ∀x , u ∃y , v (ϕD(x , y) ∧ ψD(u, v))

(ϕ ∨ ψ)D ≡ ∀x , u ∃y , v (ϕD(x , y) ∨ ψD(u, v))

(∀z ϕ)D ≡ ∀z , x ∃y ϕD(x , y)

If (∼ϕ(z))D is ∀r ∃s (∼ϕ)D(z , r , s), define

(∃z ϕ)D ≡ ∀S ∃z , r ¬(∼ϕ)D(z , r ,S(z , r)).
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Topics I will discuss:

• A particularly efficient double-negation translation.

• An interesting, but awkward, double-negation translation.

• Nondeterminism in classical logic.



An awkward translation

Here is a surprisingly simple double-negation translation: let ϕawk

denote ¬(∼ϕ).

Theorem
ϕN → ϕawk is provable in minimal logic. Hence, PA proves ϕ if
and only if HA proves ϕawk .

Proof.
If ψ is in negation-normal form, minimal logic proves ψ → ψN .

So minimal logic proves ∼ϕ→ (∼ϕ)N , and hence
¬(∼ϕ)N → ϕawk .

But in minimal logic, we have ¬(∼ϕ)N ↔ ¬¬ϕN ↔ ϕN .



Explaining the awkwardness

The difference between ·N and ·awk : intuitionistic logic proves
ϕN → ϕawk but not the converse.

So even though they are classically equivalent, from the point of
view of intuitionistic logic, ϕawk is weaker.

In particular, the ·awk -translation behaves poorly with respect to
modus ponens: ϕawk and (ϕ→ ψ)awk do not always entail ψawk

intuitionistically.



The no-counterexample interpretation

Let ϕ be a formula in prenex form, for example,

∃x ∀y ∃z ∀w θ(x , y , z ,w).

Compute the Herbrand normal form ϕH :

∃x , z θ(x , f (x), z , g(x , z)).

The methods above make it possible to extract terms F1(f , g) and
F2(f , g) satisfying

∀f , g θ(F1(f , g), f (F1(f , g)),F2(f , g), g(F1(f , g),F2(f , g))).

This is the no-counterexample interpretation.

A result due to Kohlenbach shows that this is weaker than the
Dialectica interpretation.



Explaining the awkwardness

Theorem (Kohlenbach)

For every n there are sentences ϕ and ψ of arithmetic such that:

1. ϕ is prenex.

2. ψ is a Π2 sentence, that is, of the form ∀x ∃y R(x , y) for
some primitive recursive relation R.

3. Primitive recursive arithmetic proves ϕ.

4. PA proves ϕ→ ψ.

5. ϕ and every prenexation of ϕ→ ψ has a no-counterexample
interpretation with functionals in PRω

0 .

But:

6. There is no term F of PRω
n which satisfies the

no-counterexample interpretation of ψ; that is, there is no
term F such that ∀x R(x ,F (x)) is true in the standard model
of arithmetic.



Explaining the awkwardness

But now notice that if ϕ is prenex, the Dialectica interpretation of
ϕawk is exactly the no-counterexample interpretation.

This yields:

Theorem
For any fragment T of HA, there are formulas ϕ and ψ such that
the following hold:

1. PA proves ϕ and ϕ→ ψ, but

2. T together with ϕawk and (ϕ→ ψ)awk does not prove ψawk .



Outline

Topics I will discuss:

• A particularly efficient double-negation translation.

• An interesting, but awkward, double-negation translation.

• Nondeterminism in classical logic.



Nondeterminism in classical logic

Classical logic is often held to be “nondeterministic.”

There is a well-known example due to Yves Lafont:

ϕ, 0 = 0

ϕ,∃x (x = x)

∼ϕ, 1 = 1

∼ϕ,∃x (x = x)

∃x (x = x)

Which is the “intended” witness to the conclusion?



Nondeterminism in classical logic

Note that the judgment of “nondeterminism” applies to the proof
system, and computational interpretations thereof.

For example, if ϕ ∧ ϕ→ ϕ were an axiom in an intuitionistic proof
system, it would lead to nondeterminism:

∃x A(x) ∧ ∃x A(x)→ ∃x A(x).

But, typically, it isn’t.



Nondeterminism in classical logic

What goes wrong with classical logic?

• Classical logic uses disjunctive sequents.

• (Girard) There are two ways of proving ¬¬(ϕ ∧ ψ) from ¬¬ϕ
and ¬¬ψ, and this is needed to prove the double-negation
translation of ¬¬θ → θ.

• (Girard) ¬¬ϕ gets identified with ϕ.

Two responses:

• (Urban and Bierman) Classical logic corresponds to
nondeterministic algorithms.

• (Girard) Repair classical calculi to make nondeterministic
choices deterministic.

But where do nondeterministic choices come into the
M-translation?



Nondeterminism in classical logic

They don’t!

In Lafont’s example, the cut formula determines the choice.

• In the simplest version of the M-translation, the outermost
connective settles it.

• In the variant, if ϕ is atomic, its truth value determines the
choice (in the natural way).

So the translation makes choices for us, in a principled way,
yielding a third response:

• Use the M-translation.



Back to epistemology

Let’s reconsider the original question: what is the computational
content of classical mathematics?

Consider applications:

• Extracting programs automatically from classical proofs.

• Designing programming languages and verification systems
inspired by classical constructs.

• Proof mining: extract mathematically useful information from
classical proofs.

More refined analysis is needed here:

• Remember that ordinary proofs are very different from formal
axiomatic derivations.

• The context matters.



Back to epistemology

But let’s construe the question in a broad philosophical sense.

We we have a satisfying answer:

• Classical proofs typically do have computational content.

• But there are various incompatible ways of extracting such
content.

• By suppressing computational details, classical methods leave
some of the computational details unspecified.

Proof-theoretic results provide an answer that:

• is clear, interesting, informative, and to the point; and

• provides a sound theoretical basis for the applications.


