Machine Learning and Neural Al

Jeremy Avigad
Department of Philosophy
Department of Mathematical Sciences
Carnegie Mellon University

Institute for Computer-Aided Reasoning in Mathematics

October 16, 2025

Overview

Al for mathematics

Al for Math

Formalization Symbolic Machine

Methods Learning

Symbolic Machine Automated

gutomaped Learning Theorem Proving
easoning

Interactive
Theorem Proving

Applications to mathematics

Some applications | know of:

finding patterns in computational data
finding combinatorial objects

learning about PDEs

finding expressions

finding formal proofs

finding informal proofs

These rely on mixtures of supervised, unsupervised, and reinforcement learning,
and more.

Machine learning

Key approaches:

e Supervised learning: the system is presented with (input, output) pairs and
learns a rule connecting them.
Unsupervised learning: the system is presented with data and learns some
sort of structure.
Reinforcement learning: the system acts in a space and is rewarded
accordingly; it learns to maximize rewards.

Models can be very simple (linear regression, decision trees) to very complex
(neural networks).

Supervised learning with a neural network

* A model has and architecture and
lots of parameters.

It computes a nonlinear function
of the inputs.

The outputs are compared to
expected values.
Discrepancies are evaluated by a

loss function.
The system learns to minimize the Spsgice

loss.

Reinforcement learning

* The interaction is between an agent and an

environment. %ﬁ”\
The agent gets information from the .
Environment

environment.

The agent chooses an action from an action
space. Re"Vard

The environment changes; ultimately the Interpreter

agent gets a reward. ™
— State L
The agent learns to maximize the reward 0=

* possibly by learning a value function.
e possibly by learning a policy. Agent

Large language models

Train a model on a lot of data.
Given a sequence of tokens, what is likely to come next?

It was a dark and stormy

Generative Al samples from the distribution.

Can models learn to generate proofs this way?

Where does the data come from?

Supervised learning:

* theinternet
* computation
e databases

Reinforcement learning:

e games
e thereal world
* computation

History

A brief history

In his 1950 paper, “Computing machinery and intelligence,” Alan Turing
discusses both symbolic and machine-learning approaches.

Machine learning approaches were presented at the Dartmouth Summer
Research Project on Artificial Intelligence in 1956.

Research was ongoing in the latter half of the twentieth century.

1990s: rise of big data

2012: AlexNet, a neural network, wins the ImageNet Large Scale Visual
Recognition Challenge

2016: AlphaGo beats Lee Sedol in a five-game match

2022: ChatGPT released

Discovering Patterns in
Computational Data

Discovering patterns in knot invariants

Knot theorists assign algebraic, geometric, and numeric invariants.

Working with Google DeepMind, Andras Juhasz and Marc Lackenby studied:

* hyperbolic invariants
* algebraic invariants

A supervised learning model was able to learn to predict an algebraic invariant, o (k),
from a collection of hyperbolic invariants.

Sensitivity analysis reduced the dependency to three quantities, Re(u), Im(u), and A.

Discovering patterns in knot invariants

Based on the data, and further experimentation, they conjectured and then

proved a theorem:

Theorem. There exists a constant c such that, for any hyperbolic knot K,
120 (K) — slope(K)| < ¢ vol(K) inj(K)™3.

Article

Advancing mathematics by guiding human
intuitionwith Al

https://doi.org/10.1038/s41586-021-04086-x

Received: 10 July 2021

Accepted: 30 September 2021

Published online: 1 December 2021

Open access

M Check for updates

Alex Davies'™, Petar Veli¢kovié', Lars Buesing', Sam Blackwell', Daniel Zheng',
Nenad Tomaiev', Richard Tanburn', Peter Battaglia', Charles Blundell', Andras Juhasz?,
Marc Lackenby? Geordie Williamson®, Demis Hassabis' & Pushmeet Kohli'™

The practice of mathematics involves discovering patterns and using these to
formulate and prove conjectures, resulting in theorems. Since the 1960s,
mathematicians have used computers to assist in the discovery of patternsand
formulation of conjectures’, most famously in the Birch and Swinnerton-Dyer
conjecture?, aMillennium Prize Problem?>. Here we provide examples of new
fundamental results in pure mathematics that have been discovered with the
assistance of machine learning—demonstrating a method by which machine learning
can aid mathematiciansindiscovering new conjectures and theorems. We propose a
process of using machine learning to discover potential patterns and relations
between mathematical objects, understanding them with attribution techniques and
using these observations to guide intuition and propose conjectures. We outline this
machine-learning-guided framework and demonstrate its successful applicationto
current research questions in distinctareas of pure mathematics, ineach case
showing how it led to meaningful mathematical contributions onimportantopen
problems: a new connection between the algebraic and geometricstructure of knots,
and a candidate algorithm predicted by the combinatorial invariance conjecture for
symmetric groups®. Ourwork may serve asa model for collaboration betweenthe
fields of mathematics and artificial intelligence (Al) that can achieve surprising results
by leveraging the respective strengths of mathematicians and machine learning.

Discovering patterns in number theory

In 2020, Yang-Hui He, Kyu-Hwan Lee, and Thomas Oliver used machine learning
algorithms on data associated with elliptic curves over the finite fields with p

elements, with p prime.

They determined that a simple logistical regression model could predict the rank
of 7z from the Frobenius traces a,(E) = p + 1 - Ny, where N, is the number of

rational points on the curve.

The prediction matches the Birch-Swinnerton-Dyer conjecture.

Discovering patterns in number theory

In 2022, Lee asked an undergraduate Ellptic curves with a conductor
between 7,500 and 10,000 ® Rank 1 ® Rank O
student, Alexey Pozdnyakov, to study ore
solutions
the data.

Pozdnyakov used elementary data
analysis methods and discovered a
pattern separating rank O and rank 1
curves as a function of p.

Average dy

Fewer
solufions

4,000 6,000 8,000

Prime numbers — |

Discovering patterns in number theory

The pattern was dubbed a “murmuration” phenomenon.

Drew Sutherland at MIT used the LMFDB to confirm the pattern with a lot more
data.

In 2023, Nina Zubrilina, a student of Peter Sarnak, derived a formula that explains

the phenomenon.

Pozdnyakov has provided Python notebooks online that reproduce the analysis.
You can easily run them in Colab.

https://github.com/Alexey-Pozdnyakov/MLNTdemo

Elliptic Curve ‘Murmurations’ Found With
Al Take Flight

6 Mathematicians are working to fully explain unusual behaviors uncovered

using artificial intelligence

When viewed the right way, elliptic curves can flock like birds. Paul Chaikin for Quanta Mogazine

.w’l Install User Guide APl Examples Communityt? More ~ Q © 1.7.2 (stable) ~
S c 1 k 1 t - 1 e a r n « Simple and efficient tools for predictive data analysis

X 5 3 » Accessible to everybody, and reusable in various contexts
Machine Learning in Python « Built on NumPy, SciPy, and matplotlib

« Open source, commercially usable - BSD license

Classification Regression Clustering
Identifying which category an object belongs to. Predicting a continuous-valued attribute associated Automatic grouping of similar objects into sets.

c e ¢ g s with an object. -))
Applications: Spam detection, image recognition. Applications: Customer segmentation, grouping
Algorithms: Gradient boosting, nearest neighbors, Applications: Drug response, stock prices. experiment outcomes.
random forest, logistic regression, and more... Algorithms: Gradient boosting, nearest neighbors, Algorithms: k-Means, HDBSCAN, hierarchical

random forest, ridge, and more... clustering, and more...

Kmeans clustering on the digits dataset (PCA-reduced data)
2 ‘white cross

Predicted average energy transfer during the week entroids are marked with

@ ! 4 .hE
= 4

(,m‘ ‘ %
[R R
L il | 3 i b \

. q y .
> —
| Sun. on e wed ™ Ll Sat
= ot g | - Tome of the week

Dimensionality reduction Model selection Preprocessing
Reducing the number of random variables to consider. Comparing, validating and choosing parameters and Feature extraction and normalization.
models.
Applications: Visualization, increased efficiency. Applications: Transforming input data such as text for
Algorithms: PCA, feature selection, non-negative Applications: Improved accuracy via parameter use with machine learning algorithms.
matrix factorization, and more... tuning. Algorithms: Preprocessing, feature extraction, and
Algorithms: Grid search, cross validation, metrics, more...

and more...

Computing complex
data

Physics-informed neural networks

Neural networks learn from data.

Physical data is often constrained to satisfy partial differential equations, solutions
to which are hard to compute.

PINNs build-in PDE constraints. They can then learn from and predict data subject

to physical constraints.

This is an important new field in scientific computation.

Studying PDEs

PINNs can be used to compute approximate numeric solutions to PDEs.

They have been used to find detect singularities that are then confirmed by
conventional methods.

Google DeepMind is going after a Clay Millenium Prize and hoping to find unstable
singularities in the Navier-Stokes equations.

Deep Learning Poised to ‘Blow Up’ Famed
Fluid Equations

Search...

ad I X 1V > math > arXiv:2509.14185

Mathematics > Analysis of PDEs

[Submitted on 17 Sep 2025]

Discovery of Unstable Singularities

Yongji Wang, Mehdi Bennani, James Martens, Sébastien Racaniére, Sam Blackwell, Alex Matthews, Stanislav Nikolov, Gonzalo
Cao-Labora, Daniel S. Park, Martin Arjovsky, Daniel Worrall, Chongli Qin, Ferran Alet, Borislav Kozlovskii, Nenad Toma3ev, Alex
Davies, Pushmeet Kohli, Tristan Buckmaster, Bogdan Georgiev, Javier Gomez-Serrano, Ray Jiang, Ching-Yao Lai

Whether singularities can form in fluids remains a foundational unanswered question in mathematics. This phenomenon occurs when
solutions to governing equations, such as the 3D Euler equations, develop infinite gradients from smooth initial conditions. Historically,
numerical approaches have primarily identified stable singularities. However, these are not expected to exist for key open problems, such as
the boundary-free Euler and Navier-Stokes cases, where unstable singularities are hypothesized to play a crucial role. Here, we present the
first systematic discovery of new families of unstable singularities. A stable singularity is a robust outcome, forming even if the initial state is
slightly perturbed. In contrast, unstable singularities are exceptionally elusive; they require initial conditions tuned with infinite precision, being
in a state of instahility whereby infinitesimal perturbations immediately divert the solution from its blow-up trajectory. In particular, we present
multiple new, unstable self-similar solutions for the incompressible porous media equation and the 3D Euler equation with boundary,
revealing a simple empirical asymptotic formula relating the blow-up rate to the order of instability. Our approach combines curated machine
learning architectures and training schemes with a high-precision Gauss-Newton optimizer, achieving accuracies that significantly surpass
previous work across all discovered solutions. For specific solutions, we reach near double-float machine precision, attaining a level of
accuracy constrained only by the round-off errors of the GPU hardware. This level of precision meets the requirements for rigorous
mathematical validation via computer-assisted proofs. This work provides a new playbook for exploring the complex landscape of nonlinear
partial differential equations (PDEs) and tackling long-standing challenges in mathematical physics.

Finding mathematical
objects

Finding mathematical objects

One can use supervised learning with synthetic data to find expressions with

verifiable properties.

e antiderivatives
e Lyapunov functions

The challenge is to generate data with a representative distribution.

(1V > cs > arXiv:1912.01412

Computer Science > Symbolic Computation

[Submitted on 2 Dec 2019]

Deep Learning for Symbolic Mathematics
Guillaume Lample, Frangois Charton

Neural networks have a reputation for being better at solving statistical or
approximate problems than at performing calculations or working with symbolic data.
In this paper, we show that they can be surprisingly good at more elaborated tasks in
mathematics, such as symbolic integration and solving differential equations. We
propose a syntax for representing mathematical problems, and methods for
generating large datasets that can be used to train sequence-to-sequence models.
We achieve results that outperform commercial Computer Algebra Systems such as
Matlab or Mathematica.

Search...

dT X1V > cs > arxiv:2410.08304

/4

Computer Science > Machine Learning

[Submitted on 10 Oct 2024]

Global Lyapunov functions: a long-standing open problem
In mathematics, with symbolic transformers

Alberto Alfarano, Frangois Charton, Amaury Hayat

Despite their spectacular progress, language models still struggle on complex reasoning tasks, such
as advanced mathematics. We consider a long-standing open problem in mathematics: discovering a
Lyapunov function that ensures the global stability of a dynamical system. This problem has no known
general solution, and algorithmic solvers only exist for some small polynomial systems. We propose a
new method for generating synthetic training samples from random solutions, and show that
sequence-to-sequence transformers trained on such datasets perform better than algorithmic solvers
and humans on polynomial systems, and can discover new Lyapunov functions for non-polynomial
systems.

Finding mathematical objects

Methods of finding combinatorial objects:

e use reinforcement learning
e use transformers + local search
e evolve code

* AlphaEvolve

e (QOpenEvolve

e Shinka-Evolve

https://github.com/codelion/openevolve
https://github.com/codelion/openevolve
https://github.com/codelion/openevolve
https://github.com/codelion/openevolve
https://sakana.ai/shinka-evolve/
https://sakana.ai/shinka-evolve/
https://sakana.ai/shinka-evolve/
https://sakana.ai/shinka-evolve/

vl [math.CO] 29 Apr 2021

Constructions in combinatorics via neural networks

Adam Zsolt Wagner*

Abstract

We demonstrate how by using a reinforcement learning algorithm, the deep cross-entropy method,
one can find explicit constructions and counterexamples to several open conjectures in extremal
combinatorics and graph theory. Amongst the conjectures we refute are a question of Brualdi and
Cao about maximizing permanents of pattern avoiding matrices, and several problems related to the
adjacency and distance eigenvalues of graphs.

1 Introduction

Computer-assisted proofs have a long history in mathematics, including breakthrough results such as
the proof of the four color theorem in 1976 by Appel and Haken [7], and the proof of the Kepler
conjecture in 1998 by Hales [29]. Recently, significant progress has been made in the area of machine
learning algorithms, and they have have quickly become some of the most exciting tools in a scientist’s
toolbox. In particular, recent advances in the field of reinforcement learning have led computers to

PatternBoost: Constructions in Mathematics with a Little Help
from Al

Francois Charton* Jordan Ellenberg! Adam Zsolt Wagner?

Geordie Williamson®

November 4, 2024

Abstract

We introduce PatternBoost, a flexible method for finding interesting constructions in math-
ematics. QOur algorithm alternates between two phases. In the first “local” phase, a classical
search algorithm is used to produce many desirable constructions. In the second “global” phase,
a transformer neural network is trained on the best such constructions. Samples from the trained
transformer are then used as seeds for the first phase, and the process is repeated. We give a de-
tailed introduction to this technique, and discuss the results of its application to several problems
in extremal combinatorics. The performance of PatternBoost varies across different problems, but
there are many situations where its performance is quite impressive. Using our technique, we
find the best known solutions to several long-standing problems, including the construction of a
counterexample to a conjecture that had remained open for 30 years.

vl [math.CO] 1 Nov 2024

SCIENCE

AlphaEvolve: A Gemini-powered coding
agent for designing advanced
algorithms

14 MAY 2025

By AlphaEvoive team

To investigate AlphaEvolve’s breadth, we applied the system to over 50 open
problems in mathematical analysis, geometry, combinatorics and number theory.
The system'’s flexibility enabled us to set up most experiments in a matter of
hours. In roughly 75% of cases, it rediscovered state-of-the-art solutions, to the
best of our knowledge.

And in 20% of cases, AlphaEvolve improved the previously best known solutions,
making progress on the corresponding open problems. For example, it advanced
the kissing number problem. This geometric challenge has fascinated
mathematicians for over 300 years and concerns the maximum number of non-
overlapping spheres that touch a common unit sphere. AlphaEvolve discovered a
configuration of 593 outer spheres and established a new lower bound in 11
dimensions.

Interlude

Skepticism

It’s not surprising that machine learning can act on symbolic and numeric data and
find and construct finite objects and expressions.

Can it do real mathematics?

Mathematics is encoded in expressions. We can compute with definitions,
statements, and proofs.

At one extreme, machine learning can act on formal libraries and data.

Intermediate encodings and representations are likely to be useful.

Machine Learning
and Formal Methods

Generalities

If you are trying to get a neural system to do math, there are some choices to
make.

What should the system do?

e Search: find theorems and definitions

» Autoformalize: given an informal definition / proof, formalize it
* Prove: construct formal or informal proofs

e Conjecture: guess potentially useful statements and objects

These are all interrelated.

Generalities

Should you use formal or informal data?

* Thereis a lot more informal mathematics out there.
* Proof assistants provide a clear signal for correctness.

You can use both, e.g.:

* translate formal to informal, sketch a proof, use chain of thought, then
formalize
* translate informal to formal, search with a proof assistant, translate back

Generalities

Distinguish between:

* Training: how to you train the system?
e Task: when it comes time to perform, what does the system do?

The is no fine line between them. Given an IMO problem, AlphaProver makes up
similar, possibly simpler problems, tries to solve them, and learns from the results.

Generalities

How are you going to evaluate success?

e for training and tuning
e to justify publication

Some benchmarks:

e MiniF2F: formalized high school problems

* ProofNet: college textbook exercises

e PutnamBench: Putnam problems

* FrontierMath: challenging problems with numerical answers

Generalities

If a system is learning by exploring, you need a local measure of success:

* numeric score
e approval from a proof assistant
* evaluation approval from a model

Asking humans to judge and provide feedback is too expensive.

Generalities

Where will you get data?

e scrape it from the web
e scrape it from specific databases
e generate data yourself

e use symbolic methods

e use another model

Generating it manually is generally too expensive.

Generalities

Strategies for theorem proving:

* whole proof generation

* jteration on error messages
* line-by-line generation

e sketch / refine

Strategies for boosting performance:

Pass@k: generate several answers, take the best one

Expert iteration: use the best answers to retrain, iterate

Tree search: generate multiple options at each step, take the best ones
Backtracking: use successes and failures to revisit earlier choices

Chain of Thought: prompt / train the model to generate informal reasoning steps
Brute force: use more computation.

Making it science

Once you get anything to work, find optimal settings of parameters.

e Parameter sweep is often too expensive.
e Use local search as due diligence.

Perform ablations: turn off features and components one by one to determine
their effects.

An ML paper needs:

e anidea (only one!)
* an experimental setup
e evaluation

Search and retrieval

Premise selection

Thomas Zhu, Joshua Clune, Albert Jiang, Sean Welleck, and | have developed a
neural premise selector for Lean, using methods introduced in Mikuta et al.,
“Magnushammer: A Transformer-Based Approach to Premise Selection.”

Method:

e Collect positive and negative instances of (goal, premise) pairs.
* Use a transformer model and embed both into the same latent space.
* Nudge positive instances closer, negative instances further.

Include information like docstrings, namespaces.

a I‘le > ¢s > arXiv:2506.07477

Computer Science > Machine Learning

[Submitted on 9 Jun 2025]

Premise Selection for a Lean Hammer
Thomas Zhu, Joshua Clune, Jeremy Avigad, Albert Qiaochu Jiang, Sean Welleck

Neural methods are transforming automated reasoning for proof assistants, yet integrating these advances
into practical verification workflows remains challenging. Hammers are tools that interface with external
automatic theorem provers to automate tedious reasoning steps. They have dramatically improved
productivity in proof assistants, but the Lean proof assistant still does not have a hammer despite its
growing popularity. We present LeanHammer, the first end-to-end domain-general hammer for Lean, built
on a novel neural premise selection system for a hammer in dependent type theory. Unlike existing Lean
premise selectors, our approach dynamically adapts to user-specific contexts and combines with symbolic
proof search and reconstruction to create a practical hammer. With comprehensive evaluations, we show
that our premise selector enables LeanHammer to solve 21\% more goals relative to existing premise
selectors, and generalize well to diverse domains. Our work bridges the gap between neural retrieval and
symbolic reasoning, making formal verification more accessible to researchers and practitioners.

LeanSearch

LeanSearch similarly uses variations on existing retrieval methods to match
informal queries with formal content.

LeanSearch

Find theorems in Mathlib4 using natural language query

Query Name or description of the theorem or definition you are looking for

the intermediate value theorem

Clear Query Augmentation

Tip: Query Augmentation augments your query to increase the chance to find relevant results.

intermediate_value_Icc

¥ {o : Type u} [inst : ConditionallyCompletelLinearOrder] [inst_1 : TopologicalSpace a]

[inst_2 : OrderTopology @] [inst_3 : DenselyOrdered o] {& : Type u_1} [inst_4 : LinearOrder

&] [inst_5 : TopologicalSpace &] [inst_6 : OrderClosedTopology &] {a b : a}, asb-sV {f:

o + &}, ContinuousOn f (Icc a b) » Icc (fa) (fb) cf ' Iccab

intermediate_value_Ioo

¥ {o : Type u} [inst : ConditionallyCompletelLinearOrder] [inst_1 : TopologicalSpace a]

[inst_2 : OrderTopology @] [inst_3 : DenselyOrdered o] {& : Type u_1} [inst_4 : LinearOrder

&] [inst_5 : TopologicalSpace &] [inst_6 : OrderClosedTopology &] {a b : a}, asb-sVv {f:

o + &}, Continuouson f (Icc a b) + Ioo (fa) (fb) cf ' Iooab

» Intermediate Value Theorem for Continuous
Functions on Closed Intervals

» Intermediate Value Theorem for Continuous
Functions on Closed Intervals and Open Image
Intervals

d I‘le > ¢s > arXiv:2403.13310

Computer Science > Information Retrieval

[Submitted on 20 Mar 2024 (v1), last revised 4 Feb 2025 (this version, v2)]

A Semantic Search Engine for Mathlib4
Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin, Bin Dong

The interactive theorem prover Lean enables the verification of formal mathematical proofs and is backed
by an expanding community. Central to this ecosystem is its mathematical library, mathlib4, which lays
the groundwork for the formalization of an expanding range of mathematical theories. However, searching
for theorems in mathlib4 can be challenging. To successfully search in mathlib4, users often need to be
familiar with its naming conventions or documentation strings. Therefore, creating a semantic search
engine that can be used easily by individuals with varying familiarity with mathlib4 is very important. In
this paper, we present a semantic search engine (this https URL) for mathlib4 that accepts informal queries
and finds the relevant theorems. We also establish a benchmark for assessing the performance of various
search engines for mathlib4.

Proving

Neurosymbolic proving

New proving systems are announced regularly, with new benchmark results in the
abstract and long lists of authors. (SOTA = “state of the art.”)

They come from industry and academia, and they implement various among the
general strategies | described.

Some are closed source, some are open source, and some are open weight.

| don’t have time to survey the field, but a graph from the recent Seed-Prover
paper describes the SOTA two months ago.

Search...

d I‘>(1V > ¢s > arXiv:2507.23726

Computer Science > Artificial Intelligence

[Submitted on 31 Jul 2025 (v1), last revised 1 Aug 2025 (this version, v2)]

Seed-Prover: Deep and Broad Reasoning for Automated Theorem Proving

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing Jin, Chenggang Li,
Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun, Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei,
Shufa Wei, Yonghui Wu, Yuchen Wu, Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang
Zhan, Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jiangiu Zhao, Yichi Zhou, Thomas Hanwen Zhu

LLMs have demonstrated strong mathematical reasoning abilities by leveraging reinforcement learning with long chain-of-thought, yet
they continue to struggle with theorem proving due to the lack of clear supervision signals when solely using natural language.
Dedicated domain-specific languages like Lean provide clear supervision via formal verification of proofs, enabling effective training
through reinforcement learning. In this work, we propose \textbf{Seed-Prover}, a lemma-style whole-proof reasoning model. Seed-
Prover can iteratively refine its proof based on Lean feedback, proved lemmas, and self-summarization. To solve IMO-level contest
problems, we design three test-time inference strategies that enable both deep and broad reasoning. Seed-Prover proves 78.1% of
formalized past IMO problems, saturates MiniF2F, and achieves over 50\% on PutnamBench, outperforming the previous state-of-the-
art by a large margin. To address the lack of geometry support in Lean, we introduce a geometry reasoning engine \textbf{Seed-
Geometry}, which outperforms previous formal geometry engines. We use these two systems to participate in IMO 2025 and fully prove
5 out of 6 problems. This work represents a significant advancement in automated mathematical reasoning, demonstrating the
effectiveness of formal verification with long chain-of-thought reasoning.

Pass Rate on miniF2F-test (%)

Seed-Prover

100 - N
Goedel-Proverv2 Delta-Proyer
Kimina-Prover _¢@
90 - -
DeepSeek-Pro{er—Vz
DSP+ e
80~ Kimina—Prgwer—Preview
HunyuanProver ,/BFS-Prover
70 - Intem%b&.S-StepProver
o STP
DeepSeek-Proverv1.5 9P -
60 - i L 2ar®0ell-Prover
InternLMZ-StegProver ® Goedel-Prover
DeepSeek-Prover-V1
50 - == -
Hypertree Proof __________.---“'" L.e_an STaR
Search _——--==7" ® InternLM2-Math-Plus
40 - Cursictiium Learning ABEL®
=
Proof .’-\rtifact__,,--"‘.P COPRA ® Alchemy
Co-training™ Theoremﬂama
30- -~ ReProver ¢ SD-Prover
L]
2021 2022 2023 2024 2025

Publication Date

Al for
mathematicians

Al for mathematicians

There is a tension between:
e doing ML research
e developing useful tools

See:
e Jason Rute, The Last Mile.
* A, Al for Mathematicians.

https://aitp-conference.org/2024/slides/JR.pdf
https://www.andrew.cmu.edu/user/avigad/Talks/ai4mathematicians.pdf

Al for mathematicians

Possible roles:

* Expert colleague: answers questions and makes suggestions
Copilot: helps you write a proof
Grad student: proves your lemmas for you
Collaborator: proves some of the theorems in your next paper
Competitor: proves theorems you wish you could prove

Variables:

* How long does it take to get an answer?
e How much compute is needed?
* How much does it cost?

Al for mathematicians

How long will it take before we can all use such tools?

Commercial foundation models already know about Lean. You can use Microsoft
Copilot, Claude Sonnet, etc.

Several academic researchers are working on custom tools, provers, and copilots.

Al for mathematicians

Some corporate entities will soon have end-user tools:

* Harmonic: has released an API for its Aristotle prover.
* Math Inc.: intends to make Gauss available.
* Google DeepMind: promised to make a version of AlphaProof available.

Things are moving quickly.

Harmonic's Aristotle achieves historic Gold-Medal Level Performance at the 2025 International Mathematical Olympiad - sign up for the Aristotle Lean AP to try it yourself

©@Harmonic eNews eAbout eCareers

.:IF}.-.'.-.-J PR e e

ELCEEF FINF R
AR Mkt

D oo
L G
., -

»

'

H

b

5
P
=
g.
3
b
]

i

=
b
]
3
b
=
1
:
i
3

https:/fwww.math.inc

Math, Inc.

A new company dedicated to autoformalization and the creation of verified
superintelligence.

Introducing Gauss, an agent for autoformalization
Solve math, solve everything,

Contact | Careers

Trying it Out

Trying it out

You can run Andrew Pozdnyakov’s remarkable tutorial in a Colab notebook.

See Sean Welleck’s transformer tutorials, based on similar tutorials by Adam
Wagner.

Open-source tools OpenEvolve and ShinkaEvolve are available online.
Commercial foundation models and copilots know about Lean.

You can find the projects, papers, and announcements discussed here online.

https://github.com/Alexey-Pozdnyakov/MLNTdemo
https://github.com/wellecks/transformers4math-simons
https://github.com/codelion/openevolve
https://sakana.ai/shinka-evolve/

Conclusions

Conclusions

We have considered:

* formalization and proof assistants
e automated reasoning and symbolic Al
* machine learning and neural Al

The intersections, interactions, and synergies are especially interesting.

They are already beginning to play a role in mathematical discovery and
verification.

Conclusions

The technology is young, and we still have a lot to learn about how to use it well.

We need:
exploration and experimentation
collaborations between mathematicians and computer scientists.
collaborations between generations.
thoughtful discussion.

We hope to support all this with the new Institute for Computer-Aided Reasoning
in Mathematics.

{3 Institute for Computer-Aided

Reasoning in Mathematics

This is an exciting time for mathematics. Let’s make the most of it.

	Slide 1: Machine Learning and Neural AI
	Slide 2: Overview
	Slide 3: AI for mathematics
	Slide 4: Applications to mathematics
	Slide 5: Machine learning
	Slide 6: Supervised learning with a neural network
	Slide 7: Reinforcement learning
	Slide 8: Large language models
	Slide 9: Where does the data come from?
	Slide 10: History
	Slide 11: A brief history
	Slide 12: Discovering Patterns in Computational Data
	Slide 13: Discovering patterns in knot invariants
	Slide 14: Discovering patterns in knot invariants
	Slide 15
	Slide 16: Discovering patterns in number theory
	Slide 17: Discovering patterns in number theory
	Slide 18: Discovering patterns in number theory
	Slide 19
	Slide 20
	Slide 21: Computing complex data
	Slide 22: Physics-informed neural networks
	Slide 23: Studying PDEs
	Slide 24
	Slide 25
	Slide 26: Finding mathematical objects
	Slide 27: Finding mathematical objects
	Slide 28
	Slide 29
	Slide 30: Finding mathematical objects
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Interlude
	Slide 35: Skepticism
	Slide 36: Machine Learning and Formal Methods
	Slide 37: Generalities
	Slide 38: Generalities
	Slide 39: Generalities
	Slide 40: Generalities
	Slide 41: Generalities
	Slide 42: Generalities
	Slide 43: Generalities
	Slide 44: Making it science
	Slide 45: Search and retrieval
	Slide 46: Premise selection
	Slide 47
	Slide 48: LeanSearch
	Slide 49
	Slide 50
	Slide 51: Proving
	Slide 52: Neurosymbolic proving
	Slide 53
	Slide 54
	Slide 55: AI for mathematicians
	Slide 56: AI for mathematicians
	Slide 57: AI for mathematicians
	Slide 58: AI for mathematicians
	Slide 59: AI for mathematicians
	Slide 60
	Slide 61
	Slide 62: Trying it Out
	Slide 63: Trying it out
	Slide 64: Conclusions
	Slide 65: Conclusions
	Slide 66: Conclusions
	Slide 67

