
Machine Learning and Neural AI

Jeremy Avigad

Department of Philosophy

Department of Mathematical Sciences

Carnegie Mellon University

Institute for Computer-Aided Reasoning in Mathematics

October 16, 2025



Overview



AI for mathematics

AI for Math

Symbolic 
Methods

Automated 
Theorem Proving

Interactive 
Theorem Proving

Machine 
Learning



Some applications I know of:

• finding patterns in computational data

• finding combinatorial objects

• learning about PDEs

• finding expressions

• finding formal proofs

• finding informal proofs

These rely on mixtures of supervised, unsupervised, and reinforcement learning, 

and more.

Applications to mathematics



Key approaches:

• Supervised learning: the system is presented with (input, output) pairs and 

learns a rule connecting them.

• Unsupervised learning: the system is presented with data and learns some 

sort of structure.

• Reinforcement learning: the system acts in a space and is rewarded 

accordingly; it learns to maximize rewards.

Models can be very simple (linear regression, decision trees) to very complex 

(neural networks).

Machine learning



• A model has and architecture and 

lots of parameters.

• It computes a nonlinear function 

of the inputs.

• The outputs are compared to 

expected values.

• Discrepancies are evaluated by a 

loss function.

• The system learns to minimize the 

loss.

Supervised learning with a neural network

Modelinput output

expected



• The interaction is between an agent and an 

environment.
• The agent gets information from the 

environment.

• The agent chooses an action from an action 
space.

• The environment changes; ultimately the 

agent gets a reward.

• The agent learns to maximize the reward
• possibly by learning a value function.

• possibly by learning a policy.

Reinforcement learning



Train a model on a lot of data.

Given a sequence of tokens, what is likely to come next?

It was a dark and stormy ________

Generative AI samples from the distribution.

Can models learn to generate proofs this way?

Large language models



Supervised learning:

• the internet

• computation

• databases

Reinforcement learning:

• games

• the real world

• computation

Where does the data come from?



History



• In his 1950 paper, “Computing machinery and intelligence,” Alan Turing 

discusses both symbolic and machine-learning approaches.

• Machine learning approaches were presented at the Dartmouth Summer 

Research Project on Artificial Intelligence in 1956.

• Research was ongoing in the latter half of the twentieth century.

• 1990s: rise of big data

• 2012: AlexNet, a neural network, wins the ImageNet Large Scale Visual 

Recognition Challenge

• 2016: AlphaGo beats Lee Sedol in a five-game match

• 2022: ChatGPT released

A brief history



Discovering Patterns in 
Computational Data



Knot theorists assign algebraic, geometric, and numeric invariants.

Working with Google DeepMind, András Juhász and Marc Lackenby studied:

• hyperbolic invariants

• algebraic invariants

A supervised learning model was able to learn to predict an algebraic invariant, 𝜎 𝑘 ,

from a collection of hyperbolic invariants.

Sensitivity analysis reduced the dependency to three quantities, 𝑅𝑒 𝜇 , 𝐼𝑚 𝜇 , and λ.

Discovering patterns in knot invariants



Based on the data, and further experimentation, they conjectured and then 

proved a theorem:

Theorem. There exists a constant c such that, for any hyperbolic knot 𝐾, 

2𝜎 𝐾 − 𝑠𝑙𝑜𝑝𝑒 𝐾 ≤ 𝑐 v𝑜𝑙 𝐾 𝑖𝑛𝑗 𝐾 −3.

Discovering patterns in knot invariants





In 2020, Yang-Hui He, Kyu-Hwan Lee, and Thomas Oliver used machine learning 

algorithms on data associated with elliptic curves over the finite fields with 𝑝

elements, with 𝑝 prime.

They determined that a simple logistical regression model could predict the rank 

of 𝑟𝐸 from the Frobenius traces 𝑎𝑝 𝐸 = 𝑝 + 1 –𝑁𝑝, where 𝑁𝑝 is the number of 

rational points on the curve.

The prediction matches the Birch-Swinnerton-Dyer conjecture.

Discovering patterns in number theory



In 2022, Lee asked an undergraduate 

student, Alexey Pozdnyakov, to study 

the data.

Pozdnyakov used elementary data 

analysis methods and discovered a 

pattern separating rank 0 and rank 1 

curves as a function of 𝑝.

Discovering patterns in number theory



The pattern was dubbed a “murmuration” phenomenon.

Drew Sutherland at MIT used the LMFDB to confirm the pattern with a lot more 

data.

In 2023, Nina Zubrilina, a student of Peter Sarnak, derived a formula that explains 

the phenomenon.

Pozdnyakov has provided Python notebooks online that reproduce the analysis. 

You can easily run them in Colab.

Discovering patterns in number theory

https://github.com/Alexey-Pozdnyakov/MLNTdemo






Computing complex 
data



Neural networks learn from data.

Physical data is often constrained to satisfy partial differential equations, solutions 

to which are hard to compute.

PINNs build-in PDE constraints. They can then learn from and predict data subject 

to physical constraints.

This is an important new field in scientific computation.

Physics-informed neural networks



PINNs can be used to compute approximate numeric solutions to PDEs.

They have been used to find detect singularities that are then confirmed by 

conventional methods.

Google DeepMind is going after a Clay Millenium Prize and hoping to find unstable 

singularities in the Navier-Stokes equations.

Studying PDEs







Finding mathematical 
objects



One can use supervised learning with synthetic data to find expressions with 

verifiable properties.

• antiderivatives

• Lyapunov functions

The challenge is to generate data with a representative distribution.

Finding mathematical objects







Methods of finding combinatorial objects: 

• use reinforcement learning

• use transformers + local search

• evolve code

• AlphaEvolve

• OpenEvolve

• Shinka-Evolve

Finding mathematical objects

https://github.com/codelion/openevolve
https://github.com/codelion/openevolve
https://github.com/codelion/openevolve
https://github.com/codelion/openevolve
https://sakana.ai/shinka-evolve/
https://sakana.ai/shinka-evolve/
https://sakana.ai/shinka-evolve/
https://sakana.ai/shinka-evolve/








Interlude



It’s not surprising that machine learning can act on symbolic and numeric data and 

find and construct finite objects and expressions.

Can it do real mathematics?

Mathematics is encoded in expressions. We can compute with definitions, 
statements, and proofs.

At one extreme, machine learning can act on formal libraries and data.

Intermediate encodings and representations are likely to be useful. 

Skepticism



Machine Learning 
and Formal Methods



If you are trying to get a neural system to do math, there are some choices to 

make.

What should the system do?

• Search: find theorems and definitions

• Autoformalize: given an informal definition / proof, formalize it

• Prove: construct formal or informal proofs

• Conjecture: guess potentially useful statements and objects

These are all interrelated.

Generalities



Should you use formal or informal data?

• There is a lot more informal mathematics out there.

• Proof assistants provide a clear signal for correctness.

You can use both, e.g.:

• translate formal to informal, sketch a proof, use chain of thought, then 

formalize

• translate informal to formal, search with a proof assistant, translate back

Generalities



Distinguish between:

• Training: how to you train the system?

• Task: when it comes time to perform, what does the system do?

The is no fine line between them. Given an IMO problem, AlphaProver makes up 

similar, possibly simpler problems, tries to solve them, and learns from the results. 

Generalities



How are you going to evaluate success?

• for training and tuning

• to justify publication

Some benchmarks:

• MiniF2F: formalized high school problems

• ProofNet: college textbook exercises

• PutnamBench: Putnam problems

• FrontierMath: challenging problems with numerical answers

Generalities



If a system is learning by exploring, you need a local measure of success:

• numeric score

• approval from a proof assistant

• evaluation approval from a model

Asking humans to judge and provide feedback is too expensive.

Generalities



Where will you get data?

• scrape it from the web

• scrape it from specific databases

• generate data yourself

• use symbolic methods

• use another model

Generating it manually is generally too expensive.

Generalities



Strategies for theorem proving:

• whole proof generation
• iteration on error messages
• line-by-line generation
• sketch / refine

Strategies for boosting performance:

• Pass@k: generate several answers, take the best one
• Expert iteration: use the best answers to retrain, iterate
• Tree search: generate multiple options at each step, take the best ones
• Backtracking: use successes and failures to revisit earlier choices
• Chain of Thought: prompt / train the model to generate informal reasoning steps
• Brute force: use more computation.

Generalities



Once you get anything to work, find optimal settings of parameters.

• Parameter sweep is often too expensive.

• Use local search as due diligence.

Perform ablations: turn off features and components one by one to determine 

their effects.

An ML paper needs:

• an idea (only one!)
• an experimental setup

• evaluation

Making it science



Search and retrieval



Thomas Zhu, Joshua Clune, Albert Jiang, Sean Welleck, and I have developed a 

neural premise selector for Lean, using methods introduced in Mikuła et al., 

“Magnushammer: A Transformer-Based Approach to Premise Selection.”

Method:

• Collect positive and negative instances of (goal, premise) pairs.

• Use a transformer model and embed both into the same latent space.

• Nudge positive instances closer, negative instances further. 

Include information like docstrings, namespaces.

Premise selection





LeanSearch similarly uses variations on existing retrieval methods to match 

informal queries with formal content.

LeanSearch







Proving



New proving systems are announced regularly, with new benchmark results in the 

abstract and long lists of authors. (SOTA = “state of the art.”)

They come from industry and academia, and they implement various among the 

general strategies I described.

Some are closed source, some are open source, and some are open weight.

I don’t have time to survey the field, but a graph from the recent Seed-Prover 

paper describes the SOTA two months ago.

Neurosymbolic proving







AI for 
mathematicians



There is a tension between:

• doing ML research

• developing useful tools

See:

• Jason Rute, The Last Mile.

• A, AI for Mathematicians.

AI for mathematicians

https://aitp-conference.org/2024/slides/JR.pdf
https://www.andrew.cmu.edu/user/avigad/Talks/ai4mathematicians.pdf


Possible roles:

• Expert colleague: answers questions and makes suggestions

• Copilot: helps you write a proof
• Grad student: proves your lemmas for you

• Collaborator: proves some of the theorems in your next paper

• Competitor: proves theorems you wish you could prove

Variables:

• How long does it take to get an answer?
• How much compute is needed?

• How much does it cost?

AI for mathematicians



How long will it take before we can all use such tools?

Commercial foundation models already know about Lean. You can use Microsoft 

Copilot, Claude Sonnet, etc.

Several academic researchers are working on custom tools, provers, and copilots.

AI for mathematicians



Some corporate entities will soon have end-user tools:

• Harmonic: has released an API for its Aristotle prover.

• Math Inc.: intends to make Gauss available.

• Google DeepMind: promised to make a version of AlphaProof available.

Things are moving quickly.

AI for mathematicians







Trying it Out



• You can run Andrew Pozdnyakov’s remarkable tutorial in a Colab notebook.

• See Sean Welleck’s transformer tutorials, based on similar tutorials by Adam 

Wagner.

• Open-source tools OpenEvolve and ShinkaEvolve are available online.

• Commercial foundation models and copilots know about Lean.

• You can find the projects, papers, and announcements discussed here online.

Trying it out

https://github.com/Alexey-Pozdnyakov/MLNTdemo
https://github.com/wellecks/transformers4math-simons
https://github.com/codelion/openevolve
https://sakana.ai/shinka-evolve/


Conclusions



We have considered:

• formalization and proof assistants

• automated reasoning and symbolic AI

• machine learning and neural AI

The intersections, interactions, and synergies are especially interesting.

They are already beginning to play a role in mathematical discovery and 

verification.

Conclusions



The technology is young, and we still have a lot to learn about how to use it well.

We need:

• exploration and experimentation 

• collaborations between mathematicians and computer scientists.

• collaborations between generations.

• thoughtful discussion.

We hope to support all this with the new Institute for Computer-Aided Reasoning 

in Mathematics.

Conclusions



This is an exciting time for mathematics. Let’s make the most of it.


	Slide 1: Machine Learning and Neural AI
	Slide 2: Overview
	Slide 3: AI for mathematics
	Slide 4: Applications to mathematics
	Slide 5: Machine learning
	Slide 6: Supervised learning with a neural network
	Slide 7: Reinforcement learning
	Slide 8: Large language models
	Slide 9: Where does the data come from?
	Slide 10: History
	Slide 11: A brief history
	Slide 12: Discovering Patterns in Computational Data
	Slide 13: Discovering patterns in knot invariants
	Slide 14: Discovering patterns in knot invariants
	Slide 15
	Slide 16: Discovering patterns in number theory
	Slide 17: Discovering patterns in number theory
	Slide 18: Discovering patterns in number theory
	Slide 19
	Slide 20
	Slide 21: Computing complex data
	Slide 22: Physics-informed neural networks
	Slide 23: Studying PDEs
	Slide 24
	Slide 25
	Slide 26: Finding mathematical objects
	Slide 27: Finding mathematical objects
	Slide 28
	Slide 29
	Slide 30: Finding mathematical objects
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Interlude
	Slide 35: Skepticism
	Slide 36: Machine Learning and Formal Methods
	Slide 37: Generalities
	Slide 38: Generalities
	Slide 39: Generalities
	Slide 40: Generalities
	Slide 41: Generalities
	Slide 42: Generalities
	Slide 43: Generalities
	Slide 44: Making it science
	Slide 45: Search and retrieval
	Slide 46: Premise selection
	Slide 47
	Slide 48: LeanSearch
	Slide 49
	Slide 50
	Slide 51: Proving
	Slide 52: Neurosymbolic proving
	Slide 53
	Slide 54
	Slide 55: AI for mathematicians
	Slide 56: AI for mathematicians
	Slide 57: AI for mathematicians
	Slide 58: AI for mathematicians
	Slide 59: AI for mathematicians
	Slide 60
	Slide 61
	Slide 62: Trying it Out
	Slide 63: Trying it out
	Slide 64: Conclusions
	Slide 65: Conclusions
	Slide 66: Conclusions
	Slide 67

