
Automated Reasoning and Symbolic AI

Jeremy Avigad

Department of Philosophy

Department of Mathematical Sciences

Carnegie Mellon University

Institute for Computer-Aided Reasoning in Mathematics

October 15, 2025



Overview



AI for mathematics

AI for Math

Symbolic 
Methods

Automated 
Theorem Proving

Interactive 
Theorem Proving

Machine 
Learning



Two types of logic-based reasoning algorithms:

• Decision procedures: 

• Q: Is X true? Is X provable?
• return yes or no

• Search procedures: 

• Q: Is X true? Is X provable?
• Search for justification for a "yes" answer

Decision procedures can be very inefficient. Undecidability sets in quickly.

In practice, systems can say “yes,” “no,” “I don’t know,” or run forever.

Automated reasoning



A propositional formula is

• Valid (a tautology) if it is true under every truth assignment

• Satisfiable if it is true under some truth assignment

• Unsatisfiable if is it false under every truth assignment

Propositional logic

𝑷 𝑸 𝑷 → 𝑸 𝑷 → 𝑸 ∧ 𝑸 𝑷 → 𝑸 ∧ 𝑸 → 𝑷

T T T T T

T F F F T

F T T T F

F F T F T



Propositional logic is decidable (in fact, NP-complete).

Modern SAT solvers can decide industrial formulas with tens of millions of 

variables and hundreds of millions of clauses, often in minutes.

If the formula is satisfiable, you get a satisfying assignment. If the formula is 
unsatisfiable, you get an independently checkable proof.

Recipe for mathematics:

• Encode / reduce a problem to a SAT problem.
• Use a SAT solver.

Propositional logic



Adds quantifiers:

𝐸𝑣𝑒𝑛 𝑥 ≡ ∃𝑦 𝑥 = 𝑦 + 𝑦

𝑃𝑟𝑖𝑚𝑒 𝑥 ≡ 𝑥 ≥ 2 ∧ ∀𝑦 > 0 𝑦|𝑥 → 𝑦 = 1 ∨ 𝑦 = 𝑥

𝐺𝑜𝑙𝑑𝑏𝑎𝑐ℎ ≡ ∀𝑥 (𝐸𝑣𝑒𝑛(𝑥) ∧ 𝑥 > 2 → ∃𝑦, 𝑧 (𝑃𝑟𝑖𝑚𝑒(𝑦) ∧ 𝑃𝑟𝑖𝑚𝑒(𝑧) ∧ 𝑥 = 𝑦 + 𝑧)

The family of questions "Is X provable from axioms A?" is generally equivalent to the 
halting problem.

The family of questions "Is X true?" is generally even more undecidable.

First-order logic



Other decidable problems:

• real linear arithmetic (with equations and inequalities)

• integer linear arithmetic
• real closed fields

• algebraically closed fields

Equivalent to the halting problem:

• provability in first-order logic (without axioms)

• provability from axioms that include some basic arithmetic
• provability from axioms that are consistent with an interpretation of 

arithmetic

Decidability and undecidability



Three important families:

• SAT solvers: decision procedures for propositional logic

• First-order provers: search procedures for proofs in first-order logic
• SMT solvers: combine decision procedures 

• propositional logic

• equational logic
• linear integer arithmetic
• linear real arithmetic

with some search as well

SMT solvers play an important role in software verification.

Automation



History



Early contributions:

• Martin Davis implemented Presburger's decision procedure at the IAS in 1954.

• Allen Newell, Herbert Simon, and Cliff Shaw introduced the Logic Theorist in 

1956.

• Hao Wang implemented good provers for propositional and predicate logic in 

1958.

• Henry Gelernter, J. R. Hansen, and Donald Loveland published an article on the 

Geometry Machine in 1960.

• Davis and Hilary Putnam introduced the propositional resolution rule in 1960.

• John Alan Robinson introduced a unification algorithm in 1965.

Origins of automated reasoning



The first incompleteness theorem applies to any consistent, computably 

axiomatized theory containing basic arithmetic.

Gödel, 1931: The theorem “is not in any way due to the special nature of the 

systems that have been set up, but holds for a wide class of formal systems; 

among these, in particular, are all systems that result from the two just mentioned 

through the addition of a finite number of axioms…”

He gave a tentative definition of computability at the IAS in 1932.

Origins of automated reasoning



After Turing's 1936 paper, he added this footnote:

“In consequence of later advances, in particular of the fact that, due to A. M. 

Turing's work, a precise and unquestionably adequate definition of the general 

concept of a formal system can now be given, the existence of undecidable 

arithmetical propositions and the non-demonstrability of the consistency of a 

system in the same system can now be proved rigorously for every consistent 

formal system containing a certain amount of finitary number theory.”

Origins of automated reasoning



More connections to automated reasoning:

• Turing presented his definition of computability in 1936 with a negative solution to 
the Entscheidungsproblem.

• He also noted that incompleteness follows from undecidability, because one can 
computably search for proofs.

• Church gave another proof of the undecidability of arithmetic in 1936.
• Kleene was also keenly interested in logic and foundations.

The origins of decision procedures are even earlier:

• In 1915, Löwenheim proved the decidability of monadic first-order logic.
• Presburger presented his decision procedure for arithmetic in 1929.
• Tarski had a decision procedure for real closed fields in 1930.

Origins of automated reasoning



SAT Solvers



SAT solvers accept formulas in Conjunctive Normal Form (CNF), such as:

𝑃 ∧

¬𝑃 ∨ 𝑄 ∧

¬𝑄 ∨ 𝑅 ∧

¬𝑅

Any propositional is equivalent to one in CNF, and equisatisfiable with one in CNF 
that is not much longer.

This particular formula is UNSAT.

SAT solvers



Theorem (Ramsey). For every c and 𝑘, there is an 𝑛 large enough, such that for 

every 𝑐-coloring of the edges of the complete graph on 𝑛 vertices, there is a 

monochromatic clique of size 𝑘.

Fix 𝑐 and 𝑛. To describe a 𝑐-coloring of the edges, use variables 𝑃𝑖,𝑗,𝑢, where 𝑖 <

𝑗 < 𝑛, which says that the edge from 𝑖 to 𝑗 gets color 𝑢.

• Every edge gets a color: ڀ𝑢𝑃𝑖,𝑗,𝑢 for each 𝑖 < 𝑗.

• No edge gets more than one color: ¬𝑃𝑖,𝑗,𝑢 ∨ ¬𝑃𝑖,𝑗,𝑣 for 𝑢 ≠ 𝑣.

• No monochromatic clique: ڀ𝑖,𝑗 ∈ C¬𝑃𝑖,𝑗,𝑢 for each clique of size 𝑘.

Ramsey’s theorem



Theorem (Erdős and Szekeres, 1935). For any 𝑘

there is an 𝑛 large enough such that any 𝑛 points 
in general position (no three colinear) contain a 

convex 𝑘-gon.

Let 𝑓 𝑘 be the least such 𝑛.

Then, for example, 𝑓 4 = 5.

We know 𝑓 5 = 9. and 𝑓 6 = 17. The value of 

𝑓 7 is not known.

The happy ending problem



There are infinite sets of points in general position with no empty 7-gon.

But Heule and Scheucher recently showed that every set of 30 points contains an 

empty hexagon, and this is sharp.

Empty convex polygons





If 𝐺is a group and 𝑅 is a ring, the group ring 𝑅 𝐺 is the ring of expressions

𝑟1𝑔1 +⋯+ 𝑟𝑛𝑔𝑛
where each 𝑟𝑖 ∈ 𝑅, 𝑔𝑖 ∈ 𝐺, with the natural addition and multiplication. 

In his 1940 thesis, Graham Higman conjectured what has become to be known as 

the Kaplansky Unit Conjecture: if 𝐺 is torsion-free and 𝐾 is a field, then 𝐾 𝐺 has 

no nontrivial units.

In an Annals paper in 2021, Giles Gardam provided a counterexample. He used a 

SAT solver to find it.

Units in group rings







SAT solvers are good at

• ruling out finite configurations

• finding finite objects (often counterexamples)

Doesn’t this limit their utility for doing real mathematics?

Response: they provide very general means of efficient combinatorial search.

We need to learn how to use them for infinitary problems and constructions.

Objection



SAT and ITP



Steps:

• Reduce a mathematical problem to a combinatorial problem

• Encode the combinatorial problems as a SAT problem
• Use clever ideas to break symmetries and reduce the search space.

• Run a SAT solver
• SAT result: translate back to mathematical object

• UNSAT: declare "the theorem is true"

Should mathematicians trust this?

It helps that SAT solvers can emit independently checkable proofs, and there are 

verified proof checkers for several formats.

Verifying SAT results



Recall Keller’s conjecture from the first lecture.

Joshua Clune verified the pen-and-paper reduction of the geometric problem to a 
graph-theoretic problem, in Lean 3.

James Gallicchio:

• Reproved the reduction in Lean 4.
• Verified the translation of the graph-theoretic statement to a SAT formula in Lean 

4, including symmetry-breaking reductions.
• Encoded additional symmetry-breaking rules in a proof format known as SR.

• Used an SR checker, verified in Lean 4 by Cayden Codel, to verify proofs generated 

by a SAT solver.

Keller’s conjecture



The verification of the claim that every set of 30 points in general position 

required clever encodings of the geometric data and symmetry breaking.

Every triple of points gives rise to an orientation (turn left / turn right) and the 

solution involves ruling out configurations based on properties of orientations.

The symmetry-breaking is equally complex.

The reduction of the problem to a SAT formula was verified in Lean by Bernardo 
Subercaseaux, Wojciech Nawrocki, James Gallicchio, Cayden Codel, Mario 

Carneiro, and Marijn Heule.

The empty hexagon problem







First-order provers



In 1996, William McCune used an equational theorem prover to prove the Robbins 

conjecture, which states that a certain system of equations axiomatizes Boolean 

algebras. 

McCune showed that 𝑤 𝑥−1𝑤 −1𝑧 𝑦𝑧 −1𝑦 = 𝑥 axiomatizes groups.

Kenneth Kunen showed that this is the shortest such axiom.

In the 90s and 00s, people used first-order provers to study exotic structures like 

loops and quasigroups.

Early applications





There are 4694 equations between terms involving at most four instances of a 

binary operator.

Associativity is one example: (x ⋄ y) ⋄ z = x ⋄ (y ⋄ z).

On September 24, 2024, Terence Tao launched the equational theories project to 

determine all entailments between them. (Later also: in finite structures.) 

• Each entailment required proof.

• Non-entailment required countermodels.

• Everything had to be verified in Lean.

The Equational Theories Project





Notable features of the project:

• It was a large-scale collaboration.

• It included amateur mathematicians, computer scientists.

• It used a lot of automation, including Vampire, Duper, Aesop, Prover9, Mace4, 

Z3, and Egg.

• It yielded interesting new ideas, methods, insights, and results.

The Equational Theories Project





First-order provers are good at logic puzzles.

You can find many of them in the TPTP (Thousands of Problems for Theorem 

Provers) library.

In 2022, Marijn Heule, Wojciech Nawrocki, and I asked students in our course, 

Logic and Mechanized Reasoning, to code up some of Smullyan’s logic puzzles in 

Lean and send them to Vampire.

Logic puzzles





Smullyan proved that in the last asylum, all the doctors are insane and all the 

patients are insane.

Using Vampire, we showed that the assumptions are inconsistent: there is no such 

asylum.

We published an article, “An Impossible Asylum,” in the American Mathematical 

Monthly.

In a follow-up article, “A Possible Asylum,” Bogaerts showed that if “any two” 

means “any distinct two,” there are such asylums with exactly one patient.

Logic puzzles



Automated Reasoning 
and Interactive 

Theorem Proving



Disappointingly, outside of SAT solvers, the automated reasoning tools I have 

described have had almost no impact on mathematics.

They have had an impact on the formalization of mathematics:

• Decision procedures like linear arithmetic and linear integer arithmetic are 

commonly implemented in proof assistants.

• First-order theorem provers and SMT solvers are a key component of 

sledgehammer technology.

ATP and ITP



The task: given some hypotheses, and a conclusion, and a library with tens of 
thousands of theorems, construct a formal proof.

The approach:

• Use heuristics to extract a small set of promising premises from the library.
• Translate the problem to the language of one or more ATPs.
• Call external provers to prove the goal.
• If any succeeds, harvest information about the proof (possibly only the premises 

used).
• Use the information to reconstruct a proof internally. 

The most successful one to date is Isabelle’s Sledgehammer, originally developed by 
Larry Paulson and Jia Meng (c. 2006), and later by Jasmin Blanchette and many others.

Sledgehammers



There are variations at every step:

• One can use symbolic heuristics, lightweight ML, or neural methods for 

premise selection.

• One can use various methods of translation.

• One can use first-order provers or SMT solvers as external provers.

• One can harvest various types of information.

• One can use different methods of proof reconstruction.

The next slide shows the hammer web page for Isabelle 2009.

Sledgehammers





Isabelle uses a foundational framework known as simple type theory.

Lean uses a foundational framework known as dependent type theory.

I have long argued that the latter is necessary for the kinds of algebraic reasoning 
that is essential to modern mathematics.

The greater distance from first-order logic, however, makes sledgehammer-type 

automation more complicated.

We are making progress, however.

A sledgehammer for dependent type theory



Our LeanHammer prototype uses the following:

• Premise selection: use a neural premise selector (Zhu, Clune, A, Jiang, Welleck) 

and an implementation of the Meng-Paulson symbolic heuristic by Kim 

Morrison

• Translation: use a monomorphization procedure, Lean-auto (Qian, Clune, 

Barrett, A)

• External provers: Zipperposition, cvc5

• Reconstruction: use Duper (Clune, Qian, Bentkamp, A) and Aesop (Limperg, 

From), or Lean-SMT (Mohamed, Mascarenhas, Khan, Barbosa, Reynolds, Qian, 

Tinelli, Barrett

A sledgehammer for dependent type theory



Josh Clune, Haniel Barbosa, and I are working on an alternative approach to proof 

reconstruction for cvc5:

• cvc5 reports theory-specific facts it used.

• These are proved by domain-specific automation like Grind and assembled by 

Duper.

Chase Norman is working on the Canonical prover:

• It’s a complete search algorithm for dependent type theory.

• He has added monomorphization and domain-specific components.

• We are exploring the use of machine learning.

Other automation for Lean



We use:

• simp: equational simplification

• linarith: linear real arithmetic
• omega: linear integer arithmetic

• ring: equational reasoning in rings
• aesop: a tableaux prover

• norm-num: numeric computation

These are all modeled after automation that has long been available in Isabelle and 
other systems.

A new Lean tactic, grind, combines and subsumes many of these.

Small-scale automation in Lean



Lean is its own metaprogramming language, making it possible for users to add 

their own automation. 

Mathlib has:

• mono: for proving inequalities for using monotonicity properties

• positivity: for dispelling side conditions involving sign

• gcongr: for chaining inequalities with compound expressions

• continuity: for establishing continuity

• fun_prop: for proving continuity, measurability, differentiability, etc.

• finiteness: for proving t ≠ ∞ in e.g. the extended reals.

Small-scale automation in Lean



Currently, small-scale automation is used everywhere in Mathlib.

The sledgehammer and AI provers and copilots are getting better.

A sledgehammer is an example of neurosymbolic reasoning:

• a neural network finds relevant premises

• symbolic automation fills in small proofs

Other combinations are possible; see the next lecture.

Combination with machine learning



Trying it out



• Take a look at Bernardo Subercaseaux’s SAT For Mathematics web pages, with

• a bibliography of applications of SAT solvers to mathematics

• tutorials you can run in Colab notebooks.

• You can play the SAT game online.

• Take a look at the TPTP (Thousand of Problems of Theorem Provers) pages and 

SMTLib pages.

• You can find the Equational Theories Project and other projects discussed here 

online.

• The Logic and Mechanized Reasoning course will let you call automation from 

within Lean.

Trying it out

https://sat4math.com/
http://www.cs.utexas.edu/~marijn/game/
https://www.tptp.org/
https://smt-lib.org/
https://teorth.github.io/equational_theories/
https://github.com/avigad/lamr


Conclusions



We have explored different uses of symbolic automation:

• discovering new mathematics

• verifying mathematics

The impact on mathematics have been minimal so far, but I think that will change.

Symbolic automation can be used synergistically with machine learning.

The tools are accessible.

We have a lot to learn.

Conclusions


	Slide 1: Automated Reasoning and Symbolic AI
	Slide 2: Overview
	Slide 3: AI for mathematics
	Slide 4: Automated reasoning
	Slide 5: Propositional logic
	Slide 6: Propositional logic
	Slide 7: First-order logic
	Slide 8: Decidability and undecidability
	Slide 9: Automation
	Slide 10: History
	Slide 11: Origins of automated reasoning
	Slide 12: Origins of automated reasoning
	Slide 13: Origins of automated reasoning
	Slide 14: Origins of automated reasoning
	Slide 15: SAT Solvers
	Slide 16: SAT solvers
	Slide 17: Ramsey’s theorem
	Slide 18: The happy ending problem
	Slide 19: Empty convex polygons
	Slide 20
	Slide 21: Units in group rings
	Slide 22
	Slide 23
	Slide 24: Objection
	Slide 25: SAT and ITP
	Slide 26: Verifying SAT results
	Slide 27: Keller’s conjecture
	Slide 28: The empty hexagon problem
	Slide 29
	Slide 30
	Slide 31: First-order provers
	Slide 32: Early applications
	Slide 33
	Slide 34: The Equational Theories Project
	Slide 35
	Slide 36: The Equational Theories Project
	Slide 37
	Slide 38: Logic puzzles
	Slide 39
	Slide 40: Logic puzzles
	Slide 41: Automated Reasoning and Interactive Theorem Proving
	Slide 42: ATP and ITP
	Slide 43: Sledgehammers
	Slide 44: Sledgehammers
	Slide 45
	Slide 46: A sledgehammer for dependent type theory
	Slide 47: A sledgehammer for dependent type theory
	Slide 48: Other automation for Lean
	Slide 49: Small-scale automation in Lean
	Slide 50: Small-scale automation in Lean
	Slide 51: Combination with machine learning
	Slide 52: Trying it out
	Slide 53: Trying it out
	Slide 54: Conclusions
	Slide 55: Conclusions

