Automated Reasoning and Symbolic Al

Jeremy Avigad
Department of Philosophy
Department of Mathematical Sciences
Carnegie Mellon University

Institute for Computer-Aided Reasoning in Mathematics

October 15, 2025

Overview

Al for mathematics

Al for Math

Formalization Symbolic Machine

Methods Learning

Symbolic Machine Automated

gutomaped Learning Theorem Proving
easoning

Interactive
Theorem Proving

Automated reasoning

Two types of logic-based reasoning algorithms:

e Decision procedures:
e Q:ls Xtrue? Is X provable?
e return yes or no
e Search procedures:
e Q:ls Xtrue? Is X provable?
e Search for justification for a "yes" answer

Decision procedures can be very inefficient. Undecidability sets in quickly.

n

In practice, systems can say “yes,” “no,” “l don’t know,” or run forever.

Propositional logic

A propositional formula is

* Valid (a tautology) if it is true under every truth assignment
e Satisfiable if it is true under some truth assignment
* Unsatisfiable if is it false under every truth assignment

(P->Q1Q (P>QAQ-P
T T
F T

T F

Propositional logic

Propositional logic is decidable (in fact, NP-complete).

Modern SAT solvers can decide industrial formulas with tens of millions of
variables and hundreds of millions of clauses, often in minutes.

If the formula is satisfiable, you get a satisfying assignment. If the formula is
unsatisfiable, you get an independently checkable proof.

Recipe for mathematics:

* Encode / reduce a problem to a SAT problem.
e Use a SAT solver.

First-order logic

Adds quantifiers:
Even(x) =3y(x =y +7y)
Prime(x) =x =2 2AVy>0(ylx > y=1Vy =1x)
Goldbach = Vx (Even(x) Ax > 2 — 3y,z (Prime(y) APrime(z) Ax =y + z)

The family of questions "Is X provable from axioms A?" is generally equivalent to the
halting problem.

The family of questions "Is X true?" is generally even more undecidable.

Decidability and undecidability

Other decidable problems:

real linear arithmetic (with equations and inequalities)
integer linear arithmetic

real closed fields

algebraically closed fields

Equivalent to the halting problem:

e provability in first-order logic (without axioms)

e provability from axioms that include some basic arithmetic

e provability from axioms that are consistent with an interpretation of
arithmetic

Automation

Three important families:

e SAT solvers: decision procedures for propositional logic
* First-order provers: search procedures for proofs in first-order logic
e SMT solvers: combine decision procedures

e propositional logic

e equational logic

* linear integer arithmetic

* linear real arithmetic

with some search as well

SMT solvers play an important role in software verification.

History

Origins of automated reasoning

Early contributions:

Martin Davis implemented Presburger's decision procedure at the IAS in 1954.
Allen Newell, Herbert Simon, and Cliff Shaw introduced the Logic Theorist in
1956.

Hao Wang implemented good provers for propositional and predicate logic in
1958.

Henry Gelernter, J. R. Hansen, and Donald Loveland published an article on the
Geometry Machine in 1960.

Davis and Hilary Putnam introduced the propositional resolution rule in 1960.
John Alan Robinson introduced a unification algorithm in 1965.

Origins of automated reasoning

The first incompleteness theorem applies to any consistent, computably
axiomatized theory containing basic arithmetic.

Godel, 1931: The theorem “is not in any way due to the special nature of the
systems that have been set up, but holds for a wide class of formal systems;
among these, in particular, are all systems that result from the two just mentioned
through the addition of a finite number of axioms...”

He gave a tentative definition of computability at the IAS in 1932.

Origins of automated reasoning

After Turing's 1936 paper, he added this footnote:

“In consequence of later advances, in particular of the fact that, due to A. M.
Turing's work, a precise and unquestionably adequate definition of the general
concept of a formal system can now be given, the existence of undecidable
arithmetical propositions and the non-demonstrability of the consistency of a
system in the same system can now be proved rigorously for every consistent
formal system containing a certain amount of finitary number theory.”

Origins of automated reasoning

More connections to automated reasoning:

Turing presented his definition of computability in 1936 with a negative solution to
the Entscheidungsproblem.

He also noted that incompleteness follows from undecidability, because one can
computably search for proofs.

Church gave another proof of the undecidability of arithmetic in 1936.
Kleene was also keenly interested in logic and foundations.

The origins of decision procedures are even earlier:

* In 1915, Léwenheim proved the decidability of monadic first-order logic.
* Presburger presented his decision procedure for arithmeticin 1929.
* Tarski had a decision procedure for real closed fields in 1930.

SAT Solvers

SAT solvers

SAT solvers accept formulas in Conjunctive Normal Form (CNF), such as:

P A
(=PVQ) A
(mQ VR) A

—-R

Any propositional is equivalent to one in CNF, and equisatisfiable with one in CNF
that is not much longer.

This particular formula is UNSAT.

Ramsey’s theorem

Theorem (Ramsey). For every c and k, there is an n large enough, such that for
every c-coloring of the edges of the complete graph on n vertices, thereis a

monochromatic clique of size k.

Fix c and n. To describe a c-coloring of the edges, use variables P; ; ,,, where i <
J < mn, which says that the edge from i to j gets color wu.

* Every edge gets a color: V,, P; j,, foreachi <.
* No edge gets more than one color: =P; j,, V =P j, foru # v.

* No monochromatic clique: V; j ¢ ¢ =P; j, for each clique of size k.

The happy ending problem

Theorem (Erdés and Szekeres, 1935). For any k
there is an n large enough such that any n points
in general position (no three colinear) contain a
convex k-gon.

Let f(k) be the least such n.
Then, for example, f(4) = 5.

We know f(5) = 9. and f(6) = 17. The value of
f(7) is not known.

Empty convex polygons

There are infinite sets of points in general position with no empty 7-gon.

But Heule and Scheucher recently showed that every set of 30 points contains an

empty hexagon, and this is sharp.

Search...

= I‘le > cs > arXiv:2403.00737

Computer Science > Computational Geometry

[Submitted on 1 Mar 2024]
Happy Ending: An Empty Hexagon in Every Set of 30 Points
Marijn J.H. Heule, Manfred Scheucher

Satisfiability solving has been used to tackle a range of long-standing open math problems in
recent years. We add another success by solving a geometry problem that originated a century ago.
In the 1930s, Esther Klein's exploration of unavoidable shapes in planar point sets in general
position showed that every set of five points includes four points in convex position. For a long
time, it was open if an empty hexagon, i.e., six points in convex position without a point inside,
can be avoided. In 2006, Gerken and Nicolas independently proved that the answer is no. We
establish the exact bound: Every 30-point set in the plane in general position contains an empty
hexagon. Our key contributions include an effective, compact encoding and a search-space
partitioning strategy enabling linear-time speedups even when using thousands of cores.

Units in group rings

If Gis a group and R is a ring, the group ring R[G] is the ring of expressions

"ng1+ ot hmdn
where each 1; € R, g; € G, with the natural addition and multiplication.

In his 1940 thesis, Graham Higman conjectured what has become to be known as
the Kaplansky Unit Conjecture: if G is torsion-free and K is a field, then K[G] has
no nontrivial units.

In an Annals paper in 2021, Giles Gardam provided a counterexample. He used a
SAT solver to find it.

A counterexample to the
unit conjecture for group rings

By GILES GARDAM

To the memory of Willem Henskens

Abstract

The unit conjecture, commonly attributed to Kaplansky, predicts that
if K is a field and G is a torsion-free group, then the only units of the
group ring K[G] are the trivial units, that is, the non-zero scalar multiples
of group elements. We give a concrete counterexample to this conjecture;
the group is virtually abelian and the field is order two.

THEOREM A. Let P be the torsion-free group defined by the presentation
(a,b| b ta?b=0a"2, a 1b?a =b"2), and set z = a2,y = b*, 2 = (ab)?. Set

p=(1+z)1+y)(1+2z71), g=z ly t+z+ytz+z,
r=1+z+y 'z+zyz, s=1+(@+a 7 +y+y

Then p + qa + rb + sab is a non-trivial unit in the group ring Fa[P].

Objection

SAT solvers are good at

* ruling out finite configurations
* finding finite objects (often counterexamples)

Doesn’t this limit their utility for doing real mathematics?

Response: they provide very general means of efficient combinatorial search.

We need to learn how to use them for infinitary problems and constructions.

SAT and ITP

Verifying SAT results

Steps:

Reduce a mathematical problem to a combinatorial problem
Encode the combinatorial problems as a SAT problem
Use clever ideas to break symmetries and reduce the search space.
Run a SAT solver

* SAT result: translate back to mathematical object

* UNSAT: declare "the theorem is true"

Should mathematicians trust this?

It helps that SAT solvers can emit independently checkable proofs, and there are
verified proof checkers for several formats.

Keller’s conjecture

Recall Keller’s conjecture from the first lecture.

Joshua Clune verified the pen-and-paper reduction of the geometric problem to a
graph-theoretic problem, in Lean 3.

James Gallicchio:

Reproved the reduction in Lean 4.
Verified the translation of the graph-theoretic statement to a SAT formula in Lean

4, including symmetry-breaking reductions.
Encoded additional symmetry-breaking rules in a proof format known as SR.
Used an SR checker, verified in Lean 4 by Cayden Codel, to verify proofs generated

by a SAT solver.

The empty hexagon problem

The verification of the claim that every set of 30 points in general position
required clever encodings of the geometric data and symmetry breaking.

Every triple of points gives rise to an orientation (turn left / turn right) and the
solution involves ruling out configurations based on properties of orientations.

The symmetry-breaking is equally complex.
The reduction of the problem to a SAT formula was verified in Lean by Bernardo

Subercaseaux, Wojciech Nawrocki, James Gallicchio, Cayden Codel, Mario
Carneiro, and Marijn Heule.

Figure 3 Illustration for o(p,q,7) =1 A o(q,7,8) =1 = o(p,r,s) = 1. As we have assumptions
03 > 62 > 04 by the forward direction of the slope-orientation equivalence, we deduce 03 > 64, and
then conclude o(p,r,s) = 1 by the backward direction of the slope-orientation equivalence.

Y Yy Y

I [I A A
| | | @
| : | 4
| : | @ @
2} . 1 6
o | ° o R 1
T T T > T (4 > T 12 1O a4
I I I 2]
I e ' @ o 1] ® 6
SN O o6
| | (0]
I | |
(a) The original list of points. (b) There always exists a rotation (c) After translating, the leftmost
(in this case by 45°) that makes point is at (0, 0).
all the x-coordinates different.
@ (0, 00) (2] f{ (1) f{
Y
7
(1] 1] (2]
(4) (4] (7]
® g0 ® © Dia © © %?@ ® o
| > T > T I > T

(d) Result after applying the map (e) Point 2 is brought back into (f) Points are relabeled from left
(z,9) — (y/z,1/x). the real plane. to right.

Figure 5 Illustration of the proof of the symmetry breaking theorem. Note that the highlighted
holes are preserved as o-equivalence is preserved. For simplicity we have omitted the illustration of
the Lex order property.

First-order provers

Early applications

In 1996, William McCune used an equational theorem prover to prove the Robbins
conjecture, which states that a certain system of equations axiomatizes Boolean
algebras.

McCune showed that (W((x_lw)"lz)) ((y2z)~'y) = x axiomatizes groups.

Kenneth Kunen showed that this is the shortest such axiom.

In the 90s and 00s, people used first-order provers to study exotic structures like
loops and quasigroups.

TUESDAY, DECEMBER 10, 1996

ors Decide
on Is Key
1ts’ Health

from the hip and lower spine, atrend
that if uncorrected over time could
prevent long space voyages.

Experts say a trip to Mars, a year
or two each way, carries the risk of
leaving an astronaut crippled upon
return. *

“We've learned that’ bone loss
from selected sites on the skeleton is
a problem that we still don’t have a
solution to,”” Dr. Frank M. Sulzman,
director of life science research at
the National Aeronautics and Space
Administration, said in an interview.

But NASA and its advisers say
they are on the verge of finding what
may be a simple way to prevent a
wide range of space illnesses: noth-
ing fancy or high-tech, it boils down
to hard exercise, the orbital equiva-
lent of pumping iron.

Astronauts now tend to do endur-
ance types of exercise, including cy-
cling, rowing and walking on atread-
mill, that stress aerobics and stam-
ina. But a wide consensus is develop-
ing among space physiologists and
NASA officials that this approach is
wrong and needs to be supplemented
by strenuous workouts that increase

Ebe New Pork Sines

’

Built for 2

A new idea for
astronauts, a
tandem cycle,
mimics gravity and
has cams on the

P T R e

CI

With Major Math Proof,
Brute Computers Show
Flash of Reasoning Power

The achievement would
have been called creative
if a human had done it.

By GINA KOLATA

OMPUTERS are whizzes when it

comes to the grunt work of mathe-

matics. But for creative and ele-

gant solutions to hard mathemati-
cal problems, nothing has been able to
beat the human mind. That is, perhaps,
until now.

A computer program written by re-
searchers at Argonne National Laborato-
ry in Illinois has come up with a major
mathematical proof that would have been
called creative if a human had thought of
it. In doing so, the computer has, for the
first time, got a toehold into pure mathe-
matics, a field described by its practition-
ers as more of an art form than a science.
And the implications, some say, are pro-
found, showing just how powerful comput-
ers can be at reasoning itself, at mimick-

ing the fl humans think, the magnificent bursts of

those conjectures were easy to prove. The
difference this time is that the computer
has solved a conjecture that stumped
some of the best mathematicians for 60
years. And it did so with a program that
was designed to reason, not to solve a
specific problem. In that sense, the pro-
gram is very different from chess-playing
computer programs, for example, which
are intended to solve just one problem: the
moves of a chess game.

‘“It’s a sign of power, of reasoning pow-_
er,” said Dr. Larry Wos, the supervisor of
the computer reasoning project at Ar-
gonne. And with this result, obtained by a
colleague, Dr. Willlam McCune, he said,
‘““We've taken a quantum leap forward.””

Dr. Wos predicts that the result may
mark the beginning of the end for mathe-
matics research as it is now practiced,
eventually freeing mathematicians to fo-
cus on discovering new conjectures, and
leaving the proof to computers.

But the result also may challenge the
very notion of creative thinking, raising
the possibility that computers could take a
parallel path to reach the same conclu-
sions as great human thinkers. Or it may
be that since no one has any idea how:

The Equational Theories Project

There are 4694 equations between terms involving at most four instances of a
binary operator.

Associativity is one example: (X oy) ¢z = x ¢ (y ¢ z).

On September 24, 2024, Terence Tao launched the equational theories project to
determine all entailments between them. (Later also: in finite structures.)

e Each entailment required proof.
* Non-entailment required countermodels.
e Everything had to be verified in Lean.

THE EQUATIONAL THEORIES PROJECT: ADVANCING
COLLABORATIVE MATHEMATICAL RESEARCH AT SCALE

MATTHEW BOLAN, JOACHIM BREITNER, JOSE BROX, MARIO CARNEIRO, MARTIN DVORAK,
ANDRES GOENS, AARON HILL, HARALD HUSUM, ZOLTAN KOCSIS, BRUNO LE FLOCH,
LORENZO LUCCIOLI, DOUGLAS MCNEIL, ALEX MEIBURG, PIETRO MONTICONE, PACE

NIELSEN, GIOVANNI PAOLINI, MARCO PETRACCI, BERNHARD REINKE, DAVID RENSHAW,
MARCUS ROSSEL, CODY ROUX, JEREMY SCANVIC, SHREYAS SRINIVAS, ANAND RAO
TADIPATRI, TERENCE TAO, VLAD TSYRKLEVICH, DANIEL WEBER, FAN ZHENG

ABSTRACT. We report on the Equational Theories Project (ETP), an online collaborative
pilot project to explore new ways to collaborate in mathematics with machine assistance.
The project successfully determined all 22028 942 edges of the implication graph between
the 4694 simplest equational laws on magmas, by a combination of human-generated and
automated proofs, all validated by the formal proof assistant language Lean. As a result of
this project, several new constructions of magmas obeying specific laws were discovered, and
several auxiliary questions were also addressed, such as the effect of restricting attention to
finite magmas.

The Equational Theories Project

Notable features of the project:

It was a large-scale collaboration.

It included amateur mathematicians, computer scientists.

It used a lot of automation, including Vampire, Duper, Aesop, Prover9, Mace4,
Z3, and Egg.

It yielded interesting new ideas, methods, insights, and results.

Blueprint (web)

Equational Theories Project

Mapping out the relations between different equational theories of Magmas

Blueprint (pdf) Paper (pdf) Documentation

x=x(1)

e

xO(yoz)=(x0y)©z(4512) X=Xx0(x0x)(8) x=(x0x)0x(23)

7 TS e |

X0(yoz)=(x0y)ow@513) x0(yoz)=(woy)oz(4564) x=x0x(3)

xox=yox(39)
X0y=290y(45)

X0 (y©2)=(xow)ou(4522)

x=x0y4)

XxOy=yox(43)

/

x0y=(yoy)ox(387)

XOx=x0y(38)
X0y=x02(42)

X 0 (y ©2z)=(wou)oz(4579)

N

x=yox(5)

X0 (y©z)=(wou)ov(4582)

XOx=yoy(40)

xXox=yoz(4l) - 4
mGeneEenden
D /
x=yoy(6)
x=yoz(7)

The purpose of this project, launched on Sep 25, 2024, is to explore the space of equational theories
of magmas, ordered by implication. To begin with we shall focus only on theories of a single equation,
and specifically on the 4694 equational laws involving at most four magma operations, up to
symmetry and relabeling (here is the list in Lean and in plain text). This creates 4694*(4694-1) =
22,028,942 implications that need to be proven or disproven, creating both “implications” and “anti-

implications”.

Dashboard Equation Explorer Finite Magma Explorer

GitHub

Logic puzzles

First-order provers are good at logic puzzles.

You can find many of them in the TPTP (Thousands of Problems for Theorem
Provers) library.

In 2022, Marijn Heule, Wojciech Nawrocki, and | asked students in our course,
Logic and Mechanized Reasoning, to code up some of Smullyan’s logic puzzles in
Lean and send them to Vampire.

13 ¢ The Asylum of Doctor Tarr and Professor Fether

The last asylum Craig visited he found to be the most bizarre
of all. This asylum was run by two doctors named Doctor
Tarr and Professor Fether. There were other doctors on the
staff as well. Now, an inhabitant was called peculiar if he be-
lieved that he was a patient. An inhabitant was called special
if all patients believed he was peculiar and no doctor be-
lieved he was peculiar. Inspector Craig found out that at
least one inhabitant was sane and that the following condi-
tion held:

Condition C: Each inhabitant had a best friend in the asy-
lum. Moreover, given any two inhabitants, A and B, if A be-
lieved that B was special, then A’s best friend believed that B
was a patient.

Shortly after this discovery, Inspector Craig had private
interviews with Doctor Tarr and Professor Fether. Here is
the interview with Doctor Tarr:

Craig: Tell me, Doctor Tarr, are all the doctors in this asy-
lum sane?

Tarr: Of course they arel

Craig: What about the patients? Are they all insane?

Tarr: At least one of them is.

The second answer struck Craig as a surprisingly modest
claim! Of course, if all the patients are insane, then it cer-
tainly is true that at least one is. But why was Doctor Tarr

being so cautious? Craig then had his interview with Profes-
sor Fether, which went as follows:

Craig: Doctor Tarr said that at least one patient here is in-
sane. Surely that is true, isn’t it?

Professor Fether: Of course it is truel All the patients in this
asylum are insane! What kind of asylum do you think we are
running?

Craig: What about the doctors? Are they all sane?

Professor Fether: At least one of them is.

Craig: What about Doctor Tarr? Is he sane?

Professor Fether: Of course he isl How dare you ask me
such a question?

At this point, Craig realized the full horror of the situation!
What was it?

(Those who have read “The System of Doctor Tarr and
Professor Fether,” by Edgar Allan Poe, will probably guess
the solution before they prove it is correct. See remarks fol-
lowing the solution.) |

Logic puzzles

Smullyan proved that in the last asylum, all the doctors are insane and all the
patients are insane.

Using Vampire, we showed that the assumptions are inconsistent: there is no such
asylum.

We published an article, “An Impossible Asylum,” in the American Mathematical
Monthly.

In a follow-up article, “A Possible Asylum,” Bogaerts showed that if “any two”
means “any distinct two,” there are such asylums with exactly one patient.

Automated Reasoning
and Interactive
Theorem Proving

ATP and ITP

Disappointingly, outside of SAT solvers, the automated reasoning tools | have
described have had almost no impact on mathematics.

They have had an impact on the formalization of mathematics:

* Decision procedures like linear arithmetic and linear integer arithmetic are

commonly implemented in proof assistants.
e First-order theorem provers and SMT solvers are a key component of

sledgehammer technology.

Sledgehammers

The task: given some hypotheses, and a conclusion, and a library with tens of
thousands of theorems, construct a formal proof.

The approach:

* Use heuristics to extract a small set of promising premises from the library.
Translate the problem to the language of one or more ATPs.
Call external provers to prove the goal.
If any succeeds, harvest information about the proof (possibly only the premises
used).
Use the information to reconstruct a proof internally.

The most successful one to date is Isabelle’s Sledgehammer, originally developed by
Larry Paulson and Jia Meng (c. 2006), and later by Jasmin Blanchette and many others.

Sledgehammers

There are variations at every step:

One can use symbolic heuristics, lightweight ML, or neural methods for
premise selection.

One can use various methods of translation.

One can use first-order provers or SMT solvers as external provers.
One can harvest various types of information.

One can use different methods of proof reconstruction.

The next slide shows the hammer web page for Isabelle 2009.

Overview

Installation

Download

Documentation

Community,

Site Mirrors:
Cambridge (.uk)
Munich (.de)
Sydney (.au)

BLE UNIVERSITY OF '"

Sledgehammer ® CAMBRIDGE ~ I!

Computer Laboratory e

The sledgehammer can be used, at any point in a backward proof, with one mouse click. Your first subgoal will be converted into clause form and given to automatic
theorem provers (ATPs), together with perhaps hundreds of other clauses representing currently known facts. Because jobs are run in the background, you can
continue to work on your proof by other means. Provers can be run in parallel, the first successful result is displayed, and the other provers are terminated. Any
reply (which may arrive minutes later) will appear in the Proof General response buffer. If a subgoal is proved, the response consists of a list of Isabelle commands

to insert into the proof script. These will invoke the Metis prover.

Supported provers include E, SPASS, Vampire. Additionally, provers from System on TPTP can be queried over the internet. The standard Isabelle installation already includes
bundled versions of E and SPASS. Remote Vampire is also preconfigured. Note that remote provers require Perl with the World Wide Web Library libwww-perl installed.

The sledgehammer is part of Isabelle/HOL. To call it, merely invoke the menu item Isabelle > Commands > sledgehammer (see screenshot). Alternatively, issue the sledgehammer
Isar command.
For best results, first simplify your problem by calling auto or at least safe followed by simp_all. None of the ATPs contain arithmetic decision procedures. They are not especially

good at heavy rewriting, but because they regard equations as undirected, they often prove theorems that require the reverse orientation of a rewrite rule. Higher-order problems
can be tackled, but the success rate is better for first-order problems. You may get better results if you first simplify the problem to remove higher-order features.

Note that problems can be easy for auto and difficult for ATPs, but the reverse is also true, so don't be discouraged if your first attempts fail. Because the system refers to all
theorems known to Isabelle, it is particularly suitable when your goal has a short proof from lemmas that you don't know about.

Several Isar commands are available to control the sledgehammer.

* sledgehammer provery ... provery invokes the specified automated theorem provers in parallel on the first subgoal. The first successful prover will terminate the others.
» The print_atps command tells about admissible prover names. Provers with the prefix remote query SystemOnTPTP, so an active internet connection is needed.

« If no provers are given as arguments to sledgehammer, the system refers to the default which is setto "e spass remote vampire".

» atp_info prints information about presently running provers.

e atp_kill terminates all running provers.

A sledgehammer for dependent type theory

Isabelle uses a foundational framework known as simple type theory.
Lean uses a foundational framework known as dependent type theory.

| have long argued that the latter is necessary for the kinds of algebraic reasoning
that is essential to modern mathematics.

The greater distance from first-order logic, however, makes sledgehammer-type
automation more complicated.

We are making progress, however.

A sledgehammer for dependent type theory

Our LeanHammer prototype uses the following:

* Premise selection: use a neural premise selector (Zhu, Clune, A, Jiang, Welleck)
and an implementation of the Meng-Paulson symbolic heuristic by Kim
Morrison
Translation: use a monomorphization procedure, Lean-auto (Qian, Clune,
Barrett, A)

External provers: Zipperposition, cvcs

Reconstruction: use Duper (Clune, Qian, Bentkamp, A) and Aesop (Limperg,
From), or Lean-SMT (Mohamed, Mascarenhas, Khan, Barbosa, Reynolds, Qian,
Tinelli, Barrett

Other automation for Lean

Josh Clune, Haniel Barbosa, and | are working on an alternative approach to proof
reconstruction for cvc5:

e cvc5 reports theory-specific facts it used.
* These are proved by domain-specific automation like Grind and assembled by
Duper.

Chase Norman is working on the Canonical prover:

* |It's a complete search algorithm for dependent type theory.
* He has added monomorphization and domain-specific components.
* We are exploring the use of machine learning.

Small-scale automation in Lean

We use:

* simp: equational simplification
linarith: linear real arithmetic
omega: linear integer arithmetic
ring: equational reasoning in rings
aesop: a tableaux prover
norm-num: numeric computation

These are all modeled after automation that has long been available in Isabelle and
other systems.

A new Lean tactic, grind, combines and subsumes many of these.

Small-scale automation in Lean

Lean is its own metaprogramming language, making it possible for users to add
their own automation.

Mathlib has:

mono: for proving inequalities for using monotonicity properties
positivity: for dispelling side conditions involving sign

geongr: for chaining inequalities with compound expressions
continuity: for establishing continuity

fun_prop: for proving continuity, measurability, differentiability, etc.
finiteness: for provingt # oo in e.g. the extended reals.

Combination with machine learning

Currently, small-scale automation is used everywhere in Mathlib.
The sledgehammer and Al provers and copilots are getting better.

A sledgehammer is an example of neurosymbolic reasoning:

e aneural network finds relevant premises
* symbolic automation fills in small proofs

Other combinations are possible; see the next lecture.

Trying it out

Trying it out

Take a look at Bernardo Subercaseaux’s SAT For Mathematics web pages, with

* a bibliography of applications of SAT solvers to mathematics
e tutorials you can run in Colab notebooks.
You can play the SAT game online.

Take a look at the TPTP (Thousand of Problems of Theorem Provers) pages and
SMTLib pages.
You can find the Equational Theories Project and other projects discussed here

online.
The Logic and Mechanized Reasoning course will let you call automation from

within Lean.

https://sat4math.com/
http://www.cs.utexas.edu/~marijn/game/
https://www.tptp.org/
https://smt-lib.org/
https://teorth.github.io/equational_theories/
https://github.com/avigad/lamr

Conclusions

Conclusions

We have explored different uses of symbolic automation:

e discovering new mathematics
* verifying mathematics

The impact on mathematics have been minimal so far, but | think that will change.
Symbolic automation can be used synergistically with machine learning.
The tools are accessible.

We have a lot to learn.

	Slide 1: Automated Reasoning and Symbolic AI
	Slide 2: Overview
	Slide 3: AI for mathematics
	Slide 4: Automated reasoning
	Slide 5: Propositional logic
	Slide 6: Propositional logic
	Slide 7: First-order logic
	Slide 8: Decidability and undecidability
	Slide 9: Automation
	Slide 10: History
	Slide 11: Origins of automated reasoning
	Slide 12: Origins of automated reasoning
	Slide 13: Origins of automated reasoning
	Slide 14: Origins of automated reasoning
	Slide 15: SAT Solvers
	Slide 16: SAT solvers
	Slide 17: Ramsey’s theorem
	Slide 18: The happy ending problem
	Slide 19: Empty convex polygons
	Slide 20
	Slide 21: Units in group rings
	Slide 22
	Slide 23
	Slide 24: Objection
	Slide 25: SAT and ITP
	Slide 26: Verifying SAT results
	Slide 27: Keller’s conjecture
	Slide 28: The empty hexagon problem
	Slide 29
	Slide 30
	Slide 31: First-order provers
	Slide 32: Early applications
	Slide 33
	Slide 34: The Equational Theories Project
	Slide 35
	Slide 36: The Equational Theories Project
	Slide 37
	Slide 38: Logic puzzles
	Slide 39
	Slide 40: Logic puzzles
	Slide 41: Automated Reasoning and Interactive Theorem Proving
	Slide 42: ATP and ITP
	Slide 43: Sledgehammers
	Slide 44: Sledgehammers
	Slide 45
	Slide 46: A sledgehammer for dependent type theory
	Slide 47: A sledgehammer for dependent type theory
	Slide 48: Other automation for Lean
	Slide 49: Small-scale automation in Lean
	Slide 50: Small-scale automation in Lean
	Slide 51: Combination with machine learning
	Slide 52: Trying it out
	Slide 53: Trying it out
	Slide 54: Conclusions
	Slide 55: Conclusions

