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Overview




The landscape

Three components of Al for Mathematics:
interactive theorem proving and
formalization
automated reasoning and symbolic Al
machine learning and neural Al

The first two are symbolic methods, in the
tradition of formal logic.

Formalization

Symbolic
Automated
Reasoning

Machine
Learning




The landscape

Two traditions in Al:

e symbolic Al and formal methods
* machine learning and neural networks.

The strengths are complementary:

* symbolic Al is good at getting details right but gets lost.
* machine learning is good at synthesizing data but we don't know what the
results mean.

Both are important for mathematics.




The landscape

Historically, automated theorem proving
predates interactive theorem proving.

In the 1950s, and early 1960s, researchers
began implementing decision procedures
and search procedures.

The first interactive proof assistants
appeared in the late 1960s.
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Formalization of mathematics

In the late 19th and early 20th century, logicians studied formal foundations:

* Gottlob Frege, Grundgesetze der Arithmetik (vol. 1, 1893, vol. 2, 1903)

* Guiseppe Peano, Formulario (1891 onward)

* Bertrand Russell and A. N. Whitehead, Principia Mathematica (1910-1913)
e Hilbert, Ackermann, Bernays, and others

By the early 20th century, it was clear that mathematics can be formalized:

e Statements can be expressed in formal languages, with precise grammar.
* Theorems can be proved from formal axioms, using prescribed rules of
inference.




Formalization of mathematics

“The development of mathematics toward greater precision has led, as is well
known, to the formalization of large tracts of it, so one can prove any theorem
using nothing but a few mechanical rules. The most comprehensive formal
systems that have been set up hitherto are the system of Principia Mathematica
on the one hand and the Zermelo-Fraenkel axiom system of set theory... on the
other. These two systems are so comprehensive that in them all methods of
proof used today in mathematics are formalized, that is, reduced to a few
axioms and rules of inference. One might therefore conjecture that these axioms
and rules of inference are sufficient to decide any mathematical question that can
at all be formally expressed in these systems.” (Godel, 1931; my emphasis)




Formalization of mathematics

With the help of computational proof assistants, mathematics is now formalizable
in practice.

Working with such a proof assistant, users construct a formal axiomatic proof.
In many systems, the proof can be exported and checked independently.

The technology is commonly used for verification of hardware, software, network
protocols, cryptographic protocols, cyber-physical systems, and more.




The landscape

Some proof assistants for mathematics:

Mizar (1973, set theory)

Isabelle (1986, simple type theory)
Rocq (1989, dependent type theory)
HOL Light (1994, simply type theory)
Lean (2013, dependent type theory)

There are many others. See John Harrison, Josef Urban, and Freek Wiedijk, History
of Interactive Theorem Proving.



https://www.cl.cam.ac.uk/~jrh13/papers/joerg.pdf
https://www.cl.cam.ac.uk/~jrh13/papers/joerg.pdf

Lean and Mathlib

Leonardo de Moura launched the Lean project in 2013.

Mario Carneiro and Johannes Holzl split off Mathlib in 2017.

Mathlib now has almost 2 million lines of code.

The Lean Zulip channel more than 12,000 members, about 850 active in any two-
week period, and almost 2 million messages to date.

There are have been several celebrated successes.

There are interesting collaborative projects.

There have been several articles in the general press.

There are several meetings and workshops related to Lean.

There is growing interest and enthusiasm in the mathematical community.




Lean Community

Community

Zulip chat

GitHub

Blog

Community information
Community guidelines
Teams

Papers about Lean
Projects using Lean
Teaching using Lean
Events

Use Lean

Online version (no installation)
Install Lean
More options

Documentation

Learning resources (start here)
API documentation
Declaration search (Loogle)
Language reference

Tactic list

Calc mode

Conv mode

Simplifier

Well-founded recursion
Speeding up Lean files

Pitfalls and common mistakes
About MWEs

Glossary

Community

Lean and its Mathematical Library

The Lean theorem prover is a proof assistant developed principally by Leonardo de Moura.

The community recently switched from using Lean 3 to using Lean 4. This website is still being updated, and some pages
have outdated information about Lean 3 (these pages are marked with a prominent banner). The old Lean 3 community
website has been archived.

The Lean mathematical library, mathlib, is a community-driven effort to build a unified library of mathematics formalized in
the Lean proof assistant. The library also contains definitions useful for programming. This project is very active, with many
regular contributors and daily activity.

You can get a bird's-eye view of what is in the mathlib library by reading the library overview, and read about recent
additions on our blog. The design and community organization of mathlib are described in the 2020 article The Lean
mathematical library, although the library has grown by an order of magnitude since that article appeared. You can also
have a look at our repository statistics to see how the library grows and who contributes to it.

Try it! Learn to Lean! Meet the

You can try Lean in your web You can learn by playing a game, Community!
browser, install it in an isolated following tutorials, or reading
folder, or go for the full install. books.

Lean is free, open source

Lean has very diverse and active
community. It gathers mostly on
a Zulip chat and on GitHub. You



Why Formalize?




Why formalize?

We used to think that the selling point for mathematicians was verification.

Gowers: “The notion of a proof assistant sounds rather attractive until you find
out that it actually involves a lot more work.”

Verification is important, but it is not what we love about mathematics.
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Article electronically published on February 15, 2024

MATHEMATICS AND THE FORMAL TURN

JEREMY AVIGAD

ABSTRACT. Since the early twentieth century, it has been understood that
mathematical definitions and proofs can be represented in formal systems with
precise grammars and rules of use. Building on such foundations, computa-
tional proof assistants now make it possible to encode mathematical knowledge
in digital form. This article enumerates some of the ways that these and related
technologies can help us do mathematics.



Benefits of formalization

verifying theorems
correcting mistakes

gaining insight

building libraries

searching for definitions and
theorems

refactoring proofs
refactoring libraries
engineering concepts
communicating

collaborating

managing complexity

managing the literature

teaching

improving access

using mathematical computation
using automated reasoning

using machine learning
supporting a synthesis of machine
learning and symbolic Al




Documentation Mathlib.AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf | || Search |

» LeanSearchClient (file)

The structure sheaf on ProjectiveSpectrum 4. return to top

¥ Mathlib (file)
» Algebra source
v AlgebraicGeometry In Mathlib/AlgebraicGeometry/Topology.lean, we have given a topology on ProjectiveSpectrum 4;
» Cover » Imports

» EllipticCurve

in this file we will construct a sheaf on ProjectiveSpectrum 4.

» Imported by

» |dealSheaf (file) . )
» Modules Notation AlgebraicGeometry.

» Morphisms ProjectiveSpectrum.StructureSheaf.
¥ ProjectiveSpectrum + R is a commutative semiring; A |SF|::ac.tlgn .

Basic . B PR _ . gebraicGeometry.

Proper A s a commutative ring and an R -algebra; ProjectiveSpectrum.StructureSheaf.

Scheme « 4 : N > Submodule R A is the grading of A; isFractionPrelocal

StructureSheaf + U is opposite object of some open subset of ProjectiveSpectrum.top. AlgebraicGeometry.

Topology ProjectiveSpectrum.StructureSheaf.
» Sites H HH isLocallyFraction
e e Main definitions and results AlgebraicGeometry.

i ProjectiveSpectrum.StructureSheaf.
Affl.neSpac?. . We define the structure sheaf as the subsheaf of all dependent function f : M x : U, S lt S bp. :
AffineTransitionLimit ectionsubring.zero_mem
Fiber HomogeneousLocalization 4 x suchthat f is locally expressible as ratio of two elements of the same AlgebraicGeometry.

FunctionField grading,ie. ¥V yeU, 3 (VcU) (i :N) (abedi),YzeVv, fz=a/b. PrO]t'actlveSp.ectrum.StrucFureSheaf.
GammaSpecAdijunction Sect|c.>n5ubr|ng.one_mem
Gluing « AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.isLocallyFraction: the predicate AlgebraicGeometry.

GluingOneHypercover
Limits

that a dependent function is locally expressible as a ratio of two elements of the same grading.
« AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.sectionsSubring: the dependent

ProjectiveSpectrum.StructureSheaf.
SectionSubring.add_mem'
AlgebraicGeometry.

Noetherian

Openlmmersion functions satisfying the above local property forms a subring of all dependent functions N x : U, Projt'activeSp.ectrum.StrucFureSheaf.
Over HomogeneousLocalization 4 x. SectionSubring.neg_mem

PointsPi . . . . . . AlgebraicGeometry.

Properties + AlgebraicGeometry.Proj.StructureSheaf: the sheaf with U ~ sectionsSubring U and natural ProjectiveSpectrum.StructureSheaf.
PullbackCarrier restriction map. SectionSubring.mul_mem'
Pullbacks AlgebraicGeometry.

QuasiAffine Then we establish that Proj 4 isa LocallyRingedSpace: Projt'activesz.ectrum.StructureSheaf.
RationalMap sectionsSubring

ResidueField AlgebraicGeometry.

o AlgebraicGeometry.Proj.stalkIso':forany x : ProjectiveSpectrum A4, the stalk of

ProiertiveSnectriim StriictiireSheaf



LeanSearch

Find theorems in Mathlib4 using natural language query

Query Name or description of the theorem or definition you are looking for

the intermediate value theorem

Number of results JEl]

Clear Query Augmentation

Tip: Query Augmentation augments your query to increase the chance to find relevant results.

intermediate value Icc

¥ {a : Type u} [inst : ConditionallyCompleteLinearOrder a«] [inst.1 : TopologicalSpace u]
[inst_2 : OrderTopology @] [inst_3 : DenselyOrdered a] {6 : Type u_1} [inst_4 : LinearOrder

&) [inst_5 : TopologicalSpace 6] [inst_6 : OrderClosedTopology 6] {a b : a}, asb v {f :

@ + 8}, ContinuousOn f (Icc a b) » Icc (fa) (fb) cf '"Iccab

intermediate value Ioo

¥ {a : Type u} [inst : ConditionallyCompleteLinearOrder a«] [inst.1 : TopologicalSpace u]
[inst_2 : OrderTopology @] [inst_3 : DenselyOrdered a] {6 : Type u-1} [inst_4 : LinearOrder

8] [inst_5 : TopologicalSpace §] [inst_6 : OrderClosedTopology 6] {a b : a}, asb sV {f :

o » &}, ContinuousOn f (Icc a b) » Ioo (fa) (fb)gcf '"Iooab

» Intermediate Value Theorem for Continuous
Functions on Closed Intervals

» Intermediate Value Theorem for Continuous
Functions on Closed Intervals and Open Image
Intervals



Introduction
1 T.oops

21iocal theory of:
convex integration

2.1 Key
construction

2.2 The main
inductive step

2.3 Ample
differential
relations

3 Global theory of:
open and ample
relations

A Local sphere
eversion

B From local to
global

Dependency graph

The sphere eversion project

2 Local theory of convex integration
2.1 Key construction

The goal of this chapter is to explain the local aspects of (Theilliére’s implementation of)
convex integration, the next chapter will cover global aspects.

The elementary step of convex integration modifies the derivative of a map in one direction.
The precise meaning of “one direction” relies on the following definition.

Definition 2.1. /

A dual pair on a vector space E is a pair (m,v) where  is a linear form on E and v a
vector in E such that w(v) = 1.

Let E and F be finite dimensional real normed vector spaces. Let f: E — F be a smooth
map, and let (7, v) be a dual pair on E. We want to modify D in the direction of v while
almost preserving it on ker 7. Say we wish D f(z)v could live in some open subset £2, C F.
Assume there is a smooth family of loops y: ExS! — F such that each v, takes values in
2, and its average value 7y, = fsl vz is Df(z)v for all z. Obviously such loops can exist
only if Df(z)v is in the convex hull of {2, and we saw in the previous chapter that this is
almost sufficient (and we’ll see this is sufficiently almost sufficient for our purposes). Then
we can modify f to fulfil our wish using the following construction.

Definition 2.2. (Theilliére 2018)/

The map obtained by corrugation of f in direction (m,v) using ~y with oscillation
number N is

Nr(z)
o fl@) gy [ bele) =T

In the above definition, we mostly think of V as a large natural number. But we don’t
actually require it, any positive real number will do.

The next proposition implies that, provided N is large enough, we have achieved
Df'(z)v € £2,, almost without modifying derivatives in the directions of ker 7, and almost
without moving f(z).

Proposition 2.3. (Theilliere 2018)/
Let f be a C* function from E to F. Let (m,v) be a dual pair on E. Let y: ExS' — F
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Natural Number Game

Welcome to the Natural
Number Game

An introduction to mathematical proof.

In this game, we will build the basic theory of the
natural numbers {6,1,2,3,4,...} from scratch.
Our First goal is to prove that 2 + 2 = 4. Next
we'll prove that x + y = y + x.And at the end
we'll see if we can prove Fermat's Last Theorem.
We'll do this by solving levels of a computer puzzle
game called Lean.

Read this.

Learning how ko use an interactive theorem prover
takes time. Tests show that the people who get the
most out of this game are those who read the help
texts like this one.

To start, click on "Tutorial World".

Note: this is @ new Lean 4 version of the game
containing several worlds which were not present
in the old Lean 3 version. More new worlds such as
Strong Induction World, Even/Odd World and
Prime Number World are in development; if you
want to see their state or even help out, checkout
out the issues in the github repo.

More

Click on the three lines in the top right and select
"Game Info" For resources, links, and ways to
interact with the Lean community.

Tutorial world

‘Multiplication World

Rules @

T

regular
relaxed
none

Theorems

Tactics

Definitions




# The Mechanics of Proof

# » 1. Proofs by calculation View page source
Preface 1. Proofs by calculation
@ 1. Proofs by calculation
1.1. Proving equalities This book begins in the familiar world of numbers: N, the natural numbers (which in this book
1.2. Provi . include 0); Z, the integers; QQ, the rational numbers; and IR, the real numbers. We solve problems
.2. Proving equalities in Lean

which feel pretty close to high school algebra - deducing equalities/inequalities from other
equalities/inequalities — using a technique which is not usually taught in high school algebra:
building a single chain of expressions connecting the left-hand side with the right.

1.3. Tips and tricks

1.4. Proving inequalities
1.5. A shortcut

. Proofs with structure 1.1. Pro‘ling equalities

3. Parity and divisibility
. Proofs with structure, Il LLL Example

ogic We start with proofs of equalities. Here is a typical example of the technique mentioned.
6. Induction

. Number theory

ITLrEatas Let a and b be rational numbers and suppose that a — b = 4 and ab = 1. Show that

9. Sets (a+b)> = 20.
10. Relations

Index of Lean tactics

Transitioning to mainstream Lean

(a+b)* = (a —b)* + 4ab
=4244-1
= 20.

We call the above proof a proof by calculation. The goal was to show that (a - B)2 = 20 and we



From Scholze's second blog post

Question: Did you learn anything about mathematics during the formalization?'

Answer: Yes! The first is a beautiful realization of Johan Commelin. Basically, the
computation of the Ext-groups in the Liquid Tensor Experiment is done via a certain non-
explicit resolution known as a Breen-Deligne resolution.... The Breen-Deligne resolution has
certain beautiful structural properties, but is not explicit, and the existence relies on some
facts from stable homotopy theory. In order to formalize Theorem 9.4, the Breen-Deligne
resolution was axiomatized, formalizing only the key structural properties used for the proof.
What Johan realized is that one can actually give a nice and completely explicit object
satisfying those axioms, and this is good enough for all the intended applications. This makes
the rest of the proof of the Liquid Tensor Experiment considerably more explicit and more
elementary, removing any use of stable homotopy theory. | expect that Commelin's complex
may become a standard tool in the coming years.




From Scholze's second blog post

Question: What else did you learn?

Answer: What actually makes the proof work! When | wrote the blog post half a year ago, |
did not understand why the argument worked, and why we had to move from the reals to a
certain ring of arithmetic Laurent series. But during the formalization, a significant amount of
convex geometry had to be formalized (in order to prove a well-known lemma known as
Gordan's lemma), and this made me realize that actually the key thing happening is a
reduction from a non-convex problem over the reals to a convex problem over the integers.




ABSTRACTION BOUNDARIES AND SPEC DRIVEN
DEVELOPMENT IN PURE MATHEMATICS

JOHAN COMMELIN AND ADAM TOPAZ

ABSTRACT. In this article we discuss how abstraction boundaries can help
tame complexity in mathematical research with the help of an interactive the-
orem prover. While many of the ideas we present here have been used implicitly
by mathematicians for some time, we argue that the use of an interactive the-
orem prover introduces additional qualitative benefits in the implementation
of these ideas.

1. INTRODUCTION

Modern research in pure mathematics has a clear tendency toward increasing
complexity. New striking mathematical results may involve complex proof tech-
niques, deep mastery of a subfield within mathematics, or nontrivial input from
several areas of mathematics. All of these play a role in increasing the inherent
complexity of a piece of modern mathematics.

In many respects, such increasing complexity is an indication of progress in
pure mathematics. However, with such complexity comes a significant increase in
cognitive load for both readers and authors. It is now routine to see significant
new papers in pure mathematics with one hundred pages or more. Similarly, the
refereeing process of a complex mathematical result regularly takes multiple years.



Milestones




Milestones

Early milestones:

* the prime number theorem (2004, A, Donnelly, Gray, and Raff, in Isabelle)
* the four-color theorem (2004, Gonthier and Werner, in Rocq)
e Jordan Curve theorem (2005, Hales, In HOL Light)

Bigger milestones:

* Feit-Thompson theorem (Gonthier and many others, in Rocqg, 2012)
* Flyspeck project (Hales and many others, In HOL Light and Isabelle, 2014)




Milestones

Moving toward contemporary mathematics:

Perfectoid spaces

The liquid tensor experiment

The sphere eversion project

On a density conjecture about unit fractions

The polynomial Freiman-Ruzsa conjecture

Exponentially improved upper bounds on Ramsey’s theorem
Carleson’s theorem

The resolution of the Aharoni-Korman conjecture

Fermat's last theorem




Thomas Bloom’s result on unit fractions

Kevin Buzzard
@XenaProject

Theorem' Any su bSEt A Of N Of Happy to report that Bloom went on to learn Lean this
positive upper density contains a year and, together with Bhavik Mehta, has now

formalised his proof in Lean b-mehta.github.io/unit-
fin ite su bset S c N Satisfying fr.actions/ (incluc?ir)g formalising the Hardy-Littlewood

circle method), finishing before he got a referee's
report for the paper ;-)

1
ZnES; =1L

: Timothy Gowers @wtgowers
¥ @wtgowers

Very excited that Thomas Bloom and Bhavik Mehta have done this. |
think it's the first time that a serious contemporary result in
"mainstream" mathematics doesn't have to be checked by a referee,
because it has been checked formally. Maybe the sign of things to come
... 1/ t.co/Ue7n9RuaF2

This post is unavailable.

5:12 AM - Jun 13, 2022




The Polynomial Freiman-Ruzsa Conjecture

On November 9, 2023, W. T. Gowers, Ben Green, Freddie Manners, and Terence
Tao posted a proof of the following on arXiv.

Theorem. Suppose that A c FJ' is a set with|A + A| < K|A|. Then A is covered by
at most 2K ¢ cosets of some subgroup H < FJ! of size at most | A].

Tao enlisted a team of people to help formalize it.

The achievement was featured in an article in Quanta on December 6.




The Polynomial Freiman-Ruzsa
Conjecture

A digitisation of the proof of the Polynomial Freiman-Ruzsa Conjecture in Lean 4

Blueprint Documentation Paper View on GitHub

The Polynomial Freiman-Ruzsa Conjecture

The purpose of this repository is to hold a Lean4 formalization of the proof of the Polynomial
Freiman-Ruzsa (PFR) conjecture (see also this blog post). The statement is as follows: if A is a non-
empty subset of F? such that |A + A| < K|A]|, then A can be covered by at most 2K 2 cosets of a
subspace H of F” of cardinality at most I nroof relies on the theory of Shannon entrop




COMBINATORICS

‘A-Team’ of Math Proves a Critical Link
Between Addition and Sets

®12 | R

A team of four prominent mathematicians, including two Fields medalists,
proved a conjecture described as a “holy grail of additive combinatorics.”
Within a month, a loose collaboration verified it with a computer-assisted
proof.




Carleson’s Theorem

Theorem. Let f be an LP periodic function, p > 1, with Fourier coefficient f(n).
Then

lim > fe = f(x)
|n|<N
for almost every x.

Christophe Thiele and his group in Bonn proved a generalization. It was written as
a Lean blueprint (144 pages) and verified by a team led by Floris van Doorn.




Carleson operators on doubling metric
measure spaces

A formalization in Lean 4

Blueprint (html) Blueprint (pdf) Formalization View on Github

Formalization of a generalized Carleson’s theorem

A (WIP) formalized proof of a generalized Carleson’s theorem in Lean.

e Zulip channel for coordination
e Blueprint

e Blueprint as pdf

e Dependency graph



A result in combinatorics

Lawrence Hollom recently refuted a 1992 conjecture on posets satisfying the
Finite Antichain Condition.

Bhavik Mehta quickly verified (and corrected) the construction in Lean.




a I‘}(lv > math > arXiv:2411.16844

Mathematics > Combinatorics

[Submitted on 25 Nov 2024 (v1), last revised 22 May 2025 (this version, v4)]

A resolution of the Aharoni-Korman conjecture
Lawrence Hollom

A poset P is said to satisfy the finite antichain condition, or FAC for short, if it has no infinite
antichain. It was conjectured by Aharoni and Korman in 1992 that any FAC poset P possesses a
chain C and a partition into antichains such that C meets every antichain of the partition. Our
main results are twofold. We provide a counterexample to the conjecture in full generality, but,
despite this, we also prove that the conjecture does hold true for a broad class of posets. In
particular, we prove that the Aharoni-Korman conjecture holds for countable posets avoiding
intervals I such that either I or its reverse I * is of the form @ ,_  Qx, where each Qy is infinite
and co-wellfounded.

In pursuit of these goals, we also investigate other facets of the structure of FAC posets. In
particular, we consider strongly maximal chains in FAC posets, proving some results, and
posing several questions and conjectures.
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A result in theoretical computer science

Noah Singer and Ryan O’'Donnell recent proved results on expanders relying on
lengthy group-theoretic computations.

Singer verified a key construction with another PhD student and two
undergraduate students at Carnegie Mellon.




[math.GR] 8 Nov 2024

Coboundary expansion inside Chevalley coset complex HDXs

Ryan O’Donnell*® Noah G. Singer®

Abstract

Recent major results in property testing [BLM24, DDL24| and PCPs [BMV24]| were unlocked by
moving to high-dimensional expanders (HDXs) constructed from 5d—type buildings, rather than the long-
known gd—type ones. At the same time, these building quotient HDXSs are not as easy to understand
as the more elementary (and more symmetric/explicit) coset complex HDXs constructed by Kaufman—
Oppenheim [KO18] (of Ag4-type) and O’Donnell-Pratt [OP22] (of Bg-, C4-, Dg-type). Motivated by these
considerations, we study the Bs-type generalization of a recent work of Kaufman—Oppenheim [KO21],
which showed that the As-type coset complex HDXs have good 1-coboundary expansion in their links,
and thus yield 2-dimensional topological expanders.

The crux of Kaufman—Oppenheim’s proof of 1-coboundary expansion was: (1) identifying a group-
theoretic result by Biss and Dasgupta [BDO01]| on small presentations for the As-unipotent group over F;
(2) “lifting” it to an analogous result for an As-unipotent group over polynomial extensions Fy[z].

For our Bs-type generalization, the analogue of (1) appears to not hold. We manage to circumvent
this with a significantly more involved strategy: (1) getting a computer-assisted proof of vanishing 1-
cohomology of Bs-type unipotent groups over Fs; (2) developing significant new “lifting” technology to
deduce the required quantitative 1-cohomology results in Bs-type unipotent groups over Fyx [z].



Algebra Is Half the Battle: Verifying Presentations
of Graded Unipotent Chevalley Groups

Eric Wang &
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Arohee Bhoja =2
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Cayden Codel 2 &
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Noah G. Singer 24
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

—— Abstract

Graded unipotent Chevalley groups are an important family of groups on matrices with polynomial
entries over a finite field. Using the Lean theorem prover, we verify that three such groups, namely,
the As- and the two Bs-type groups, satisfy a useful group-theoretic condition. Specifically, these
groups are defined by a set of equations called Steinberg relations, and we prove that a certain
canonical “smaller” set of Steinberg relations suffices to derive the rest.

Our work is motivated by an application for building topologically-interesting objects called
higher-dimensional expanders (HDXs). In the past decade, HDXs have formed the basis for many
new results in theoretical computer science, such as in quantum error correction and in property
testing. Yet despite the increasing prevalence of HDXs, only two methods of constructing them are
known. One such method builds an HDX from groups that satisfy the aforementioned property, and
the Chevalley groups we use are (essentially) the only ones currently known to satisfy it.



Trying it out




Trying it out

Start with the Lean community pages.

See, in particular, the learning resources and the Natural Number Game.

You can also browse Mathlib.

Check out the Lean Zulip social media platform.

You can easily find the projects we discussed here online.



https://leanprover-community.github.io/
https://leanprover-community.github.io/learn.html
https://adam.math.hhu.de/#/g/hhu-adam/NNG4
https://leanprover-community.github.io/mathlib4_docs/
https://leanprover-community.github.io/mathlib4_docs/
https://leanprover.zulipchat.com/
https://leanprover.zulipchat.com/

Conclusions




Conclusions

Like the digitization of language, the digitization of mathematics has many uses:

communication
collaboration

search

verification

exploration

uses of automation and Al.

The precise nature of mathematics makes some of these even more compelling:

 Mathematical objects and proofs are complex.
* It’s not mathematics unless the details are right.




Conclusions

The community of formalizers is small but growing.

Points of access:

* the Lean community web pages
e the Lean Zulip channel
e the Institute for Computer-Aided Reasoning in Mathematics.

Some people like working with a proof assistant, some people don’t.

Be open to opportunities and collaboration.
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