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Overview



Three components of AI for Mathematics:

• interactive theorem proving and 

formalization

• automated reasoning and symbolic AI

• machine learning and neural AI

The first two are symbolic methods, in the 

tradition of formal logic.

The landscape



Two traditions in AI:

• symbolic AI and formal methods

• machine learning and neural networks.

The strengths are complementary:

• symbolic AI is good at getting details right but gets lost.

• machine learning is good at synthesizing data but we don't know what the 

results mean.

Both are important for mathematics.

The landscape



Historically, automated theorem proving 

predates interactive theorem proving.

In the 1950s, and early 1960s, researchers 

began implementing decision procedures 

and search procedures.

The first interactive proof assistants 

appeared in the late 1960s.

The landscape
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In the late 19th and early 20th century, logicians studied formal foundations:

• Gottlob Frege, Grundgesetze der Arithmetik (vol. 1, 1893, vol. 2, 1903)

• Guiseppe Peano, Formulario (1891 onward)

• Bertrand Russell and A. N. Whitehead, Principia Mathematica (1910-1913)

• Hilbert, Ackermann, Bernays, and others

By the early 20th century, it was clear that mathematics can be formalized:

• Statements can be expressed in formal languages, with precise grammar.

• Theorems can be proved from formal axioms, using prescribed rules of 

inference.

Formalization of mathematics



“The development of mathematics toward greater precision has led, as is well 

known, to the formalization of large tracts of it, so one can prove any theorem 

using nothing but a few mechanical rules. The most comprehensive formal 

systems that have been set up hitherto are the system of Principia Mathematica 

on the one hand and the Zermelo-Fraenkel axiom system of set theory... on the 

other. These two systems are so comprehensive that in them all methods of 

proof used today in mathematics are formalized, that is, reduced to a few 

axioms and rules of inference. One might therefore conjecture that these axioms 

and rules of inference are sufficient to decide any mathematical question that can 

at all be formally expressed in these systems.” (Gödel, 1931; my emphasis)

Formalization of mathematics



With the help of computational proof assistants, mathematics is now formalizable 

in practice.

Working with such a proof assistant, users construct a formal axiomatic proof.

In many systems, the proof can be exported and checked independently.

The technology is commonly used for verification of hardware, software, network 

protocols, cryptographic protocols, cyber-physical systems, and more.

Formalization of mathematics



Some proof assistants for mathematics:

• Mizar (1973, set theory)

• Isabelle (1986, simple type theory)

• Rocq (1989, dependent type theory)

• HOL Light (1994, simply type theory)

• Lean (2013, dependent type theory)

There are many others. See John Harrison, Josef Urban, and Freek Wiedijk, History 

of Interactive Theorem Proving.

The landscape

https://www.cl.cam.ac.uk/~jrh13/papers/joerg.pdf
https://www.cl.cam.ac.uk/~jrh13/papers/joerg.pdf


Leonardo de Moura launched the Lean project in 2013.

Mario Carneiro and Johannes Hölzl split off Mathlib in 2017.

• Mathlib now has almost 2 million lines of code.
• The Lean Zulip channel more than 12,000 members, about 850 active in any two-

week period, and almost 2 million messages to date.
• There are have been several celebrated successes.

• There are interesting collaborative projects.
• There have been several articles in the general press.

• There are several meetings and workshops related to Lean.

• There is growing interest and enthusiasm in the mathematical community.

Lean and Mathlib





Why Formalize?



We used to think that the selling point for mathematicians was verification.

Gowers: “The notion of a proof assistant sounds rather attractive until you find 

out that it actually involves a lot more work.”

Verification is important, but it is not what we love about mathematics.

Why formalize?





• verifying theorems

• correcting mistakes

• gaining insight

• building libraries

• searching for definitions and 

theorems

• refactoring proofs

• refactoring libraries

• engineering concepts

• communicating

Benefits of formalization

• collaborating

• managing complexity

• managing the literature

• teaching

• improving access

• using mathematical computation

• using automated reasoning

• using machine learning

• supporting a synthesis of machine 

learning and symbolic AI















Question: Did you learn anything about mathematics during the formalization?'

Answer: Yes! The first is a beautiful realization of Johan Commelin. Basically, the 

computation of the Ext-groups in the Liquid Tensor Experiment is done via a certain non-

explicit resolution known as a Breen-Deligne resolution.... The Breen-Deligne resolution has 

certain beautiful structural properties, but is not explicit, and the existence relies on some 

facts from stable homotopy theory. In order to formalize Theorem 9.4, the Breen-Deligne 

resolution was axiomatized, formalizing only the key structural properties used for the proof. 

What Johan realized is that one can actually give a nice and completely explicit object 

satisfying those axioms, and this is good enough for all the intended applications. This makes 

the rest of the proof of the Liquid Tensor Experiment considerably more explicit and more 

elementary, removing any use of stable homotopy theory. I expect that Commelin's complex 

may become a standard tool in the coming years.

From Scholze's second blog post



Question: What else did you learn?

Answer: What actually makes the proof work! When I wrote the blog post half a year ago, I 

did not understand why the argument worked, and why we had to move from the reals to a 

certain ring of arithmetic Laurent series. But during the formalization, a significant amount of 

convex geometry had to be formalized (in order to prove a well-known lemma known as 

Gordan's lemma), and this made me realize that actually the key thing happening is a 

reduction from a non-convex problem over the reals to a convex problem over the integers.

From Scholze's second blog post





Milestones



Early milestones:

• the prime number theorem (2004, A, Donnelly, Gray, and Raff, in Isabelle) 

• the four-color theorem (2004, Gonthier and Werner, in Rocq)

• Jordan Curve theorem (2005, Hales, In HOL Light)

Bigger milestones:

• Feit-Thompson theorem (Gonthier and many others, in Rocq, 2012)

• Flyspeck project (Hales and many others, In HOL Light and Isabelle, 2014)

Milestones



Moving toward contemporary mathematics:

• Perfectoid spaces

• The liquid tensor experiment

• The sphere eversion project

• On a density conjecture about unit fractions

• The polynomial Freiman-Ruzsa conjecture 

• Exponentially improved upper bounds on Ramsey’s theorem

• Carleson’s theorem

• The resolution of the Aharoni-Korman conjecture

• Fermat's last theorem

Milestones



Theorem. Any subset 𝐴 of ℕ of 

positive upper density contains a 

finite subset 𝑆 ⊂ ℕ satisfying 

σ𝑛∈𝑆
1

𝑛
= 1.

Thomas Bloom’s result on unit fractions



On November 9, 2023, W. T. Gowers, Ben Green, Freddie Manners, and Terence 

Tao posted a proof of the following on arXiv.

Theorem. Suppose that 𝐴 ⊂ 𝐹2
𝑛 is a set with 𝐴 + 𝐴 ≤ 𝐾 𝐴 . Then 𝐴 is covered by 

at most 2𝐾𝐶 cosets of some subgroup 𝐻 ≤ 𝐹2
𝑛 of size at most 𝐴 .

Tao enlisted a team of people to help formalize it.  

The achievement was featured in an article in Quanta on December 6. 

The Polynomial Freiman-Ruzsa Conjecture







Theorem. Let 𝑓 be an 𝐿𝑝 periodic function, 𝑝 ≥ 1, with Fourier coefficient መ𝑓 𝑛 . 

Then 

lim
𝑁→∞

෍

𝑛 ≤ℕ

መ𝑓 𝑛 𝑒𝑖𝑛𝑥 = 𝑓 𝑥

for almost every 𝑥.

Christophe Thiele and his group in Bonn proved a generalization. It was written as 

a Lean blueprint (144 pages) and verified by a team led by Floris van Doorn. 

Carleson’s Theorem





Lawrence Hollom recently refuted a 1992 conjecture on posets satisfying the 

Finite Antichain Condition.

Bhavik Mehta quickly verified (and corrected) the construction in Lean. 

A result in combinatorics







Noah Singer and Ryan O’Donnell recent proved results on expanders relying on 

lengthy group-theoretic computations.

Singer verified a key construction with another PhD student and two 

undergraduate students at Carnegie Mellon.

A result in theoretical computer science







Trying it out



• Start with the Lean community pages.

• See, in particular, the learning resources and the Natural Number Game.

• You can also browse Mathlib. 

• Check out the Lean Zulip social media platform.

• You can easily find the projects we discussed here online.

Trying it out

https://leanprover-community.github.io/
https://leanprover-community.github.io/learn.html
https://adam.math.hhu.de/#/g/hhu-adam/NNG4
https://leanprover-community.github.io/mathlib4_docs/
https://leanprover-community.github.io/mathlib4_docs/
https://leanprover.zulipchat.com/
https://leanprover.zulipchat.com/


Conclusions



Like the digitization of language, the digitization of mathematics has many uses: 

• communication

• collaboration
• search

• verification

• exploration
• uses of automation and AI.

The precise nature of mathematics makes some of these even more compelling:

• Mathematical objects and proofs are complex.

• It’s not mathematics unless the details are right.

Conclusions



The community of formalizers is small but growing.

Points of access:

• the Lean community web pages

• the Lean Zulip channel

• the Institute for Computer-Aided Reasoning in Mathematics.

Some people like working with a proof assistant, some people don’t.

Be open to opportunities and collaboration.

Conclusions
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