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Overview




New technologies for mathematics

| will discuss:

interactive theorem proving and
formalization

automated reasoning and symbolic Al
machine learning and neural Al

Formalization

. “ Symbolic
In the press, these are, collectively, “Al for Autormnated

Mathematics.” Reasoning

Machine
Learning

All three come together in neurosymbolic
theorem proving.




A.IL Is Coming for Mathematics, Too

For thousands of years, mathematicians have adapted to the

latest advances in logic and reasoning. Are they ready for artificial
intelligence?




Move Over, Mathematicians, Here

Comes AlphaProof

ALl is getting good at math — and might soon make a worthy
collaborator for humans.
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Al Will Become Mathematicians’ ‘Co-Pilot’

Fields Medalist Terence Tao explains how proof checkers and Al programs are
dramatically changing mathematics

BY CHRISTOPH DROSSER




Overview

These technologies are still niche, but they are promising.

These technologies will impact mathematics:

 verification of mathematical results and mathematical computation
communication and collaboration
mathematical reference and search
exploration and discovery of new mathematics
teaching and learning

This lecture will survey the technologies; later lectures will go into more detail.




Overview

Takeaway messages:

The technologies hold a lot of promise for mathematics.
They are interesting and fun.
There are some things to worry about.
We need to guide the next generation of mathematicians.
Good outcomes for mathematics will require

* collaboration between disciplines,

e collaboration between generations, and

* mindful attention.




New technologies for mathematics

| will discuss:

interactive theorem proving

automated reasoning and symbolic Al

machine learning and neural Al el R
neuro-symbolic theorem proving

| will choose examples from around 2021:
Symbolic .
Machine

not the earliest, Automated Learning
Reasoning

not the most recent,

not the most impressive to date, but

turning points.




Interactive Theorem
Proving




Formal methods

Formal methods are used in computer science to

* write specifications (for hardware, software, network protocols, ...), and
* verify that artifacts meet their specifications.

They rely on:

e formal languages
* formal semantics
 formal rules of inference.




Interactive theorem proving

In the early 20th century, logicians developed formal axiomatic systems for
mathematics.

It soon became clear that these systems were expressive enough to formalize
most mathematics, in principle.

In the early 1970s, the first proof assistants made it possible to formalize and
verify proofs in practice.

Today, the practice is known as interactive theorem proving. Working with a proof
assistant, users construct formal definitions and proofs




Lean Community

Community

Zulip chat

GitHub

Blog

Community information
Community guidelines
Teams

Papers about Lean
Projects using Lean
Teaching using Lean
Events

Use Lean

Online version (no installation)
Install Lean
More options

Documentation

Learning resources (start here)
AP| documentation
Declaration search (Loogle)
Language reference

Tactic list

Calc mode

Conv mode

Simplifier

Well-founded recursion
Speeding up Lean files

Pitfalls and common mistakes
About MWEs

Glossary

Community

Lean and its Mathematical Library

The Lean theorem prover is a proof assistant developed principally by Leonardo de Moura.

The community recently switched from using Lean 3 to using Lean 4. This website is still being updated, and some pages
have outdated information about Lean 3 (these pages are marked with a prominent banner). The old Lean 3 community
website has been archived.

The Lean mathematical library, mathlib, is a community-driven effort to build a unified library of mathematics formalized in
the Lean proof assistant. The library also contains definitions useful for programming. This project is very active, with many
regular contributors and daily activity.

You can get a bird's-eye view of what is in the mathlib library by reading the library overview, and read about recent
additions on our blog. The design and community organization of mathlib are described in the 2020 article The Lean
mathematical library, although the library has grown by an order of magnitude since that article appeared. You can also
have a look at our repository statistics to see how the library grows and who contributes to it.

Try it! Learn to Lean! Meet the

You can try Lean in your web You can learn by playing a game, Community!
browser, install it in an isolated following tutorials, or reading
folder, or go for the full install. books.

Lean is free, open source

Lean has very diverse and active
community. It gathers mostly on
a Zulip chat and on GitHub. You
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FOUNDATIONS OF MATHEMATICS

Building the Mathematical Library of the
Future

W | W A small community of mathematicians is using a software program called
Lean to build a new digital repository. They hope it represents the future of
their field.




Liquid tensor experiment

Posted on December 5, 2020 by xenaproject

This is a guest post, written by Peter Scholze, explaining a liquid real vector space mathematical
formalisation challenge. For a pdf version of the challenge, see here. For comments about

formalisation, see section 6. Now over to Peter.

1. The challenge

I want to propose a challenge: Formalize the proof of the following theorem.

Theorem 1.1 (Clausen-S.) Let ) < p’ < p < 1 be real numbers, let S be a profinite set, and let |/
be a p-Banach space. Let M P (S ) be the space of p’-measures on S. Then

EXtE‘ond(Ab) (My(S),V) =0

fores > 1. 8 Comment



Half a year of the Liquid Tensor Experiment:

Amazing developments
Posted on June 5, 2021 by xenaproject

[This is a guest post by Peter Scholze.]

Exactly half a year ago I wrote the Liquid Tensor Experiment blog post, challenging the

formalization of a difficult foundational theorem from my Analytic Geometry lecture notes on joint
work with Dustin Clausen. While this challenge has not been completed yet, I am excited to
announce that the Experiment has verified the entire part of the argument that I was unsure about. I
find it absolutely insane that interactive proof assistants are now at the level that within a very
reasonable time span they can formally verify difficult original research. Congratulations to

everyone involved in the formalization!!
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Introduction
1 First part

1.1 Breen-
Deligne data

1.2 Variants of
normed groups

1.3 Spaces of
convergent power
series

1.4 Some normed
homological
algebra

1.5 Completions
of locally
constant
functions

1.6 Polyhedral
lattices

1.7 Key technical
result

2 Second part

3 Bibliography
Section 1 graph
Section 2 graph

Blueprint for the Liquid Tensor Experiment

1.1 Breen—Deligne data

The goal of this subsection is to a give a precise statement of a variant of the Breen—Deligne
resolution. This variant is not actually a resolution, but it is sufficient for our purposes, and is
much easier to state and prove.

We first recall the original statement of the Breen—Deligne resolution.

Theorem(Breen—Deligne)

For an abelian group A, there is a resolution, functorial in A, of the form

e —> éiaZ[A”"i] — ... — Z[A%| @ Z[A?Y — Z[AY — Z[4] — A — 0.
i1

What does a homomorphism f: Z[A™] — Z[A"] that is functorial in A look like? We should
perhaps say more precisely what we mean by this. The idea is that m and n are fixed, and for
each abelian group A we have a group homomorphism f4: Z[A™] — Z[A"] such that if

¢: A — B s a group homomorphism inducing ¢;: Z[A?] — Z[B'] for each natural number i
then the obvious square commutes: ¢, © f4 = f5 ¢ ¢m.

The map £ is specified by what it does to the generators (a1, a2, as,...,amn) € A™. It can
send such an element to an arbitrary element of Z[A"], but one can check that universality
implies that f4 will be a Z-linear combination of “basic universal maps”, where a “basic
universal map” is one that sends (ai, as,...,am) to (¢1,...,t,), where ¢; is a Z-linear
combination ¢;1 + @1 + ++ * + €im * G- SO @ “basic universal map” is specified by the

n X m-matrix c.

Definition 1.1.1 v

A basic universal map from exponent m to n, is an n. x m-matrix with coefficients in Z
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Automated
Reasoning




Automated reasoning

Even before computers were invented, logicians were interested in algorithmic
procedures to

* decide the truth of mathematical statements, and
» search for proofs.

The first automated provers appeared in the 1950s and 1960s.

Now we have

 first-order provers,
* SAT solvers, and
e SMT solvers.




SAT solvers

A formula in propositional logic (like PV Q = Q A R) is true or false depending on
the truth assignments to the variables.

A satisfiability solver determines which is the case.

Modern SAT solvers can decide industrial formulas with tens of millions of
variables and hundreds of millions of clauses, often in minutes.

Recipe for mathematics:

* Encode / reduce a problem to a SAT problem.
e Use a SAT solver.




Keller's conjecture

In 1930, Ott-Heinrich Keller conjectured that for every n, any tiling of n-
dimensional space with unit n-dimensional cubes must have at least two

cubes that fully share a face.

Figure 1 Two-dimensional tiing Figure 2: Three-dimensional tiling

In 1940, Perron showed that the conjecture is true up to dimension 6.




Keller's conjecture

In 1990, Corradi and Szabo showed that
the conjecture is true if and only if there
are no cliques of a certain size in certain
associated graphs, now known as Keller
graphs.

In 1992, Lagarias and Shor showed that
the conjecture is false in dimensions 10
and up.

Figure 3: a Keller graph




Keller's conjecture

It may be a difficult matter to determine exactly the critical dimension. Ex-
haustive search for Szabd-type counterexamples already seems infeasible for G7%;
the maximum clique problem is a well-known NP-complete problem, which is also
computationally hard in practice. The authors ruled out the existence of any 27-
clique in G7 that is invariant under a cyclic permutation of coordinates by computer
search. It is conceivable that there exist Szabd-type counterexamples in dimension
7, 8, or 9, which are all so structureless that they will be hard to find. In any case
we have so far found no variant of the constructions of Theorem A that work in
these dimensions.

In 2002, Mackey showed that it is false in dimensions 8 and 9.




Keller's conjecture

In 2020, Brakensiek, Heule, Mackey, and Narvaez showed that there is no
counterexample in dimension 7.

They used a SAT solver.

The search space is huge; they used additional reductions and symmetry breaking,

to rule out the result.

The images are taken from their web page.




Keller's conjecture

Should we trust the result?

Contemporary SAT solvers produce proofs of unsatisfiability that can be checked
independently.

Joshua Clune (and then James Gallicchio) verified the reduction to a
combinatorial problem in Lean.

James Gallicchio verified the encoding as a propositional formula.
The UNSAT result was checked by an independent checker.

The correctness of the checker was verified by Cayden Codel.




Machine Learning




Machine Learning

Key approaches:

* Supervised learning: the system is presented with (input, output) pairs, and
learns a rule connecting them.

Unsupervised learning: the system is presented with data, and learns some
sort of structure.

Reinforcement learning: the system acts in a space and is rewarded
accordingly; it learns to maximize rewards.

Models can be very simple (linear regression, decision trees) to very complex
(neural networks).




Reinforcement learning

Before the explosion of LLMs, Google DeepMind achieved landmark successes on
training neural networks using reinforcement learning.

By December 2013, they had a system that could learn to play Atari 2600
games and surpass human performance on three of them.

In March 2016, AlphaGo beat go champion Lee Sedol.

In October 2017, they published an article in Nature on AlphaGo Zero, which
was trained without using data from human games.

Soon after, AlphaZero was able to master chess, shogi, and go trained entirely

with self-play.
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Google DeepMind's Deep Q-learning playing Atari Breakout!
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1.4M views 10 years ago



The game of Go is the most challenging of classic games. Despite decades of
effort, prior methods had only achieved amateur level performance. We
developed a deep RL algorithm that learns both a value network (which predicts
the winner) and a policy network (which selects actions) through games of self-
play. Our program AlphaGo combined these deep neural networks with a state-of-
the-art tree search. In October 2015, AlphaGo became the first program to defeat
a professional human player. In March 2016, AlphaGo defeated Lee Sedol (the
strongest player of the last decade with an incredible 18 world titles) by 4 games
to 1, in a match that was watched by an estimated 200 million viewers.

* Google DeepMind 6% AlphaGo
Challenge Match

8 - 15 March 2016

0" Google DeepMind
: Chaflenge Match




Applications to mathematics

In 2021, Adam Wagner published a paper in which he used reinforcement learning
to find counterexamples to several graph-theoretic conjectures.

The method:

Cook up a suitable reward function.

Ask a network to generate graphs and select the ones with the highest score.
Update the network to nudge it in the direction of moves that generated these
graphs.

Iterate.




vl [math.CO] 29 Apr 2021

Constructions in combinatorics via neural networks

Adam Zsolt Wagner*

Abstract

We demonstrate how by using a reinforcement learning algorithm, the deep cross-entropy method,
one can find explicit constructions and counterexamples to several open conjectures in extremal
combinatorics and graph theory. Amongst the conjectures we refute are a question of Brualdi and
Cao about maximizing permanents of pattern avoiding matrices, and several problems related to the
adjacency and distance eigenvalues of graphs.

1 Introduction

Computer-assisted proofs have a long history in mathematics, including breakthrough results such as
the proof of the four color theorem in 1976 by Appel and Haken [7], and the proof of the Kepler
conjecture in 1998 by Hales [29]. Recently, significant progress has been made in the arca of machine
learning algorithms, and they have have quickly become some of the most exciting tools in a scientist’s
toolbox. In particular, recent advances in the field of reinforcement learning have led computers to



e In Section 2 we present our results we obtained via the deep cross-entropy method.
— In §2.1 we give a short introduction to the cross-entropy method and describe how we will
use it to produce constructions to extremal combinatorics problems.

— In §2.2 we illustrate the method by finding counterexamples to a conjecture about the sum
of the largest eigenvalue and matching number of graphs, which was proposed in [4].

— In §2.3 we refute a similar conjecture of Aouchiche-Hansen [6] about the distance spectrum
and proximity of graphs.

— In §2.4 we refute an old conjecture of Collins [18] by showing that the peaks of the coefficient

sequences of the adjacency and distance polynomials of trees can be far apart.

— In §2.5 we show that transmission regularity of graphs is not preserved under cospectrality
of the distance Laplacian, answering a question of Hogben and Reinhart [31].

— In §2.6 we address a problem of Brualdi and Cao [15] about maximizing the permanent of
an n x n, 312-pattern avoiding binary matrix. Among others, we find that the best possible
answers for n < 8 are given by the rather remarkable sequence

1, 2, 4, 8 16, 32, 64, 120.

e In Section 3 we present two constructions obtained via LP solvers.

— In §3.1 we refute a conjecture of Aaronson-Groenland-Grzesik-Kielak—Johnston [2] about a
problem of covering certain subsets of the hypercube with few hyperplanes.

— In §3.2 we answer a problem of Kirdly—Nagy—Palvolgyi—Visontai [32] about the maximum



An Example

Conjecture. Let G be a connected graph on n > 3 vertices, with largest eigenvalue
A1 and matching number u. Then Ay + u =>vn—1+ 1.

To refute the conjecture:

* Make the reward function A; + p.
* Fixn, and ask the system to generate graphs on n vertices.
* Let the system learn to minimize it.




Figure 3: The evolution of the best construction over time. The network quickly realizes

that sparse graphs are best, and eventually the “balanced double star” structure emerges.



Figure 4: A graph on 19 vertices satisfying Ay + pu < v/n — 1+ 1.



Applications to mathematics

Adam’s online talks are highly recommended.

Since then, more sophisticated methods have been developed:

* PatternBoost
e FunSearch
e AlphaEvolve

On Thursday, | will discuss several ways of using machine learning to discover
patterns in mathematical data.




Interlude




Skepticism

Keller's conjecture and graph theory deal with finite combinatorial objects.
Real mathematics deals with infinitary objects and spaces.

Does Al help us do real mathematics?




Optimism

Don't devalue the finite. In the long run we are all dead.
But even for a fixed dimension, Keller’s conjecture is about infinite configurations.
Finite objects and expressions, like invariants, can tell us things about the infinite.

Thanks to formalization:

* Any mathematical object can be described with a finite expression.
* Any mathematical claim is a finite expression.
* A mathematical proof is a finite expression.




Neurosymbolic
Theorem Proving




IMO Grand Challenge

The International Mathematical Olympiad (IMO) is perhaps the most celebrated mental competition in the world
and as such is among the ultimate grand challenges for Artificial Intelligence (Al).

The challenge: build an Al that can win a gold medal in the competition.

To remove ambiguity about the scoring rules, we propose the formal-to-formal (F2F) variant of the IMO: the Al
receives a formal representation of the problem (in the Lean Theorem Prover), and is required to emit a formal
(i.e. machine-checkable) proof. We are working on a proposal for encoding IMO problems in Lean and will seek
broad consensus on the protocol.

Other proposed rules:

Credit. Each proof certificate that the Al produces must be checkable by the Lean kernel in 10 minutes (which is
approximately the amount of time it takes a human judge to judge a human’s solution). Unlike human
competitors, the Al has no opportunity for partial credit.



ABSTRACTIONS BLOG

At the Math Olympiad, Computers
Prepare to Go for the Gold

@15 | N Computer scientists are trying to build an AI system that can win a gold

medal at the world’s premier math competition.
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Al achieves silver-medal standard
solving International Mathematical
Olympiad problems

25 JULY 2024

AlphaProof and AlphaGeometry teams

<, Share




Score on IMO 2024 problems

42 TOTAL
40
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30
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0
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10
0
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Human participant rank

Graph showing performance of our Al system relative to human competitors at IMO 2024, We
earned 28 out of 42 total points, achieving the same level as a silver medalist in the
competition.

AlphaProof: a formal approach to
reasoning



The IMO Grand Challenge today

After the 2025 IMO, four groups claimed gold medal performance:

 Harmonic Al (formal)
ByteDance (formal)
OpenAl (informal)
Google DeepMind (informal)

ByteDance's SeedProver solves 78.1% of formalized past IMO problems, and more
than 50% on PutnamBench.

On September 26, a group at Apple and UC San Diego claimed 70% on
PutnamBench with its publicly available Hilbert prover.




Concerns




What do | worry about?

* Alinsociety

* Concerns about reliability, explainability, alignment, access
* Economic and social concerns

Keeping mathematics in the loop is part of the solution.

* Al in mathematics

* Changes to the discipline: as Al gets better at discovering patterns and proving
theorems, what's left for us?
Ceding mathematical thought to big tech
Access to resources for mathematicians
Access to mathematics for the public at large




Institute for Computer-Aided
X Reasoning in Mathematics




NSF invests over $74 million in 6
mathematical sciences research
institutes

From improving medical care to detecting planets in other solar systems, the
institutes will explore mathematical sciences with a broad range of applications

August 4, 2025

The U.S. National Science Foundation is investing over $74 million in six research institutes focused
on the mathematical sciences and their broad applications in all fields of science, technology and
many industries.

For over 40 years, NSF has funded Mathematical Sciences Research Institutes to serve as catalysts for
U.S. research in mathematics and statistics and to produce mathematical innovations to rapidly
address new and emerging challenges and opportunities. The institutes collectively investigate a wide
range of mathematical research areas with potential impacts, including better patient outcomes in
hospital emergency rooms, enhanced safety of semiautonomous vehicles, and detection of
exoplanets using quantum physics. Previous research conducted at the institutes has had broad
impacts, such as improved speed and accuracy of MRl imaging and the development of
mathematical foundations of artificial intelligence-based technologies.



Mission

The mission of the Institute for Computer-Aided Reasoning in Mathematics is to:

 empower mathematicians to take advantage of new technologies for
mathematical reasoning and keep mathematics central to everything we do;
unite mathematicians of all kinds, computer scientists, students, and
researchers, to achieve that goal; and
ensure that mathematics and the new technologies are accessible to
everyone.




Motivation

In 2023, a workshop by the National Academies for
Science, Engineering, and Medicine explored

the promise of these technologies and the challenges
that lie ahead.

The Institute for Computer-Aided Reasoning in
Mathematics is designed to meet the challenges.

NATIONAL s
ACADEMIES iesin

Artificial Intelligence
to Assist Mathematical
Reasoning




Empowering Mathematicians

Some challenges:

Existing tools aren’t designed for mathematicians.

Documentation isn’t written for mathematicians.

Mathematicians don’t have the relevant expertise.

Mathematicians don’t have time to learn to use Al.

Collaborations are needed between computer scientists and mathematicians.
Nobody “owns” Al for mathematics; it falls through the cracks.

Some of the work is tedious, doesn’t yield academic credit.

The mathematics community doesn’t know how to support/assess
mathematicians using Al.




Empowering Mathematicians

We will maintain a staff of innovation engineers who will:

help mathematicians learn to use the technologies

answer questions and provide technical support

maintain documentation, tools, infrastructure, and other community
resources

serve as liaisons to computer science and industry

carry out essential tasks that academics don’t have time or incentives to do
be community leaders in the use of technology

gather resources and coordinate efforts.




Bringing us together

We will also provide:
workshops
summer schools
collaborative visits
an annual conference

These will build a community of students, researchers, mathematicians, computer
scientists, engineers, and others to address the challenges together.

We need a combination of perspectives and expertise.




Improving access

Al and the digitization of mathematics can lead to greater democratization but it
can also lead to greater inequities.

A central goal of ICARM is to ensure that all communities have the resources they
need to participate in mathematics and take advantage of the new technologies.

Our original proposal included a summer school for college students, a workshop
for graduate students, and an after-school program for high school students to
address this challenge head on.




Current status

The institute has been launched as a three-year pilot:

2-3 administrative staff

3 innovation engineers

At least two workshops each year

At least one summer school each year
A conference in the second year
Collaborative visits




Current status

We are:

* Setting up administrative and financial infrastructure within CMU
Constituting our governing boards
Setting up our space
Setting up our web pages and computing infrastructure
Hiring staff and innovation engineers
Starting to plan our first activities and events
Collaborating with the other institutes

At the Joint Mathematics Meetings, we will hold tutorials, participate in the
institutes’ reception, and have a booth.




Conclusions




Recap

We have considered examples of various technologies for mathematics:

* interactive theorem proving and formalization
e automated reasoning and symbolic Al
* machine learning and neural Al

These technologies are still niche, but they are promising.

All three come together in neurosymbolic systems that conjecture and prove

theoremes.




Recap

These technologies will impact mathematics:

verification of mathematical results and mathematical computation
communication and collaboration

mathematical reference and search

exploration and discovery of new mathematics

teaching and learning

We need to help the next generation of mathematicians navigate the changes.




Final thoughts

“Today we serve technology. We need to reverse the machine-centered point of
view and turn it into a person-centered point of view: Technology should serve

14

us.

From Things That Make Us Smart: Defending Human Attributes in the Age of the
Machine, by Donald A. Norman (1994)

The guestion is not “how can mathematicians use the technology?” but rather
“what can technology do for mathematicians?”
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