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Overview



I will discuss:

• interactive theorem proving and 

formalization
• automated reasoning and symbolic AI

• machine learning and neural AI

In the press, these are, collectively, “AI for 
Mathematics.”

All three come together in neurosymbolic
theorem proving.

New technologies for mathematics









These technologies are still niche, but they are promising.

These technologies will impact mathematics:

• verification of mathematical results and mathematical computation

• communication and collaboration

• mathematical reference and search

• exploration and discovery of new mathematics

• teaching and learning

This lecture will survey the technologies; later lectures will go into more detail.

Overview



Takeaway messages:

• The technologies hold a lot of promise for mathematics.

• They are interesting and fun.

• There are some things to worry about.

• We need to guide the next generation of mathematicians.

• Good outcomes for mathematics will require

• collaboration between disciplines,

• collaboration between generations, and

• mindful attention.

Overview



I will discuss:

• interactive theorem proving

• automated reasoning and symbolic AI
• machine learning and neural AI

• neuro-symbolic theorem proving

I will choose examples from around 2021:

• not the earliest,
• not the most recent,

• not the most impressive to date, but

• turning points.

New technologies for mathematics



Interactive Theorem 
Proving



Formal methods are used in computer science to

• write specifications (for hardware, software, network protocols, ...), and

• verify that artifacts meet their specifications.

They rely on:

• formal languages

• formal semantics

• formal rules of inference.

Formal methods



In the early 20th century, logicians developed formal axiomatic systems for 

mathematics.

It soon became clear that these systems were expressive enough to formalize 

most mathematics, in principle.

In the early 1970s, the first proof assistants made it possible to formalize and 

verify proofs in practice.

Today, the practice is known as interactive theorem proving. Working with a proof 

assistant, users construct formal definitions and proofs

Interactive theorem proving

















Automated 
Reasoning 



Even before computers were invented, logicians were interested in algorithmic 

procedures to

• decide the truth of mathematical statements, and
• search for proofs.

The first automated provers appeared in the 1950s and 1960s.

Now we have

• first-order provers,
• SAT solvers, and

• SMT solvers.

Automated reasoning



A formula in propositional logic (like P ∨ Q → Q ∧ R) is true or false depending on 

the truth assignments to the variables.

A satisfiability solver determines which is the case.

Modern SAT solvers can decide industrial formulas with tens of millions of 
variables and hundreds of millions of clauses, often in minutes.

Recipe for mathematics:

• Encode / reduce a problem to a SAT problem.
• Use a SAT solver.

SAT solvers



In 1930, Ott-Heinrich Keller conjectured that for every n, any tiling of n-

dimensional space with unit n-dimensional cubes must have at least two 
cubes that fully share a face.

In 1940, Perron showed that the conjecture is true up to dimension 6.

Keller's conjecture



In 1990, Corradi and Szabo showed that 

the conjecture is true if and only if there 

are no cliques of a certain size in certain 

associated graphs, now known as Keller 

graphs.

In 1992, Lagarias and Shor showed that 

the conjecture is false in dimensions 10 

and up.

Keller's conjecture



In 2002, Mackey showed that it is false in dimensions 8 and 9.

Keller's conjecture



In 2020, Brakensiek, Heule, Mackey, and Narváez showed that there is no 

counterexample in dimension 7.

They used a SAT solver.

The search space is huge; they used additional reductions and symmetry breaking, 

to rule out the result.

The images are taken from their web page.

Keller's conjecture



Should we trust the result?

Contemporary SAT solvers produce proofs of unsatisfiability that can be checked 

independently.

• Joshua Clune (and then James Gallicchio) verified the reduction to a 

combinatorial problem in Lean.

• James Gallicchio verified the encoding as a propositional formula.

• The UNSAT result was checked by an independent checker.

• The correctness of the checker was verified by Cayden Codel.

Keller's conjecture



Machine Learning



Key approaches:

• Supervised learning: the system is presented with (input, output) pairs, and 

learns a rule connecting them.

• Unsupervised learning: the system is presented with data, and learns some 

sort of structure.

• Reinforcement learning: the system acts in a space and is rewarded 

accordingly; it learns to maximize rewards.

Models can be very simple (linear regression, decision trees) to very complex 

(neural networks).

Machine Learning



Before the explosion of LLMs, Google DeepMind achieved landmark successes on 

training neural networks using reinforcement learning.

• By December 2013, they had a system that could learn to play Atari 2600 

games and surpass human performance on three of them.

• In March 2016, AlphaGo beat go champion Lee Sedol.

• In October 2017, they published an article in Nature on AlphaGo Zero, which 

was trained without using data from human games.

• Soon after, AlphaZero was able to master chess, shogi, and go trained entirely 

with self-play.

Reinforcement learning







In 2021, Adam Wagner published a paper in which he used reinforcement learning 

to find counterexamples to several graph-theoretic conjectures.

The method:

• Cook up a suitable reward function.

• Ask a network to generate graphs and select the ones with the highest score.

• Update the network to nudge it in the direction of moves that generated these 

graphs.

• Iterate.

Applications to mathematics







Conjecture. Let G be a connected graph on 𝑛 ≥ 3 vertices, with largest eigenvalue 

𝜆1 and matching number μ. Then 𝜆1 + 𝜇 ≥ 𝑛 − 1 + 1.

To refute the conjecture:

• Make the reward function 𝜆1 + 𝜇.

• Fix 𝑛, and ask the system to generate graphs on 𝑛 vertices. 

• Let the system learn to minimize it.

An Example







Adam’s online talks are highly recommended.

Since then, more sophisticated methods have been developed:

• PatternBoost

• FunSearch

• AlphaEvolve

On Thursday, I will discuss several ways of using machine learning to discover 

patterns in mathematical data.

Applications to mathematics



Interlude



Keller's conjecture and graph theory deal with finite combinatorial objects.

Real mathematics deals with infinitary objects and spaces.

Does AI help us do real mathematics?

Skepticism



Don't devalue the finite. In the long run we are all dead.

But even for a fixed dimension, Keller’s conjecture is about infinite configurations.

Finite objects and expressions, like invariants, can tell us things about the infinite.

Thanks to formalization:

• Any mathematical object can be described with a finite expression.

• Any mathematical claim is a finite expression.

• A mathematical proof is a finite expression.

Optimism



Neurosymbolic
Theorem Proving











After the 2025 IMO, four groups claimed gold medal performance:

• Harmonic AI (formal)

• ByteDance (formal)
• OpenAI (informal)

• Google DeepMind (informal)

ByteDance's SeedProver solves 78.1% of formalized past IMO problems, and more 
than 50% on PutnamBench.

On September 26, a group at Apple and UC San Diego claimed 70% on 
PutnamBench with its publicly available Hilbert prover.

The IMO Grand Challenge today



Concerns



• AI in society

• Concerns about reliability, explainability, alignment, access
• Economic and social concerns

Keeping mathematics in the loop is part of the solution.

• AI in mathematics

• Changes to the discipline: as AI gets better at discovering patterns and proving 
theorems, what's left for us?

• Ceding mathematical thought to big tech
• Access to resources for mathematicians
• Access to mathematics for the public at large

What do I worry about?







The mission of the Institute for Computer-Aided Reasoning in Mathematics is to:

• empower mathematicians to take advantage of new technologies for 

mathematical reasoning and keep mathematics central to everything we do;

• unite mathematicians of all kinds, computer scientists, students, and 

researchers, to achieve that goal; and

• ensure that mathematics and the new technologies are accessible to 

everyone.

Mission



In 2023, a workshop by the National Academies for 

Science, Engineering, and Medicine explored 

the promise of these technologies and the challenges 

that lie ahead.

The Institute for Computer-Aided Reasoning in 

Mathematics is designed to meet the challenges.

Motivation



Some challenges:

• Existing tools aren’t designed for mathematicians.

• Documentation isn’t written for mathematicians.

• Mathematicians don’t have the relevant expertise.

• Mathematicians don’t have time to learn to use AI.

• Collaborations are needed between computer scientists and mathematicians.

• Nobody “owns” AI for mathematics; it falls through the cracks.

• Some of the work is tedious, doesn’t yield academic credit.

• The mathematics community doesn’t know how to support/assess 

mathematicians using AI.

Empowering Mathematicians



We will maintain a staff of innovation engineers who will:

• help mathematicians learn to use the technologies

• answer questions and provide technical support

• maintain documentation, tools, infrastructure, and other community 

resources

• serve as liaisons to computer science and industry

• carry out essential tasks that academics don’t have time or incentives to do

• be community leaders in the use of technology

• gather resources and coordinate efforts.

Empowering Mathematicians



We will also provide:

• workshops

• summer schools

• collaborative visits

• an annual conference

These will build a community of students, researchers, mathematicians, computer 

scientists, engineers, and others to address the challenges together.

We need a combination of perspectives and expertise.

Bringing us together



AI and the digitization of mathematics can lead to greater democratization but it 

can also lead to greater inequities.

A central goal of ICARM is to ensure that all communities have the resources they 

need to participate in mathematics and take advantage of the new technologies.

Our original proposal included a summer school for college students, a workshop 

for graduate students, and an after-school program for high school students to 

address this challenge head on.

Improving access



The institute has been launched as a three-year pilot:

• 2-3 administrative staff

• 3 innovation engineers

• At least two workshops each year

• At least one summer school each year

• A conference in the second year

• Collaborative visits

Current status



We are:

• Setting up administrative and financial infrastructure within CMU

• Constituting our governing boards
• Setting up our space

• Setting up our web pages and computing infrastructure

• Hiring staff and innovation engineers
• Starting to plan our first activities and events
• Collaborating with the other institutes

At the Joint Mathematics Meetings, we will hold tutorials, participate in the 
institutes’ reception, and have a booth.

Current status



Conclusions



We have considered examples of various technologies for mathematics:

• interactive theorem proving and formalization

• automated reasoning and symbolic AI

• machine learning and neural AI

These technologies are still niche, but they are promising.

All three come together in neurosymbolic systems that conjecture and prove 

theorems.

Recap



These technologies will impact mathematics:

• verification of mathematical results and mathematical computation

• communication and collaboration

• mathematical reference and search

• exploration and discovery of new mathematics

• teaching and learning

We need to help the next generation of mathematicians navigate the changes.

Recap



“Today we serve technology. We need to reverse the machine-centered point of 

view and turn it into a person-centered point of view: Technology should serve 

us.”

From Things That Make Us Smart: Defending Human Attributes in the Age of the 

Machine, by Donald A. Norman (1994)

The question is not “how can mathematicians use the technology?” but rather 

“what can technology do for mathematicians?”

Final thoughts
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