
Interactive Theorem Proving,
Automated Reasoning,

and Mathematical Computation

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

December, 2012



Outline

Topics:

• Interactive theorem
proving

• Automated reasoning
and mathematical
computation

• A logic library for Python
and Sage

• Verifying the results

Interactive
Theorem
Proving

Automated
Reasoning

Mathematical
Computation



Certifying mathematical results

Question: how do we come to know that our mathematical claims
are correct?

One answer: prove them correct.

• Use trusted axioms.

• Use valid inferences.

• Make the proof public so that others can check it.

Twentieth century logic: proofs can be verified mechanically, in
principle.

Contemporary computer science: proofs can be verified
mechanically, in practice.



Axiomatic foundations

The development of mathematics toward greater precision has led, as is
well known, to the formalization of large tracts of it, so that one can
prove any theorem using nothing but a few mechanical rules. The most
comprehensive formal systems that have been set up hitherto are the
system of Principia mathematica (PM) on the one hand and the
Zermelo-Fraenkel axiom system of set theory (further developed by J. von
Neumann) on the other. These two systems are so comprehensive that in
them all methods of proof used today in mathematics are formalized,
that is, reduced to a few axioms and rules of inference. One might
therefore conjecture that these axioms and rules of inference are sufficient
to decide any mathematical question that can at all be formally expressed
in these systems. It will be shown below that this is not the case. . .

— Kurt Gödel, “On formally undecidable propositions of Principia

Mathematica and related systems I,” 1931.



Axiomatic foundations

There are people working hard on the project of actually formalizing parts
of mathematics by computer, with actually formally correct formal
deductions. I think this is a very big but very worthwhile project, and I
am confident we will learn a lot from it. . .

However, we should recognize that the humanly understandable and
humanly checkable proofs that we actually do are what is most important
to us, and that they are quite different from formal proofs.

— William P. Thurston, “On proof and progress in mathematics,”

Bulletin of the AMS 1994



Axiomatic foundations

How do we know that a proof is correct? By checking it, line by line. A
computer might even be programmed to check it.. . .

Still, there is a nagging worry about this belief in mathematical
certitude.. . .

. . . many great and important theorems don’t actually have proofs. They
have sketches of proofs, outlines of arguments, hints and intuitions that
were obvious to the author (at least, at the time of writing) and that,
hopefully, are understood and believed by some part of the mathematical
community.

— Melvyn B. Nathanson, “Deseparately seeking mathematical truth,”

AMS Notices 2008



Interactive theorem proving

“Interactive theorem proving” is one important approach to
verifying the correctness of a mathematical proof.

Working with a “proof assistant,” the user conveys enough
information to the system to confirm that there is a formal
axiomatic proof.

In fact, most proof systems actually construct a formal proof
object, a complex piece of data that can be verified independently.



Interactive theorem proving

Some important systems:

• Mizar (set theory)

• HOL4 (higher-order logic)

• Isabelle (higher-order logic)

• Coq (constructive dependent type theory)

• HOL light (higher-order logic)

• ACL2 (∼primitive recursive arithmetic)



Interactive theorem proving

Think of an ordinary proof as a high-level description of, or recipe
for constructing, a fully detailed axiomatic proof.

In formal verification, it is common to refer to proofs as “code.”

lemma prime_factor_nat: "n ~= (1::nat) ==>

EX p. prime p & p dvd n"

apply (induct n rule: nat_less_induct)

apply (case_tac "n = 0")

using two_is_prime_nat apply blast

apply (case_tac "prime n")

apply blast

apply (subgoal_tac "n > 1")

apply (frule (1) not_prime_eq_prod_nat)

apply (auto intro: dvd_mult dvd_mult2)

done



Interactive theorem proving

proof (induct n rule: less_induct_nat)

fix n :: nat

assume "n ~= 1" and

ih: "ALL m < n. m ~= 1 --> (EX p. prime p & p dvd m)"

then show "EX p. prime p & p dvd n"

proof -

{ assume "n = 0"

moreover note two_is_prime_nat

ultimately have ?thesis by auto }

moreover

{ assume "prime n" then have ?thesis by auto }

moreover

{ assume "n ~= 0" and "~prime n"

with ‘n ~= 1‘ have "n > 1" by auto

with ‘~prime n‘ and not_prime_eq_prod_nat obtain m k where

"n = m * k" and "1 < m" and "m < n" by blast

with ih obtain p where "prime p" and "p dvd m" by blast

with ‘n = m * k‘ have ?thesis by auto }

ultimately show ?thesis by blast



Interactive theorem proving

Some theorems formalized to date: the prime number theorem, the
four-color theorem, the Jordan curve theorem, Gödel’s first
incompleteness theorem, Dirichlet’s theorem, Cartan fixed-point
theorems

There are good libraries for elementary number theory, real and
complex analysis, measure-theoretic probability, linear algebra,
Galois theory, . . .

See the Journal of Automated Reasoning, Journal of Formalised
Reasoning, Journal of Formalized Mathematics, the Interactive
Theorem Proving conference, and Freek Wiedijk’s list of 100
theorems.



Interactive theorem proving

Georges Gonthier headed a project to verify the Feit-Thompson
theorem, with a group of researchers.

• The original 1963 journal publication ran 255 pages.

• The formalization is constructive.

• The development includes libraries for finite group theory,
linear algebra, and representation theory.

The project was completed on September 20, with roughly

• 170,000 lines of code,

• 4,200 definitions, and

• 15,000 theorems.



Interactive theorem proving

Thomas Hales’ Flyspeck project is nearing completion (HOL light,
Isabelle).

• Three essential uses of computation: enumerating tame
hypermaps, proving nonlinear inequalities, showing infeasibility
of linear programs.

• The formalization led to even stronger results.

Vladimir Voevodsky has launched a project to develop “univalent
foundations” for algebraic topology (Coq).

• Constructive dependent type theory has natural
homotopy-theoretic interpretations.

• Rules for identity types characterize homotopy theories
abstractly.

• One can consistently add an axiom to the effect that
“isomorphic structures are identical.”



Interactive theorem proving

Interactive theorem proving is not “ready for prime time.”

• There is a steep learning curve.

• Verification can be time consuming and painful.

Short term wins:

• verifying computation

• fiddly hand calculations

Long term:

• Need better libraries (and means to translate between them;
cf. the OpenTheory project).

• Need better automated proof methods.

• Need better ways to incorporate and verify computations.



Outline

Topics:

• Interactive theorem
proving

• Automated reasoning
and mathematical
computation

• A logic library for Python
and Sage

• Verifying the results

Interactive
Theorem
Proving

Automated
Reasoning

Mathematical
Computation



Automated reasoning vs. mathematical computation

One distinction: the first has to do with logic, the second
mathematics.

But (Boole, 1854) we can “calculate” with propositions:

(p ∧ q) ∨ (r ∧ ¬q) = (p ∨ r) ∧ (p ∨ ¬q) ∧ (q ∨ r)

just as we calculate with magnitudes:

(x + y)(z + y−1) = xz + xy−1 + yz + 1



Automated reasoning vs. mathematical computation

The real distinction: search vs. calculation.

One can search for all kinds of mathematical objects, e.g. proofs,
solutions to Diophantine equations, combinatorial objects, and so
on.

The problem: infinite domains, combinatorial explosion.

Ideas:

• Exploit symmetry and choose representations carefully, to
avoid duplication.

• Use heuristics.

• Use efficient data structures.



Automated reasoning vs. mathematical computation

Domain-general methods:

• Propositional theorem proving (“CDCL”)

• First-order theorem proving

• Higher-order theorem proving

• Equality reasoning

• “Combination” methods (“SMT”)

Domain-specific methods:

• Linear arithmetic (integer, real, or mixed)

• Nonlinear real arithmetic (real closed fields, transcendental
functions)

• Algebraic methods (such as Gröbner bases)



Automated reasoning vs. mathematical computation

In practice, there is no sharp line between “search” and
“computation.”

For example, the “theory of real closed fields” is decidable (Tarski,
1948).

Verifying hybrid systems:

• Gao, Avigad, Clarke: combine interval methods with SMT
search

• Platzer, Paulson, Passmore: use symbolic methods, with
heuristics

Even when problems are decidable in principle, may still need
search methods.



Automated reasoning vs. mathematical computation

How to bring the two domains together?

Bring computation into automated reasoners:

• Combination methods (SMT provers)

• Integrate computation into resolution provers (MetiTarski)

Bring proof search to computer algebra systems

• Theorema (Buchberger et al.)

• Analytica (Clarke et al.)



A logic library for Python and Sage

Grant Passmore, Leo de Moura, and I are working on a library:

• Have Python classes for languages, terms, formulas, models,
goals, proofs

• Include interfaces to automated reasoners
• SMT provers: Z3, CVC3, SMT format
• Resolution provers: Vampire, E, Spass, Prover 9, TPTP format
• Computer algebra: Sage, Mathematica, Metitarski
• Model finders: Mace, Kodkod
• Interactive theorem provers: Isabelle, HOL-light, Coq

• Develop a reasoning toolbox
• Users can explore hypotheses and conjectures
• Users can write special-purpose reasoning procedures



A logic library for Python and Sage

Examples:

• Plot polynomials in Sage, ask Z3 about the roots.

• Ask Prover 9 to verify that any group of exponent 2 is abelian.

• Have Mace find a nonabelian group of exponent 3.

• Ask Z3 to find kissing configurations.

• Interactively work through a proof, look for counterexamples.

Related projects:

• A proof checker for Euclidean geometry.

• An open-source version of Tarski’s World.

• A heuristic procedure for proving inequalities.



Outline

Topics:

• Interactive theorem
proving

• Automated reasoning
and mathematical
computation

• A logic library for Python
and Sage

• Verifying the results

Interactive
Theorem
Proving

Automated
Reasoning

Mathematical
Computation



Verifying the results

Challenge: bring automated reasoners and mathematical
computation the kind of assurances one gets from interactive
theorem provers.

One solution: verify the automated reasoners and systems of
computation, or have these systems verify their results.

But this is very hard, and pulls in the wrong direction.



Verifying the results

Interactive theorem provers:

• maintain a high standard of correctness

• emphasis on rigor and precision

Automated reasoning systems:

• deal with vast search spaces

• emphasis on speed, efficiency, and heuristics

Computer algebra systems:

• abundance of mathematical concepts and structures

• emphasis on ease of use and flexibility



Verifying the results

We need more subtle ways of verifying correctness:

• Reconstruct proofs after the fact (Sledgehammer, Isabelle and
Z3).

• Use certificates (semidefinite programming, algebraic
computations).

• Verify facts and procedures selectively.

Goals:

• Bring more ease and flexibility to interactive theorem proving.

• Make automated reasoning and mathematical computation
more trustworthy.



Conclusions

• Interactive theorem proving, automated reasoning, and
mathematical computation provide important ways of
extending mathematical knowledge.

• Their strengths are complementary.

• A flexible logic library will help integrate automated reasoning
and mathematical computation, and support experimentation
and exploration.

• Formal methods help to ensure correctness.

• Interactive theorem proving meets a very high standard.

• The central challenge: verify results, while maintaining
flexibility and efficiency.


