Overview

Between proof theory and model theory

Jeremy Avigad Department of Philosophy Carnegie Mellon University avigad@cmu.edu http://andrew.cmu.edu/~avigad

1

Three traditions in logic:

- Syntactic (formal deduction)
- Semantic (interpretations and truth)
- Algebraic

Contents of this talk:

- 1. Conservation results in proof theory
- 2. A model-theoretic approach
- 3. An algebraic approach

Conservation results

Many theorems in proof theory have the following form:

For $\varphi \in \Gamma$, if T_1 proves φ , then T_2 proves φ'

where

- T_1 and T_2 are theories
- Γ is a class of formulae
- φ' is some "translation" of φ (possibly φ itself)

If $T_1 \supseteq T_2$, this is a *conservation theorem*. These can be:

- 1. Foundationally reductive (classical to constructive, infinitary to finitary, impredicative to predicative, nonstandard to standard)
- 2. Otherwise informative (ordinal analysis, combinatorial independences, functional interpretations)

An example

The set of primitive recursive functions is the smallest set of functions from \mathbb{N} to \mathbb{N} (of various arities)

- containing 0, S(x) = x + 1, $p_i^n(x_1, ..., x_n) = x_i$
- closed under composition
- closed under primitive recursion:

 $f(0, \vec{z}) = g(\vec{z}), \quad f(x+1, \vec{z}) = h(f(x, \vec{z}), x, \vec{z})$

Primitive recursive arithmetic is an axiomatic theory

- with defining equations for the primitive recursive functions
- quantifier-free induction:

$$\frac{\varphi(0) \qquad \varphi(x) \to \varphi(x+1)}{\varphi(t)}$$

PRA can be presented either as a first-order theory or as a quantifier-free calculus.

Theorem. (Herbrand) Suppose first-order *PRA* proves $\forall x \exists y \ \varphi(x, y)$, with φ quantifier-free. Then for some function symbol f, quantifier-free *PRA* proves $\varphi(x, f(x))$.

Strengthening the conservation result

Let $I\Sigma_1(PRA)$ denote the theory obtained by adding induction for Σ_1 formulae,

 $\theta(0) \land \forall x \ (\theta(x) \to \theta(x+1)) \to \forall x \ \theta(x),$

where $\theta(x)$ is of the form $\exists y \ \psi(x, y, \vec{z})$ for some quantifier-free formula, ψ .

Theorem. (Mints, Parsons, Takeuti) If $I\Sigma_1$ proves $\forall x \exists y \varphi(x, y)$ with φ q.f., then so does *PRA*.

In other words: $I\Sigma_1$ is conservative over PRA for Π_2 sentences.

In fact (Paris, Friedman) one can conservatively add a schema of Σ_2 collection.

But wait, there's more

Let RCA_{θ} be an extension of $I\Sigma_{1}$ with set variables $X, Y, Z \dots$ and axioms asserting that "the universe of sets is closed under recursive definability."

 RCA_{θ} is a reasonable framework for formalizing recursive mathematics.

Theorem. RCA_0 is conservative over $I\Sigma_1$.

 WKL_0 adds a compactness principle: every infinite tree on $\{0, 1\}$ has a path.

Theorem. (Harrington, strengthening Friedman) WKL_0 is Π_1^1 conservative over RCA_0 .

Now how much would you pay?

You get all this:

- Primitive recursive functions
- Σ_1 induction
- Σ_2 collection
- Recursive comprehension
- Weak König's lemma
- Other second-order principles (Simpson and students)
- Higher types (Parsons, Kohlenbach, others)
- Flexible type structures (Feferman, Jäger, Strahm)
- Nonstandard arithmetic/analysis (Avigad)
- ...

without losing Π_2 conservativity over *PRA*.

Furthermore, one can formalize interesting portions of mathematics in these theories (Friedman, Simpson, Kohlenbach, and many others).

Simpson calls this a "partial realization of Hilbert's program."

Interlude

Recall the contents of this talk:

- 1. Conservation results in proof theory
- 2. A model-theoretic approach
- 3. An algebraic approach

I have described a proof-theoretic *goal*. Now let us consider a model-theoretic *method*.

Proof theory versus model theory

Differences:

- Proof vs. truth
- Derivations vs. structures
- Definability in a theory vs. definability in a model

Areas of overlap:

- Soundness and completeness
- Models of arithmetic
- Nonstandard arithmetic and analysis
- Elimination of quantifiers (e.g. for *RCF*)
- ...

Model theoretic methods are often used in proof theory, e.g. in proving conservation results.

Saturated models

Model theorists also like to get "something for nothing."

Let \mathcal{M} be a model for a language L. $L(\mathcal{M})$ is the set of formulae with parameters from \mathcal{M} .

The complete diagram of \mathcal{M} is the set of sentences of $L(\mathcal{M})$ true in \mathcal{M} .

A *type* is a set of sentences in $L(\mathcal{M}) + \vec{c}$, where \vec{c} are some new constants.

A type Γ is *realized* in \mathcal{M} if for some $\vec{a} \in \mathcal{M}$, $\langle \mathcal{M}, \vec{a} \rangle \models \Gamma$.

Definition. Let \mathcal{M} be a model of cardinality λ . \mathcal{M} is *saturated* if every type involving less than λ parameters from \mathcal{M} that is consistent with the complete diagram of \mathcal{M} is realized in \mathcal{M} .

Theorem (GCH). Every model has a saturated elementary extension.

Proof. Start with the complete diagram \mathcal{M} . Make a transfinite list of types. Iterate, and realize types...

Herbrand-saturated models

The universal diagram of \mathcal{M} is the set of universal sentences of $L(\mathcal{M})$ true in \mathcal{M} .

A type is *universal* if it consists of universal sentences, and *principal* if it consists of a single sentence.

Definition. \mathcal{M} is *Herbrand saturated* if every universal principle type consistent with the universal diagram of \mathcal{M} is realized in \mathcal{M} .

Theorem. Every model has an Herbrand saturated 1-elementary extension (i.e. an extension preserving truth of Σ_1 formulae).

Proof. As before, iterate, and realize universal types. Cut down to a term model at the end.

Corollary. Every consistent universally axiomatized theory has an Herbrand-saturated model.

Application to proof theory

Recall our prototypical proof-theoretic result:

If $T_1 \vdash \varphi$, then $T_2 \vdash \varphi$.

By soundness and completeness, this is equivalent to

If $T_2 \cup \{\neg \varphi\}$ has a model, so does $T_1 \cup \{\neg \varphi\}$.

So, instead of translating proofs, we can "translate" models.

I will show:

- Herbrand-saturated models have nice properties.
- In particular, an Herbrand-saturated model of *PRA* satisfies Σ₁ induction.

From the latter, it follows that $I\Sigma_1$ is conservative over PRA for Π_2 formulae.

Modeling Σ_1 induction

A nice property of Herbrand-saturated models

The following theorem says that any Π_2 assertion true in \mathcal{M} is true for a very concrete reason.

Theorem. Suppose \mathcal{M} is Herbrand-saturated, and

$$\mathcal{M} \models \forall \vec{x} \exists \vec{y} \varphi(\vec{x}, \vec{y}, \vec{a}),$$

where φ is quantifier-free and \vec{a} are parameters from \mathcal{M} . Then there are sequences of terms $\vec{t}_1(\vec{x}, \vec{z}, \vec{w}), \ldots, \vec{t}_k(\vec{x}, \vec{z}, \vec{w})$, and parameters \vec{b} from \mathcal{M} such that

 $\mathcal{M} \models \forall \vec{x} \varphi(\vec{x}, \vec{t}_1(\vec{x}, \vec{a}, \vec{b}), \vec{a}) \lor \ldots \lor \varphi(\vec{x}, \vec{t}_k(\vec{x}, \vec{a}, \vec{b}), \vec{a}).$

Proof. Just use the definition of Herbrand saturation, and Herbrand's theorem.

Suppose \mathcal{M} is an Herbrand-saturated model of primitive recursive arithmetic, satisfying

- $\exists y \ \varphi(0, y, \vec{a})$
- $\forall x \; (\exists y \; \varphi(x, y, \vec{a}) \to \exists y \; \varphi(x + 1, y, \vec{a})).$

with φ q.f. Rewrite the second formula as

 $\forall x, y \exists y' \ (\varphi(x, y, \vec{a}) \to \varphi(x + 1, y', \vec{a})).$

Then, by our "nice property", there are a primitive recurisve function symbol g and parameters \vec{b} and c such that \mathcal{M} satisfies

- $\varphi(0,c,\vec{a}),$
- $\varphi(x, y, \vec{a}) \rightarrow \varphi(x+1, g(x, y, \vec{a}, \vec{b}), \vec{a}).$

Let $h(x, \vec{z}, v, \vec{w})$ by the symbol denoting the function defined by

Then \mathcal{M} satisfies

 $\mathcal{M} \models \forall x \varphi(x, h(x, \vec{a}, c, \vec{b}), \vec{a}).$

and so $\mathcal{M} \models \forall x \exists y \varphi(x, y, \vec{a}).$

Interlude

Other applications

This is, essentially, the model-theoretic version of Siegs' "Herbrand analysis" and Buss' "witnessing method."

The method applies most directly to universal theories; but any theory can be *made* universal by adding appropriate Skolem functions. So it works for

- S_2^1 over PV
- WKL_0 over PRA
- $B\Sigma_{k+1}$ over $I\Sigma_k$
- Σ_1^1 -AC over PA

and so on.

Back to the table of contents:

- 1. Conservation results in proof theory
- 2. A model-theoretic approach
- 3. An algebraic approach

Using model-theoretic methods, one can prove

If $T_1 \vdash \varphi$, then $T_2 \vdash \varphi$.

by showing instead that

If $T_2 \cup \{\neg\varphi\}$ has a model, so does $T_1 \cup \{\neg\varphi\}$.

Suppose someone gives you a proof of φ in T_1 . Where is the corresponding proof in T_2 ?

An algebraic approach can be used to recover some constructive information.

Back to the model theoretic construction

Theorem. Every consistent universal theory T has an Herbrand-saturated model.

Proof. Let L_{ω} be L plus new constant symbols c_0, c_1, c_2, \ldots Let $\theta_1(\vec{x}_1, \vec{y}_1), \theta_2(\vec{x}_2, \vec{y}_2), \ldots$ enumerate the quantifier-free formulae of L_{ω} . Let $S_0 = T$. At stage i, pick a fresh sequence of constants \vec{c} , and let

 $S_{i+1} = \begin{cases} S_i \cup \{ \forall \vec{y}_{i+1} \ \theta_{i+1}(\vec{c}, \vec{y}_{i+1}) \} & \text{if this is consistent} \\ S_i & \text{otherwise.} \end{cases}$

Let $S_{\omega} = \bigcup_i S_i$. Let $S' \supseteq S_{\omega}$ be maximally consistent. "Read off" a model from S'; this model is Herbrand saturated.

Making it constructive

Main ideas:

- We don't need a "classical model." If we use a Boolean-valued model, we do not need the maximally consistent extension.
- Use a *forcing relation*. Conditions are finite sets of universal formulae that are true in a "generic" model.
- Omit the consistency check; simply allow that some conditions force \perp .
- We do not need to enumerate anything; genericity takes care of that.

The forcing relation

A condition is a finite set of universal sentences of L_{ω} .

Define $p \Vdash \theta$ inductively. Intuition: " θ is true in any generic model satisfying p."

 $\begin{array}{rcl} p \Vdash \theta & \equiv & PRA \cup p \vdash \theta & \text{for atomic } \theta \\ p \Vdash \bot & \equiv & PRA \cup p \vdash \bot \\ p \Vdash (\theta \land \eta) & \equiv & p \Vdash \theta \text{ and } p \Vdash \eta \\ p \Vdash (\theta \to \eta) & \equiv & \text{for every condition } q \supseteq p, \text{ if } q \Vdash \theta, \text{ then } q \Vdash \eta \\ p \Vdash \forall x \ \theta(x) & \equiv & \text{for every closed term } t \text{ of } L_{\omega}, \ p \Vdash \theta(t) \end{array}$

Define $\neg \varphi, \varphi \lor \psi$, and $\exists x \varphi$ in terms of the other connectives.

A formula ψ is said to be forced, written $\Vdash \psi$, if $\emptyset \Vdash \psi$.

The algebraic version of the proof

Lemma. All the axioms of $I\Sigma_1$ are forced.

Lemma. If a Π_2 sentence is forced, it is provable in *PRA*.

Theorem. $I\Sigma_1$ is Π_2 conservative over PRA.

Proof. If $I\Sigma_1$ proves $\forall x \exists y \varphi(x, y)$, it is forced, and hence provable in *PRA*.

Conclusions

Some other uses of algebraic methods:

- nonstandard arithmetic
- weak König's lemma
- eliminating Skolem functions
- proving cut elimination theorems

Questions:

- Are there other metamathematical or proof-theoretic applications?
- Are there concrete computational applications?
- Can algebraic methods be useful in studying particular mathematical theories, and extracting additional information?
- Are there model-theoretic applications, e.g. in constructivizing model-theoretic results?
- Are there applications to bounded arithmetic and proof complexity?

Notes on the proof

Q. What makes the proof "algebraic"?

A. Defining $\llbracket \varphi \rrbracket = \{p \mid p \Vdash \varphi\}$ yields a Boolean-valued model of $I\Sigma_1$.

Q. What makes the proof constructive?

A. Two answers:

- 1. Can formalize it in Martin-Löf type theory.
- 2. Can read of an explicit algorithm: from a proof d in $I\Sigma_1$, get a typed term T_d , denoting a proof in *PRA*. Normalizing T_d yields the proof.