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Overview

Three traditions in logic:

• Syntactic (formal deduction)

• Semantic (interpretations and truth)

• Algebraic

Contents of this talk:

1. Conservation results in proof theory

2. A model-theoretic approach

3. An algebraic approach
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Conservation results

Many theorems in proof theory have the following form:

For ϕ ∈ Γ, if T1 proves ϕ, then T2 proves ϕ′

where

• T1 and T2 are theories

• Γ is a class of formulae

• ϕ′ is some “translation” of ϕ (possibly ϕ itself)

If T1 ⊇ T2, this is a conservation theorem. These can be:

1. Foundationally reductive (classical to constructive,
infinitary to finitary, impredicative to predicative,
nonstandard to standard)

2. Otherwise informative (ordinal analysis, combinatorial
independences, functional interpretations)
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An example

The set of primitive recursive functions is the smallest
set of functions from N to N (of various arities)

• containing 0, S(x) = x+ 1, pn
i (x1, . . . , xn) = xi

• closed under composition

• closed under primitive recursion:

f(0, ~z) = g(~z), f(x+ 1, ~z) = h(f(x, ~z), x, ~z)

Primitive recursive arithmetic is an axiomatic theory

• with defining equations for the primitive recursive
functions

• quantifier-free induction:

ϕ(0) ϕ(x) → ϕ(x+ 1)
ϕ(t)

PRA can be presented either as a first-order theory or as a
quantifier-free calculus.

Theorem. (Herbrand) Suppose first-order PRA proves
∀x ∃y ϕ(x, y), with ϕ quantifier-free. Then for some
function symbol f , quantifier-free PRA proves ϕ(x, f(x)).
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Strengthening the conservation result

Let IΣ1 (PRA) denote the theory obtained by adding
induction for Σ1 formulae,

θ(0) ∧ ∀x (θ(x) → θ(x+ 1)) → ∀x θ(x),

where θ(x) is of the form ∃y ψ(x, y, ~z) for some
quantifier-free formula, ψ.

Theorem. (Mints, Parsons, Takeuti) If IΣ1 proves
∀x ∃y ϕ(x, y) with ϕ q.f., then so does PRA.

In other words: IΣ1 is conservative over PRA for Π2

sentences.

In fact (Paris, Friedman) one can conservatively add a
schema of Σ2 collection.
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But wait, there’s more

Let RCA0 be an extension of IΣ1 with set variables
X,Y, Z . . . and axioms asserting that “the universe of sets is
closed under recursive definability.”

RCA0 is a reasonable framework for formalizing recursive
mathematics.

Theorem. RCA0 is conservative over IΣ1 .

WKL0 adds a compactness principle: every infinite tree on
{0, 1} has a path.

Theorem. (Harrington, strengthening Friedman) WKL0 is
Π1

1 conservative over RCA0 .
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Now how much would you pay?

You get all this:

• Primitive recursive functions

• Σ1 induction

• Σ2 collection

• Recursive comprehension

• Weak König’s lemma

• Other second-order principles (Simpson and students)

• Higher types (Parsons, Kohlenbach, others)

• Flexible type structures (Feferman, Jäger, Strahm)

• Nonstandard arithmetic/analysis (Avigad)

• . . .

without losing Π2 conservativity over PRA.

Furthermore, one can formalize interesting portions of
mathematics in these theories (Friedman, Simpson,
Kohlenbach, and many others).

Simpson calls this a “partial realization of Hilbert’s
program.”
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Interlude

Recall the contents of this talk:

1. Conservation results in proof theory

2. A model-theoretic approach

3. An algebraic approach

I have described a proof-theoretic goal. Now let us consider
a model-theoretic method.
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Proof theory versus model theory

Differences:

• Proof vs. truth

• Derivations vs. structures

• Definability in a theory vs. definability in a model

Areas of overlap:

• Soundness and completeness

• Models of arithmetic

• Nonstandard arithmetic and analysis

• Elimination of quantifiers (e.g. for RCF )

• . . .

Model theoretic methods are often used in proof theory, e.g.
in proving conservation results.
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Saturated models

Model theorists also like to get “something for nothing.”

Let M be a model for a language L. L(M) is the set of
formulae with parameters from M.

The complete diagram of M is the set of sentences of L(M)
true in M.

A type is a set of sentences in L(M) + ~c, where ~c are some
new constants.

A type Γ is realized in M if for some ~a ∈M, 〈M,~a〉 |= Γ.

Definition. Let M be a model of cardinality λ. M is
saturated if every type involving less than λ parameters
from M that is consistent with the complete diagram of M
is realized in M.

Theorem (GCH). Every model has a saturated
elementary extension.

Proof. Start with the complete diagram M. Make a
transfinite list of types. Iterate, and realize types. . .
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Herbrand-saturated models

The universal diagram of M is the set of universal
sentences of L(M) true in M.

A type is universal if it consists of universal sentences, and
principal if it consists of a single sentence.

Definition. M is Herbrand saturated if every universal
principle type consistent with the universal diagram of M is
realized in M.

Theorem. Every model has an Herbrand saturated
1-elementary extension (i.e. an extension preserving truth of
Σ1 formulae).

Proof. As before, iterate, and realize universal types. Cut
down to a term model at the end.

Corollary. Every consistent universally axiomatized theory
has an Herbrand-saturated model.
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Application to proof theory

Recall our prototypical proof-theoretic result:

If T1 ` ϕ, then T2 ` ϕ.

By soundness and completeness, this is equivalent to

If T2 ∪ {¬ϕ} has a model, so does T1 ∪ {¬ϕ}.

So, instead of translating proofs, we can “translate” models.

I will show:

• Herbrand-saturated models have nice properties.

• In particular, an Herbrand-saturated model of PRA
satisfies Σ1 induction.

From the latter, it follows that IΣ1 is conservative over
PRA for Π2 formulae.
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A nice property of Herbrand-saturated models

The following theorem says that any Π2 assertion true in
M is true for a very concrete reason.

Theorem. Suppose M is Herbrand-saturated, and

M |= ∀~x ∃~y ϕ(~x, ~y,~a),

where ϕ is quantifier-free and ~a are parameters from M.
Then there are sequences of terms ~t1(~x, ~z, ~w), . . . ,~tk(~x, ~z, ~w),
and parameters ~b from M such that

M |= ∀~x ϕ(~x,~t1(~x,~a,~b),~a) ∨ . . . ∨ ϕ(~x,~tk(~x,~a,~b),~a).

Proof. Just use the definition of Herbrand saturation, and
Herbrand’s theorem.
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Modeling Σ1 induction

Suppose M is an Herbrand-saturated model of primitive
recursive arithmetic, satisfying

• ∃y ϕ(0, y,~a)

• ∀x (∃y ϕ(x, y,~a) → ∃y ϕ(x+ 1, y,~a)).

with ϕ q.f. Rewrite the second formula as

∀x, y ∃y′ (ϕ(x, y,~a) → ϕ(x+ 1, y′,~a)).

Then, by our “nice property”, there are a primitive
recurisve function symbol g and parameters ~b and c such
that M satisfies

• ϕ(0, c,~a),

• ϕ(x, y,~a) → ϕ(x+ 1, g(x, y,~a,~b),~a).

Let h(x, ~z, v, ~w) by the symbol denoting the function
defined by

h(0, ~z, v, ~w) = v

h(x+ 1, ~z, v, ~w) = g(x, h(x, ~z, v, ~w), ~z, ~w).

Then M satisfies

M |= ∀x ϕ(x, h(x,~a, c,~b),~a).

and so M |= ∀x ∃y ϕ(x, y,~a).
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Other applications

This is, essentially, the model-theoretic version of Siegs’
“Herbrand analysis” and Buss’ “witnessing method.”

The method applies most directly to universal theories; but
any theory can be made universal by adding appropriate
Skolem functions. So it works for

• S1
2 over PV

• WKL0 over PRA

• BΣk+1 over IΣk

• Σ1
1 -AC over PA

and so on.
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Interlude

Back to the table of contents:

1. Conservation results in proof theory

2. A model-theoretic approach

3. An algebraic approach

Using model-theoretic methods, one can prove

If T1 ` ϕ, then T2 ` ϕ.

by showing instead that

If T2 ∪ {¬ϕ} has a model, so does T1 ∪ {¬ϕ}.

Suppose someone gives you a proof of ϕ in T1. Where is the
corresponding proof in T2?

An algebraic approach can be used to recover some
constructive information.
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Back to the model theoretic construction

Theorem. Every consistent universal theory T has an
Herbrand-saturated model.

Proof. Let Lω be L plus new constant symbols
c0, c1, c2, . . .. Let θ1(~x1, ~y1), θ2(~x2, ~y2), . . . enumerate the
quantifier-free formulae of Lω. Let S0 = T . At stage i, pick
a fresh sequence of constants ~c, and let

Si+1 =

 Si ∪ {∀~yi+1 θi+1(~c, ~yi+1)} if this is consistent

Si otherwise.

Let Sω =
⋃

i Si. Let S′ ⊇ Sω be maximally consistent.
“Read off” a model from S′; this model is Herbrand
saturated.
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Making it constructive

Main ideas:

• We don’t need a “classical model.” If we use a
Boolean-valued model, we do not need the maximally
consistent extension.

• Use a forcing relation. Conditions are finite sets of
universal formulae that are true in a “generic” model.

• Omit the consistency check; simply allow that some
conditions force ⊥.

• We do not need to enumerate anything; genericity takes
care of that.
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The forcing relation

A condition is a finite set of universal sentences of Lω.

Define p  θ inductively. Intuition: “θ is true in any generic
model satisfying p.”

p  θ ≡ PRA ∪ p ` θ for atomic θ

p  ⊥ ≡ PRA ∪ p ` ⊥

p  (θ ∧ η) ≡ p  θ and p  η

p  (θ → η) ≡ for every condition q ⊇ p, if q  θ, then q  η

p  ∀x θ(x) ≡ for every closed term t of Lω, p  θ(t)

Define ¬ϕ, ϕ ∨ ψ, and ∃x ϕ in terms of the other
connectives.

A formula ψ is said to be forced, written  ψ, if ∅  ψ.
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The algebraic version of the proof

Lemma. All the axioms of IΣ1 are forced.

Lemma. If a Π2 sentence is forced, it is provable in PRA.

Theorem. IΣ1 is Π2 conservative over PRA.

Proof. If IΣ1 proves ∀x ∃y ϕ(x, y), it is forced, and hence
provable in PRA.
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Notes on the proof

Q. What makes the proof “algebraic”?

A. Defining [[ϕ]] = {p | p  ϕ} yields a Boolean-valued
model of IΣ1 .

Q. What makes the proof constructive?

A. Two answers:

1. Can formalize it in Martin-Löf type theory.

2. Can read of an explicit algorithm: from a proof d in
IΣ1 , get a typed term Td, denoting a proof in PRA.
Normalizing Td yields the proof.

21

Conclusions

Some other uses of algebraic methods:

• nonstandard arithmetic

• weak König’s lemma

• eliminating Skolem functions

• proving cut elimination theorems

Questions:

• Are there other metamathematical or proof-theoretic
applications?

• Are there concrete computational applications?

• Can algebraic methods be useful in studying particular
mathematical theories, and extracting additional
information?

• Are there model-theoretic applications, e.g. in
constructivizing model-theoretic results?

• Are there applications to bounded arithmetic and proof
complexity?
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