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A brief history of forcing

Cohen, ’63: the independence of CH and AC from set

theory.

Kripke, ’59-’65: semantics for modal and intuitionistic

logic.

Perspectives:

• Set theory: generic extensions, approximations

• Modal logic: possible worlds

• Recursion theory: diagonalization, conditions

• Model theory: existentially closed models

• Categorical logic: logic of sheaves

• Descriptive set theory: generic truth

• Effective descriptive set theory

• Complexity theory

Themes: diagonalization, local/global properties,

construction via approximations
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What about proof theory?

Branches of proof theory:

• Structural proof theory (rules, normal forms)

• Proof complexity (length)

• “Hilbert-style” proof theory (provability)

(Modified) Hilbert-style proof theory:

• Formalize mathematical reasoning

• Understand infinitary reasoning in explicit,

constructive terms

In contrast to forcing in set theory:

• Weaker theories

• Emphasis on syntax

• Emphasis on finitary and constructive aspects
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Overview

1. The framework

(a) Minimal, intuitionistic, and classical logic

(b) The forcing relation

(c) Variations

2. Applications

(a) Subsystems of second-order arithmetic

(b) Intuitionistic theories

(c) “Point-free” model theory
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From minimal to classical logic

Flavors of first-order logic:

• Minimal (M): nicest computational interpretation

• Intuitionistic (I): add “from ⊥ conclude ϕ”

• Classical (C): add ¬¬ϕ → ϕ or ϕ ∨ ¬ϕ

Intuitionistic to minimal (F): replace atomic A by

A ∨ ⊥ or ¬¬A. Then

`M ⊥ → ϕF

Classical to minimal (N): also replace ϕ ∨ ψ by

¬(¬ϕ ∧ ¬ψ) and ∃x ϕ by ¬∀x ¬ϕ. Then

• `M ϕN ↔ ¬¬ϕN

• Γ `C ϕ implies ΓN `M ϕN

The Kuroda translation (K): instead, add ¬¬ after

each universal quantifier.

• `M ¬¬ϕK ↔ ϕN

• `C ϕ implies `M ¬¬ϕK
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Kripke semantics

Start with:

• a poset P (possible worlds)

• a domain D(p) at each world

• for each p ∈ P and atomic A, an interpretation of

A at p

satisfying monotonicity: if q ≤ p, then

• D(q) ⊇ D(p)

• If p ° A(a0, . . . , ak−1) then q ° A(a0, . . . , ak−1).

Extend the forcing relation to L(D) inductively:

1. p ° θ ∧ η iff p ° θ and p ° η

2. p ° θ ∨ η iff p ° θ or p ° η

3. p ° θ → η iff ∀q ≤ p (q ° θ → q ° η)

4. p ° ∀x ϕ(x) iff ∀q ≤ p ∀a ∈ D(q) q ° ϕ(a)

5. p ° ∃x ϕ(x) iff ∃a ∈ D(p) p ° ϕ(a)
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Kripke semantics (cont’d)

Theorem.

• (monotonicity): p ° ϕ and q ≤ p imply q ° ϕ

• `M ϕ implies ° ϕ

For intuitionistic logic, add

• p 6° ⊥

Theorem.

• p ° ⊥ → ϕ

• `I ϕ implies ° ϕ.
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Forcing for classical logic

Weak forcing: define °C ϕ by °M ϕN .

For example:

• p °C θ ∨ η iff ∀q ≤ p ∃r ≤ q ((r °C θ) ∨ (r °C η))

• p °C ¬¬θ iff ∀q ≤ p ∃r ≤ q r °C θ

Theorem.

1. monotonicity: p °C ϕ and q ≤ p imply q °C ϕ

2. genericity: p °C ϕ iff ∀q ≤ p ∃r ≤ q r °C ϕ

3. soundness: `C ϕ implies °C ϕ

Strong forcing: define °C′ ϕ by °M ϕK .

Then

°C ϕ iff °C′ ¬¬ϕ
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Notes and variations

1. p °C ϕ corresponds to “ϕ is true in every

extension by a generic containing p”

2. Can replace p 6° ⊥ by “if p ° ⊥ then

p ° A(a0, . . . , ak−1).”

3. Beth models:

p ° ϕ ∨ ψ iff for some covering C(p) of p,

∀q ∈ C(p) ((q ° ϕ) ∨ (q ° ψ))

and similarly for ∃.
4. Replace the poset by a category (presheaf

models)

5. Replace Beth’s coverings by a Grothendieck

topology (sheaf models)

6. Extend to higher-order logic (and set theory)
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“Internalized” constructions

Think syntactically:

• Work in a theory T .

• Use definable predicates, Cond , ≤, Name,

p ° A(a0, . . . , ak−1).

• Assume T proves monotonicity, etc.

Then T can verify the soundness of forcing:

• Minimal logic verifies minimal forcing

• Intuitionistic logic verifies intuitionistic forcing

• Classical logic verifies classical forcing

• With modified falsity, minimal logic verifies

intuitionstic forcing

• With additional negations, minimal logic verifies

classical forcing

• One can also get genericity in minimal logic
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Interlude

We’ve considered:

1. Minimal, intuitionistic, and classical logic

2. The forcing relation

3. Notes and variations

To interpret T1 in T2:

• Define a poset, basic forcing notions in T2.

• Show axioms of T1 are forced.

• Conclude: if T1 proves ϕ, then T2 proves “ϕ is

forced.”

For partial conservativity, show

• For ϕ ∈ Γ, if T2 proves “ϕ is forced,” then T2

proves ϕ.
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Applications

1. Subsystems of second-order arithmetic

• Choice principles (Steele, Friedman)

• Weak König’s lemma

• Ramsey’s theorem

2. Intuitionistic theories

• Goodman’s theorem

• Continuity, Bar recursion (Beeson, Grayson,

Hayashi)

• Interpreting classical theories in constructive

ones

3. “Point-free” model theory

• Nonstandard arithmetic and analysis

• Eliminating Skolem functions
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Subsystems of arithmetic

Language: 0, 1, +,×, <,∈, x, y, z, . . . X, Y, Z, . . .

Full second-order arithmetic has:

• Quantifier-free defining equations

• Induction

• Comprehension: ∃Z ∀x (x ∈ Z ↔ ϕ(x))

One can also consider various choice principles.

Restrict induction to Σ0
1 formulas with parameters,

and restrict set existence principles:

• RCA0 : recursive (∆0
1) comprehension

• WKL0 : paths through infinite binary trees

• ACA0 : arithmetic comprehension

• ATR0 : transfinitely iterated arithmetic

comprehension

• Π 1
1 -CA0 : Π1

1 comprehension
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Weak König’s lemma

König’s lemma. Every infinite, finitely branching

tree T has an infinite path

Kleene’s basis theorem. The leftmost branch is

computable in T ′.

Weak König’s lemma. Every infinite tree on {0, 1}
has an infinite path.

The Jockusch-Soare low basis theorem. Every

such tree has a low path, i.e. satisfying P ′ ≤T T ′.

Iterative construction: at stage n, thin the tree to

guarantee that ϕP
n (0) will diverge, if possible; extend

the path one step.
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Weak König’s lemma (cont’d)

Theorem (Friedman). WKL0 is conservative over

primitive recursive arithmetic for Π0
2 sentences.

Theorem (Harrington). WKL0 is, moreover,

conservative over RCA0 for Π1
1 sentences.

Proof.

• Start with a countable model of RCA0 .

• Pick an infinite binary tree.

• Add a generic branch (conditions: infinite

subtrees).

• Show Σ0
1 induction is preserved.

• Iterate.
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Weak König’s lemma

There are two ways of interpreting WKL0 in RCA0 :

• Hájek: formalize a sharper version of the low

basis theorem.

• Avigad: formalize the (iterated, proper-class)

forcing argument. Conditions: sequences of

names for infinite binary trees.

The two are incomparable! The latter works for

weaker theories.

Variations:

• Brown and Simpson: use Cohen forcing to get a

version of Baire Category theorem.

• Simpson and Smith: results for WKL and

elementary arithmetic.

• Ferreira, Fernandes: results for WKL and

feasible arithmetic.

• Simpson, Tanaka, Yamazaki: additional

definability results.
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Ramsey’s theorem

Definition. RT (k) is the statement that every for

2-coloring of k tuples of natural numbers there is an

infinite homogeneous set.

Theorem (Jockusch). There is a recursive coloring

of triples such that 0′ is computable from any infinite

homogenous set.

Theorem (Simpson). For each (standard) k ≥ 3,

RT (k) is equivalent to arithmetic comprehension over

RCA0 .

What about RT(2)?
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Ramsey’s theorem (cont’d)

Theorem (Jockusch). There is a recursive coloring

such that no infinite homogeneous set is computable

from 0′.

Corollary. WKL0 does not prove RT (2).

Theorem (Seetapun). If A is not recursive, there is

a recursive coloring such that A is not computable

from any infinite homogeneous set.

Corollary. RCA0 + RT (2) does not prove ACA0 .

It is open as to whether WKL0 proves RT (2).
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Ramsey’s theorem (cont’d)

Theorem (Cholak, Jockusch, Slaman). Every

2-coloring C has an infinite homogeneous set H that

is low2(C), i.e. H ′′ = C′′.

Theorem (Cholak, Jockusch, Slaman).

RCA0 + IΣ2 + RT (2 ) is conservative over

RCA0 + IΣ2 for Π1
1 sentences.

first theorem : second theorem ::

Jockusch-Soare : Harrington.

Can the forcing argument be turned into a syntactic

translation?
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Goodman’s theorem

Let HAω be a finite-type version of Heyting

arithmetic (a conservative extension, without

comprehension axioms).

The axiom of choice:

∀xσ ∃yτ ϕ(x, y) → ∃fσ→τ ∀xσ ϕ(x, f(x)).

Classically, this implies comprehension. But

intuitionistically:

Theorem (Goodman). HAω + AC is a conservative

extension of HAω for arithmetic sentences.

Beeson’s presentation:

• HAω + AC is realized in HAω, even with an extra

function symbol.

• Force so that “ϕ is realized” implies “ϕ is true”

for arithmetic sentences.
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Interpreting classical theories constructively

The Gödel-Gentzen double-negation translation is a

powerful tool:

• It reduces PA to HA, PA2 to HA2 , ZF to IZF .

• The Friedman-Dragalin translation recovers Π0
2

theorems.

But these methods do not work for S1
2 , IΣ1 , Σ1

1 −AC ,

KP .

What goes wrong? Some examples:

• The double-negation interpretation of Σ1

induction involves induction on predicates of the

form ¬¬∃x A(x, y).

• The double negation translation of the Σ1
1 axiom

of choice is of the form

∀x ¬¬∃Y ϕ(x, Y ) → ¬¬∃Y ∀x ϕ(x, Yx)

where ϕ is arithmetic.
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Interpeting classical theories (cont’d)

We can use the latitude in defining “p ° ⊥” to repair

the double negation translation.

• Buchholz: theories of inductive definitions

• Coquand: Σ1 induction

• Coquand and Hoffmann: bounded arithmetic

• Avigad: bounded arithmetic, Σ1
1-AC, admissible

set theory
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Interpreting classical theories (cont’d)

For arithmetic with Σ1 induction, it suffices to obtain

a forcing interpretation of Markov’s principle:

¬∀x A(x) → ∃x ¬A(x)

Take conditions p to be (codes for) finite sets of Π1

sentences,

{∀x A1(x), ∀x A2(x), . . . , ∀x Ak(x)}.
Define p ≤ q to be p ⊇ q.

For θ atomic, define p ° θ to be

∃y (A1(y) ∧ . . . ∧Ak(y) → θ).

In particular, p ° ⊥ is

∃y (¬A1(y) ∨ . . . ∨ ¬Ak(y)).

Then it turns out that if p ° ¬∀x A(x), then

p ° ∃x ¬A(x).

In other words, Markov’s principle is forced.
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Point-free thinking

• Points in a topological space can be

approximated by open neighborhoods.

• Real numbers can be approximated by rational

intervals.

• A maximal ideal can be approximated by

subideals.

• An ultrafilter can be approximated by filters.

• A maximally consistent sets can be approximated

by finite consistent sets.

In constructive or restricted frameworks, it is often

better to:

• Work with the approximations.

• Use generic objects.

• Reason about what is “forced” to be true.

Remember: genericity = Kripke models + double

negation interpretation.
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Weak theories of nonstandard arithmetic

Add to the language of PRA:

• a predicate, st(x) (“x is standard”)

• a constant, ω

Let NPRA consist of PRA plus the following axioms:

• ¬st(ω)

• st(x) ∧ y < x → st(y)

• st(x1) ∧ . . . ∧ st(xk) → st(f(x1, . . . , xk)), for each

function symbol f

• A very restricted transfer principle (∀ sentences

without parameters)

A short model-theoretic argument shows:

Theorem 1 Suppose NPRA proves ∀stx ∃y ϕ(x, y),

with ϕ quantifier-free in the language of PRA. Then

PRA proves ∀x ∃y ϕ(x, y).

In particular, the conclusion holds if NPRA proves

either ∀x ∃y ϕ(x, y) or ∀stx ∃sty ϕ(x, y).
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Weak theories of nonstandard arithmetic

(cont’d)

Claims:

• The result extends to higher type theories.

• One can formalize arguments in analysis and

measure theory.

• The conservation result can be obtained by an

explicit forcing translation.

In the translation, for example:

• The standard natural numbers correspond to

bounded sequences of natural numbers.

• Reals correspond to bounded sequences of

rationals.

• Nonstandardly large intervals translate to

sequences of arbitrarily large intervals.
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Eliminating Skolem functions

A Skolem axiom has the form

∀~x, y (ϕ(~x, y) → ϕ(~x, f(~x))),

“if anything satisfies ∃y ϕ(~x, y), f(~x) does.”

These can be eliminated from first-order proofs.

• The model-theoretic argument is easy.

• Syntactic arguments are harder, and worse than

exponential.

Pudlák: Is there an example of a single Skolem axiom

that cannot be eliminated efficiently?
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Eliminating Skolem functions (cont’d)

Theorem (Avigad). In any theory in which one can

code finite partial functions, one can interpret Skolem

axioms efficiently.

The idea: force with finite approximations to each

Skolem function.
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Conclusion

Metamathematical proof theory involves

• reflecting on the methods of mathematics, and

• representing them syntactically.

One hopes for

• mathematical,

• philosophical, and

• computational

insights.

Forcing can play a role, providing ways of

• interpreting “abstract” (or infinitary) principles,

and

• reasoning with approximations.
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