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The Elements

For more than two thousand years, Euclid’s Elements was held to be the paradigm for
rigorous argumentation.

1











The Elements

The nineteenth century raised concerns:

• Conclusions are drawn from diagrams, using “intuition” rather than precise rules.

• Particular diagrams are used to infer general results (without suitable justification).

Axiomatizations due to Pasch and Hilbert, and Tarski’s formal axiomatization later on,
were thought to make Euclid rigorous.
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The Elements

But in some ways, they are unsatisfactory.

• Proofs in the new systems look very different from Euclid’s.

• The initial criticisms belie the fact that Euclidean practice was remarkably stable
for more than two thousand years.

Our project (Mumma, Dean, and me):

• Describe a formal system that is much more faithful to Euclid.

• Argue that the system is sound and complete (for the theorems it can express)
relative to Euclidean fields.

• Show that the system can easily be implemented using contemporary automated
reasoning technology.
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The nature of diagrammatic inference
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By side-angle-side, △AEB ≡ △CEF . So ∠BAC = ∠ACF .

Clearly ∠ACD > ∠ACF . So ∠ACD > ∠BAC .

But why is it clear that ∠ACD > ∠ACF?
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First salient feature: the use of diagrams

Observation: the diagram is inessential to the communication of the proof. (Rather, it
is used to “see” that the inferences are correct.)

Exercise:

• Let p and q be points on a line.

• Let r be between p and q.

• Let s be between p and r .

• Let t be between r and q.

Is s necessarily between p and t?

Methodological stance: from a logical perspective, the way to characterize
diagrammatic reasoning is in terms of the class of inferences that are licensed.
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First salient feature: the use of diagrams

Observation: the diagram is inessential to the communication of the proof. (Rather, it
is used to “see” that the inferences are correct.)

Exercise:

• Let p and q be points on a line.

• Let r be between p and q.

• Let s be between p and r .

• Let t be between r and q.

Is s necessarily between p and t?

p s r t q

Methodological stance: from a logical perspective, the way to characterize
diagrammatic reasoning is in terms of the class of inferences that are licensed.
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First salient feature: the use of diagrams

Observation (Manders): In a Euclidean proof, diagrams are only used to infer “co-exact”
(regional / topological) information, such as incidence, intersection, containment, etc.

Exact (metric) information, like congruence, is always made explicit in the text.

Poincaré: “Geometry is the art of precise reasoning from badly constructed diagrams.”

Solution: take the “diagram” to be a representation of the relevant data.
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Second salient feature: generality

Some aspects of diagrammatic inference are puzzling:

• Let p and q be distinct points.

• Let L be a line though p and q.

• Let r and s be on opposite sides of L.

• Let M be the line through r and s.

• Let t be the intersection of L and M.

p
t

q
L

M

s

r

Is t necessarily between r and s? Is t necessarily between p and q?

Not every feature found in a particular diagram is generally valid.

We need an explanation as to what secures the generality.
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Third salient feature: logical form

Theorems in Euclid are of the form:
Given points, lines, circles, satisfying . . . , there are points, lines, circles satis-
fying . . .

where each . . . is a conjunction of literals.

(If the inner existential quantifier is absent, it is a “demonstration” rather than a
“construction.”)

Proofs contain a construction part, and a deduction part.

Reasoning is linear, assertions are literals.

Exceptions: proof by contradiction, using a case distinction (sometimes “without loss of
generality”).
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Fourth salient feature: nondegeneracy

In the statement of a theorem, points are generally assumed to be distinct, triangles are
nondegenerate, etc.

Two issues:

• Sometimes the theorem still holds in some degenerate cases.

• When the theorems are applied, Euclid doesn’t always check nondegeneracy.

I will have little to say about this; in our system, nondegeneracy requirement are stated
explicitly.
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Formalizing Euclid

Prior efforts:

• Nathaniel Miller’s Ph.D. thesis (2001): system is very complicated; generality is
attained by considering cases exhaustively.

• John Mumma’s Ph.D. thesis (2006): employs diagrams (and equivalence relation
on diagrams); generality is attained using rules.

Our formal system, E , is derived from Mumma’s. But now a “diagram” is nothing more
than an abstract representation of topological information. The system spells out what
can be inferred from the diagram.
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The language of E

Basic sorts:

• diagram sorts: points p, q, r , . . ., lines L,M,N, . . ., circles α, β, γ, . . .

• metric sorts: lengths, angles, and areas.

Basic symbols:

• diagram relations: on(p, L), same-side(p, q, L), between(p, q, r), on(p, γ),
inside(p, γ), center(p, γ), intersects(L,M), =

• metric functions and relations: +, <, =, right-angle
• connecting functions: pq, ∠pqr , △pqr

Other relations can be defined from these; e.g.

diff-side(p, q, L) ≡ ¬on(p, L) ∧ ¬on(q, L) ∧ ¬same-side(p, q, L)
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Sequents

The proof system establishes sequents of the following form:

Γ ⇒ ∃q⃗, M⃗, β⃗. ∆

where Γ and ∆ are sets of literals.

Applying a construction rule or prior theorem augments q⃗, M⃗, β⃗, ∆.

Applying deductive inferences augments ∆.

Case splits and suppositional reasoning temporarily augment Γ.

I need to describe:

• Construction rules.
• Deductive inferences.

Diagram inferences are implicit in both.
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Construction rules

“Let p be a point on L”

No prerequisites.

“Let p be a point distinct from q and r ”

No prerequisites.

“Let L be the line through p and q”

Requires p ̸= q.

“Let p be the intersection of L and M.”

Requires that L and M intersect.

And so on. . .
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Deductive inferences

Four types:

1. Diagram inferences: any fact that can be “read off” from the diagram.

2. Metric inferences: essentially linear arithmetic on lengths, angles, and areas.

3. Diagram to metric: for example, if q is between p and r , then pq + qr = pr , and
similarly for areas and angles.

4. Metric to diagram: for example, if p is the center of γ, q is on γ, and pr < pq,
then r is inside γ.
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Diagram inferences

Both construction inferences and diagram inferences require an account of what can be
“read off” from the diagram.

We get this by closing the diagrammatic data in Γ ∪∆ under various rules, including:

• properties of “between”
• properties of “same side”
• “Pasch rules,” relating “between” and “same side”
• triple incidence rules
• circle rules
• intersection rules

These yield conclusions that are generally valid, that is, common to all possible
realizations.
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Proposition I.10. Assume a and b are distinct points on L.
Construct a point d such that d is between a and b, and ad = db.

By Proposition I.1 applied to a and b, let c be a point such that ab = bc and bc = ca

and c is not on L.

Let M be the line through c and a.
Let N be the line through c and b.
By Proposition I.9 applied to a, c , b, M, N, let
e be a point such that ∠ace = ∠bce, b and e

are on the same side of M, and a and e are on
the same side of N.
Let K be the line through c and e.
Let d be the intersection of K and L.
Hence ∠ace = ∠acd .
Hence ∠bce = ∠bcd .
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By Proposition I.4 applied to a, c , d , b, c , d have ad = bd . Q.E.F. 23



Completeness

Tarski’s first-order axiomatization of Euclidean geometry yields a complete theory of the
Euclidean plane (inter-interpretable with real closed fields).

Drop the completeness axiom, and replace it with an axiom asserting that if a line L

passes through a point inside a circle α, then L and α intersect.

The resulting theory is inter-interpretable with the theory of “Euclidean fields,” and so is
complete wrt “ruler and compass constructions.” (Ziegler: it is also undecidable.)

Theorem. If a sequent of E is valid wrt to ruler and compass constructions, it can be
derived in E .
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Completeness

One strategy: interpret Tarski’s theory in E .

Problem: Tarski includes full first-order logic!

Solution: With slight tinkering, Tarski’s theory can be made “geometric,” i.e. the
axioms can be put in a restricted logical form.

A cut-elimination theorem due to Sara Negri then implies that any geometric assertion
provable in Tarski’s theory has a geometric proof.

Such a proof can be simulated in E .
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Completeness

Outline of the proof:

1. Suppose a sequent A of E is valid for the intended semantics.

2. Then a translation π(A) to Tarki’s language is also valid for the intended
semantics.

3. So it is provable in Tarski’s theory.

4. So it has a cut-free proof.

5. This proof can be translated back to E , so E proves ρ(π(A)).

6. From this, E can derive the original sequent, A.
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Implementation

Can we get a computer to carry out the diagrammatic inferences?

We experimented with:

• first-order theorem provers

• SMT solvers (CVC3, Z3)

• bespoke saturation procedures

SMT solvers were particularly good, and could carry out the metric inferences as well.
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Some conclusions

Our modest claims:

• We have a clean analysis of the type of reasoning that is used in books I–IV of the
Elements.

• Our system is sound and complete for the expected semantics.
• The analysis makes it easy to verify formal texts that are very close to proofs in

the Elements.
• This provides a clear sense in which the Elements is more rigorous than commonly

acknowledged.
• We have analyzed the logical form of diagrammatic inference, separating these

questions from cognitive, computational, pedagogical, and historical terms.
• The analysis can support further inquiry into why these inferences are basic to the

practice.
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More conclusions

• When you look at any piece of mathematics and think about how it works, you
notice interesting things.

• Understanding how mathematics works is useful for:
• mathematics
• philosophy of mathematics
• history of mathematics
• cognitive science
• education
• automated reasoning
• AI.

• It’s also deeply satisfying.
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