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Sets and functions as objects

One hallmark of the nineteenth-century transition to modern
mathematics is the treatment of classes as objects:

• Dedekind’s ideal theory

• Dedekind’s construction of the reals

• the construction of quotient groups using cosets

• more generally, the use of equivalence classes

The same can be said regarding the treatment of functions as
objects.



The value of history

Studying the history of mathematics can help us understand why
we do mathematics the way we do. We can see:

• what changed

• what the advantages were

• what the disadvantages were

• how the mathematical community coped

The resulting understanding stands independent of the history.

The goal of this talk: better understand why modern mathematics
treats functions as it does.

We will focus on one specific strand of nineteenth century history.



Dirichlet’s theorem

Theorem. Let m and k be relatively prime. Then the arithmetic
progression m,m + k ,m + 2k, . . . contains infinitely many primes.

For example, there are no primes in the sequence

6, 15, 24, 33, 42, 51, . . . .

There are infinitely many primes in the sequence

5, 14, 23, 32, 41, 50, . . .



Dirichlet’s theorem

Legendre assumed this in 1798, in giving a purported proof of the
law of quadratic reciprocity.

Gauss pointed out this gap, and presented two proofs of quadratic
reciprocity in his Disquisitiones Arithmeticae of 1801.

He ultimately published six proofs of quadratic reciprocity, and left
two more proofs in his Nachlass. But he never proved the theorem
on primes in an arithmetic progression.

Dirichlet’s 1837 proof is notable for the sophisticated use of
analytic methods to prove a number-theoretic statement.



Euler’s theorem

The starting point for Dirichlet’s proof:

Theorem. The series
∑

q
1
q diverges, where q ranges over the

prime numbers.

In particular, there are infinitely many primes.



Euler’s proof

The Euler product formula: for s > 1,∑
n

1

ns
=
∏
q

(1 +
1

qs
+

1

q2s
+ . . .)

=
∏
q

(
1− 1

qs

)−1

Take logarithms of both sides:

log
∑
n

1

ns
= −

∑
q

log(1− 1

qs
)

=
∑
q

1

qs
+ O(1).

As s → 1, LHS→∞, so
∑

q
1
qs →∞.



Dirichlet’s idea

Fix m and k relatively prime, and try to show∑
q≡m mod k

1

q

diverges.

Write this as ∑
q

1m,k(q)

q

where

1m,k(q) =

{
1 if q ≡ m mod k
0 otherwise

and try to repeat the Euler argument.



Dirichlet’s idea

The sticking point: the Euler product formula∑
n

χ(n)

ns
=
∏
q

(
1− χ(q)

qs

)−1

only holds if χ is completely multiplicative:

χ(nn′) = χ(n)χ(n′)

The solution: decompose

1m,k(n) = a1χ1(n) + . . .+ auχu(n),

a linear combination of such functions.



Group characters

If G is a finite abelian group, χ is a character on G if it is a
homomorphism from G to the nonzero complex numbers, i.e.

χ(g1g2) = χ(g1)χ(g2)

for every g1 and g2 in G .

There is always a trivial character, χ0(g) ≡ 1.

The set of characters on G forms a group Ĝ with pointwise
multiplication and identity χ0. In fact, |G | = |Ĝ |.



Group characters

The following two “orthogonality” relations hold:∑
g∈G

χ(g) =

{
|G | if χ = χ0

0 otherwise

and ∑
χ∈Ĝ

χ(g) =

{
|G | if g = 1
0 otherwise

This makes it possible to do “finite Fourier analysis”: if
f̂ (χ) =

∑
g f (g)χ(g), then f = 1

|G |
∑

χ f̂ (χ)χ.



Dirichlet’s theorem

Fix k , and “lift” the characters on (Z/kZ)∗ to functions on N.

Define

L(s, χ) =
∞∑
n=1

χ(n)

ns
.

Euler product expansion:

L(s, χ) =
∏
q

(
1− χ(q)

qs

)−1

=
∏
q-k

(
1− χ(q)

qs

)−1

This converges when Re(s) > 1.



Dirichlet’s theorem

Taking logarithms of both sides yields

log L(s, χ) =
∑
q-k

χ(q)

qs
+ O(1).

Multiply both sides by χ(m) and sum over χ.∑
χ

χ(m) log L(s, χ) =
∑
χ

∑
q-k

χ(m)
χ(q)

qs
+ O(1).

Using the orthogonality relations,∑
χ

χ(m) log L(s, χ) = ϕ(k)
∑

q≡m mod k

1

qs
+ O(1).



Dirichlet’s theorem

∑
χ

χ(m) log L(s, χ) = ϕ(k)
∑

q≡m mod k

1

qs
+ O(1).

Let s → 1 from above.

Divide the characters into three types:

1. The trivial character, χ0.

2. The nontrivial real-valued characters.

3. The (properly) complex characters.

Show:

• L(s, χ0) has a simple pole at s = 1.

• For χ 6= χ0, L(s, χ) has a nonzero limit at s → 1.

This yields the result.



Functions as objects

Nineteenth century methodological changes:

1. Unification / generalization of the function concept

2. Liberalization of the function concept

3. Extensionalization of the function concept

4. Reification of the function concept



Functions as objects

“Reification of the function concept” is vague. Roughly, I mean
treating them on par with objects like the natural numbers.

Some aspects:

1. Treating functions extensionally, independent of
representations.

2. Sending functions as arguments to other functions, F (f ).

3. Forming sets of functions, groups of functions, spaces of
functions.

4. Quantifying over functions (in definitions, in theorems).

5. Summing over functions.



Functions as objects

In the modern presentation of Dirichlet’s theorem:

• The notion of a character is defined.

• One determines some of their properties.

• Characters appear as arguments to other functions (L(s, χ)).

• One sums over sets of characters (
∑

χ . . .), without having
representations for any particular one.

• One carries out proofs (in fact, one has to!) without making
reference to any particular representation.

• One characterizes sets of characters extensionally.

• Characters bear a group structure.

These are the main points of contrast with the historical sources.



Outline of this talk

• Introduction

• Contemporary proofs of Dirichlet’s theorem

• Functions as objects

• Dirichlet’s proof

• Subsequent presentations, from Dedekind to Landau

• Reflections on mathematical method



Dirichlet 1837

Dirichlet did not introduce a notation for characters. Rather, he
used explicit expressions.

In the case where the common difference is a prime, p:

• Let c be a primitive element modulo p.

• For every n coprime to p, let γn be such that cγn ≡ n mod p.

• Characters χ correspond to p − 1st roots of unity ω, where
χ(n) = ωγn .

• Dirichlet writes ωγn where we would write χ(n).

Pick a generator Ω of the p − 1st roots of unity, {Ω0, . . . ,Ωp−2}.

Lm is the L-series corresponding to the root Ωm. Dirichlet summed
over m, rather than χ.



Dirichlet 1837

After demonstrating the Euler product formula,∏ 1

1− ωγ 1
qs

=
∑

ωγ
1

ns
= L,

Dirichlet wrote:
The equation just found represents p−1 different equations
that result if we put for ω its p−1 values. It is known that
these p−1 different values can be written using powers of
the same Ω when it is chosen correctly, to wit:

Ω0, Ω1, Ω2, . . . , Ωp−2

According to this notation, we will write the different val-
ues L of the series or product as:

L0, L1, L2, . . . , Lp−2



Dirichlet 1837

In the case where the modulus k is not prime:

• Decompose (Z/kZ)∗ into a product of cyclic groups.

• Choose generators for each cyclic group.

• A number n modulo k has indices αn, βn, γn, γ′n, . . .

• Each character corresponds to a choice of roots of unity,
θ, ϕ, ω, ω′, . . .

• Dirichlet writes θαϕβωγω′γ
′
. . . where we would write χ(n).

Notice that the dependence on n is left implicit.

Moreover, as before, if we choose appropriate primitive roots of
unity, each character is given by a list of indices a, b, c , c ′, . . ..

Thus Dirichlet wrote La,b,c,c ′,... in “a comfortable way” where we
would write L(s, χ).



Dirichlet 1837

Summing over characters: in the case where k is prime, Dirichlet
wrote

log L0 + Ω−γm log L1 + Ω−2γm log L2 + . . .+ Ω−(p−2)γm log Lp−2

where we would write
∑

χ χ(m) log L(s, χ).

For composite k , he wrote∑
Θ−αma Φ−βmbΩ−γmcΩ−γm′c ′ . . . log La,b,c,c ′...

where the sum is over all combinations of a, b, c , c ′ . . ..



Dirichlet 1837

Dirichlet divided the L functions into three classes:

• the one in which all the roots are 1

• the ones in which all the roots are real (±1)

• those in which at least one of the roots is not real

This is an intensional characterization.

Summary:

• Dirichlet did not name or identify “characters.”

• The L functions depend on a tuple of natural numbers
(La,b,c,c ′... rather than L(s, χ))

• Instead of summing over characters, he summed over these
tuples.

• The L functions are classified intensionally.



A timeline

• Dirichlet 1837: Dirichlet’s original proof

• Dirichlet 1840, 1841: extensions to Gaussian integers,
quadratic forms

• Dedekind 1863: presentation of Dirichlet’s theorem

• Dedekind 1879, Weber 1882: characters on arbitrary abelian
groups

• Hadamard 1896: presentation of Dirichlet’s theorem and
extensions

• de la Vallée Poussin 1897: presentation of Dirichlet’s theorem
and extensions

• Kronecker (1901, really 1870’s and 1880’s): constructive,
quantitative treatment

• Landau 1909, 1927: presentation of Dirichlet’s theorem and
extensions



Identifying characters

In 1841, Dirichlet considered expressions

Ωn = ϕαnϕ
′α′

n × . . .× ψβnχγnψ′β′
nχ

′γ′n × . . .× θδnηεn

analogous to the characters in his 1837 proof.

He isolated their key properties:

1. Ωnn′ = ΩnΩn′ .

2. Ωn′ = Ωn whenever n′ ≡ n (mod k).

3. the first orthogonality lemma

4. the second orthogonality lemma



Identifying characters

In 1863, Dedekind explained that the Euler product formula holds,
in general, for multiplicative functions.

He also used χ to denote values of the characters. But he used
Dirichlet’s explicit representations in the proof itself.

In 1882, Weber gave the general definition of a character of an
abelian group, and proved the general properties.

In 1909, Landau emphasized that the four “key properties” of
characters are all that is needed in the proof of Dirichlet’s theorem.



Summing over characters

Dirichlet originally summed over representing data:
∑

a,b,c,c ′,....
Dedekind did this as well.

In 1841, Dirichlet introduced a special notation SΩ for summing
over the characters. Later, de la Vallée Poussin used Sχ.

Hadamard numbered the characters ψ1, ψ2, . . . , ψM and summed
over the indices,

∑
v . . .. Landau does this too in 1909.

In 1927, Landau wrote
∑

χ . . ..



Characters as arguments

Recall that Dirichlet wrote La,b,c,c ′,... where we would write L(s, χ).

Hadamard could write Lv for the series corresponding to ψv .

In 1897, de la Vallée Poussin wrote Z (s, χ). Subsequent authors
wrote L(s, χ).



Classifying characters and L-series

Extensional classification of characters:

• the character with constant value 1

• the (other) real-valued characters

• the (other) complex-valued characters

This yields three classes of L-series L(s, χ).

Most authors favored an intensional classification, in terms of the
roots used in the defining expressions.

Some authors gave both.



Objects vs. representations

After deriving a key identity parametrized by the characters,
Dirichlet wrote:

The general equation, in which the different roots
θ, ϕ, ω, ω′, . . . can be combined with one another arbitrar-
ily, clearly contains K -many particular equations.

In a similar context, Dedekind wrote in 1863:

Since these roots can have a, b, c , c ′, . . . values, respec-
tively, the form L contains altogether abcc ′ . . . = ϕ(k)
different particular series. . .



Objects vs. representations

Here is Weber in 1882:

Each of the formulas . . . represents h different formulas,
corresponding to the h different characters χ1, χ2, . . . , χh.

And de la Vallée Poussin in 1897:

. . . this equation (E) represents in reality ϕ(M) distinct
ones, which result from exchanging the characters amongst
themselves.



Summary

Over time:

• The notion of a character was defined.

• Authors isolated general properties of characters.

• Authors got used to summing over characters, rather than
representing data.

• Authors got used to functional dependences on characters,
rather than representing data.

• Authors began to adopt extensional characterizations and
classifications of characters.

• The use of explicit symbolic representations for the characters
diminished and was ultimately eliminated.



Outline of this talk

• Introduction

• Contemporary proofs of Dirichlet’s theorem

• Functions as objects

• Dirichlet’s proof

• Subsequent presentations, from Dedekind to Landau

• Reflections on mathematical method



Reflections on mathematical method

Treating functions as objects brings benefits.

• Expressions are simplified.

• Proofs become modular.

• The reader has to keep track of less information when parsing
expressions.

• The reader has to keep track of less information when reading
a proof.

• The relevant data and relations are made more salient.

• Lemmas and definitions can be reused elsewhere.

• Lemmas and definitions can be modified and adapted.

• Abstraction leads to greater generality.



Reflections on mathematical method

To summarize:

• Dependencies between components are minimized.

• The mathematics become easier to understand.

• It becomes easier to ensure correctness.

• Components are adaptable, reusable, and generalizable.

• Proofs can be modified and varied more easily.

These are exactly the benefits associated with modularity in
software engineering.



Reflections on mathematical method

Why did it take so long to arrive at the contemporary treatment of
functions?

Reading mathematics involves a good deal of tacit knowledge.

When I publish a proof, my intention is that you will read it,
understand it, and accept it as correct.



Reflections on mathematical method

Concerns raised by any methodological expansion:

• Are the new methods, concepts, and notations meaningful?

• Do they come with clear rules of use?

• Are they appropriate to the mathematics?

• Do they answer the questions we have asked?

• Do they provide the information we want?

• Are they reliable?

• Are they likely to cause error or confusion?

Changes to the practice have to be accepted by the community.



Reflections on mathematical method

Assessments of characters (and functions) as objects invoke
considerations as to how that bears on our understanding:

• how it bears on our ability to read and process proofs

• how it bears on our ability to reason effectively

• how it bears on our ability to solve problems

• whether it delivers the information we want

• whether it is reliable, or will lead us to errors

These run up against issues as to whether the mathematics is
fundamentally correct and meaningful.



Reflections on mathematical method

Treating sets and functions as objects like numbers was a dramatic
change.

It affected fundamental aspects of mathematical language and
method.

Mathematical change is best understood in terms of weighing very
pragmatic benefits against very pragmatic concerns.

Understanding and assessing the benefits and concerns is an
important task for the philosophy of mathematics, and of
mathematical interest in its own right.
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Addendum



Functions in the nineteenth century

Nineteenth century instances of the function concept:

1. Functions defined on the continuum (R to R, C to C)

2. Sequences and series (N to R or Q)

3. Number theoretic functions (N to N)

4. Transformations of the plane

5. Permutations of a finite set A (bijections from A to A)

6. Characters (Z to C, or (Z/mZ)∗ to C)

7. Arbitrary mappings, or correspondences, between domains



Functions in the nineteenth century

Some landmarks:

• In 1850, Eisenstein explicitly introduced the term
“zahlentheoretische Funktion.”

• Dedekind 1854: “Über die Einführung neuer Funktionen in der
Mathematik; Habilitationsvortrag”

• In 1879, in the third edition of the Vorlesungen, Dedekind
refers to characters on the class groups as functions.

• In 1879, in the Begriffsschrift, Frege introduces a very general
notion of function.

• In 1888, Dedekind considers arbitrary mappings (Abbildung)
between domains.



Functions in the nineteenth century

Since, with the concept of a function, one moved away
from the necessity of having an analytic construction, and
began to take its essence to be a tabular collection of val-
ues associated to the values of one or several variables,
it became possible to take the concept to include func-
tions which, due to conditions of an arithmetic nature,
have a determinate sense only when the variables occur-
ring in them have integral values, or only for certain value-
combinations arising from the natural number series. For
intermediate values, such functions remain indeterminate
and arbitrary, or without any meaning.

(Eisenstein, 1850)



Functions in the nineteenth century

. . . the function χ(a) also posseses the property that it
takes the same value on all ideals a belonging to the same
class A; this value is therefore appropriately denoted by
χ(A) and is clearly always an hth root of unity. Such
functions χ, which in an extended sense can be termed
characters, always exist; and indeed it follows easily from
the theorems mentioned at the conclusion of §149 that the
class number h is also the number of all distinct characters
χ1, χ2, . . . , χh and that every class A is completely char-
acterized, i.e. is distinguished from all other classes, by the
h values χ1(A), χ2(A), . . . , χh(A).

(Dedekind 1879)



Functions in the nineteenth century

If, in an expression (whose content need not be a judgeable
content), a simple or complex symbol occurs in one or more
places, and we think of it as replaceable at all or some of
its occurrences by another symbol (but everywhere by the
same symbol), then we call the part of the expression that
on this occasion appears invariant the function, and the
replaceable part its argument.

One sees here particularly clearly that the concept of func-
tion in Analysis, which in general I have followed, is far
more restricted than that developed here.

(Frege 1879)


