
The promise of formal mathematics

Jeremy Avigad

Department of Philosophy
Department of Mathematical Sciences

Hoskinson Center for Formal Mathematics

Carnegie Mellon University

January 7, 2023

Formal methods in mathematics

Formal methods are a body of logic-based methods used in
computer science to

• write specifications (for hardware, software, protocols, and so
on), and

• verify that artifacts meet their specifications.

They rely on:

• formal languages
• formal semantics
• formal rules of inference.

Formal methods in mathematics

There are:

• tools for automated reasoning
• tools that support robust user interaction.

Most domains require a combination of the two.

Formal methods can also be used for mathematics.

I will try to explain how, and why they are useful.

Outline

• Formal methods in mathematics
• Interactive theorem provers
• Lean and mathlib
• Why formal methods are useful
• Why logicians should care
• What logicians can contribute

Interactive theorem provers

We have known since the early twentieth century that mathematics
can be formalized:

• Mathematical statements can be expressed in formal
languages, with precise grammar.

• Theorems can be proved from formal axioms, using prescribed
rules of inference.

With the help of computational proof assistants, this can be
carried out in practice.

In many systems, the formal proof can be extracted and verified
independently.

Interactive theorem provers

Interactive theorem provers

“It is not in heaven, that thou shouldest say: ‘Who shall go up for
us to heaven, and bring it unto us, and make us to hear it, that we
may do it?’ ” (Deuteronomy 30:12)

You can download these systems and get started right away.

• Isabelle: https://isabelle.in.tum.de/
• Coq with Mathematical Components:

https://math-comp.github.io/
• HOL Light:

https://www.cl.cam.ac.uk/~jrh13/hol-light/
• Metamath: http://us.metamath.org/
• Lean: https://leanprover-community.github.io

There are online documentation, tutorials, user mailing lists, online
chat groups, and more.

https://isabelle.in.tum.de/
https://math-comp.github.io/
https://www.cl.cam.ac.uk/~jrh13/hol-light/
http://us.metamath.org/
https://leanprover-community.github.io

Interactive theorem provers

There are a number of systems with substantial mathematical
libraries, including Mizar, HOL, Isabelle, Coq, ACL2, PVS, Agda,
HOL Light, Metamath, and Lean.

I will focus on Lean because:

• It has received a lot of attention from mathematicians lately.
• It is a system I know particularly well.

This is a snapshot, not a survey.

Lean and mathlib

Lean and mathlib

Lean has been getting good press:

• Quanta: “Building the mathematical library of the future”
• Quanta: “At the Math Olympiad, computers prepare to go for

the gold”
• Nature: “Mathematicians welcome computer-assisted proof in

‘grand unification’ theory”
• Quanta: “Proof Assistant Makes Jump to Big-League Math”

Kevin Buzzard gave a talk titled “The Rise of Formalism in
Mathematics” at the 2022 International Congress of
Mathematicians.

https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/
https://www.quantamagazine.org/at-the-international-mathematical-olympiad-artificial-intelligence-prepares-to-go-for-the-gold-20200921/
https://www.quantamagazine.org/at-the-international-mathematical-olympiad-artificial-intelligence-prepares-to-go-for-the-gold-20200921/
https://www.nature.com/articles/d41586-021-01627-2
https://www.nature.com/articles/d41586-021-01627-2
https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/
https://www.youtube.com/watch?v=SEID4XYFN7o&ab_channel=InternationalMathematicalUnion
https://www.youtube.com/watch?v=SEID4XYFN7o&ab_channel=InternationalMathematicalUnion

Lean and mathlib

Some achievements:

• a formalization of Ellenberg-Gijswijt cap set theorem
(Dahmen, Hölzl, Lewis)

• a formalization of the independence of the continuum
hypothesis (Han and van Doorn)

• a formalization of perfectoid spaces (Buzzard, Commelin, and
Massot)

• the liquid tensor experiment (Commelin, Topaz, and many
others)

• a formalization of Bloom’s theorem on unit fractions (Bloom,
Mehta)

• a formalization of the sphere eversion theorem (Massot, Nash,
and van Doorn)

https://drops.dagstuhl.de/opus/volltexte/2019/11070/
https://flypitch.github.io/
https://flypitch.github.io/
https://leanprover-community.github.io/lean-perfectoid-spaces/
https://github.com/leanprover-community/lean-liquid
https://b-mehta.github.io/unit-fractions/
https://leanprover-community.github.io/sphere-eversion/

Lean and mathlib

On December 5, 2020, Peter Scholze challenged anyone to
formally verify some of his recent work with Dustin Clausen.

Johan Commelin led the response from the Lean community. On
June 5, 2021, Scholze acknowledged the achievement.

“Exactly half a year ago I wrote the Liquid Tensor Experiment blog
post, challenging the formalization of a difficult foundational
theorem from my Analytic Geometry lecture notes on joint work
with Dustin Clausen. While this challenge has not been completed
yet, I am excited to announce that the Experiment has verified the
entire part of the argument that I was unsure about. I find it
absolutely insane that interactive proof assistants are now at the
level that within a very reasonable time span they can formally
verify difficult original research.”

https://github.com/leanprover-community/lean-liquid

Lean and mathlib

There have been a number of Lean-related meetings, including:

• Lean Together (2019, 2020, 2021)
• Lean for the Curious Mathematician (2020, 2021)
• Learning Mathematics with Lean (2022)
• LeaN in LyoN (2022)

Coming up:

• Machine Assisted Proofs (IPAM)
• Formalization of Cohomology Theories (BIRS)
• Formalization of Mathematics (MSRI summer school)
• Formalization of Mathematics (Copenhagen)
• Machine-Checked Mathematics (Lorentz Center)
• Lean for the Curious Mathematician (CIRM, 2024)

https://lean-forward.github.io/lean-together/2019/
https://www.andrew.cmu.edu/user/avigad/meetings/fomm2020
https://leanprover-community.github.io/lt2021/
https://leanprover-community.github.io/lftcm2020/
https://icerm.brown.edu/topical_workshops/tw-22-lean/
https://www.lboro.ac.uk/departments/maths-education/events/2022/learningmathematicswithlean/
https://www.univ-st-etienne.fr/fr/icj/actualites-icj/actualites-2021-2022/lean-in-lyon.html
https://www.ipam.ucla.edu/programs/workshops/machine-assisted-proofs/
https://www.birs.ca/events/2023/5-day-workshops/23w5124
https://www.msri.org/summer_schools/1021
https://www.math.ku.dk/english/calendar/events/formalisation-of-mathematics/
https://www.lorentzcenter.nl/machine-checked-mathematics.html

Outline

• Formal methods in mathematics
• Interactive theorem provers
• Lean and mathlib
• Why formal methods are useful
• Why logicians should care
• What logicians can contribute

Why formal methods: verifying correctness

In early 2022, Thomas Bloom solved a problem posed by Paul
Erdős and Ronald Graham.

The headline in Quanta read “Math’s ‘Oldest Problem Ever’ Gets
a New Answer.”

Within in a few months, Bloom and Bhavik Mehta verified the
correctness of the proof in Lean.

https://www.quantamagazine.org/maths-oldest-problem-ever-gets-a-new-answer-20220309/
https://www.quantamagazine.org/maths-oldest-problem-ever-gets-a-new-answer-20220309/

Why formal methods: verifying correctness

Why formal methods: exploring mathematics

Similarly, at the halfway point in the Liquid Tensor experiment,
Peter Scholze wrote:

“I am excited to announce that the Experiment has verified the
entire part of the argument that I was unsure about.”

He went on:

“[H]alf a year ago, I did not understand why the argument
worked. . . . ”

“But during the formalization, a significant amount of convex
geometry had to be formalized . . . and this made me realize that
. . . the key thing happening is a reduction from a non-convex
problem over the reals to a convex problem over the integers.”

Why formal methods: collaboration

The liquid tensor experiment is also a model for digital
collaboration.

• The formalization was in kept in a shared online repository.
• Participants followed an informal blueprint with links to the

repository.
• Participants were in constant contact on Zulip.
• Lean made sure the pieces fit together.

Why formal methods: collaboration

Why formal methods: teaching

An interactive proof assistant is a powerful tool for teaching
mathematics.

It empowers students to explore mathematical reasoning on their
own.

We are starting to see the rise of online communities of people
helping each other learn.

We are just beginning to learn how to use the technology
effectively.

There have been workshops and conference sessions dedicated to
formal methods for teaching.

Why formal methods: teaching

Why formal methods: mathematical computation

A proof assistant can also be used as a platform for numerical and
symbolic computation.

A mathematical library in the background provides a precise
semantics and a touchstone for interpreting the results.

Tomáš Skřivan has been working on a Lean 4 library for scientific
computation.

Alexander Bentkamp, Ramon Fernández Mir, and I have been
working on using Lean 4 as a platform for verifying reductions for
optimization problems.

https://github.com/lecopivo/SciLean
https://github.com/lecopivo/SciLean
https://abentkamp.github.io/pubs/verified_optimization.pdf
https://abentkamp.github.io/pubs/verified_optimization.pdf

Why formal methods: automated reasoning

Automated reasoning tools hold promise for solving combinatorial
problems in mathematics.

For example, Joshua Brakensiek, Marijn Heule, John Mackey, and
David Narváez used a SAT solver to resolve Keller’s conjecture:

Quanta, “Computer Search Settles 90-Year-Old Math Problem”

The SAT solver output a proof that was checked with a verified
proof checker.

Josh Clune verified the key mathematical reduction in Lean.

https://www.quantamagazine.org/computer-search-settles-90-year-old-math-problem-20200819
https://github.com/JOSHCLUNE/Keller_reduction

Why formal methods: automated reasoning

Why formal methods: machine learning

Applications of machine learning to mathematics are a new
frontier.

There have been important machine-learning projects using Mizar,
HOL Light, Metamath, Isabelle, Coq, Lean, and others.

OpenAI got a neural theorem prover for Lean to solve problems
from the International Mathematics Olympiad.

Searching for formally checkable contact provides a clear signal.

https://openai.com/blog/formal-math/

Why formal methods: machine learning

Why formal methods: machine learning

Why formal methods

Formal technology can help us:

• verify results,
• build mathematical libraries,
• explore new concepts,
• collaborate,
• teach mathematics,
• carry out mathematical computation more rigorously, and
• discover new mathematics.

Outline

• Formal methods in mathematics
• Interactive theorem provers
• Lean and mathlib
• Why formal methods are useful
• Why logicians should care
• What logicians can contribute

Why logicians should care

Formal methods are built on mathematical logic:

• Deductive systems: natural deduction, sequent calculi,
axiomatic systems

• Foundations: set theory, simple type theory, dependent type
theory

• Representations: formalization, coding, truth, reflection
• Models of computation: primitive recursion, type theory,

recursion, the lambda calculus
• Decision procedures: linear real arithmetic, Presburger

arithmetic, real closed fields
• Proof search: normal forms, resolution, completeness,

Skolemization

Why logicians should care

Mathematics and computer science need each other. Mathematics
needs the relevance, and computer science needs the soul.

Formal mathematics is one of the few places where the two
communities come together.

The ASL should be there.

What logicians can contribute

From the 1920s to the 1940s, logic developed conceptual
foundations for thinking about language and reasoning:

• Formal languages, expressions, and semantics.
• Formal models of computation.

I will discuss five respects in which formal methods today can
benefit from a better theoretical understanding.

Mathematical language

Formal logic was designed to model mathematical language.

∀f : R → R ∀a, b : R
(continuous(f) ∧ a ≤ b ∧ f (a) ≤ 0 ∧ f (b) ≥ 0 →

∃x (a ≤ x ∧ x ≤ b ∧ f (x) = 0)).

Here is what it looks like in Lean:

∀ f : R → R, ∀ a b : R,
continuous f → a ≤ b → f a ≤ 0 → f b ≥ 0 →

∃ x, a ≤ x ∧ x ≤ b ∧ f x = 0

Mathematical language

∀ (f : real → real) (a b : real),
@continuous.{0 0} real real

(@uniform_space.to_topological_space.{0} real
(@pseudo_metric_space.to_uniform_space.{0} real

real.pseudo_metric_space))
(@uniform_space.to_topological_space.{0} real

(@pseudo_metric_space.to_uniform_space.{0} real
real.pseudo_metric_space))

f →
@has_le.le.{0} real real.has_le (f a) (@has_zero.zero.{0} real

real.has_zero) →
@ge.{0} real real.has_le (f b) (@has_zero.zero.{0} real

real.has_zero) →
@Exists.{1} real

(λ (x : real),
and (@has_le.le.{0} real real.has_le a x)

(and (@has_le.le.{0} real real.has_le x b) (@eq.{1} real
(f x) (@has_zero.zero.{0} real real.has_zero))))

Mathematical language

In Lean’s library mathlib, the algebraic hierarchy has hundreds of
classes and thousands of instances.

normed field

normed ring discrete field

normed group

topological ring

fielddecidable eq euclidean domain local ring

has norm metric space

uniform add group

topological semiring

division ring
integral domain

has modprincipal ideal domain

topological add group

emetric space
has dist

topological monoid

has inv has div domain nonzero comm ring is noetherian ring

topological add monoid

has edist

first countable topology
separated no zero divisors nonzero comm semiring comm ring

sequential space

uniform spaceregular space zero ne one class ring comm semiring

t2 space add comm group semiring has dvd comm monoid

add group add comm monoid mul zero class distrib comm semigroupmonoidt1 space

add comm semigroupadd monoid semigrouphas neg

has sub has one

t0 space

add semigrouphas zero has multopological space

has addmeasurable space

Mathematical language

Type classes are used for notation, bookkeeping (decidable types,
inhabited types, coercions), order structures, linear algebra,
topological spaces, category theory, function spaces (inner product
spaces, normed spaces), measure theory, manifolds, computability,
and more.

There are tons of dependencies between them.

The real numbers are simultaneously an instance of a field, an
ordered field, a normed field, a metric space, a topological space, a
uniform space, a vector space (over the reals), a manifold, a
measure space, . . .

Mathematical language

Conceptual question: is there room for a theory of mathematical
language that tells us how mathematical language really works?

Challenges:

• Understanding how we leave information implicit.
• Understanding how we overload notation.
• Understanding how we resolve ambiguities.
• Understanding how we establish canonical interpretations.
• Understanding how we avoid conflicts.
• Understanding how we identify objects that are really different.
• Understanding how we do all this so quickly.

Mathematical representations

Consider two different ways to represent a morphism that preserves
multiplication.

structure mul_hom (M : Type*) (N : Type*)
[has_mul M] [has_mul N] :=

(to_fun : M → N)
(map_mul : ∀ x y, to_fun (x * y) = to_fun x * to_fun y)

structure is_mul_hom {α β : Type*} [has_mul α] [has_mul β]
(f : α → β) : Prop :=

(map_mul : ∀ x y, f (x * y) = f x * f y)

Mathlib initially favored unbundled morphisms, but then, in 2019,
switched to bundled morphisms.

Anne Baanen has proposed a method of getting the best of both
worlds.

https://github.com/leanprover-community/mathlib/pull/9888

Mathematical representations

Another example: consider field extensions E ⊆ F ⊆ K .

Working formally, it is often better to use independent data types
rather than subsets.

A better idea: reason about embeddings E ↪→ F ↪→ K .

An even better idea: reason about F as an E -algebra, K as an
F -algebra, and K as an E -algebra, with a coherence condition on
scalar multiplication.

The class field theory library is built on these insights.

https://link.springer.com/article/10.1007/s10817-022-09644-0

Mathematical representations

There is a sense in which all this is trivial. Mathematicians know
that a structural viewpoint is important.

But there is a value to making implicit knowledge explicit and
engineering representations so that they fit together nicely and
support a much larger edifice.

Conceptual question: is there a mathematical theory that can help
us understand how we choose representations and organize
knowledge so that:

• communication is efficient
• reasoning is efficient
• reasoning is reliable.

Mathematical inference

Automated reasoning is a vast industry.

There are decision procedures, constraint solvers, SAT solvers,
SMT solvers, model checkers, equational theorem provers, term
rewriters, first-order theorem provers, model finders, higher-order
theorem provers, relevance filters, sledgehammers, and more.

Automated procedures are good at large, homogeneous inferences,
but not so good at using ordinary mathematical expertise.

Filling in straightforward textbook inferences is often inordinately
painful.

Mathematical inference

Jiannis Limperg and Asta Halkyær have developed automation for
Lean called AESOP, which stands for “Automated Extensible
Search for Obvious Proofs.”

We need a theory of the obvious.

Conceptual question: is there a theory of mathematical reasoning
that can explain what makes a straightforward inference
straightforward?

It needs to account for mathematical expertise, domain-general
and domain-specific cues and heuristics to find the relevant facts
and inferences.

https://github.com/JLimperg/aesop

Reliable knowledge

Formal proof is an ideal. Real mathematical knowledge is messy.

What is the relationship between ordinary mathematical practice
and the formal ideal?

Conceptual question: why is mathematics formalizable? How does
our informal mathematics manage to track the formal ideal?

(See my paper, “The reliability of mathematical inference.”)

https://link.springer.com/article/10.1007/s11229-019-02524-y

Reliable knowledge

People working in formal methods are very sensitive to what is
being verified and what is being trusted (the “trust story”). It’s a
form of recreational paranoia raised to a high art.

We place trust in axiomatic foundations, specifications,
implementations, and hardware. There are ways to minimize
likelihood of error.

What do we trust when we use formal methods to verify complex
systems like self driving cars, airline control systems, operating
systems, and so on?

What ensures the reliability of mathematical arguments, and what
ensures the reliability of the application of mathematical results?

Symbolic methods

There is a tension between symbolic methods (“good old fashioned
AI”) and machine learning.

With all the impressive successes of neural networks, do symbolic
methods still have a role to play?

There is interest in explainable AI: getting ML systems to explain
and justify their conclusions.

Putting it that way makes the explanations sound like an
afterthought.

Symbolic methods

Searching for mathematical proofs involves searching for something
formal and precise.

Conceptual questions: Is there an intrinsic value to symbolic
expressions and representations? Are there problems we want to
solve for which symbolic methods are ineliminable?

Mathematics has a strong aesthetic value, but can we say more?

In light of modern AI, what role should mathematical reasoning
play in the way we conceptualize the world?

What logicians can contribute

In short, we need to understand:

• the nature of mathematical language
• the nature of mathematical representations
• the nature of mathematical inference
• the nature of mathematical knowledge
• the proper and reliable warrants for mathematical knowledge

(and other types of knowledge that depend on it)
• the relationship between mathematical knowledge and other

types of knowledge.

Conclusions

Formal methods have a lot to offer mathematics.

The field is young, and we have a lot to learn.

We need theory as well as experimentation.

Mathematical logic can play a role.

Challenge question: who wrote this?

“It has long been recognized that mathematics and logic are
virtually the same and that they may be expected to merge
imperceptibly into one another. Actually this merging process has
not gone at all far, and mathematics has profited very little from
researches in symbolic logic. The chief reasons for this seem to be
a lack of liaison between the logician and the
mathematician-in-the-street. Symbolic logic is a very alarming
mouthful for most mathematicians, and the logicians are not very
much interested in making it more palatable. It seems however
that symbolic logic has a number of small lessons for the
mathematician which may be taught without it being necessary for
him to learn very much of symbolic logic.”

