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Proof theory

Proof theory: the general study of deductive systems

Structural proof theory: . . . with respect to structure, transformations
between proofs, normal forms, etc.

Hilbert’s program:
• Formalize abstract, infinitary, nonconstructive mathematics.
• Prove consistency using only finitary methods.

More general versions:
• Prove consistency relative to constructive theories.
• Understand mathematics in constructive terms.
• Study mathematical reasoning in “concrete” terms.
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Proof mining

There are
• mathematical
• computational
• foundational
• philosophical

reasons for modeling mathematical proof in formal terms.

Proof mining: using proof theoretic techniques to extract additional
mathematical information from inexplicit proofs.
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Proof mining

A history of proof mining:
• Kreisel (1950’s- ): proposes “unwinding” program, with ideas

regarding Littlewood’s theorem, Hilbert’s Nullstellensatz, Artin’s
solution to Hilbert’s 17th problem, L-series, Roth’s theorem

• Girard (1981): analyzed proofs of van der Waerden’s theorem
• Luckhardt (1989): bounds related to Roth’s theorem

More recently:
• Kohlenbach and students: applications to functional analysis
• Berger, Constable, Hayashi, Schwichtenberg, et al.: extraction of

algorithms from proofs
• Coquand, Delzell, Lombardi, et al.: effective versions of

nonconstructive theorems in algebra
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Proof mining

Notes:
• Work situated in a broader tradition.
• Recent applications to functional analysis are quite striking.
• Broader range of application is likely.
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Proof mining

General requirements:

• Develop suitable (restricted) theories.
• Formalize mathematics.
• Develop general metamathematical tools.

Specific requirements:

• Find a suitable domain of application.
• Understand methods, information sought.
• Refine general metamathematical tools.
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Overview of lectures

1. General frameworks: theories of arithmetic
primitive recursive, first-order, higher-type, higher-order

2. General methods and results
cut-elimination, double-negation translations, realizability, the Dialectica

interpretation, Herbrand’s theorem, conservation results

3. Formalizing analysis
complete separable metric spaces, Hilbert and Banach spaces, continuity,

compactness, distance, representation issues

4. Weak König’s lemma and monotone functional interpretation

5. Applications to functional analysis
extracting rates of strong unicity from approximation theorems, rates of asymptotic

regularity in fixed-point theorems for nonexpansive mappings, uniformity results
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Mathematics in restricted frameworks

Some historical landmarks:
• Weyl (Das Kontinuum, 1918): Developed analysis (informally) in

predicative subsystems of second-order arithmetic
• Heyting (1930’s): Formalizations of intuitionistic logic
• Hilbert and Bernays (Grundlagen der Mathematik, 1934/1939):

Analysis in second-order arithmetic

Subsequent efforts by Kreisel, Feferman, Takeuti, Friedman, Simpson,
and many others.

Ongoing work in:
• Constructive mathematics
• Recursive mathematics
• Reverse mathematics
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Mathematics in restricted frameworks

The words of a budding “Bolshevik”:

The circulus vitiosis, which is cloaked by the hazy nature of the usual
concept of set and function, but which we reveal here, is surely not an
easily dispatched formal defect in the construction of analysis.. . . But the
more distinctly the logical analysis is brought to givenness and the more
deeply and completely the glance of consciousness penetrates it, the
clearer it becomes that, given the current approach to foundational
matters, every cell (so to speak) of this mighty organism is permeated by
the poison of contradiction and that a thorough revision is necessary to
remedy the situation.

Weyl, Das Kontinuum, Chapter 1, §6
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Mathematics in restricted frameworks

Distinctions:
• Formal vs. informal
• Normative vs. descriptive
• A priori vs. a posteriori

Proof mining:
• With some care (cutting down on generality, paying attention to

representations) many mathematical arguments can be represented in
restricted theories.

• General metamathematical methods and techniques are available for
extracting additional information from proofs in such theories.

• In specific cases, this can be mathematically informative.
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Logic

Mathematics = logic + axioms.

Logic comes in two flavors:
• Constructive (intuitionistic or minimal): rules have a clear

computational interpretation.
• Classical: add the law of the exclude middle

The same goes for theories:
• Constructive theories have constructive axioms.
• Classical theories describe objects independent of constructions.

A related dichotomy:
• Intensional: math deals with representations
• Extensional: math deals with objects independent of representations
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Primitive recursive functions

The set of primitive recursive functions is the smallest set
• containing 0, S(x) = x + 1, pn

i (x1, . . . , xn) = xi

• closed under composition
• closed under primitive recursion:

f (0, �z) = g(�z), f (x + 1, �z) = h( f (x, �z), x, �z)

Can define pairing and sequencing, and then handle operations on
integers, rational numbers, lists, graphs, trees, finite sets, etc.

Viewpoints:
• Set theory: very weak model of computation
• Computer science: far too strong
• Proof theory: just right

– p. 12/88



Primitive recursive arithmetic

Primitive recursive arithmetic is an axiomatic theory, with
• defining equations for the primitive recursive functions
• quantifier-free induction

ϕ(0) ϕ(x) → ϕ(x + 1)
ϕ(t)

In PRA, can handle most (all?) “finitary” proofs.

PRA can be presented either as a first-order theory (classical or
intuitionistic) or as a quantifier-free calculus.

Theorem (Herbrand). Suppose first-order classical PRA proves
∀x ∃y ϕ(x, y), with ϕ quantifier-free. Then for some function symbol f ,
quantifier-free PRA proves ϕ(x, f (x)).
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First-order arithmetic

First-order arithmetic is essentially PRA plus induction. Peano arithmetic
(PA) is classical, Heyting arithmetic (HA) is intuitionistic.

Language: 0, S,+,×, <.

Axioms: quantifier-free defining axioms, induction.

A formula is
• �0 if every quantifier is bounded
• �1 if of the form ∃�x ϕ, ϕ ∈ �0

• �1 if of the form ∀�x ϕ, ϕ ∈ �0

• �1 if equivalent to �1 and �1

Primitive recursive functions / relations have �1/�1 definitions.
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First-order arithmetic

I�1 is the restriction of PA with induction for only �1 formulas.

This theory suffices to define the primitive recursive functions, and hence
interpret PRA. Conversely:

Theorem (Parsons, Mints, Takeuti). I�1 is conservative over PRA for
�2 sentences: if

I�1 � ∀x ∃y ϕ(x, y),

with ϕ quantifier-free, then

PRA � ϕ(x, f (x))

for some function symbol f .
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Higher-type recursion

The finite types are defined as follows:
• N is a finite type
• If σ and τ are finite types, so are σ × τ and σ → τ

For example, the reals can be represented as type N → N functionals.
Functions from R to R can be represented by type (N → N) → (N → N).

The primitive recursive functionals of finite type allow:
• λ abstraction, application, pairing, projection
• Higher-type primitive recursion:

F(0) = G, F(n + 1) = H (F(n), n)

The theory PRAω (i.e. Gödel’s theory T ) axiomatizes these.
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Higher-type recursion

Ackermann’s functions can be defined using primitive recursive
functionals:

F(0) = S

F(n + 1) = Iterate(n + 2, F(n))

Iterate(0,G) = λx x

Iterate(n + 1,G) = λx (G(Iterate(n,G)(x)))

Restricted higher-type primitive recursion:

F(0, �z) = G(�z), F(n + 1, �z) = H (n, F(n, �z), �z)
where F(n, �z) has type N.

The theory P̂RA
ω

axiomatizes these functionals, and is a conservative
extension of PRA.
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Higher-type arithmetic

Higher-type arithmetic:
• PAω = PRAω + induction
• HAω = PRAωi + induction

These are conservative extensions of PA and HA respectively.

In fact, one can add quantifier-free choice axioms (QF-AC) to PAω, and
full choice (AC) to HAω.

Restricted versions are conservative over PRA and PRAi:

• P̂RA
ω + (QF-AC)

• P̂RA
ω

i + (AC)

There are weaker / stronger analogues.
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Higher-type arithmetic

Some useful notation:
• N is “type 0”
• N → N is “type 1”
• (N → N) → N is “type 2”
• . . .

An object of type n + 1 is, essentially (with currying and pairing), a
functional F(x1, . . . , xk), taking arguments of type n, and returning a
natural number.

This corresponds to Vω+n in the set-theoretic hierarchy.
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Extensionality

One can take type N equality to be basic, then define higher-type equality
extensionally:

f = g ≡ ∀x ( f x = gx)

The extensionality axiom says that functions respect this equality:

f = g → F f = Fg.

Alternatively, one can take = to be basic at each type, and have axioms
asserting that this corresponds to the extensional notion.

Theorem (Luckhardt). Extensionality can be interpreted, preserving the
second-order (type 0/1) fragment.

More generally, though, the issues are subtle.
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Second / higher-order arithmetic

Functions vs. sets:
• With function types, interpret sets via characteristic functions:

x ∈ S ≡ χS(x) = 1.

• With relation types, interpret functions as functional relations,
∀x ∃!y R(x, y)

Can add comprehension axioms,

∃S ∀x (x ∈ S ↔ ϕ),

and choice axioms

∀x ∃y ϕ(x, y) → ∃ f ∀y (ϕ(x, f (x))).

Classically, choice implies comprehension, and the latter are very strong.
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Subsystems of second-order arithmetic

Restrict induction to �0
1 formulas with parameters, and restrict set

existence principles:

• RCA0: recursive (�0
1) comprehension

Recursive analysis.
• WKL0: paths through infinite binary trees

Compactness.
• ACA0: arithmetic comprehension

Analytic principles like the least-upper bound principle.
• ATR0: transfinitely iterated arithmetic comprehension

Transfinite constructions.

• �1
1-CA0: �1

1 comprehension
Strong analytic principles.

RCA0 and WKL0 are conservative over PRA for �2 sentences. ACA0 is
conservative over PA.
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Summary

Languages of interest:
• Variables ranging over natural numbers
• Variables ranging over finite types
• Variables ranging over sets
• Constants for primitive recursive functionals

Logic: may be classical or intuitionistic

Axioms:
• Various types of primitive recursion
• Various types of induction
• Various set (and function) existence principles
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Overview of lectures

1. General frameworks: theories of arithmetic

2. General methods and results

3. Formalizing analysis

4. Weak König’s lemma and monotone functional interpretation

5. Applications to functional analysis
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Cut elimination and normalization

The idea: suppose you prove a lemma,

∀x (ϕ(x) → ψ(x) ∧ θ(x)).

Later, in a proof, knowing ϕ(t), you use the lemma to conclude θ(t).

You could have proceeded more directly, though perhaps less efficiently,
by deriving θ(t) directly from ϕ(t).
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A sequent calculus

�, A ⇒ A �,⊥ ⇒ A

�, ϕi ⇒ ψ

�, ϕ0 ∧ ϕ1 ⇒ ψ

� ⇒ ϕ � ⇒ ψ

� ⇒ ϕ ∧ ψ
�, ϕ ⇒ ψ �, θ ⇒ ψ

�, ϕ ∨ θ ⇒ ψ

� ⇒ ϕi

� ⇒ ϕ0 ∨ ϕ1

�, ⇒ ϕ �, θ ⇒ ψ

�, ϕ → θ ⇒ ψ

�, ϕ ⇒ ψ

� ⇒ ϕ → ψ

�, ϕ[t/x] ⇒ ψ

�, ∀x ϕ ⇒ ψ

�, ⇒ ψ

� ⇒ ∀x ψ

�, ϕ ⇒ ψ

�, ∃x ϕ ⇒ ψ

�, ⇒ ψ[t/x]
� ⇒ ∃x ψ
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The cut elimination theorem

The cut rule:
� ⇒ ϕ �, ϕ ⇒ ψ

� ⇒ ψ

For classical logic, allow sets of formulas on the right:

� ⇒ �

Read: the conjunction of � implies the disjunction of �. For example,
ϕ ⇒ ϕ,⊥

⇒ ϕ,¬ϕ
⇒ ϕ ∨ ¬ϕ

Theorem (Gentzen). Cuts can be eliminated from proofs in pure
first-order logic.
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Applications of cut-elimination

Theorem (Gentzen). Suppose ∃x ϕ(x) is provable intuitionistically.
Then for some term t , so is ϕ(t).

Proof. Consider the last inference in a cut-free proof.

Theorem (Herbrand). Suppose ∃x ϕ(x) is provable classically, and ϕ is
quantifier-free. Then for some sequence of terms,

ϕ(t1) ∨ . . . ∨ ϕ(tk)
has a quantifier-free proof.

Proof. Again, consider the structure of a cut-free proof.

The latter (slightly generalized) shows that quantifiers can be eliminated
in PRA.
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Applications of cut-elimination

I�1 is the variant of Peano arithmetic in which induction is restricted to
�1 formulas.

Theorem (Parsons, Mints, Takeuti). I�1 is conservative over PRA for
�2 sentences.

Proof (Sieg, Buss): Express induction as a rule:

� ⇒ ∃y ϕ(0, y),� �, ∃y ϕ(x, y) ⇒ ∃y ϕ(x + 1, y),�
� ⇒ ∃y ϕ(x, y),�

Eliminate cuts except on axioms. “Read off” witnessing information.
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Conservation results

RCA0 has �1 induction and a �1 comprehension axiom:

∀x (ϕ(x) ↔ ψ(x)) → ∃Z ∀x (x ∈ Z ↔ ϕ(x)),

where ϕ is �1 and ψ is �1.

Theorem. RCA0 is conservative over I�1.

Proof. Interpret sets by indices for computable sets.

ACA0 adds arithmetic comprehension.

Theorem. ACA0 is conservative over PA.

Proof. Add names for arithmetically definable sets, and eliminate cuts.

In fact, one can eliminate an arithmetic choice principle, (�1
1-AC).

– p. 30/88



Shortcomings of cut elimination

Proofs can get longer: there are superexponential lower bounds, originally
due to Statman and Orevkov, independently.

Also, the procedure is not modular: you can’t eliminate cuts one lemma at
a time.
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Modified realizability

Kleene: one can assign to every constructive theorem of arithmetic a
computable “realizer.”

Kreisel: for theorems of HAω, one can take realizers to be primitive
recursive functionals.

Define “a realizes η” inductively:

1. If θ is atomic, a realizes θ if and only if θ is true.

2. a realizes ϕ ∧ ψ if and only if (a)0 realizes ϕ and (a)1 realizes ψ .

3. a realizes ϕ ∨ ψ if and only if (a)0 = 0 and (a)1 realizes ϕ, or
(a)0 = 1 and (a)2 realizes ψ .

4. a realizes ϕ → ψ if and only if when b realizes ϕ, a(b) realizes ψ .

5. a realizes ∀z ϕ(z) if and only if for every b, a(b) realizes ϕ(b).

6. a realizes ∃z ϕ(z) if and only if (a)1 realizes θ((a)0).

Theorem. If HAω � η, then for some t , HAω � “t realizes η”.
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Modified realizability

In fact, the axiom of choice (AC), is also realized:

∀x ∃y ϕ(x, y) → ∃ f ∃x ϕ(x, f (x)).

Also a certain “independence of premise” axiom (IP′) for ∃-free formulas.

Theorem (Troelstra). We have

HAω + (AC)+ (IP′) � ϕ
if and only if, for some term t ,

HAω � t realizes ϕ.

One can also add extensionality and ∃-free axioms to both sides of the
equivalence.
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Shortcomings of realizability

Realizers do not always carry useful computational information.
For example,

∀x A(x) → ∀x B(x)

is realized (by anything) if and only if it is true.

Also, a negation never carries any computational information: ¬ϕ is
realized (by anything) if and only if ϕ is not realized.

There are tricks to recover information from negation:
• The Friedman-Dragalin trick
• The Coquand-Hoffmann trick

These are useful in conjunction with double-negation interpretations.
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Double-negation translations

The Gödel-Gentzen double-negation translation interprets classical logic
in minimal logic:

• AN ≡ ¬¬A for atomic A
• (ϕ ∨ ψ)N ≡ ¬(¬ϕN ∧ ¬ψN )

• (∃x ϕ)N ≡ ¬∀x ¬ϕN .

The translation commutes with ∀, ∧, →.

Theorem. If � � ϕ classically, �N � ϕN in minimal logic.

Corollary. If PAω � ϕ, then HAω � ϕN

The Kuroda translation, instead, adds ¬¬ after each universal quantifier.

Theorem. ¬¬ϕK and ϕN are intuitionistically equivalent.
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The Dialectica interpretation

Assigns to every formula ϕ in the language of PRAω a formula

ϕD ≡ ∃x ∀y ϕD(x, y)

where x and y are sequences of variables and ϕD is quantifier-free.

Idea: ∀y ϕD(x, y) asserts that x is a “strong” realizer for ϕ.

Note: in contrast to realizability, ∀y ϕD(x, y) is universal.

Inductively one shows:

Theorem (Gödel). If HAω proves ϕ, there is a sequence of terms t such
that quantifier-free PRAω proves ϕD(t, y).
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The Dialectica interpretation

Define the translation inductively, assuming

ϕD = ∃x ∀y ϕD and ψD = ∃u ∀v ψD.

1. For θ an atomic formula, θD = θD = θ .

2. (ϕ ∧ ψ)D = ∃x, u ∀y, v (ϕD ∧ ψD).

3. (ϕ ∨ ψ)D = ∃z, x, u ∀y, v ((z = 0 ∧ ϕD) ∨ (z = 1 ∧ ψD)).

4. (∀z ϕ(z))D = ∃X ∀z, y ϕD(X (z), y, z).

5. (∃z ϕ(z))D = ∃z, x ∀y ϕD(x, y, z).

6. (ϕ → ψ)D = ∃U, Y ∀x, v (ϕD(x, Y (x, v)) → ψD(U (x), v)).

The last clause is a Skolemization of the formula

∀x ∃u ∀v ∃y (ϕD(x, y) → ψD(u, v)).
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Interpreting modus ponens

Consider the rule “from ϕ and ϕ → ψ conclude ψ .”

We are given terms a, b, and c such that PRAω proves

ϕD(a, y)

and
ϕD(x, b(x, v)) → ψD(c(x), v).

We need a term d such that PRAω proves

ψD(d, v).

Substituting b(a, v) for y in the first hypothesis and a for x in the second,
we see that taking d = c(a) works.
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Advantages of the Dialectica interpretation

For example, the formula

∀x A(x) → ∀x B(x)

translates to
∃ f ∀x (A( f (x)) → B(x))

Markov’s principle is verified:

¬¬∃x A(x) → ∃x A(x)

So is the axiom of choice:

∀x ∃y ϕ(x, y) → ∃ f ∀x ϕ(x, f (x)).

An “independence of premise” principle (IP∀) is also interpreted.
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The Dialectica interpretation

The D-interpretation works well on restricted theories.

Theorem. If P̂RA
ω

i + (AC)+ (MP) proves ϕ, then P̂RA
ω

i � ϕD .

Corollary. If P̂RA
ω + (QF-AC) proves ∀x ∃y ϕ(x, y), with ϕ q.f. in the

language of PRA, then so does P̂RA
ω

.

(QF-AC) can be used to prove �1 induction:

∃y ϕ(0, y) ∧ ∀x (∃y ϕ(x, y) → ∃y ϕ(x + 1, y)) → ∀x ∃y ϕ(x, y).

So this shows that I�1 is �2 conservative over PRA.
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Applying the Dialectica interpretation

Recipe:
• Start with a nonconstructive proof.
• Formalize it in PAω + (QF-AC).
• Apply a double-negation translation.
• Get a proof in HAω + (MP)+ (IP)+ (AC).
• Apply the Dialectica interpretation

Later: we will see that certain nonconstructive principles, like weak
König’s lemma, can also be eliminated.

We will also consider a modification of the D-interpretation, due to
Kohlenbach, that makes it easier to extract bounds instead of witnesses.
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The no-counterexample translation

Consider, for example, what the ND-translation does to prenex arithmetic
formulas, such as

∀x ∃y ∀z A(x, y, z). (*)

Negate, Skolemize, and negate again:

∀x, Z ∃y A(x, y, Z(y))

If (*) is true, one can compute a y from x and Z . Such a y foils the
putative counterexample function, Z .

The Skolemization of this formula is Kreisel’s no-counterexample
interpretation:

∃Y ∀x, Z A(x, Y (x, Z), z(Y (x, Z))),

This works for any number of quantifiers.
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An example: the Hilbert basis theorem

Hilbert’s basis theorem says that every polynomial ideal in Q[x1, . . . , xk]
is finitely generated.

Let F range over sequences of polynomials. Formalize this as:

∀F ∃n ∀m (F(m) ∈ 〈F(0), . . . , F(n)〉).
This is computationally false.

The Hilbert basis theorem is classically equivalent to

∀F ∃n (F(n + 1) ∈ 〈F(0), . . . , F(n)〉).
This is computationally true, but hard to prove constructively.

Consider the no-counterexample interpretation:

∀F, M ∃n (F(M(n)) ∈ 〈F(0), . . . , F(n)〉).
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The Hilbert basis theorem

Consider the no-counterexample interpretation:

∀F, M ∃n (F(M(n)) ∈ 〈F(0), . . . , F(n)〉).
Hertz (2004) shows:

• Translating a standard proof that uses Dickson’s lemma yields a
constructive proof.

• The translation is modular, i.e. proceeds lemma by lemma.
• Translating a different proof (by Simpson) yields sharp bounds.

This is just an illustration. In real proof mining:
• Proofs are more complex.
• More elaborate principles get eliminated (e.g. compactness).
• Information obtained is genuinely useful.
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Overview of lectures

1. General frameworks: theories of arithmetic

2. General methods and results

3. Formalizing analysis

4. Weak König’s lemma and monotone functional interpretation

5. Applications to functional analysis
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Conservation results summarized

The following theories are “finitary”:
• PRA
• I�1

• RCA0, WKL0

• P̂RA
ω + (QF-AC)+ (WKL)

The following theories are “arithmetic”:
• PA
• ACA0, �1

1 -AC0

• PRAω

• PAω + (QF-AC)+ (WKL)
• HAω + (AC)+ (MP)+ (WKL).

These suffice for many purposes!
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Formalizing mathematics

In the language of PRA, one can define integers, rational numbers, and
other finitary objects in natural ways.

Define the real numbers to be Cauchy sequences of rationals with a fixed
rate of convergence:

∀n ∀m ≥ n (|an − am | < 2−n).

Equality is a �1 notion:

a = b ≡ ∀n (|an − bn| ≤ 2−n+1).

Less-than is a �1 notion:

a < b ≡ ∃n (an + 2−n+1 < bn).
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Complete separable metric spaces

Definition. A complete separable metric space X = Â consists of a set A
together with a function d : A × A → R satisfying:

• d(x, x) = 0
• d(x, y) = d(y, x)
• d(x, z) ≤ d(x, y)+ d(y, z).

A point of Â is a sequence 〈an | n ∈ N〉 of elements of A such that for
every n and m > n we have d(an, am) < 2−n .

Examples of complete separable metric spaces:
• R, C, Qp

• Infinite products: Baire Space, Cantor Space
• C(X), for X a compact space
• Measure spaces: L1(X), L2(X), L p(X)
• l p, c0
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Compactness

Three notions of compactness for a CSM:

• Totally bounded: for every rational ε > 0, there is a finite ε-net.
• Heine-Borel compact: every covering by open sets has a finite

subcover.
• Sequentially compact: every sequence has a convergent subsequence.

In weak theories:
• RCA0 proves e.g. [0, 1] is totally bounded.
• Totally bounded ⇒ Heine-Borel requires weak König’s lemma.
• Totally bounded ⇒ sequentially compact requires arithmetic

comprehension.

In constructive mathematics, one usually uses “totally bounded.”
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Continuity

A function f between CSM’s is uniformly continuous if

∀ε > 0 ∃δ > 0 ∀x, y (d(x, y) < δ → d( f (x), f (y)) < ε).

A modulus of uniform continuity for f is a function g(ε) returning such a
δ for each ε:

∀x, y, ε > 0 (d(x, y) < g(ε) → d( f (x), f (y)) < ε).

Theorem. In RCA0, the statement that every continuous function from a
compact space to R has modulus of uniform continuity is equivalent to
(WKL).

In constructive mathematics, functions are usually assumed to come with
such moduli.

– p. 50/88



Closed sets

Two notions of a closed set:
• closed = complement of a sequence of basic open balls
• separably closed = the closure of a sequence of points

A set with a distance function is said to be located.

Many of the relationships between these notions have been worked out by
Simpson, Brown, Giusto, Marcone, Avigad, Simic, and others.

For example, in the base theory RCA0, Brown shows:

1. In compact spaces, “closed ⇒ separably closed” is equivalent to
(ACA)

2. In general, “closed ⇒ separably closed” is equivalent to (�1
1-CA)

3. “separably closed ⇒ closed” is equivalent to (ACA)
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Distance

Theorem (Avigad, Simic): Over RCA0, the following are equivalent to
(ACA):

1. In a compact space, if C is any closed set and x is any point, then
d(x,C) exists.

2. If C is any closed subset of [0, 1], then d(0,C) exists.

The following are equivalent to (�1
1-CA):

1. In an arbitrary space, if C is any closed set and x is any point, then
d(x,C) exists.

2. In a compact space, if S is any Gδ set and x is any point, then d(x, S)
exists.

3. If S is a Gδ subset of [0, 1], then d(0, S) exists.

In constructive mathematics, sets are often assumed to be located.
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Hilbert space and Banach spaces

A Hilbert space H = Â consists of a countable vector space A over Q
together with a function 〈·, ·〉 : A × A → R satisfying

1. 〈x, x〉 ≥ 0

2. 〈x, y〉 = 〈y, x〉
3. 〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉

Define ||x || = 〈x, x〉 1
2 and d(x, y) = ||x − y||, and think of H as the

completion of A.

Similarly, a Banach space is represented as the completion of a countable
vector space under a norm.
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Overview of lectures

1. General frameworks: theories of arithmetic

2. General methods and results

3. Formalizing analysis

4. Weak König’s lemma and monotone functional interpretation

5. Applications to functional analysis
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Weak König’s lemma

In the language of second-order arithmetic, a tree on {0, 1} is a set of finite
binary sequences closed under initial segments.

A path through T is a function f : N → {0, 1} such that for every n,
f̄ (n) = 〈 f (0), . . . , f (n − 1)〉 is in T .

Weak König’s lemma is the assertion that every infinite tree on {0, 1} has a
path.
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Weak König’s lemma

A basis for {0, 1}ω is given by (clopen) sets of the form

[σ ] = { f | f ⊃ σ }.
Trees code closed sets:

• If T is a tree, the set of paths through T is closed.
• If C is closed, {σ | [σ ] ∩ C �= ∅} is a tree.

One can also effectively represent the intersection of a sequence of closed
sets as the set of paths through a tree.

Theorem. In RCA0, the following are equivalent to (WKL):

1. {0, 1}ω is compact.

2. [0, 1] is compact.

3. First-order logic is compact.
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Weak König’s lemma

Theorem (Friedman). WKL0 is conservative over PRA for�2 sentences.

First syntactic proof, using cut-elimination, by Sieg.

Theorem (Harrington). WKL0 is conservative over RCA0 for �1
1

sentences.

Syntactic proofs by Hájek, Avigad.

Theorem (Kohlenbach). P̂RA
ω + (QF-AC)+ (WKL) is conservative

over PRA for �2 sentences.

Kohlenbach used the Dialectica interpretation.

All proofs and results extend to weaker theories.
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Weak König’s lemma

The idea behind Sieg’s proof:
• Note that because {0, 1}ω is compact, if G( f, �z) is continuous, it is

bounded by an H (�z).
• Observation (Howard): if G is a primitive recursive functional, there

is a primitive recursive H , and one can verify this axiomatically.
• Put WKL in contrapositive form: if there is no path through T , then T

is finite.
• Express (WKL) as a rule:

� ⇒ ∀ f ∃n ( f̄ (n) �∈ T ),�
� ⇒ ∃n ∀σ (length(σ ) = n → σ �∈ T ),�

• Eliminate cuts.
• From a witness for the top, obtain a witness for the bottom.
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Majorizability

A similar idea works for higher types.

Definition (Howard). Define a ≤∗
τ b, read a is hereditarily majorized by

b, by induction on the type of τ :
• a ≤∗

N b ≡ a ≤ b

• a ≤∗
ρ→σ b ≡ ∀x, y (x ≤∗

ρ y → a(x) ≤∗
σ b(y))

For example, g majorizes f at type N → N if for every x , g(x) is greater
than or equal to f (0), f (1), . . . , f (x).

Proposition. If x ≥∗ y and y ≥ z (pointwise) then x ≥∗ z.

Proposition. Every term of PRAω has a majorant.
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Weak König’s lemma

Saying f ∈ {0, 1} is equivalent to f ≤∗ λx . 1.

So, if λ f G( f, �x) is majorized by λ f H ( f, �x), then for each f ,
G( f, �x) ≤ H (λx . 1, �x).

Theorem. P̂RA
ω + (QF-AC)+ (WKL) is conservative over P̂RA

ω
for

�2 sentences.

Proof. Use the Dialectica interpretation. If the source theory proves

∀x ∃y A(x, y), then P̂RA
ω

proves the ND-translation of

(WKL) → ∀x ∃y A(x, y).

Majorizability can be used to eliminate the dependence on the hypothesis.

The same result holds for conclusions of the form ∀x ∀ f ∃y A( f, x, y).
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Weak König’s lemma

Observations:
• Often, one only cares about bounds, not witnesses.
• Some principles, like (WKL), don’t affect bounds.

A “monotone” variant of the Dialectica interpretation, due to Kohlenbach,
interprets every formula in by one of the form

∃x∗ ∃x ≤∗ x∗ ∀y A(x, y)

Let (QF-AC0,1) denote, for quantifier-free ϕ,

∀x1 ∃y0 ϕ(x, y) → ∃ f 1→0 ∀x1 ϕ(x, f (x))

Let T ω denote, e.g., the theory P̂RA
ω + (QF-AC1,0).
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A metatheorem

Theorem (Kohlenbach 1992). Let � be a set of closed axioms of the
form

∀u1 ∃v1 ≤ tu ∀w0 A(u, v, w)

where t is closed and A is q.f. Suppose

Tω +� � ∀x1 ∀y1 ≤ sx ∃z0 B(x, y, z).

with B q.f. Then there is a term � such that

Tωi +�ε � ∀x1 ∀y1 ≤ sx ∃z0 ≤ �x B(x, y, z)

where �ε are “ε-weakenings” of formulas in �,

∀u1, w0 ∃v1 ≤ tu ∀i ≤ w A(u, v, i).
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Weak König’s lemma

In particular, Tωi proves (WKLε).

Corollary. If

Tω + (WKL) � ∀x1 ∀y1 ≤ sx ∃z0 B(x, y, z)

then for some �

Tωi � ∀x1 ∀y1 ≤ sx ∃z0 < �x B(x, y, z).

Similar results hold if we vary the theories on the left, e.g. with PAω and
HAω.

There are even more general versions of the metatheorem, though
handling extensionality is subtle.

– p. 63/88



A mathematical reading

Let X and K range over CSM’s, K compact.

Theorem (Kohlenbach 1993). Let � be a set of closed axioms of the
form

∀x ′ ∈ X ′ ∃y′ ∈ K ′
x ′ ∀m′ ∈ N A(x ′, y′,m′)

Suppose

Tω +� � ∀n ∈ N ∀x ∈ X ∀y ∈ Kx ∃m ∈ N B(n, x, y,m).

Then there is a term � such that

Tωi +�ε � ∀n ∈ N ∀x ∈ X ∀y ∈ Kx ∃m ≤ �(n, x) B(n, x, y,m)

where �ε are “ε-weakenings” of formulas in �,

∀x ∈ X ′ ∀m′ ∈ N ∃y ∈ K ′ ∀i ≤ m′ A(x ′, y′,m′).
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A mathematical reading

Again, the bound doesn’t depend on parameters from Kx . But note that x
and y really range over representatives of elements of x and Kx . (Note,
e.g., that every extensional computable functional � : R → N is
constant!)

Allowable axioms include a wide range of principles from analysis, e.g.:

1. Basic properties of continuous functions, integrals, sups, trig
functions, etc.

2. The fundamental theorem of calculus.

3. The Heine-Borel theorem.

4. Uniform continuity of continous functions on a compact interval.

5. The extreme value theorem.

Principles based on sequential compactness are not included. But even
restricted uses of these can be eliminated, in certain contexts (Kohlenbach
1998).
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A mathematical reading

Let K be compact, and let 〈a0, a1, . . .〉 be a countable dense sequence.

Consider, for example, the extreme value theorem for K :

∀ f ∈ C(K ) ∃y ∈ K ∀z ∈ K ( f (y) ≥ f (z)).

This is equivalent to

∀ f ∈ C(K ) ∃y ∈ K ∀m (( f (y))m ≥ ( f (am))m − 2−m+1).

The ε-weakening is

∀ f ∈ C(K ),m ∃y ∈ K ∀i < m (( f (y))i ≥ ( f (ai ))− 2−i+1).

But this is easily obtained, choosing y from among 〈a0, . . . , am〉 so that
f (y) is within 2−m of the maximum.
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Overview of lectures

1. General frameworks: theories of arithmetic

2. General methods and results

3. Formalizing analysis

4. Weak König’s lemma and monotone functional interpretation

5. Applications to functional analysis
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Applications to functional analysis

Three types of applications to date:

• Approximation theory: extract a rate of strong uniqueness from a
proof of the uniqueness of a best approximant

• Fixed points of nonexpansive mappings: extract a rate of asymptotic
regularity from proof of convergence

• Uniformity results: determine independence of rates from various
parameters
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Applications to functional analysis

General picture: given K compact, and F : K → R continuous (with
parameters), want to construct solutions to

∃x ∈ K (F(x) = 0),

Often one proceeds in two steps:

1. Construct approximate solutions, |F(xn)| < 2−n

2. By compactness, obtain a convergent subsequence.

Varying scenarios:

1. Solution is unique; want rate of convergence (yields effective
solution)

2. Solution is not unique; solution ineffective; but want other
information

3. Want to determine dependence / independence on parameters.
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Chebycheff approximation

Consider C[a, b] under the uniform norm,

‖ f ‖ = sup
t∈[a,b]

| f (t)|,

and let d( f, g) = ‖ f − g‖. Let Yn consist of the subspace of polynomials
of degree n.

Given f ∈ C[a, b], the function d( f, ·) achieves its infimum on the
compact set

K f = {h ∈ Yn | ‖h‖ ≤ 2‖ f ‖},
so there is a g ∈ Yn such that

d( f, g) = d( f, Yn) =def inf
h∈Yn

d( f, h).

Theorem (Chebycheff). There is a unique best approximant.
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Chebycheff approximation

For every k, can find gk ∈ Yn such that d( f, gk) ≤ d( f, Yn)+ 2−k .

By compactness, some subsequence of 〈gk〉 converges. By uniqueness,
the sequence converges to the unique best approximant. But how fast?

Consider the statement that the best approximant is unique:

∀ f ∈ C[a, b]; g1, g2 ∈ K f (
∧

i=1,2

d( f, gi) = d( f, Yn) → g1 = g2).

Monotone functional interpretation produces a rate of strong uniqueness:

∀ f ∈ C[a, b]; g1, g2 ∈ K f , ε > 0

(
∧

i=1,2

|d( f, gi)− d( f, Yn)| < �( f, ε) → d(g1, g2) < ε).
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Chebycheff approximation

Monotone functional interpretation produces a rate of strong uniqueness:

∀ f ∈ C[a, b]; g1, g2 ∈ K f , ε > 0

(
∧

i=1,2

|d( f, gi)− d( f, Yn)| < �( f, ε) → d(g1, g2) < ε).

It is important that � does not depend on g1, g2.

Let g1 be the (unknown) best approximant, h, and let g2 be any g ∈ Yn .

Then
|d( f, g)− d( f, Yn)| < �( f, ε) → d(h, g) < ε.

This is the information we were after.
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Chebycheff approximation

Theorem (Kohlenbach 1993). Let

ωn(ε) =
⎧⎨
⎩

min

(
ω(ε2),

ε

8n2� 1
ω(1) �

)
} if n ≥ 1

1 if n = 0

and let

�(ω, n, ε) = min

(
ε/4,

�n/2�!�n/2�!

2(n + 1)
· (ωn(ε/2))

n · ε
)
.

Then �(ω, n, ε) is a uniform rate of strong uniqueness for the best
uniform approximation from Yn of functions f in C[0, 1] with modulus of
uniform continuity ω.

In other words, if g1, g2 are in Yn , and d( f, g1) and d( f, g2) are within
�(ω, n, ε) of being optimal, then d(g1, g2) < ε.
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Applications to approximation theory

Chebycheff approximation:
• Uniqueness of best approximant proved by Chebycheff (1859)

(generalizes to “Haar subspaces” of C[a, b]).
• Ineffective proof of existence of constants of strong unicity by

Newman and Shapiro (1963).
• Numerical bounds by Ko (1986) and, for arbitrary Haar subspaces,

Bridges (1980/1982).
• Numerical bounds improved by Kohlenbach (1993), using proof

mining.

L1 approximation:
• Uniqueness of best approximant proved by Jackson (1921)
• Strong unicity studied by Björnestal (1975,1979) and Kroó (1981)
• First explicit bounds in all parameters obtained by Kohlenbach and

Oliva (2003), using proof mining.
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General observations

Applied to standard notions, monotone functional interpretation routinely
provides useful enriched notions:

uniqueness modulus of unicity

rate of strong uniqueness

strict convexity modulus of uniform convexity

extensionality modulus of uniform continuity

monotonicity modulus of monotonicity

pointwise convergence uniform convergence
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Fixed points

Let X be a complete metric space, C ⊆ X . A function f : C → C is
called a strict contraction if, for some δ < 1,

‖ f (x)− f (y)‖ ≤ δ‖x − y‖.

Theorem (Banach). Such a function has a unique fixed point. For any
x0, it is the limit of the sequence xn+1 = f (xn).

A function f is called nonexpansive if

‖ f (x)− f (y)‖ ≤ ‖x − y‖.

The theory of fixed points of nonexpansive mappings is more complex.
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Fixed points

Difficulties:

• If C is unbounded, may have no fixed point.

Example: F(x) = x + 1 on R.

• If C is compact and convex, the Brouwer-Schauder fixed-point
theorems imply fixed points exists; but they may not be unique.

Example: F(x) = x on [0, 1].

• Even if the fixed point is unique, Banach iteration may not find it.

Example: F(x) = 1 − x on [0, 1], with x0 = 0.
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Uniform convexity

A space is said to be strictly convex if

‖x‖ = 1 ∧ ‖y‖ = 1 ∧ x �= y → ‖1

2
(x + y)‖ < 1,

or, equivalently,

‖x‖ ≤ 1 ∧ ‖y‖ ≤ 1 ∧ ‖1

2
(x + y)‖ ≥ 1 → ‖x − y‖ = 0.

A space is said to be uniformly convex if for every ε > 0 there is a δ > 0
such that

‖x‖ ≤ 1 ∧ ‖y‖ ≤ 1 ∧ ‖1

2
(x + y)‖ ≥ 1 − δ → ‖x − y‖ ≤ ε.

A function η mapping ε to a such a δ = η(ε) is a modulus of uniform
convexity.
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Fixed points of nonexpansive mappings

Theorem (Browder, Goehde, Kirk 1965). Let X be a uniformly convex
Banach space, let C ⊆ X be closed, bounded, and convex, let f : C → C
nonexpansive. Then f has a fixed point.

Theorem (Krasnokelski 1955). If f maps C into a compact subset of C ,
then for any x0 in C ,

xk+1 = (xk + f (xk))/2

converges to a fixed point.

Theorem (Kohlenbach 2001). The rate of convergence is, in general, not
computable in f (even for C = [0, 1], x0 = 0).

For the Krasnokelski iteration, ‖xn − f (xn)‖ is decreasing, and
‖xn − f (xn)‖ → 0 (“asymptotic regularity of 〈xn〉”).

The best one can do is determine when ‖xn − f (xn)‖ < ε.
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Asymptotic regularity

To determine when ‖xn − f (xn)‖ < ε, it suffices to extract a bound from
a proof of

∀k ∃n (‖xn − f (xn)‖ < 1

k + 1
).

Theorem (Kirk, Yanez 1990). Let X be uniformly convex with modulus
η, C ⊆ X nonempty, convex, with diameter < dC , and f : C → C
nonexpansive. Then

∀x ∈ C ∀ε > 0 ∀k ≥ h(ε, dC) (‖xk − f (xk)‖ ≤ ε),

where h(ε, dC) =
⌈

ln(4dC )−ln(ε)
η(ε/(dC+1))

⌉
.

Using proof mining, Kohlenbach (2000) found a more elementary proof.
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A generalization

There is a strong generalization of Krasnokelski’s theorem due to
Ishikawa:

• Krasnokelski’s theorem holds for arbitrary Banach spaces.
• Asymptotic regularity holds for arbitrary bounded convex sets C .
• More general Krasnokelski-Mann iterations are allowed:

xk+1 = (1 − λk)xk + λk f (xk),

where λk is a sequence of elements of [0, 1] satisfying certain
constraints.

Kohlenbach (2000) provides explicit and effective bounds rates of
asymptotic regularity, yielding strong uniformity (independence from
starting point, f , and C , except for a bound dC on the diameter).
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History

Proof mining vs. the experts:
• Ishikawa (1976): no uniformity for asymptotic regularity
• Edelstein/O’Brien (1978): uniformity w.r.t. x0 for fixed λk = λ

• Goebel/Kirk (1982): uniformity w.r.t. x0 and f (even for X a
hyperbolic space)

• Goebel/Kirk (1990): conjecture no uniformity w.r.t. C
• Baillon/Bruck (1996): full uniformity for fixed λk = λ

• Kohlenbach (2000): full uniformity
• Kirk (2000): uniformity w.r.t. x0 and f for fixed λk = λ, for f

directionally nonexpansive
• Kohlenbach/Leustean (2002): full uniformity, even for hyperbolic

spaces and f directionally nonexpansive.

In most cases, proof mining provides the only explicit bounds.
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From applications to new metatheorems

Observations on the specific results:
• They hold for nonseparable spaces as well.
• Uniformities obtain for bounded sets, not just compact ones.
• For noncompact sets, it suffices to assume existence of approximate

fixed points.

Kohlenbach (to appear, TAMS) develops very general metatheorems that
explain this.

Kohlenbach and Leustean (2003) use this analysis to obtain explicit
results for directionally nonexpansive mappings in hyperbolic spaces.

Kohlenbach and Lambov (to appear) obtain explicit results for
asymptotically quasi-nonexpansive mappings in uniformly convex spaces,
where neither quantitative nor qualitative uniformity results were
previously known.
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Final remarks

Proof mining combines ideas from
• Proof theory
• Set theory
• Recursion theory and descriptive set theory
• Constructive mathematics

and brings them to bear on specific mathematical developments.

It is well worth supporting:
• The ratio of successes to practitioners is high.
• The methods are elegant, and satisfying.
• It brings various branches of logic and mathematics together.
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Range of applications

Markets for unwinding: anywhere

nonconstructive, abstract, or infinitary

methods are used, and

concrete, computational, or numerical

information is desired.

For example:
• analytic methods in number theory
• measure-theoretic methods in combinatorics
• maximality (Zorn’s lemma) in algebra
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Proof mining per se:
• Kohlenbach, Proof Interpretations and the Computational Content of

Proofs (on his home page)
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These only sketch the underlying logical ideas.
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methods and metatheorems, with simple examples from functional
analysis.

– p. 87/88



References

For extraction of algorithms from proofs, and constructive algebra, see,
for example:

• Ulrich Berger’s home page

http://www-compsci.swan.ac.uk/∼csulrich/
• Thierry Coquand’s home page

http://www.cs.chalmers.se/∼coquand/
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