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Introduction

Each chapter has its own introduction. There is not a particular theme that runs through these chapters.

However, they do show a tendency of moving away from the pure set-theoretic world and gradually making

more contact with model-theoretic algebra, or, as some would like to put it, definability theory. Some of the

chapters have already been published.
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Chapter 1

The Engelking-KarÃlowicz theorem: A
case study in infinitary combinatorics

Abstract: We investigate the chromatic number of infinite graphs whose definition is motivated by the

theorem of Engelking and KarÃlowicz (in [22]). In these graphs, the vertices are subsets of an ordinal, and

two subsets X and Y are connected iff for some a ∈ X ∩ Y the order-type of a ∩X is different from that of

a ∩ Y .

In addition to the chromatic number χ(G) of these graphs we study χκ(G), the κ-chromatic number,

which is the least cardinal µ with a decomposition of the vertices into µ classes none of which contains a

κ-complete subgraph.1

1.1 Introduction

A celebrated theorem of Engelking and KarÃlowicz [22] states that if θ and µ are cardinals such that µ<θ = µ,

then there is a family F of size 2µ, consisting of functions from µ into µ, with the following property. For

every one-to-one sequence 〈fi ∈ F | i ∈ θ∗〉 and sequence 〈βi ∈ µ | i ∈ θ∗〉, where θ∗ < θ, there exists some

α ∈ µ such that for all i ∈ θ∗ fi(α) = βi.

An equivalent formulation takes the following form. Let θ and µ be cardinals such that µ<θ = µ. Then

there are functions fξ : 2µ −→ µ, for ξ < µ, such that if X ⊂ 2µ, |X| < θ and f : X −→ µ, then there is

ξ < µ such that f ⊂ fξ.

This theorem has diverse applications such as the Hewitt-Marczewski-Pondiczery theorem that the prod-

uct of 2µ topological spaces each with a dense subset of cardinality µ has itself a dense subset of cardinality

µ. We are interested here in the following corollary used by Shelah in [45] and [46]:

Corollary 1.1.1. 1. If µ<θ = µ and A is any set of cardinality 2µ, then there is a map τ : [A]<θ −→ µ

such that whenever τ(M1) = τ(M2) then M1 and M2 have the same order-type and the order-preserving

isomorphism g : M1 −→ M2 is the identity on M1 ∩M2.

2. Thus, if µθ = µ and A is any set of cardinality 2µ, then there is a map τ : [A]θ −→ µ such that whenever

1This is joint work with Uri Abraham, published as [3].
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τ(M1) = τ(M2) then M1 and M2 have the same order-type and the order-preserving isomorphism

g : M1 −→ M2 is the identity on M1 ∩M2.

For example, if µθ = µ and λ < (2µ)+ is any ordinal, then there is a map τ : [λ]<θ −→ µ such that

τ(M1) = τ(M2) implies that M1 and M2 are isomorphic with an isomorphism that is the identity on

M1 ∩M2.

Proof. Here [A]<θ is the collection of all subsets of A of cardinality < θ. Since there are only θ ≤ µ possible

order-types of M ∈ [A]<θ, it is enough to find a function that works for a specific order-type γ < θ and

then to combine these functions into a single τ that works for all γ < θ. Note that the requirement that

the order-isomorphism g : M1 −→ M2 is the identity on M1 ∩ M2 can be expressed by saying that every

a ∈ M1 ∩ M2 has the same place in M1 as in M2 (namely the order-types of a ∩ M1 and a ∩ M2 are the

same).

Fix a sequence of functions fξ : 2µ −→ µ for ξ < µ, as in the equivalent formulation of the Engelking

and KarÃlowicz theorem. Since A has cardinality 2µ, we can have such functions be defined over A and with

the same properties. Namely, that if X ∈ [A]<θ and f : A −→ µ then f ⊂ fξ for some ξ < µ.

For every M ⊂ A of order-type γ, let f : M −→ γ be its order-preserving collapse. There is some ξ < µ

such that f ⊂ fξ and we define τ(M) = ξ (say for the least such ξ). Now if τ(M1) = τ(M2) = ξ then for

a ∈ M1 ∩M2, fξ(a) is the place of a both in M1 and in M2.

The second paragraph of the corollary is obtained by replacing θ with θ+. It is this case that will interest

us in this paper.

In this note we want to investigate the extent to which the assumption µθ = µ in the second item of the

corollary is necessary. We are mainly interested in the case µ = ℵω and θ = ω and we will prove that if µ is

a strong limit singular cardinal of cofinality θ then the conclusion of the corollary does not hold.

In graph theoretic language our problem finds a concise formulation as follows. Let (A,<) be any linearly

ordered-set. We say that X and Y subsets of A are consistent if and only if there exists an order isomorphism

f : X −→ Y that is the identity on X ∩ Y (namely f(x) = x for x ∈ X ∩ Y ). We say that X and Y are

inconsistent if they are not consistent. In this paper, we deal only with well-ordered sets (A,<), and in this

case X and Y are inconsistent if and only if either the order-type of X is different from that of Y , or else

there exists some ξ ∈ X ∩ Y such that order-type(X ∩ ξ) 6= order-type(Y ∩ ξ).

For any ordered-set (A,<), we define a graph with vertices P(A), the powerset of A, and with edges all

pairs (X, Y ) where X and Y are inconsistent subsets of A. We will be interested in subgraphs of P(γ) for

different ordinals γ’s and ask for their chromatic number. In fact, we will be interested here mainly in the
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case in which we take only subsets of γ of some fixed order-type α.

Recall that the chromatic number χ(G) of a graph G = (V,E) is the least cardinal κ such that there is

a function τ : V −→ κ so that (a, b) /∈ E whenever τ(a) = τ(b). We call such a function “separating”. That

is, τ is separating if and only if τ(a) 6= τ(b) whenever (a, b) ∈ E. The chromatic number is thus the least

cardinality of the range of a separating function.

Let typ(α) be the class of all sets of ordinals of order-type α. If X ∈ typ(α) we say that X is an α-set.

(We take sets rather than sequences because we refer to the intersection of two sets when the edges of the

graph are defined). For a set B of ordinals, let typ(α, B) be the collection of all X ∈ typ(α) such that

sup(X) ∈ B (where sup(X) is the first ordinal greater or equal to all ordinals of X). We will be interested

here in two cases: for ordinals α < β, typ(α, β), is the collection of bounded subsets of β of order-type α,

and for a limit ordinal α typ(α, {β}) is the collection of all unbounded subsets of β of order-type α.

If a, b ∈ typ(α) there is a unique order-preserving isomorphism g : a −→ b, and in this case a and b are

consistent iff g is the identity on a ∩ b. They are inconsistent otherwise. So a and b are inconsistent if and

only if for some x ∈ a ∩ b the order-type of x ∩ a differs from that of x ∩ b.

For two ordinals α ≤ β let G(α, β) be the graph G = (V, E) with set of vertices V = typ(α, β) and edges

(a, b) ∈ E if and only if a and b are inconsistent. Likewise, G(< α, β) consists of subsets of β of order-type

< α, with edges (a, b) defined whenever the order-type of a is different from that of b, or else they have the

same order-type but are inconsistent.

For example, G(ω, ω1) has vertices all ω-sets of countable ordinals, and ω-sets X and Y are connected

iff some a ∈ X ∩ Y has different position in X and Y . The graph G(< ω, ω1), has vertices all finite subsets

of ω1, and edges all pairs (a, b) where a and b are inconsistent.

Similarly, G(α, {β}) is the graph with vertices typ(α, {β}) and edges all pairs (a, b) that are inconsistent

α sets (unbounded in β).

The graphs G(2, β) were considered by Erdős and Hajnal [25] and called “shift graphs”. So a vertex is a

pair {a, b} (with a < b) and two pairs a0 < a1 and b0 < b1 are connected in the graph if and only if a1 = b0

or b1 = a0.

We shall be particularly interested in the case G(ω, {ℵω}) which is the graph G with set of vertices all

unbounded ω-sets in ℵω, and with edges defined by (s, t) ∈ G if and only if there is x ∈ s ∩ t such that

|x ∩ s| 6= |t ∩ x|.
Our aim is to investigate the chromatic number of these and similarly defined graphs.

In this graph theoretic terminology, Corollary 1.1.1 can be restated as follows:

Corollary 1.1.2. Suppose that µ<θ = µ, and let λ be any ordinal of cardinality ≤ 2µ. Let G be the graph
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with vertices all subsets of λ of cardinality < θ and edges connecting two vertices if and only if they are

inconsistent. Then the chromatic number of G is ≤ µ.

In particular, we get the following when we consider θ+. Suppose that µθ = µ, and let λ be any ordinal

of cardinality 2µ. Let G be the graph with vertices all subsets of λ of cardinality θ and edges connecting two

vertices if and only if they are inconsistent. Then the chromatic number of G is ≤ µ.

Here are a couple of illustrations of the corollary. Since µ<ℵ0 = µ for every infinite cardinal µ, we have

that χ(G(< ω, 2µ)) ≤ µ. Another example: χ(G(< ω1, 2(2ℵ0 )) ≤ 2ℵ0 . In fact, χ(G(< ω1, 2(2ℵ0 )) = 2ℵ0 ,

because already G(ω, {ω}) contains a clique of size 2ℵ0 . To see this, form for every subset X of the even

numbers the set S(X) which is the union of X with the set of odd numbers. Then {S(X) | X ⊆ even} is a

clique.

Corollary 1.1.2 thus says that if µθ = µ then for every α < θ+ there is a separating function from G(α, 2µ)

into µ and hence χ(G(α, 2µ)) ≤ µ. A simple but quotable result of this note is that if ℵω is strong limit,

then χ(G(ω, {ℵω}) > ℵω. Hence Corollary 1.1.1 does not hold in case µ = ℵω, θ = ω, and the cardinal

assumption in that corollary is needed. This is the content of the following section.

1.2 χ(G(ω, {iω})) > iω (and similar results)

It is convenient to define, for any set of ordinals B, a function πB : B −→ order-type(B) by

πB(a) = order-type(a ∩B).

If A ⊆ B, then πB ¹ A is denoted πA,B . That is, πA,B gives the position of a within B for every a ∈ A. So

for arbitrary sets of ordinals X and Y , X and Y are consistent if and only if πX∩Y,X = πX∩Y,Y .

The following lemma is obvious.

Lemma 1.2.1. Suppose A and B are α sets of ordinals and X0 ⊆ A ∩B. Then πX0,A = πX0,B if and only

if the (unique) order isomorphism g : A −→ B is the identity on X0.

Our first result is

Theorem 1.2.2. χ(G(ω, {iω})) > iω. More generally, if λ is a strong limit singular cardinal and cf(λ) = κ,

then χ(G(κ, {λ})) > λ.

Proof. For a simpler exposition we present the proof for the particular case of iω, but the reader will have

no problems in making the obvious changes. Recall that i0 = ℵ0, in+1 = 2in , and iω is the limit of the in
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sequence. Recall also that the graph G(ω, {iω}) consists of all ω-sets that are unbounded in iω. Suppose τ

is a separating function from typ(ω, {iω}) into iω, and we shall reach a contradiction. So we assume that

for every two ω-sets M1 6= M2 unbounded in iω, if τ(M1) = τ(M2) then M1 and M2 are consistent.

Given any M ∈ typ(ω, {iω}) we define the trace of M , denoted tM , as the following (partial) function

on iω. For every α < iω, pick (if there is one) some N ∈ typ(ω, {iω}) such that M ⊆ N and τ(N) = α.

Then define

tM (α) = range πM,N = {|x ∩N | | x ∈ M}. (1.2.1)

In words, tM (α) is the set of positions occupied by M in N (it is a subset of ω). Notice that tM (α) does not

depend on N : if N ′ is some other member of typ(ω, {iω}) with M ⊆ N ′ and τ(N ′) = α, then M occupies

the same positions in N as in N ′. In fact, the isomorphism between N and N ′ is the identity on N ∩ N ′

and hence on M .

Now, for every n < ω, the set of all functions from in to P(ω) has cardinality 2in+1 , but the cardinality of

the set of ω sequences unbounded in iω is 2iω . Hence there are two distinct sets Mn and M ′
n in typ(ω, {iω})

that begin after in and are such that

tMn ¹ in = tM ′
n

¹ in. (1.2.2)

Let K =
⋃

({Mn | n ∈ ω} ∪ {M ′
n | n ∈ ω}). Then K has order-type ω (its intersection with any

in is finite) so that K ∈ typ(ω, {iω}), and τ(K) = α is defined. Pick n ∈ ω with α < in. Then

α ∈ dom(tMn) ∩ dom(tM ′
n
), and tMn(α) = tM ′

n
(α) by the choice of Mn and M ′

n in (1.2.2). Hence Mn

occupies in K the same positions as M ′
n does, which is impossible since Mn 6= M ′

n.

The following definition motivates much of the research reported in this paper.

Definition 1.2.3. Let κ be a (finite or infinite) cardinal; we say that a graph G has κ-chromatic number

µ if and only if µ is the least cardinal such that there is a function τ from the vertices into µ such that

τ−1{α} does not contain a clique of cardinality κ. That is, if {ai | i ∈ κ} is a set of size κ of vertices with

τ(ai) = τ(aj) for all i and j, then there are ai 6= aj in this collection that are not edge connected in the

graph. We say that such a function τ is a κ- separating coloring of the graph. We denote with χκ(G) the κ

chromatic number of G.

For example, χ2(G) is the chromatic number of G. χ3(G) = 1 is the statement that G is triangle free,

and χ3(G) is the least cardinality of a partition of G into triangle free subsets. So, χκ(G) > µ is equivalent

to the statement that any function F from the set of vertices of G to µ has some γ ∈ µ such that F−1{γ}
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contains a clique of cardinality κ.

Clearly, χ2(G) ≥ χ3(G) ≥ · · · ≥ χℵ0(G) ≥ · · · .
A well-known question of Erdős and Hajnal [24] can be expressed in these terms as follows: is there a

graph G with χ4(G) = 1 and χ3(G) > ℵ0? (That is, does there exist a graph with no subgraph isomorphic

to K4 which cannot be expressed as a union of ℵ0 triangle free graphs?)

In an email, A. Hajnal noted that a result in [24] is (in our terminology) that for every regular κ and

2 ≤ n < ω there is a graph G such that χn(G) = κ but χn+1(G) = 1. This result was used by our referee

to answer a question that we had in a previous draft and to construct, for every n, a graph G such that

χ2(G) > · · · > χn(G) > ω. The construction of graphs Gi and uncountable cardinals κi, for i = n, n−1, . . . , 1

is done backwards and so that χi(Gi) = κi holds. First κn = ℵ1 (for example) and Gn is chosen so that

χn(Gn) = κn but χn+1(Gn) = 1. If Gi+1 and κi+1 are defined, then κi > |Gi+1| is chosen and Gi is defined

so that χi(Gi) = κi and χi+1(Gi) = 1. Then G is defined as the vertex disjoint union of the Gi’s.

An obvious application of the Erdős-Rado theorem is the following.

Theorem 1.2.4. For every cardinal λ, for the graph G = (ω, λ), χ(2ℵ0 )+(G) = 1.

Proof. Suppose that A ⊆ G is a clique of cardinality (2ℵ0)+. Define for X 6= Y in A which are inconsistent

f(X,Y ) = 〈n,m〉 if the nth member of X is equal to the mth member of Y and n 6= m. As there is no

homogenous triple, a contradiction to the Erdős-Rado theorem is obtained.

Our aim now is to prove the following.

Theorem 1.2.5. χℵ0(G(ω, {iω})) > iω.

To prove the theorem, we shall define first a graph G∗(ω, {iω}) on the set of vertices typ(ω, {iω)} but

with fewer edges than G(ω, {iω}). We let (a, b) form an edge in G∗ iff there are infinitely many x ∈ a ∩ b

such that the order-type of x∩ a is different from that of x∩ b. In case no G∗ edge connects a and b we say

that a and b are “eventually consistent”. So, a, b ∈ typ(ω, {iω)} are eventually consistent if and only if the

isomorphism f : a −→ b is the identity on “almost all” members of a ∩ b.

Define the “almost inclusion” relation X ⊆∗ Y if and only if Y \X is finite, and then define the “almost

equal” relation X =∗ Y if and only if X ⊆∗ Y and Y ⊆∗ X. If X ⊆ ω, then [X]∗ denotes the equivalence

class of X. That is, the collection of all subsets of ω that are =∗ equivalent to X. In case f and g are

functions, f =∗ g if and only if the domain of f is almost equal to the domain of g and f(x) = g(x) for

almost all x’s in intersection of the domains of f and g.

In these notations, a, b ∈ typ(ω, {iω)} are eventually consistent if and only if πa∩b,a =∗ πa∩b,b.

We first note the following.
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Theorem 1.2.6. The chromatic number of G∗ = G∗(ω, {iω}) is bigger than iω.

The proof is similar to that of Theorem 1.2.2. Assume that τ : G∗ −→ iω is separating in the sense that

τ(M1) = τ(M2) implies that M1 and M2 are eventually consistent. Then tM (α) is defined, when M ⊆ N

for some N with τ(N) = α, as [range πM,N ]∗, the =∗ equivalence class of the set in (1.2.1). Then it follows

again that tM (α) does not depend on the set N chosen: any two such supersets will give equivalent sets of

positions. At stage n choose two sets Mn and M ′
n that are disjoint and such that tMn

¹ in = tM ′
n

¹ in. The

contradiction is obtained as before.

Theorem 1.2.7. For G∗ = G∗(ω, {iω}), we have χℵ0(G
∗) > iω: the ℵ0-chromatic number of G∗ is bigger

than iω.

Proof. Suppose on the contrary that τ : typ(ω, {iω}) −→ iω is a ℵ0- separating coloring of the graph

G∗(ω, {iω}). Given M ∈ typ(ω, {iω}) we define tM on iω as follows. For any γ ∈ iω define

tM (γ) = { [range πM∩B,B ]∗ | τ(B) = γ and M ⊆∗ B}

In words, tM (γ) is the collection of the almost equality equivalence classes of subsets of ω induced by sets

of the form {|m ∩B| | m ∈ M ∩B} where B ∈ typ(ω, {iω}) is such that τ(B) = γ and M \B is finite.

We claim that tM (γ) is a finite set (of equivalence classes); this is the content of the following lemma.

Lemma 1.2.8. For every M ∈ typ(ω, {iω}) and γ ∈ iω,

{ [range πM∩B,B ]∗ | τ(B) = γ and M ⊆∗ B}

is finite.

Proof. If not, then there are Bi ∈ typ(ω, {iω}) for i ∈ ω such that τ(Bi) = γ, M ⊆∗ Bi and

range πM∩Bi,Bi 6=∗ range πM∩Bj ,Bj (1.2.3)

for all i 6= j (here 6=∗ is the negation of =∗). We claim that {Bi | i ∈ ω} is a clique, which contradicts

the assumption that τ is ℵ0-separating. To prove that (Bi, Bj) is an edge in G∗ for i 6= j, we must find an

infinite number of m ∈ Bi∩Bj for which |m∩Bi| 6= |m∩Bj |. But since M ⊆∗ Bi and M ⊆∗ Bj , this follows

immediately from (1.2.3).

-lemma
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Thus (continuing the proof of the theorem) tM takes values essentially in [P(ω)]<ω, and hence for every

n ∈ ω there are not more than 2in possible functions of the form tM ¹ in. It follows, for every fixed n ∈ ω,

that we can find M i
n for i ∈ ω such that M i

n 6=∗ M j
n and tMi

n
¹ in = tMj

n
¹ in for all i and j. Now find

K ∈ typ(ω, {iω}) such that M i
n ⊆∗ K for all indices, and consider γ = τ(K). Pick some n such that γ < in.

Since M i
n 6=∗ M j

n and these sets are almost included in K, M i
n ∩K 6=∗ M j

n ∩K, and so

range πMi
n∩K,K 6=∗ range πMj

n∩K,K for i 6= j.

On one hand we have [range πMi
n∩K,K ]∗ ∈ tMi

n
(γ) by the definition of tMi

n
(γ), but on the other hand there

is a fixed F such that tMi
n
(γ) = F for all i ∈ ω (by definition of {M i

n | i ∈ ω}). Hence F is infinite, in

contradiction to the lemma.

Since any edge of G∗ = G∗(ω, {iω}) is also an edge of G = G(ω, {iω}), we have that χℵ0(G) ≥ χℵ0(G
∗).

That is, Theorem 1.2.5 is proven.

The following remain unresolved.

1. Improve the theorems by finding the exact value of the chromatic number, rather than just saying it

is above iω. For example, is it always 2iω?

2. Can we replace ℵ0 with ℵ1 in Theorem 1.2.5? I. e, what is the ℵ1 chromatic number of the graph?

Observe that there are no cliques of size (2ℵ0)+ (by Erdős Rado).

1.3 Ladder graphs

The graph G(ω, {iω}) considered in the previous section has all its sets with the same supremum, namely

iω. Now we consider the other extreme, when all sets have different suprema. These are the ladder graphs.

Let λ be some ordinal and suppose that a “ladder system” X = 〈Xα | α ∈ Sλ
ω〉 is given where Sλ

ω ⊂ λ is

the subset of λ of limit ordinals with countable cofinality, and Xα ⊂ α is unbounded in α and of order-type ω.

A ladder graph induced by X is a subgraph of G(ω, λ) having the Xα’s as vertices, and edges all inconsistent

pairs. It is easy to have such a graph with no edges at all: just assume that each Xα has the form {xi | i ∈ ω}
an increasing enumeration where each xi is the ith successor of some limit ordinal. So the question is about

constructing such a graph with large chromatic number. We concentrate on Ladder subgraphs of G(ω, ω1)

and prove that assuming ♦ω1 there are such graphs of chromatic number ℵ1, but under MAℵ1 each such

graph has countable chromatic number.

9



Our referee noticed that if S ⊂ ω1 is non-stationary, then the ladder graph built on 〈Xα | α ∈ S〉 has

countable chromatic number. To see this, take C club disjoint to S and such that every α ∈ C is sufficiently

closed. Then define the coloring on the interval (α, α′) for α ∈ C by induction on α (where α′ > α is the

next ordinal in C) so that vertices in (α, α′) have different colors. The inductive requirement for α ∈ C

(α > 0) is that for every β > α there is an infinite number of differently colored β′ < α with Xβ ∩ α an

initial segment of Xβ′ . Now when a color has to be chosen for Xγ where γ ∈ (α, α′) while finitely many

colors are to be avoided, an example is taken from some already defined Xβ′ that extends Xγ ∩ α.

This situation is reminiscent of the one of the Hajnal–Máté graphs defined on ω1 (in [29]). These graphs

are also defined by means of a ladder system 〈Xα | α ∈ Sλ
ω〉, by joining α < β with an edge if α ∈ Xβ . It

is proven in [29] that the diamond ♦ω1 implies that there is a Hajnal–Máté graph of chromatic number ℵ1,

while MAℵ1 implies that all such graphs have chromatic number ≤ ℵ0. Yet, the situation with respect to the

continuum hypothesis is clearer with the Hajnal–Máté graphs (see [1] and [2]): we know that it is consistent

that CH holds and all of these graphs have countable chromatic number, but we do not know the impact of

CH on the ladder graphs defined here.

We first note the following.

Theorem 1.3.1. If G is any ladder subgraph of G(ω, λ) induced by X = 〈Xα | α ∈ Sλ
ω〉, then χℵ1(G) = 1.

That is, there are no uncountable cliques in G.

Proof. Given S ⊆ λλ
ω a set of cardinality ℵ1, we shall find α1 < α2 in S such that Xα1 and Xα2 are

consistent (and hence not connected in the graph). Take M a countable elementary substructure of some

Hκ rich enough to contain G and S. Let A be the closure of M ∩ λ in λ. That is, the set of all ordinals

that are in M ∩ λ or are limits of ordinals in M ∩ λ. Then A is countable and we can pick α1 ∈ S \ A.

Since α1 6∈ A, F = Xα1 ∩M is finite. For every x ∈ F , write n(x) = |x ∩Xα1 |. Since M is an elementary

substructure, there is α2 ∈ M ∩S such that for every x ∈ F , we have |x∩Xα2 | = n(x). Now Xα1 ∩Xα2 ⊆ F

and Xα1 , Xα2 are consistent.

Theorem 1.3.2. Assume ♦ω1 . There is a ladder graph G on Sω1
ω such that χℵ0(G) = ℵ1.

Proof. Let 〈Sα | α ∈ ω1〉 be the assumed diamond sequence. We define a ladder system 〈Xα | α ∈ Sω1
ω 〉,

where Xα is defined by induction on limit α ∈ ω1, an ω set cofinal in α. At stage α consider Sα and suppose

that it encodes a function fα : α −→ ω. Let 〈γi | i ∈ ω〉 be an ω sequence increasing and cofinal in α. We

define xα
i ∈ α for i ∈ ω by induction with the aim of defining Xα = {xα

i | i ∈ ω}. At stage i of the construction

we have defined k(i) ∈ ω and the first k(i) members of the sequence, denoted 〈xα
j | j < k(i)〉. We will choose

as follows a finite increasing sequence of the form xα
k(i), . . . , x

α
k(i+1)−1 in α \ (γi ∪max{xα

0 , . . . , xα
k(i)−1}) + 1
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(to ensure that the resulting sequence is increasing and cofinal in α). Let Bi be the collection of all limit

α′ ∈ α\ (γi∪max{xα
0 , . . . , xα

k(i)−1})+1 such that xα
0 , . . . , xα

k(i)−1 is an initial segment of Xα′ and fα(α′) = i.

Suppose that {Xα′ | α′ ∈ Bi}, being a subgraph of the graph constructed so far, contains a finite maximal

clique. In this case let α0, . . . , αk−1 ∈ Bi be the set of indices of a maximal clique enumerated in increasing

order. In fact, we take {α0, . . . , αk−1} to be minimal in some well ordering of the finite sets of ordinals.

Define xα
k(i), . . . , x

α
k(i)+k−1 so that Xα (no matter how it is going to be completed) and Xαj are inconsistent

for every j < k.

We must prove that the resulting graph has ℵ0-chromatic number ℵ1. Suppose f : ω1 −→ ω is a coloring

(that is, the function taking Xα to f(α) defined on the vertices of the graph is the coloring). We have to

prove that for some i ∈ ω, f−1{i} contains an infinite clique. Suppose on the contrary that for every i ∈ ω

all cliques of f−1{i} are finite (actually, the contradiction is derived from the assumption that every f−1{i}
contains a maximal finite clique).

Let 〈Mα | α ∈ ω1〉 be an increasing and continuous sequence of countable elementary substructures of

Hκ which is large enough to contain the graph and the function f . Find α ∈ ω1 so that f ¹ α is encoded

by Sα and α = Mα ∩ ω1. Suppose f(α) = i0 and consider stage i0 in the definition of the sequence xα
i . The

definition of Bi0 can be done in Mα and it contains a finite maximal clique. So the maximal clique, subset

of Bi0 used at stage i0 is in Mα, and by the construction it turns out that it is not maximal since Xα is

inconsistent with each Xαi . This contradiction proves the theorem.

Assuming MAω1 , any G = 〈Xα | α ∈ limω1〉, a ladder subgraph of G(ω, ω1), has countable chromatic

number.

Theorem 1.3.3. Assume Martin’s Axiom and 2ℵ0 > κ. If G = 〈Xα | α ∈ Sκ
ω is a ladder subgraph of

G(ω, κ), then χ(G) ≤ ω.

Proof. Consider the poset P of all finite approximation to a separating function. That is, p ∈ P if and

only if dom(p) ⊂ Sκ
ω, p : dom(p) −→ ω, and for every α, β ∈ dom(p), if p(α) = p(β) then Xα and Xβ are

consistent. The ordering of P is plain extension. Clearly, any condition can be extended to include any

given limit ordinal in its domain, since the range of p is finite. The countable chain condition of P is proved

below and so Martin’s Axiom applies to yield that the chromatic number of G is countable.

It remains to prove that P satisfies the c.c.c. Let P0 ⊆ P be uncountable. We may assume that the sets

{dom(p) | p ∈ P0} form a ∆-system with core D0. We may even assume that the sets dom(p) for p ∈ P0

are pairwise disjoint and D0 = ∅ (just replace p with p ¹ (dom(p) \ D0)). Pick a countable M ≺ Hκ with

G,P, P0 ∈ M . Let M be the union of M ∩λ with its set of accumulation points in λ. As M is countable M is
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countable. As P0 is uncountable, we can find p ∈ P0 such that dom(p)∩M = ∅. Thus for every x ∈ dom(p),

Cx ∩ M is finite. We think of p as a structure with universe ω ∪ dom(p) ∪ ⋃
x∈dom(p) Cx, with predicates

the ordering relation and the two binary relations a ∈ Cx and α ∈ dom(p), and with constants all members

of Cx ∩M for x ∈ dom(p). The function p itself is also part of that structure. Since M is an elementary

substructure there is q ∈ P0 ∩M such that the structures of p and q are isomorphic with an isomorphism f

that does not move the constants.

We claim that p and q are compatible. Suppose not, and α ∈ dom(p) and β ∈ dom(q) are such that

p(α) = q(β) but Xα and Xβ are inconsistent. Recall that α 6∈ M . Say α′ = f(α). Then α′ ∈ dom(q) and

Cα ∩ M = Cα ∩ Cα′ . Moreover, each t ∈ Cα ∩ Cα′ has the same position in Cα as it has in Cα′ . It also

follows that q(α′) = q(β). Supposedly there is x ∈ Cα ∩ Cβ that has different positions in Cα and Cβ . But

then x ∈ Cα ∩M and so x ∈ Cα′ and has the same position there as it has in Cα. Which is impossible since

α′ and β are both in dom(q).

In view of the last three theorems, we ask: is there (in ZFC) a graph G with χℵ0(G) = ℵ1 and χℵ1(G) = 1?

Moving one cardinal higher we look at ladder subgraphs of G(ω, ω2). By the previous theorem, under

MA+2ℵ0 > ℵ2 they all have countable chromatic number. If CH holds then they have ℵ1 chromatic number

(by Corollary 1.1.2, take µ = θ = ℵ1). We prove next that for the case that 2ℵ0 = ℵ2 it consistent to have a

ladder subgraph of G(ω, ω2) with chromatic number ℵ2: just add Cohen reals.

Theorem 1.3.4. In a model obtained by adding ℵ2 many Cohen reals there is a ladder subgraph of G(ω, ω2)

with chromatic number ℵ2.

Proof. Pick for any α ∈ Sω2
ω an unbounded ω set with an increasing enumeration Cα = {Cα(n) | n ∈ ω}.

Suppose G is a V -generic filter over the Cohen forcing poset (of finite functions from ω2 to 2). Let g =
⋃

G

be the resulting generic function from ω2 to 2, and denote for any limit ordinal α ∈ ω2 gα = g ¹ [α, α + ω).

In V [G] define Dα ⊂ Cα as the subset of Cα obtained by picking only those member of the Cα sequence in

positions that are in gα. That is, Cα(n) ∈ Dα if and only if gα(α + n) = 1.

We claim that the resulting graph has chromatic number ℵ2. Suppose for a contradiction that f∼ is a

name forced by every condition to be a function from ω2 in ω1. We shall find a condition (extending a given

condition) that forces two vertices to be connected and have the same color under f∼.

So let r0 be an arbitrary condition. It is a finite function from a subset of ω2 to 2. Let M be an elementary

substructure of some large enough Hκ and with cardinality ℵ1 such that r0, f∼ ∈ M and δ = M ∩ ω2 > ω1

is of countable cofinality. Let r1 be an extension of r0 that forces that f∼(δ) = ξ for some ξ ∈ ω1. Let n be

the cardinality of dom(r1) ∩ [δ, δ + ω). So r1 determines which of the first members of Cδ are in Dδ. Let
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x0, . . . , xn+1 be the first n + 2 members of Cδ. It will be soon evident why we want those two additional

members of the sequence, xn and xn+1.

Let s = r1 ¹ M . Then s ∈ M and s is also an extension of r0. Since M is an elementary substructure,

there is in M a condition s1 that extends s and “reflects” r1. That is, there is an isomorphism i : dom(r1) −→
dom(s1) such that for δ′ = i(δ) we have that:

1. x0, . . . , xn+1 are also the first n + 2 members of Cδ′ .

2. s1 forces that f∼(δ′) = ξ.

Now extend s1 to force that Dδ′ includes both xn and xn+1, and extend r1 to force that Dδ includes xn+1

but not xn. Then these two extensions are compatible in the Cohen poset and they force that Dδ′ and Dδ

are inconsistent.

Suppose the GCH. What is the chromatic number of ladder subgraphs of G(ω, ω3)? Certainly ≤ ℵ2 (by

Corollary 1.1.2). Can we define a ladder graph (in L? with forcing?) so that its chromatic number is ℵ2?

What are the chromatic numbers of ladder subgraphs of G(ω,ℵω+1)?

1.4 Graphs of the form G(ω, µ)

In the previous sections we considered graphs of ω sequences that had all the same supremum or all different

suprema. Now we consider graphs of the form G(ω, µ) where µ is a cardinal. That is, graphs of all ω

sequences in µ with no restriction on their suprema.

One can consider the more general case G(α, µ) of all subsets of µ of order-type α (edges defined as

subgraphs of P(µ)). The case G(2, µ) was considered in [25], and here we extend this discussion. They

proved that G(2, (2κ)+) (called there a shift graph) is a triangle free graph with chromatic number ≥ κ+

such that all its subgraphs of cardinality ≤ 2κ have chromatic number ≤ κ. Our example below is different:

not only the chromatic number of the graph is greater than κ, but its ℵ0-chromatic number is also above κ.

Theorem 1.4.1. For G = G(ω, (2κ)+), χℵ0(G) > κ. If κℵ0 = κ then any subgraph of G of smaller

cardinality has chromatic number ≤ 2κ.

Proof. In the following, G denotes the set of vertices of the graph (all ω-subsets of (2κ)+). Suppose that

χℵ0(G) ≤ κ and τ : G −→ κ is an ℵ0- separating function. That is, τ(Xi) = τ(Xj) for all i, j ∈ ω implies

that for some i 6= j Xi and Xj are consistent sequences.

For every α ∈ (2κ)+ define a function gα : κ −→ ω as follows. Given ξ ∈ κ, define gα(ξ) = max {|X ∩α| |
α ∈ X and τ(X) = ξ}. We claim that gα(ξ) ∈ ω. Otherwise there are Xi ∈ G (for i ∈ ω) such that
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|Xi ∩ α| 6= |Xj ∩ α| for i 6= j and yet τ(Xi) = ξ for all i. But this contradicts the property of τ since any

two Xi’s are inconsistent.

Since each gα can be encoded as a subset of κ, there is a set A ⊂ (2κ)+ of cardinality (2κ)+ and such

that gα = gβ for every α, β ∈ A. Let X = {xi | i ∈ ω} be an increasing ω enumeration of ordinals from A.

Say ξ = τ(X). We claim that m < gx0(ξ) for every m ∈ ω, and this is a contradiction. Clearly m ≤ gxm(ξ)

since X ∩ xm = {x0, . . . , xm−1}. But gx0 = gxm and hence m ≤ gx0(ξ).

The second statement of the theorem is that if G0 is a subgraph of G(ω, (2κ)+) generated by ≤ 2κ

vertices, then the chromatic number of G0 is ≤ κ. This follows if we prove for every λ < (2κ)+ that the

chromatic number of G(ω, λ) is ≤ κ. We use here Corollary 1.1.2 to the Engelking and KarÃlowicz theorem

with µ = κ and θ = ℵ0.

Theorem 1.4.2. Assume that κℵ0 = κ. Then χℵ1(G(ω, (2κ)+)) ≤ κ.

Proof. Fix for every β < (2κ)+ a function τβ : typ(ω, {β}) −→ κ such that if τ(M1) = τ(M2) then M1

and M2 are consistent. This is possible by Corollary 1.1.2 since β has cardinality ≤ 2κ. Now we define the

ℵ1-separating function τ : typ(ω, (2κ)+) −→ κ as follows. For any ω-set X ⊂ (2κ)+, let β = sup X, and

define τ(X) = τβ(X). We prove that τ is ℵ1-separating. Suppose that {Xi | i ∈ ω1} is a collection of ℵ1

vertices and that for some fixed α ∈ κ we have τ(Xi) = α for all i. We must prove that this collection is not

a clique. Denote βi = sup Xi for all i. In case, for some i 6= j, we have βi = βj = β, then Xi and Xj are

consistent by the property of τβ . Otherwise, {Xi | i ∈ ω1} forms a ladder system and is hence not a clique

(by Theorem 1.3.1).

For example, for κ = 2ℵ0 and G = G(ω, (22ℵ0 )+) we get by the last two theorems that χℵ0(G) > κ ≥
χℵ1(G). When κ = 2ℵ0 is regular, χℵ1(G) = κ because G(ω, ω) has a clique of size 2ℵ0 .
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Chapter 2

Combinatorics in model theory:
Quantifier elimination tests

Abstract: We prove that, for countable languages, two model-theoretic quantifier elimination tests, one

proposed by J. R. Shoenfield and the other by L. van den Dries, are equivalent.1

2.1 Introduction

To facilitate the discussion we first introduce the following terminological and notational conventions.

Definition 2.1.1. Let M be a model and A ⊆ |M |. Let N be the model 〈M, a〉a∈A.

1. The theory Th(N), denoted by CD(A,M), is called the complete diagram of A in M . If A = |M | we

simply write CD(M).

2. The set of all quantifier-free sentences in Th(N), denoted by ED(A, M), is called the elementary

diagram of A in M . Again if A = |M | we simply write ED(M).

Obviously if N ¹ M then CD(N, M) = CD(N) and if N ⊆ M then ED(N,M) = ED(N).

We say that a theory T is model complete if and only if, for every pair of models N, M |= T , N ⊆ M

implies N ¹ M . Abraham Robinson showed that under certain conditions a model complete theory admits

quantifier elimination (QE for short). This was one of the results that inaugurated the use of model-theoretic

methods in the study of QE. Model-completeness has many equivalent formulations:

Fact 2.1.2. Let T be any theory. The following are equivalent:

1. T is model complete.

2. For any two models N,M |= T with N ⊆ M there is an N∗ |= T such that N ¹ N∗ and M can be

embedded into N∗ over N .

3. For any M |= T the theory T ∪ ED(M) is complete.

1This chapter was submitted for publication. The referee found an easier proof that avoided the complicated infinitary
combinatorics in the inductive step.
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4. For any two models N,M |= T with N ⊆ M , every existential formula ϕ(x̄), and every b̄ ∈ |N |, we

have M |= ϕ(b̄) if and only if N |= ϕ(b̄).

5. For every existential formula ϕ(x̄) there is a universal formula ϕ∗(x̄) such that T ` ϕ(x̄) ↔ ϕ∗(x̄).

6. For every formula ϕ(x̄) there is a universal formula ϕ∗(x̄) such that T ` ϕ(x̄) ↔ ϕ∗(x̄).

7. For every formula ϕ(x̄) there is a universal formula ϕ1(x̄) and an existential formula ϕ2(x̄) such that

T ` ϕ1(x̄) ↔ ϕ(x̄) ↔ ϕ2(x̄).

For a proof of this fact see [11] and [43].

However, there are theories which are model complete but do not admit QE. For example, the complete

theory of real closed fields in the language of rings is model complete, but the formula ∃x x × x = y is not

equivalent to any quantifier-free formula in this theory. See [11] for details.

Over the years many model-theoretic properties have been proposed to strengthen model-completeness so

that QE is implied without any additional assumptions on the theory in question. Some of these properties

are logically equivalent to QE; others are strictly stronger than QE. Below we shall prove that two of the

stronger ones, one proposed by J. R. Shoenfield and the other by L. van den Dries, are equivalent for

countable languages.

2.2 Some QE tests

Let T be any theory. Here are some model-theoretic QE tests that are stronger than model-completeness:

Definition 2.2.1. T is submodel complete if and only if for any model M |= T and any N ⊆ M the theory

T ∪ ED(N) is complete.

This is a direct strengthening of 2.1.2.3.

Definition 2.2.2. T has the submodel amalgamation property (SA-property for short) if and only if for any

M1,M2 |= T and any N ⊆ M1, M2 there is an M∗ |= T such that M1 ¹ M∗ and M2 can be embedded into

M∗ over N via a monomorphism f ; that is, the following diagram

N M2⊆
//

M1

N

OO

⊆

M1 M∗¹ // M∗

M2

OO

f

commutes.
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This is a direct strengthening of 2.1.2.2.

Definition 2.2.3. T has the Shoenfield property (S-property for short) if and only if for any two models

M1,M2 |= T such that M2 is ‖M1‖+-saturated and any isomorphism f : N1 −→ N2 with N1 ⊆ M1 and

N2 ⊆ M2, there is a monomorphism f∗ : M1 −→ M2 extending f .

Definition 2.2.4. T has the strong Shoenfield property (SS-property for short) if and only if

1. For every two models M1, M2 |= T and every two models N1 ⊆ M1 and N2 ⊆ M2, if f : N1 −→ N2

is an isomorphism, then there is an isomorphism f∗ : N∗
1 −→ N∗

2 which is an extension of f , where

N∗
1 ⊆ M1, N∗

2 ⊆ M2, and N∗
1 , N∗

2 |= T ;

2. For every two models N, M |= T with N ⊆ M , every existential formula ϕ(x̄), and every b̄ ∈ |N |, we

have M |= ϕ(b̄) if and only if N |= ϕ(b̄). In other words, T is model complete.

When there is no danger of confusion we abuse L(T ) to denote both the language of T and the set of

all well-formed formulas in the language of T . For two structures N and M in L(T ) we say that M is a

T -extension of N if |N | ⊆ |M | and M |= T .

Definition 2.2.5. T has the van den Dries property (D-property for short) if and only if

1. For any model N , if there exists a model M |= T such that N ⊆ M , then there is a T -closure N∗ of

N , that is, a model N∗ |= T such that N ⊆ N∗ and N∗ can be embedded over N into any T -extension

of N ;

2. If N, M |= T and N ( M , then there is an a ∈ |M | \ |N | such that N + a can be embedded into an

elementary extension of N over N , where N +a is the smallest submodel of M that contains |N |∪{a}.

The SS-property first appeared in Shoenfield’s textbook [47]. He subsequently modified it into the S-

property and proved its equivalence to QE in [48]. The D-property was given by van den Dries in [18] and [19],

which is a straightforward strengthening of the SS-property. However, the main result Theorem 2.2.7 below

shows that, for countable languages, its main advantage over the SS-property is its conceptual concreteness

rather than its logical strength.

Theorem 2.2.6. Let T be a theory in a language with at least one constant symbol. For the following

statements,

1. T is submodel complete,

2. T has the SA-property,
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3. T has the S-property,

4. T has the SS-property,

5. T has the D-property,

6. T admits QE,

these logical implications hold:

1

2
[c ????

6

1
;C

ÄÄÄÄ
6

2

3

2
{¤ ÄÄÄÄ

6

3
¾#

????
6

2

3 4ks 4 5ks

Proof. That 1, 2, and 3 are equivalent to QE is well-known. See, for example, [43] and [48]. Here we

give proofs to the remaining two implications. We also show directly how the first condition of the SS-

property achieves QE on top of model-completeness. This proof is a modification of the standard proof

of “2.1.2.4 ⇒ 2.1.2.5” in the literature, which establishes a crucial connection between model-theoretic

properties and syntactical properties.

4 ⇒ 6: Let ϕ(x) be a formula in L(T ). Since T is model complete, by 2.1.2, ϕ(x) is equivalent to both

a universal formula and an existential formula. Hence we may assume that ϕ(x) is a universal formula. Let

ϕ∗(x) be an existential formula such that T ` ϕ(x) ↔ ϕ∗(x). Let c be new constants. Let Γ be a set that

contains exactly the following formulas:

• T ∪ {ϕ(c)}, and

• every quantifier-free formula ¬ψ(c) such that T ` ∀x (ψ(x) → ϕ(x)).

Suppose for contradiction that Γ is consistent. Take any model M |= Γ. Let N ⊆ M be the minimal

submodel generated by c. Note that every element in N can be written as a term that only involves c, the

constants of L(T ), and the functions of L(T ). Now, if T ∪ ED(N) does not prove ϕ(c), then fix a model

M∗ |= T ∪ED(N)∪{¬ϕ(c)}. By the first condition of the SS-property we can find an N1 |= T ∪ED(N) in M

and an N2 |= T ∪ED(N) in M∗ such that they are isomorphic over N . Since ϕ(x) is a universal formula and

M |= ϕ(c), we have N1 |= ϕ(c). So N2 |= ϕ(c), so N2 |= ϕ∗(c), so M∗ |= ϕ∗(c), so M∗ |= ϕ(c), contradiction.

So T ∪ ED(N) ` ϕ(c). So there is a quantifier-free formula ψ(c) ∈ ED(N) such that T ∪ {ψ(c)} ` ϕ(c), so

T ` ψ(c) → ϕ(c). But c are new constants, so T ` ∀x (ψ(x) → ϕ(x)). So ¬ψ(c) ∈ Γ, contradiction again.

So Γ is not consistent. This means that there are finitely many quantifier-free formulas ψi(x) such that

T ` ∀x (ψi(x) → ϕ(x)) for every i and T ` ∀x (ϕ(x) → ∨
i ψi(x)). So T ` ∀x (ϕ(x) ↔ ∨

i ψi(x)), as desired.

4 ⇒ 3: Let M1,M2 |= T , N ⊆ M1,M2, and let M2 be ‖M1‖+-saturated. By the first condition of the

SS-property we can find two T -extensions N1, N2 of N in M1,M2 respectively that are isomorphic over N .
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Let the isomorphism be f . Pick an a ∈ |M1| \ |N1| and consider any quantifier-free formula ϕ(x; b) with

b ∈ |N1| such that M1 |= ϕ(a; b). Since M1 |= ∃x ϕ(x; b), by the second condition of the SS-property we

have N1 |= ∃x ϕ(x; b), so N2 |= ∃x ϕ(x; f(b)), so M2 |= ∃x ϕ(x; f(b)). Hence the quantifier-free type f(p)

is realized in M2, say, by d, where p is the set of all quantifier-free formulas in tp(a/ |N1| ,M1). If we set

a 7−→ d then we get an induced isomorphism between N1 +a and N2 +d. Iterating this procedure to exhaust

all elements in M1 we see that M1 can be embedded into M2 over N .

5 ⇒ 4: Trivially the closure property, that is, the first condition of the D-property, implies the first

condition of the SS-property. For the second condition of the SS-property, let N, M |= T with N ⊆ M .

Consider an existential formula ∃x ϕ(x; b) that is satisfied in M , where b̄ ∈ |N | and ϕ(x; b) is quantifier-free.

So let c be such that M |= ϕ(c; b). We construct the following diagram:

N0 N0 + a0
⊆ //N0

N∗
0

¹
ÂÂ?

??
??

??
??

N0 + a0 N1
⊆ //N0 + a0

N∗
0

²²

N1

N∗
0

f0
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä
N1 N1 + a1

⊆ //N1

N∗
1

¹
ÂÂ?

??
??

??
??

N1 + a1 N2
⊆ //N1 + a1

N∗
1

²²

N2

N∗
1

f1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä
N2

· · ·ÂÂ?
??

??
??

??
?N2 M

⊆ //

where N0 = N , each Ni+1 is the T -closure of Ni + ai promised by the closure property, each ai and N∗
i

are as described in the second condition of the D-property, all arrows are monomorphisms, and at the limit

stage we simply take the union of all previous Ni’s.

Now, let i be the least index such that c ∈ Ni. Note that i cannot be a limit ordinal. So Ni |= ∃x ϕ(x; b),

so N∗
i−1 |= ∃x ϕ(x; b), so Ni−1 |= ∃x ϕ(x; b), etc. If γ is a limit ordinal and Nγ |= ∃x ϕ(x; b), then there is a

d ∈ |Nγ | such that Nγ |= ϕ(d; b), so by the construction there is a j < γ such that d ∈ |Nj |, so Nj |= ϕ(d; b),

so Nj |= ∃x ϕ(x; b). As we trace back in the diagram we see that N = N0 |= ∃x ϕ(x; b).

The reason that we have assumed that the language of T has at least one constant symbol is to avoid

certain pathology. That is, in the proof of “4⇒ 6” above, if ϕ is a sentence and L(T ) has no constant symbol,

then c is the empty sequence and cannot generate any submodel as we do not allow an empty model. The

reader should observe that in this case the proof will not go through if we simply use an arbitrary submodel.

In the sequel we shall always assume that T has a constant symbol whenever we are in a similar situation.

There are still more model-theoretic tests that are equivalent to QE. They are all more or less variations

of the three equivalent tests in the above theorem. See [33] for more details about this. On the other hand,

it is tempting to ask if in the above theorem all of the statements are indeed equivalent.

Jeremy Avigad has an example which shows that QE is strictly weaker than the SS-property. Consider

the set 2ω of all binary sequences of length ω. For each n ∈ ω let Zn be a unary predicate such that if

19



n = 0 then Zn(η) for any η ∈ 2ω, otherwise Zn(η) if and only if (η)n = 0. Let T = Th(〈2ω, Zn〉n∈ω). Since

except equality all predicates in the language are unary, every existential formula ∃x ϕ(x; y) is equivalent

to a formula of the form
∨

i(θi(y) ∧ ∃x φi(x; y)), where φi(x; y) is a conjunction of literals each of which

contains x. If the unary predicates in the formula ∃x φi(x; y) describe a “consistent” finite sequence, then

it can be translated into an equivalent quantifier-free formula that only involves y. So T proves that every

existential formula is equivalent to a quantifier-free formula, which means that T admits QE. Now, it is not

hard to see that any dense subset of 2ω is a model of T . Let S0 ⊆ 2ω be the set of those sequences that have

only finitely many 0’s. Let S1 ⊆ 2ω be the set of those sequences that have only finitely many 1’s and the

constant sequence 1̄. So both S0 and S1 are models of T . Notice that {1̄} is a submodel of both models as

there is no function symbol in the language. Clearly there cannot be isomorphic T -extensions of {1̄} in S0

and S1.

What about the SS-property and the D-property? First of all it is trivial that if a theory T admits QE

then the second condition of the D-property holds, because, by 2.1.2, if N,M |= T and N ⊆ M then M

itself is an elementary extension of N . The closure property, however, is much harder to achieve. The rest

of this paper is devoted to proving

Theorem 2.2.7. For countable languages the SS-property and the D-property are equivalent.

The argument is by a transfinite induction.

2.3 The base case of the induction

We need more concepts and Henkin’s Omitting Type Theorem.

Definition 2.3.1. Let x̄ be a sequence of variables and p a T -type in x̄. If there exists a formula ϕ(x) such

that T ∪ {ϕ(x)} is consistent and ϕ(x) ` p, then we say that p is isolated by ϕ(x) via T . If in context it is

clear that which theory is being discussed then we omit T .

Note that if p is a complete T -type then p is isolated via T if and only if there exists a ϕ ∈ p such that

ϕ ` p.

Definition 2.3.2. Let M |= T and A ⊆ |M |. We say that M is almost T -primary over A if there exists an

ordinal α and a sequence 〈(Ni, bi) : i < α〉 such that

1. N0 is the minimal submodel of M that contains A,

2. bi ∈ |M | \ |Ni| and Ni+1 = Ni + bi for each i < α (if α = β + 1 then bβ is not defined),

20



3. Nβ =
⋃

i<β Ni if β is a limit ordinal and
⋃

i<α Ni = M ,

4. the type tp(bj/ |Nj | ,M) is isolated via Tj for every j < α, where Tj = T ∪ CD(Nj ,M).

The sequence 〈(Ni, bi) : i < α〉 is called an almost isolating sequence for M over A. The ordinal α is the

length of the sequence.

For convenience, if T = Th(M) then we omit T . Also, sometimes we allow an almost isolating sequence

to have repeated consecutive bi’s. Of course in this case we no longer require bi /∈ |Ni| for the repeated

occurrences. Note that this definition is a variation of the notion of a primary model, which plays an

important role in the proof of Morley’s Theorem.

Definition 2.3.3. Let M |= T and A ⊆ |M |. We say that M is T -primary over A if there exists an ordinal

α and an enumeration 〈bi : i < α〉 of |M | \A such that the type

tp(bj/A ∪ {bi : i < j} ,M)

is isolated via Tj for every j < α, where Tj = T ∪ CD(A ∪ {bi : i < j} ,M). The sequence 〈bi : i < α〉 is

called an isolating sequence for M over A. The ordinal α is the length of the sequence.

It is not hard to see that if T is submodel complete and N ⊆ M |= T then M is almost T -primary over

N if and only if M is T -primary over N . We prefer the concept of an almost primary model below because

it is more explicit about what property is being exploited, namely submodel completeness.

Theorem 2.3.4 (Henkin’s Omitting Type Theorem). If L(T ) is countable and Γ is a countable collection

of T -types such that p is not isolated for every p ∈ Γ, then there exists a countable model M |= T that omits

all the types in Γ.

We proceed to develop a couple of technical lemmas. We have the following basic fact about an almost

primary model satisfying a submodel complete theory:

Lemma 2.3.5. Suppose T is submodel complete. Let N ⊆ M |= T . Then: if M is almost T -primary over

N , then for every model M∗ |= T ∪ ED(N) there is an elementary embedding from M into M∗ over N .

Proof. Since T is submodel complete, the theory T ∪ ED(N) is complete. This means that for any formula

ϕ(x) and any a ∈ |N | we have

M |= ϕ(a) iff M∗ |= ϕ(a).
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Let 〈(Ni, bi) : i < α〉 be an almost isolating sequence for M over N . So by definition N0 = N . In order to

prove the lemma it is enough to construct a continuous sequence of monomorphisms gi : Ni −→ M∗ for

i < α such that

1. g0 = idN ,

2. Ni |= ϕ(a) iff M∗ |= ϕ(gi(a)) for each formula ϕ(x) and each a ∈ Ni,

3. if i < j < α then gi ⊆ gj , and

4. if β is a limit then gβ =
⋃

i<β gi.

The embedding g =
⋃

i<α gi is as desired. That g is elementary is because submodel completeness implies

model completeness (see 2.1.2 and 2.2.6).

Now we proceed to construct the sequence. Due to the clause 4 all we have to do is to make the successor

case work. So suppose we have successfully constructed the sequence up to the ordinal i < α. Since the

complete type pi = tp(bi/ |Ni| ,M) is isolated via Ti where Ti = T ∪ CD(Ni,M), there exists a formula

ϕ(x; a) ∈ pi isolating it. By the clause 2 we have

ϕ(x; a) ` pi ⇒ ϕ(x; gi(a)) ` gi(pi). (?)

Since M |= ϕ(bi; a), we have M |= ∃x ϕ(x; a), so M∗ |= ∃x ϕ(x; gi(a)). Let ci ∈ |M∗| such that M∗ |=
ϕ(ci; gi(a)). So by (?) ci realizes the type gi(pi). Now define a function gi+1 by setting τ(bi) 7−→ τ(ci) for

each term τ(x) of L(Ti). It is easy to see that this is a well-defined monomorphism from Ni+1 into M∗ which

extends gi and takes bi to ci. That the clause 2 is satisfied is, again, because T is submodel complete.

In order to build almost primary models we need the next crucial lemma.

Lemma 2.3.6. Suppose that L(T ) is countable and T has the SS-property. Then for

1. every model M |= T ,

2. every countable submodel N ⊆ M ,

3. every formula ϕ(x; y) and every a ∈ |N | such that ∃x ϕ(x; a) ∈ T ∪ED(N) but M |= ¬ϕ(b; a) for every

b ∈ |N |,

there is an element c ∈ |M | \ |N | such that the type tp(c/ |N | ,M) is isolated and M |= ϕ(c; a).
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Proof. Fix an M , an N , an a, and a ϕ(x; y) as above. Without loss of generality we may assume M is

countable as well. Since T has the SS-property, by 2.2.6, the theory T ∪ ED(N) is complete. So M |=
∃x ϕ(x; a). So ϕ(M ; a) 6= ∅ and, by the third condition, ϕ(M ; a) ⊆ |M | \ |N |, where ϕ(M ; a) is the set

{c ∈ |M | : M |= ϕ(c; a)}. Also note that T is model complete.

Suppose for contradiction we cannot find an element c in M as required. Define a collection Γ of

T ∪ ED(N)-types:

Γ = {tp(c/ |N | ,M) : c ∈ |M | \ |N | and M |= ϕ(c; a)} .

Since Γ is countable, by Henkin’s Omitting Type Theorem there is a model O |= T ∪ ED(N) that omits

every type in Γ. But T has the SS-property, so we can find two models M∗ ⊆ M , O∗ ⊆ O of T such that

there is an isomorphism h : M∗ ∼= O∗ whose restriction to N is idN . Since ∃x ϕ(x; a) ∈ T ∪ ED(N), there

must be some c ∈ |M∗| \ |N | such that M∗ |= ϕ(c; a). Since T is model complete, we deduce

ϕ(x; a) ∈ tp(c/ |N | ,M∗) = tp(c/ |N | ,M).

This means that h(c) realizes the T ∪ ED(N)-type tp(c/ |N | , M) in O, contradicting the choice of O.

Note that in the above lemma, if N is not a model of T , then there must exist a formula ∃x ϕ(x; a) ∈
T ∪ ED(N) with a ∈ |N | such that M |= ¬ϕ(b; a) for every b ∈ |N |, because otherwise N would be a model

of T by the Tarski-Vaught Test as T ∪ ED(N) is complete. This property is important for our argument.

We shall give it a name:

Definition 2.3.7. Let M |= T , N ⊆ M , and a ∈ |N |. We say that ϕ(x; a) is critical for N if ∃x ϕ(x; a) ∈
T ∪ ED(N) and ϕ(M ; a) ⊆ |M | \ |N |.

Now the SS-property enables us to construct almost primary models over countable submodels.

Theorem 2.3.8. If L(T ) is countable and T has the SS-property then, for any model M |= T and any

countable submodel N ⊆ M , N has a T -closure.

Proof. Fix N ⊆ M |= T such that N is countable. Again we may assume that M is countable as well. So

by Lemma 2.3.5 all we need to do is to build an almost T -primary model N∗ over N inside M . For this it

is enough to build an almost isolating sequence for some model of T over N . The idea here is of course to

find a suitable Skolem hull of N inside M such that the type of each “key” new element we find is isolated

over all the previous elements.

To be precise, we want to build an almost isolating sequence 〈(Ni, bi) : i < ω · ω〉 over N such that for
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• each n < ω,

• each a ∈ Nω·n, and

• each formula ϕ(x; y) such that M |= ∃x ϕ(x; a),

there is an m < ω such that M |= ϕ(τ(bω·n+m); a) for some term τ(x) in the language L(T ∪ED(Nω·n+m)).

It should be clear that
⋃

i<ω·ω Ni = N∗ is an elementary submodel of M , and hence is almost T -primary

over N .

Now we carry out the construction. Start with N0 = N of course. Suppose 〈(Ni, bi) : i < ω · n〉 is

defined. Let 〈ϕk(x; ak) : k < ω〉 be an enumeration of all the formulas in T ∪ ED(Nω·n) such that for every

k < ω we have M |= ∃x ϕk(x; ak) but M |= ¬ϕk(d; ak) for every d ∈ Nω·n. Now suppose we have

extended the sequence all the way up to (Nω·n+k, bω·n+k) for some k < ω. Let Nω·n+k+1 = Nω·n+k + bω·n+k.

If there is a d ∈ Nω·n+k+1 such that M |= ϕk+1(d; ak+1) then let bω·n+k+1 = bω·n+k. Otherwise by

Lemma 2.3.6 we can pick a bω·n+k+1 ∈ |M | \ |Nω·n+k+1| such that M |= ϕk+1(bω·n+k+1; ak+1) and the type

tp(bω·n+k+1/ |Nω·n+k+1| ,M) is isolated.

2.4 The inductive step

The reader may ask: What is preventing us here from simply extending the above theorem to arbitrary

theories and arbitrary submodels? One difficulty is this: We do not know how to extend Henkin’s Omitting

Type Theorem to uncountable languages and hence are unable to develop an analog of Lemma 2.3.6 for

uncountable languages. In fact if we simply drop the countability requirement in Henkin’s Omitting Type

Theorem then it is false. See [11] for discussions. However, in this last section we will show how to circumvent

this difficulty if the language in question is countable. For this we need some basic concepts and facts in

infinitary combinatorics, in particular stationary sets and Fodor’s Lemma.

Throughout the rest of this section T is a theory in a countable language and has the SS-property. Our

strategy is to establish an analog of Lemma 2.3.6 for any submodel. Let M |= T and N ⊆ M such that N

is uncountable and is not a model of T . We have two cases to consider, namely ‖N‖ is regular and ‖N‖ is

singular.

Definition 2.4.1. Let α be an ordinal. A sequence 〈Ni : i < α〉 is an α-resolution of N if

1. Ni is a submodel of N for all i < α,

2. if i < j < α then Ni ⊆ Nj ,
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3.
⋃

i<α Ni = N .

If, in addition,
⋃

i<δ Ni = Nδ for every limit ordinal δ < α, then the sequence is a continuous α-resolution

of N .

Lemma 2.4.2. Suppose ‖N‖ = κ is regular and ϕ(x; a) is critical for N . Then there is an element c ∈
ϕ(M ; a) such that the type tp(c/ |N | ,M) is isolated.

Proof. Without loss of generality we may assume ‖M‖ = κ. Fix a club C = 〈αi : i < κ〉 ⊆ κ and a continuous

κ-resolution 〈Ni : i < κ〉 of N such that

1. for all αi, αj ∈ C and i < j we have |αi| ≤ |αj \ αi|,

2. ‖Ni‖ = |αi|,

3. a ∈ N0.

By the inductive hypothesis we construct a sequence 〈bi ∈ ϕ(M ; a) : i < κ〉 such that each type tp(bi/ |Ni| ,M)

is isolated. Fix an enumeration 〈φi : i < κ〉 of all the formulas in the language of T ∪ ED(N) such that for

each αi ∈ C we have

{i : φi is a formula in the language of T ∪ ED(Ni)} ⊆ αi.

Now define a function f : C −→ κ by letting f(αi) be the least ordinal such that φf(αi) isolates the type

tp(bi/ |Ni| ,M). Since f is a pressing-down function on a stationary subset of κ and κ is regular, by Fodor’s

Lemma, there is a γ < κ such that f−1(γ) ⊆ C is stationary. Clearly for any αi, αj ∈ f−1(γ), if αi < αj

then tp(bi/ |Nj | ,M) = tp(bj/ |Nj | ,M) as they are both isolated by φγ . So tp(bi/ |N | ,M) = tp(bj/ |N | ,M)

for any αi, αj ∈ f−1(γ). And this type is isolated by φγ as desired.

For the case that ‖N‖ is singular we need to work harder. First we formulate the following concept:

Definition 2.4.3. Let 〈Ni : i < α〉 be an α-resolution of N . Let a ∈ N0. Let ϕ(x; a) be critical for N . We

say that F = 〈ϕi(x) : i < α〉 is a spinal sequence of ϕ(x; a) for 〈Ni : i < α〉 if:

1. each ϕi(x) is a formula in the language of T ∪ ED(Ni),

2. ϕi(M) 6= ∅ and ϕi(M) ⊆ ϕ(M ; a) for each i < α ,

3. if b ∈ ϕi(M) then the type tp(b/ |Ni| ,M) is isolated by ϕi(x).
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We write dom(F) for the set

{a ∈ |N | : a occurs as a parameter in some ϕi(x) ∈ F} .

Lemma 2.4.4. Suppose ‖N‖ = κ is singular and ϕ(x; a) is critical for N . Then there is an element

c ∈ ϕ(M ; a) such that the type tp(c/ |N | ,M) is isolated.

Proof. As above we may assume ‖M‖ = κ. Let λ = cf(κ) < κ. Let 〈µi : i < λ〉 ⊆ κ be a strictly increasing

sequence of cardinals such that it is unbounded in κ. Let 〈Ni : i < λ〉 be a λ-resolution of N such that

a ∈ N0 and ‖Ni‖ = µi.

Let F0 be a spinal sequence of ϕ(x; a) for 〈Ni : i < λ〉. Note that the existence of such a sequence is

guaranteed by the inductive hypothesis. We have |dom(F0)| ≤ λ. Now let K0 ⊆ N be the submodel

generated by dom(F0) ∪ {a}. Note that ϕ(x; a) is critical for K0. Since ‖K0‖ ≤ λ < κ, by the inductive

hypothesis there is an element c0 ∈ ϕ(M ; a) such that tp(c0/ |K0| ,M) is isolated by some formula σ0(x) in

L(T ∪ED(K0)). Notice that if F0 ⊆ tp(c0/ |K0| , M) then we are done: in this case σ0(x) isolates the entire

F0 and each ϕi(x) ∈ F0 isolates the type tp(c0/ |Ni| ,M), so the type tp(c0/ |N | ,M) is isolated by σ0(x).

Next, since ϕ(x; a) ∧ σ0(x) is critical for N (because it contains ϕ(x; a) as a conjunct), we can find a

spinal sequence F1 of ϕ(x; a) ∧ σ0(x) for 〈Ni : i < λ〉. Clearly F1 is also a spinal sequence of ϕ(x; a) for

〈Ni : i < λ〉. Let K1 ⊆ N be the submodel generated by |K0| ∪ dom(F1). Then, similarly, we can find an

element c1 ∈ ϕ(M ; a) and a formula σ1(x) in L(T ∪ ED(K1)) that isolates the type tp(c1/ |K1| ,M).

Continuing in this fashion we can construct a sequence 〈(Fi, ci, σi(x)) : i < λ+〉 such that

1. ci ∈ ϕ(M ; a),

2. Fi+1 is a spinal sequence of ϕ(x; a) ∧ σi(x) for 〈Ni : i < λ〉,

3. σi(x) is a formula in L(T ∪ ED(Ki)) which isolates the type tp(ci/ |Ki| ,M), where Ki ⊆ N is the

submodel generated by the set {a} ∪⋃
j≤i dom(Fj),

4. if i is a limit ordinal then Fi is not defined.

Let K =
⋃

j<λ+ Kj . Let

Sλ
λ+ =

{
α < λ+ : cf(α) = λ

}
,

which is a stationary subset of λ+. Fix an enumeration of all the formulas in L(T ∪ ED(K)) such that for

each α ∈ Sλ
λ+ we have

{i : φi is a formula in the language of T ∪ ED(Kα)} ⊆ α.
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So again by Fodor’s Lemma there is a σj(x) and a stationary subset S ⊆ Sλ
λ+ such that for all α ∈ S the

type tp(cα/ |Kα| , M) is isolated by σj(x).

For any α, β ∈ S with α < β, consider Fα+1. Since σα(x) is σj(x), Fα+1 is a spinal sequence of

ϕ(x; a) ∧ σj(x) for 〈Ni : i < λ〉. So

M |= ∃x (ϕ(x; a) ∧ σj(x) ∧ ϕi(x))

for all ϕi(x) ∈ Fα+1 (this is by the second condition in the definition of a spinal sequence above). Since

σj(x) also isolates the complete type tp(cβ/ |Kβ | ,M) and dom(Fα+1) ⊆ |Kβ |, we must have Fα+1 ⊆
tp(cβ/ |Kβ | ,M). So σj(x) isolates Fα+1. Since each ϕi(x) ∈ Fα+1 determines the type over Ni, we see that

σj(x) isolates the type tp(cβ/ |N | , M).

With these two lemmas we can now simply proceed to build an almost isolating sequence for some model

of T over N much in the same way as in Theorem 2.3.8, only now the length of the almost isolating sequence

can go up to ‖N‖ · ω. This proves Theorem 2.2.7.

We end this paper with a question:

Question 2.4.5. Is there an analog of Theorem 2.2.7 for uncountable languages?

Notice that, if T is a theory in an uncountable language and the SS-property and the D-property are not

equivalent for T , then there is an M |= T and an N ⊆ M such that the complete theory T ∪ ED(N) is not

totally transcendental. This is because primary models always exist for totally transcendental theories.
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Chapter 3

Quantifier elimination for the reals
with a predicate for the powers of two

Abstract: We give a procedure for eliminating quantifiers for the theory of real closed ordered fields with

a predicate for the powers of two. This result was first obtained by van den Dries [18]. His method is

model-theoretic, which provides no apparent bounds on the complexity of a decision procedure. In the last

section we give a complete axiomatization of the theory of real closed ordered fields with a predicate for the

Fibonacci numbers.1

3.1 Introduction

It was Tarski who first found a decision procedure for the theory of real closed ordered fields. His method was

QE. However, his original proof in [49] ran to several dozens of pages and involved a great deal of complex

symbolism. It is a daunting task for anyone to decipher the crucial ideas in the proof. Fortunately many

significant simplifications and improvements of Tarski’s method have been made since the result was first

published. One that is highly recommendable is Kreisel and Krivine’s presentation in their textbook [35],

though, as far as computational efficiency is concerned, it is really not that far away from Tarski’s version.

Here we shall quote two key lemmas from their presentation because many claims in this section are

inspired by them. The language of the theory of real closed ordered fields has the symbols 0, 1, +, −, ×, <.

In this theory each quantifier-free formula ϕ(x) can be written in the form

∧

i<n

pi(x) = 0 ∧
∧

i<m

qi(x) > 0,

where pi(x) and qi(x) are terms in the standard form, that is, polynomials. For any polynomial p we write

deg(x, p) for the highest degree of x in p. The degree in x of pi(x) = 0 is deg(x, pi(x)). The degree in

x of qi(x) > 0 is deg(x, qi(x)) + 1. The degree in x of ϕ(x) is the maximum of the degrees of its atomic

components.

1This is joint work with Jeremy Avigad (except the last section), published as [4].
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Lemma 3.1.1. For any quantifier-free formula ϕ(x) of the form

∧

i<n

pi(x) = 0 ∧
∧

i<m

qi(x) > 0,

there is a quantifier-free formula ψ(x) which is equivalent to ϕ(x) such that the degree in x of ψ(x) is less

than or equal to the least of the degrees in x of pi(x) = 0 (which we assume is not 0).

Lemma 3.1.2. Let ϕ(x) be a quantifier-free formula. Let a, b be two variables that does not occur in ϕ(x).

Assume a < b. Then the formula ∃x (a < x < b∧ϕ(x)) is equivalent to a quantifier-free formula ψ such that

ψ does not contain x, each variable in ψ is a, b, or a variable in ϕ, and no atomic formula in ψ contains

both a and b. (Note that the claim can be rephrased accordingly if a, b are closed terms.)

Now extend the language of real closed ordered fields with a predicate A which, in the intended inter-

pretation, denotes the powers of two, 2Z. Adopting the obvious conventions and abbreviations, add the

following axioms:

• ∀x (A(x) → x > 0)

• ∀x, y (A(x) → (A(y) ↔ A(xy)))

• A(2) ∧ ∀x (1 < x < 2 → ¬A(x))

• ∀x (x > 0 → ∃y (A(y) ∧ y ≤ x < 2y))

The first two imply that the A picks out a multiplicative subgroup of the positive elements. In [18], van

den Dries showed that the resulting theory admits quantifier elimination in an expanded language. As a

result, it is complete and decidable, and, in particular, axiomatizes the real numbers with a predicate for

the powers of two.

The theory we have just described includes not only the theory of real closed ordered fields, but also, via

an interpretation of integers as exponents, Presburger arithmetic. Thus, van den Dries’s result is particularly

interesting in that it subsumes two of the most important decidability results of the twentieth century. In

recent years, this result has been extended in various directions (see, for example, [28] and [21]).

To establish QE, van den Dries gave a model-theoretic argument. In particular his argument shows that

the theory in question has the D-property and QE follows from Theorem 2.2.6. The proof does not provide

an explicit procedure, nor does it provide a bound on the length of the resulting formula. Here, we present

a proof that makes use of nested calls to a QE procedure for real closed ordered fields, yielding a procedure

that is primitive recursive but not elementary. In particular, it requires time 20
O(n) to eliminate a single block
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of existential quantifiers, or even a single existential quantifier, where n is the length of the input formula

and 20
k denotes a stack of k exponents. Thus, the best bound we can give on the time complexity of the

full QE procedure involves O(n) iterates of the stack-of-twos function. We leave it as an open question as

to whether one can avoid such nesting and, say, obtain elementary bounds for the elimination of a single

existential quantifier.

In Section 3.2, we describe the extension of the theory above that admits QE. Our method of eliminating

an existential quantifier proceeds in two steps: first, we eliminate that quantifier in favor of a multiple exis-

tential quantifiers over powers of two (the number of which is bounded by the length of the original formula);

then we successively eliminate each of these. The first step is described in Section 3.2. In Section 3.3, we

prove a number of lemmas that fill out the relationship between the powers of two and the underlying model

of real closed ordered fields in a model of the relevant theory; this contains the bulk of the syntactic and

algebraic work. In Section 3.4, we use these results to carry out the second step. Finally, in Section 3.5, we

show that our procedure satisfies the complexity bounds indicated above.

3.2 The first step

Expand the language of real closed ordered fields to include a unary function λ and a unary predicate Dn

for each n ≥ 1. Let T be the theory given by the axioms above together with the following:

• Dn(x) ↔ ∃y (A(y) ∧ yn = x)

• ∀x (x ≤ 0 → λ(x) = 0)

• ∀x (x > 0 → A(λ(x)) ∧ λ(x) ≤ x < 2λ(x))

In the standard interpretation, λ maps negative real numbers to 0 and rounds positive reals down to the

nearest power of two, and Dn holds of numbers of the form 2i where i is an integer divisible by n.2 Note that

A and D1 are equivalent; we will treat them as the same symbol and use the two notations interchangeably.

Our goal is to prove the following:

Theorem 3.2.1. T admits QE.

This is Theorem II of [18]. Henceforth, by “formula,” we mean “formula in the language of T .” We

will use x to denote a sequence of variables x0, x1, . . . , xk−1, and we will use notation like A(x) to denote

A(x0) ∧A(x1) . . . ∧A(xk−1).
2For parsimony, 0 can be defined as 1− 1 and A(x) by x > 0 ∧ λ(x) = x. In the next section, we will see that the division

symbol is another inessential addition to the language. But in contrast to QE for real closed ordered fields, one can’t eliminate
− in terms of +; for example, the quantifier-free formula A(x − y), if replaced by ∃z (z + y = x ∧ A(z)), would have no
quantifier-free equivalent.
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To eliminate quantifiers from any formula it suffices to be able to eliminate a single existential quantifier,

that is, transform a formula ∃x ϕ, where ϕ is quantifier-free, to an equivalent quantifier-free formula. Since

∃x (ϕ ∨ ψ) is equivalent to ∃x ϕ ∨ ∃x ψ, we can always factor existential quantifiers through a disjunction.

In particular, since any quantifier-free formula can be put in disjunctive normal form, it suffices to eliminate

existential quantifiers from conjunctions of atomic formulas and their negations. Also, since ∃x (ϕ ∧ ψ)

is equivalent to ∃x ϕ ∧ ψ when x is not free in ψ, we can factor out any formulas that do not involve x.

Furthermore, whenever we can prove ∀x (θ ∨ η), ∃x ϕ is equivalent to ∃x (ϕ ∧ θ) ∨ ∃x (ϕ ∧ η); so we can

“split across cases” as necessary. We will use all of these facts freely below.

In [18], van den Dries established quantifier elimination by establishing the D-property. The novelty of

this test, as compared to more common ones (see the definitions in Section 2.2), lies in the prover’s right

to choose an appropriate b in the second clause (see also the discussion in [19]). This clause implies that

any existential formula with parameters from the smaller model N that is true in the T -closure of N + b is

true in N ; the test works because this clause can be iterated in a countable model to obtain a sequence of

T -extensions N = N0 ⊆ N1 ⊆ N2 . . . ⊆ M that eventually picks up every element of M , so any existential

formula with parameters from N true in M is true in N (see Theorem 2.2.6). On the syntactic side,

this iteration translates to the simple observation that to eliminate a single existential quantifier from an

otherwise quantifier-free formula, it suffices to eliminate additional existential quantifiers from an equivalent

existential formula. Thus, our effective proof is based on the following two lemmas:

Lemma 3.2.2. Every formula of the form ∃w ψ, with ψ quantifier-free, is equivalent to a disjunction of

formulas of the form ∃x (A(x) ∧ ϕ), with ϕ quantifier-free.

Lemma 3.2.3. Every formula of the form ∃x (A(x) ∧ ϕ), with ϕ quantifier-free, is equivalent to a formula

that is quantifier-free.

The remainder of this section is devoted to proving the first of these two lemmas. The next lemma

explains why the new existentially quantified variables are helpful.

Lemma 3.2.4. Every existential formula is equivalent, in T , to an existential formula in which λ does not

occur and the predicates Di are applied only to variables.

Proof. First, replace . . . Di(t) . . . by ∃z (z = t ∧ . . . Di(z) . . .). Then, iteratively simplify terms involving λ,

noting that ψ(λ(t)) is equivalent to

(t ≤ 0 ∧ ψ(0)) ∨ ∃z (A(z) ∧ z ≤ t < 2z ∧ ψ(z)),
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and that the existential quantifier can be brought to the front.

Thus to prove Lemma 3.2.2, we are reduced to showing that when ψ is quantifier-free, λ does not occur

in ψ, and the predicates Di occurring in ψ are applied only to variables, the formula ∃x ψ is equivalent to

one of the form ∃x (A(x) ∧ ϕ), where ϕ is quantifier-free. In general, ∃x θ(x) is equivalent to

∃x > 0 θ(x) ∨ θ(0) ∨ ∃x > 0 θ(−x).

Moreover, assuming x > 0, any subformula of the form Di(−x) is equivalent to falsity. So, across a disjunc-

tion, we are reduced to proving the claim for formulas of the form ∃x > 0 ψ(x), where ψ satisfies the criteria

above.

In T we can factor out the greatest power of two from any positive x, that is we can prove

x > 0 → ∃y ∃z (A(y) ∧ 1 ≤ z < 2 ∧ x = yz).

Since we have 1 ≤ z < 2 ↔ (z = 1∨ 1 < z < 2), we can transform our formula into a disjunction of formulas

of the form

∃y, z (A(y) ∧ 1 < z < 2 ∧ ψ)

where ψ once again meets the criteria above, except that the predicates Di are applied to expressions of the

form yz. When 1 < z < 2, each Di(yz) is false, so we can rewrite the formula above as

∃y (A(y) ∧ θ ∧ ∃z η)

where θ is a conjunction of predicates of the form Dn(y) and negations of such, and ∃z η is in the language of

real closed ordered fields. We can therefore replace ∃z η by a quantifier-free formula, using any QE procedure

for real closed ordered fields.

3.3 Reasoning about powers of two

Our goal in this section is to establish some general relationships between the powers of two in a model of

our theory, T , and the underlying real closed field.

Definition 3.3.1. Let ϕ be a quantifier-free formula. We say ϕ is simple in x if the following hold:

1. every equality or inequality occurring in ϕ is either of the form p(x) = 0 or q(x) > 0, where p(x), q(x)
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are polynomials in x; that is, they are of the form
∑

i≤n six
i where each si is a term that does not

involve x.

2. for every atomic formula Dn(t) occurring in ϕ, either t does not contain x or t is of the form 2rx for

some integer r such that 0 ≤ r < n.

The main goal of this section is to prove the following proposition:

Proposition 3.3.2. Let ϕ be any quantifier-free formula. Then there is a quantifier-free formula ϕ′ such

that ϕ′ is simple in x and T proves A(x) → (ϕ ↔ ϕ′).

In semantic terms, this says the following: let N be any model of T , let M ⊆ N be a model of T ∀, that

is the universal fragment of T , and let x be a power of two in N . Then the structure of M + x is completely

determined by the structure of M , the structure of M + x as an ordered ring, and the divisibility properties

of the exponent of x.

First, we need to note some easy facts about λ and the predicates Di.

Lemma 3.3.3. For any n, T proves

0 < u < x < 2nu ∧A(x) → (x = 2λ(u) ∨ . . . ∨ x = 2nλ(u)).

Lemma 3.3.4. For any n, T proves

A(x) → Dn(x) ∨Dn(2x) ∨ . . . ∨Dn(2n−1x).

Although we have not included the division symbol in the language of T , we can define the function r/s

by making x/y = z equivalent to x = yz ∨ (y = 0 ∧ z = 0). In the proof of Proposition 3.3.2, it will be

useful to act as though the division symbol is part of the language. The next few lemmas show that if θ is

any quantifier-free formula in the expanded language with division, there is a quantifier-free formula θ′ in

the language without division such that T ` θ ↔ θ′.

Lemma 3.3.5. From the hypotheses 0 < x and 0 < y, T proves

xλ(y) < yλ(x) → λ(x/y) = λ(x)/2λ(y)

and

xλ(y) ≥ yλ(x) → λ(x/y) = λ(x)/λ(y).
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Proof. An easy calculation shows that if x/y < λ(x)/λ(y), then λ(x/y) = λ(x)/2λ(y); and otherwise,

λ(x/y) = λ(x)/λ(y).

Lemma 3.3.6. If θ is any quantifier-free formula involving the division symbol, there is a quantifier-free

formula θ′ in which the division symbol does not occur in the scope of λ, such that T ` θ ↔ θ′.

Proof. This can be done by iterating the previous lemma. To measure the nesting of λ’s and division symbols,

we define the “λ-depth of the division symbol in t,” Λ÷(t), recursively, as follows:

1. Λ÷(t) = 0 if the division symbol does not occur in the scope of λ in t;

2. if t is t1 + t2, t1 − t2, t1 × t2, or t1/t2, then Λ÷(t) = max{Λ÷(t1), Λ÷(t2)};

3. assuming the division symbol occurs in t, Λ÷(λ(t)) = Λ÷(t) + 1.

The previous lemma shows that, using a case disjunction over the possibilities for the signs of the numerator

and denominator, we can eliminate one term t such that the λ-depth of the division symbol in t is maximal,

in favor of terms in which the λ-depth of the division symbol is smaller. Lemma 3.3.6 follows, by a primary

induction on this maximal depth, and a secondary induction on the number of terms of this depth.

Lemma 3.3.7. T ` A(x) ∧A(y) → (Dn(x/y) ↔ ∨
i<n(Dn(2ix) ∧Dn(2iy))).

Proof. The right-to-left direction is easy: if zn = 2ix and wn = 2iy then (z/w)n = x/y. Proving the other

direction is not much more difficult, using Lemma 3.3.4.

Proposition 3.3.8. Let θ be any quantifier-free formula involving division. Then there is a quantifier-free

formula θ′ that does not involve division, such that T ` θ ↔ θ′.

Proof. Using Lemma 3.3.6, we can assume that division does not occur in the scope of any λ in θ. So each

atomic formula Dn(t) can be put in the form Dn(r/s), where the division symbol does not occur in r and s.

Across a case disjunct, we can assume r and s are positive. Then Dn(r/s) is equivalent to

λ(r/s) = r/s ∧Dn(λ(r/s)).

Using Lemma 3.3.5, we can replace λ(r/s) by either λ(r)/λ(s) or λ(r)/2λ(s). Then using Lemma 3.3.7 we

can replace Dn(λ(r)/λ(s)) or Dn(λ(r)/2λ(s)) by a disjunction in which the division symbol does not occur.

Once all divisibility symbols are removed from the λ’s and Dn’s, we can clear division from the remaining

equalities and inequalities by multiplying through.
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It therefore suffices to prove Proposition 3.3.2 where ϕ′ is a quantifier-free formula in the expanded

language with the division symbol. The next few lemmas, then, make use of this expanded language.

Lemma 3.3.9. Let p(x) be the term
∑

i≤n aix
i. Then there is a sequence of quantifier-free formulas

θ0, . . . , θm−1 such that T proves

A(x) ∧ p(x) > 0 →
∨

k<m

θk,

where each θk is of one of the following forms:

• λ(p(x)) = 2rλ(ai)xi for some −1 ≤ r ≤ n,

• xe = 2rλ(ai)
λ(−aj)

or xe = 2rλ(−aj)
λ(ai)

, for some e, i, j, and r such that 1 ≤ e ≤ n, 0 ≤ i, j ≤ n, and

−(n + 1) ≤ r ≤ (n + 1).

Proof. Argue in T . Using a disjunction on all possible cases, we can write p(x) as aix
i + ajx

j + p̂(x),

where aix
i is the largest summand and ajx

j the least summand. Note that we have aix
i > 0, i 6= j,

p(x) ≤ (n + 1)aix
i, and

p(x)− aix
i = ajx

j + p̂(x) ≥ najx
j .

We now distinguish between two cases, depending on whether p(x) is roughly the same size as aix
i or

sufficiently smaller.

In the first case, suppose we have p(x) ≥ (aix
i)/2. This means we have

(ai/2)xi ≤ p(x) ≤ (n + 1)aix
i ≤ 2naix

i

and so

(λ(ai)/2)xi ≤ λ(p(x)) ≤ 2nλ(ai)xi.

This yields a disjunction of clauses of the first type, by Lemma 3.3.3.

In the second case, we have p(x) < (aix
i)/2. This means that ajx

j must be negative and roughly

comparable to aix
i in absolute value; that is aj < 0 and

(ai/2)xi < aix
i − p(x) ≤ −najx

j ,

and so

0 < (ai/(−aj))xi−j ≤ 2n ≤ 2n.

Using Lemma 3.3.5 and Lemma 3.3.3 we get a disjunction of clauses of the second type.
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Lemma 3.3.10. In Lemma 3.3.9, if the assumption is changed to A(x) ∧ p(x) = 0, then in the conclusion

we can assume that each θk is of the second form.

Proof. This is exactly as in the second case of the previous proof.

Lemma 3.3.11. In the conclusion of Lemma 3.3.9, we may demand that each θk is of the form λ(p(x)) = sxi

for some 0 ≤ i ≤ n and some term s that does not contain x.

Proof. The proof is by induction on the degree of x in p(x). The lemma is trivial if the degree of x in p(x)

is 0.

Now assume that the degree of x in p(x) is n and the lemma holds whenever the degree is less than n.

By Lemma 3.3.9, T proves a disjunction
∨

σl, with σl of one of those two forms. Each σl of the first form

there is already as required. For each σl of the second form, consider a new term p̂(x), which is obtained

by substituting the right-hand side of σl for xe in p(x). Notice that the degree of x in p̂(x) is less than n,

and clearly T proves p(x) = p̂(x) ∧ p̂(x) > 0. By the inductive hypothesis we may replace σl in
∨

σl by a

disjunction
∨

θk which is of the required form.

As was the case with the division symbol, we will iterately “squeeze” x’s out from within the λ symbols.

Thus we introduce the following definitions:

Definition 3.3.12. Let t be a term. Define the λ-depth of x in t, Λ(x, t), recursively, as follows:

1. Λ(x, t) = 0 if x is not in the scope of any λ;

2. if t is t1 + t2, t1 − t2, t1 × t2, or t1/t2, then Λ(x, t) = max{Λ(x, t1), Λ(x, t2)};

3. if t is λ(t1) and t1 contains x, then Λ(x, t) = Λ(x, t1) + 1.

Definition 3.3.13. Let ϕ be a formula. Define the λ-depth of x in ϕ by

Λ(x, ϕ) = max{Λ(x, t) : t is a term that contains x and occurs in ϕ}.

Lemma 3.3.14. Let ϕ be any quantifier-free formula. Then there is a quantifier-free formula ϕ′ such that

T ` A(x) → (ϕ ↔ ϕ′), and Λ(x, ϕ′) = 0.

Proof. The proof is by induction on the λ-depth of x in ϕ. The lemma is trivial if Λ(x, ϕ) = 0.

Assume Λ(x, ϕ) = n > 0 and the lemma holds for every quantifier-free formula ψ if Λ(x, ψ) < n. Let

λ(p0), . . ., λ(pm−1) be all the different terms in ϕ with Λ(x, pi) = 0 for all i < m. Across a case disjunction

we can assume pi > 0 for all i < m, since otherwise we can replace λ(pi) by 0. By Lemma 3.3.6, we may
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assume that each pi is a polynomial in x. By Lemma 3.3.11, T proves ϕ ↔ ∨
(τl∧σl), where each τl is of the

form
∧

i<m λ(pi(x)) = six
ji , and each σl is obtained by substituting six

ji for λ(pi) in ϕ. Clearly T proves

λ(pi(x)) = six
ji ↔ A(si) ∧ six

ji ≤ pi(x) < 2six
ji . Now since Λ(x, σl) < n, we may apply the inductive

hypothesis to each σl and the lemma is proved.

Lemma 3.3.15. Let p be a term such that Λ(x, p) = 0. Then for any n there is a sequence of terms pk such

that

• T proves A(x) ∧ p > 0 → (Dn(p) ↔ ∨
(p = pk ∧Dn(pk))),

• each pk is of the form sxi, where s is a term that does not contain x.

Proof. Using Lemma 3.3.7, we can assume that p is a polynomial in x. We can replace Dn(p) by p =

λ(p)∧Dn(λ(p)), and then by Lemma 3.3.11, across a disjunction we may replace λ(p) in each disjunct by a

term of the form sxi, where s does not contain x. (Note that here no formulas like the τl’s in the previous

lemma are needed.)

Lemma 3.3.16. Let s be a term that does not contain x. Then for any n, i there is a sequence of formulas

θk such that T proves

A(x) → (Dn(sxi) ↔
∨

θk),

and each θk is of the form Dn(2ws) ∧Dn(2rx) for some 0 ≤ w, r < n.

Proof. Since for each n, from the assumption A(x), T proves
∨

j<n Dn(2jx), it is straightforward to see that

Dn(sxi) is equivalent to a disjunction each of whose disjuncts is of the specified form.

We are finally ready to prove Proposition 3.3.2.

Proof. Given ϕ, first use Lemma 3.3.14 to eliminate x from the scope of any λ. Then use Lemma 3.3.15 to

ensure the atomic formulas involving Dn are in the form Dn(sxi), where s does not involve x. (This will

require splitting across cases depending on whether p > 0 or p ≤ 0; in the latter case, Dn(p) is equivalent

to ⊥.) Finally, use Lemma 3.3.16 to ensure that all the atomic formulas involving Dn are in the required

form.

We close with some consideration about the predicates Dn which are analogous to considerations that

arise in the context of QE for Presburger arithmetic. Remember that when n is a positive integer and s is a

non-negative integer, Dn(2sx) asserts, in the intended interpretation, that x is equal to 2t for some integer

t, and n divides s + t; in other words, the exponent of x is congruent to −s modulo n. Let θ be any boolean
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combination of predicates of the form Dn(2sx), and let M be the least common multiple of these various n.

Then in T one can show that there is an x satisfying θ if and only if for any w satisfying A(w) we have

θ(w) ∨ θ(2w) ∨ θ(4w) ∨ . . . ∨ θ(2M−1w),

and, in particular, if and only if

θ(1) ∨ θ(2) ∨ θ(4) ∨ . . . ∨ θ(2M−1).

Moreover, T can decide the truth or falsity of this last sentence. So we have:

Lemma 3.3.17. With θ and M as above, either T proves ∀x ¬θ, or it proves

∀u (0 < u → ∃x (u ≤ x < 2Mu ∧ θ)).

3.4 Eliminating a quantifier over powers of two

We are now ready to prove Lemma 3.2.3, which asserts that every formula of the form ∃x (A(x) ∧ ϕ), with

ϕ quantifier-free, is equivalent to a formula that is quantifier-free. By Proposition 3.3.2, we can assume that

ϕ is simple, which is to say, x does not occur in the scope of any λ and all divisibility assertions involving x

are of the form Dn(2rx). Put ϕ in disjunctive normal form, replace negated equalities s 6= t by s < t∨ t < s,

and replace negated inequalities s 6< t by t < s ∨ t = s. Rewrite equalities and inequalities so that they

are of the form p(x) = 0 and q(x) > 0, where p(x) and q(x) are polynomials in x. Factoring existential

quantifiers through disjunctions and getting rid of atomic formulas that do not depend on x, we are reduced

to eliminating quantifiers of the form ∃x (A(x) ∧ ϕ) where ϕ is a conjunction of formulas of the following

types:

• p(x) = 0, where p is a polynomial,

• q(x) > 0, where q is a polynomial,

• Dn(2rx), where 0 ≤ r < n, or

• ¬Dn(2rx), where 0 ≤ r < n.

Splitting across a disjunction, we can assume that when a conjunct of the form p(x) = 0, not all the

coefficients are zero. By Lemma 3.3.10, we can assume that one of the conjuncts is of the form xe = s,

where x does not occur in s. In that case, each conjunct Dn(2rx) is equivalent to Dne(2rexe) and hence
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Dne(2res) (and A(x), in particular, is equivalent to De(s)). But now x no longer occurs in these formulas,

and so they can be brought outside the scope of the existential quantifier. The resulting existential formula

is then essentially in the language of real closed ordered fields. By this last phrase we mean that it is of the

form ∃x α(x, t0, . . . , tk−1), where α(x, y0, . . . , yk−1) is in the language of real closed ordered fields. Treating

the terms t0, . . . , tk−1 in the expanded language as parameters, we can therefore replace it by an equivalent

quantifier-free formula using any QE procedure for real closed ordered fields.

We are thus reduced to eliminating an existential quantifier of the form

∃x (
∧

qi(x) > 0 ∧ θ(x)) (3.4.1)

where θ is a conjunction of formulas of the form Dn(2rx) and negations of such that includes at least the

formula A(x). By Lemma 3.3.17, either T proves that θ is false for every x, or there is a natural number

M such that T proves that for any u > 0, that θ is satisfied by some x in the interval [u, 2Mu]. In the first

case, T proves that formula 3.4.1 is false. So we only have to worry about the second case. Fix such an M

for the remainder of the discussion.

Arguing in T , suppose formula (3.4.1) holds. There are two possibilities: either there is a “large” interval

on which
∧

qi(x) > 0, that is, an interval of the form [u, 2Mu]; or there is an x satisfying A(x)∧∧
qi(x) > 0∧θ,

but it is trapped between a u and a v with qi(u) = 0 for some i, qj(v) = 0 for some j, and v < 2Mu. Thus

formula (3.4.1) is equivalent to a disjunction of the formula

∃u > 0 ∀x (u ≤ x ≤ 2Mu →
∧

qi(x) > 0)

and the formulas

∃u > 0 (qj(u) = 0 ∧ ∃x (u < x ≤ 2Mu ∧
∧

qi(x) > 0 ∧ θ(x))

for the various j. To see this, note that if formula (3.4.1) holds, then by the previous discussion one of these

formulas holds; and conversely, each of these formulas implies (3.4.1).

The first of these formulas is essentially in the language of real closed ordered fields, so these quantifiers

can be eliminated. The second formula is equivalent to

∃u1, u2 (A(u1) ∧ 1 ≤ u2 < 2 ∧ qj(u1u2) = 0∧

∃x (u1 < x ≤ 2Mu1 ∧
∧

qi(x) > 0 ∧ θ(x)).
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In this case, we can replace the inner existential quantifier over x by a disjunction, so that the entire formula

is equivalent to a disjunction of formulas of the form

∃u1, u2 (A(u1) ∧ 1 ≤ u2 < 2 ∧ qj(u1u2) = 0 ∧
∧

q̂i(u1) > 0 ∧ θ̂(u1)),

where each q̂i(u1) is qi(2ru1) for some r, and similarly for θ̂(u1). In particular, θ̂(u1) is a conjunction of

formulas of the form Di(2ru1), and their negations.

Think of qj(u1u2) as a polynomial in u1 with coefficients of the form sun
2 , where s does not involve u1

or u2. By Lemma 3.3.10, across a disjunction we may add a clause of the form ue
1 = 2rλ(sun

2 )/λ(tum
2 ).

Splitting on cases of the form 2l ≤ uh
2 < 2l+1 we can simplify each of these to an expression of the form

ue
1 = 2kλ(s)/λ(t) for some integer k. By Lemma 3.3.17, A(u1) ∧ θ̂(u1) is equivalent to a formula θ̄ which

now involves neither u1 nor u2, and hence can be brought outside the existential quantifier. We are thus

reduced to eliminating quantifiers from a formula of the form

∃u1, u2 (1 ≤ u2 < 2 ∧ ue
1 = 2kλ(s)/λ(t) ∧ 2l ≤ uh

2 < 2l+1∧

qj(u1u2) = 0 ∧
∧

q̂i(u1) > 0).

We can eliminate these quantifiers using a QE procedure for real closed ordered fields. This completes the

proof of Lemma 3.2.3, and hence the proof of our main theorem, Theorem 3.2.1.

Note that there is nothing special about the number 2 in our quantifier elimination procedure: inspection

of the proofs shows that the arguments go through unchanged for any real algebraic number α > 1. There

are various ways to represent the real algebraic numbers; for example, we can represent α by providing a

polynomial, p(x), of which it is a root, together by a pair of rational numbers u and v isolating α from the

other roots of p. In that case, we simply replace 2 by a new constant, c, in the axioms, and then add the

following:

• p(c) = 0

• u < c < v

As noted in [21], this implies that the resulting theory is decidable. To see this, it suffices to see that

any quantifier-free sentence ϕ is decidable. But we can do this using the decision procedure for real closed

ordered fields to iteratively compute the values of λ(t) for any t involving the field operations and c, and

then to determine the truth of terms of atomic formulas Dn(t). (For explicit algorithms for computing with

real algebraic numbers, see [8].)
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3.5 Complexity analysis

In this section we establish an upper bound on the complexity of our elimination procedure.

For the theory of real closed ordered fields, the best known upper bound for a QE procedure, in terms

of the length of the input formula, is 22O(n)
. This is originally due to Collins [15], and, independently, Monk

and Solovay. There are more precise bounds that depend on various parameters, such as the number of

quantifier alternations and the degrees of the polynomials in the formula; see, for example, [7] and [8]. In

particular, a block of existential quantifiers can be eliminated in time 2O(n). The best lower bound for the

full QE procedure is 2O(n), by Fischer and Rabin [27], and applies even to just the additive fragment. The

best upper bound for Presburger arithmetic is 2O(n)
3 (see [26] and [52]) and is essentially sharp (see [53]).

Our bounds are far worse. Consider what our procedure does when given a formula with a single block

of existential quantifiers:

1. First, replace this by a disjunction of formulas of the form

∃y (A(y) ∧ ∃z (1 < z < 2 ∧ ψ))

where ψ is in the language of real closed ordered fields.

2. Then, use an elimination procedure for real closed ordered fields to eliminate the quantifiers ∃z .

3. Successively eliminate the innermost quantifier over a power of two, as follows:

(a) Call the relevant formula ∃x (A(x) ∧ ϕ). Apply Proposition 3.3.2, to reduce ϕ to a formula that

is simple in x.

(b) Put the new ϕ in disjunctive normal form, split across a disjunction, and remove atomic formulas

that do not involve x, so that each formula is of the form

∃x (A(x) ∧
∧

pi(x) = 0 ∧
∧

qj(x) = 0 ∧ θ)

where θ is a conjunction of formulas of the form Dn(2rx) and negations of such, and in each

disjunction where a disjunct of the form p(x) = 0 occurs, we can assume p is not identically 0.

(c) In each disjunct where a conjunct of the form p(x) = 0 occurs, apply Lemma 3.3.10, factor out

the divisibility predicates, Dn, and call a QE procedure for real closed ordered fields.

(d) In the remaining disjuncts, again, split across a disjunct; in one case, we call a QE procedure

for real closed fields right away; in another, we expand a bounded existential quantifier into a
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disjunction, and then call the elimination procedure for real closed ordered fields.

Note that each iteration of the inner loop, 3, requires at least one call to a QE procedure for real closed

ordered fields. Each of these calls can be carried out in time, say, 22O(n)
, where n is the length of the relevant

formula. But then the next iteration of the loop will involve calls to the QE procedure for real closed ordered

fields on a formula that is potentially much longer. Thus, part 3 of the procedure requires an exponential

stack of Cm twos, for some constant C, where m is the number of existential quantifiers over powers of two

that need to be eliminated.

In this section, we will confirm that such an upper bound can be obtained. To that end, it is sufficient

to show that each pass of the inner loop is elementary, which is to say, it can be computed in time bounded

by some fixed stack of exponents to the base 2. Note that after the first step, the number of quantifiers over

powers of two is bounded by the length of the original formula (in fact, it is bounded by the number of A’s

and λ’s in the original formula). Thus our procedure for eliminating a block of existential quantifiers runs

in time 20
O(n), where n is the length of the original formula.

We have been unable to eliminate this nesting of calls to a procedure for real closed ordered fields.

Efficient procedures for this latter theory avoid putting formulas in disjunctive normal form; for example,

Collins’s cylindrical algebraic decomposition procedure obtains a description of cells, depending on the

coefficients, on which a set of polynomials have constant sign. In our setting, suppose we are given a formula

∃x (A(x) ∧ η ∧ θ), where η contains only equalities and inequalities between polynomials, and θ consists

of divisibility conditions Dn on the exponents of the x’s. One might start by applying Collins’s procedure

to the polynomials occurring in η. Then, given a description of the various cells (depending on the other

parameters in the formula), one needs to determine which cells contain points with coordinates that are

powers of two, with exponents satisfying the requisite divisibility conditions. For one dimensional cells,

our procedure relies on a simple disjunction: if the cell is large enough, one is guaranteed a solution, and

otherwise one need only test a finite number of cases. For multidimensional cells, however, the situation is

more complex, and we do not see how one can proceed except along the lines we have described above. It

is thus an interesting question as to whether it is possible to obtain elementary bounds on a procedure for

eliminating a single block of quantifiers. Given our failure to do so, we have not taken great pains to bound

the number of exponents in the time bound on the inner loop, which would merely improve the constant

bound implicit in the O(n).

For the discussion which follows, we define the length of a formula in the language of T to be the number

of symbols in a reasonable formulation of the first-order language, with the following exception: we count

the length of each symbol Dn as n, rather than, say, one plus the binary logarithm of n. This choice is a
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pragmatic one in that it simplifies the analysis, and our results below then imply the corresponding results

for the alternative definition of length. A more refined analysis might take both the length of the formula

and a bound on the n’s occurring in atomic formulas Dn(t), but that does not seem to help much.

It seems that the most delicate part of our task is showing that one can remove the division symbols, and

“squeeze” variables ranging over powers of two out of the λ symbols that are repeatedly introduced after the

first step of the procedure, as required in step 3(a). A priori, the procedures described in Section 3.3 look

as though they may be non-elementary. The next few lemmas show that this is not the case, by keeping

careful track of the terms and formulas that need to be dealt with in the disjunctions.

Lemma 3.5.1. Let t be a term with length l. Then there is a sequence of terms 〈tk : k < 2l〉 such that

• T ` ∨
k<2l t = tk,

• each tk is of the form r/s, where r and s are division-free terms, and

• each tk has length at most 2l.

Proof. This can be proved by a straightforward induction on terms. Suppose t is of the form t1 + t2, where

the length of t1 is l1 and the length of t2 is l2. By the inductive hypothesis, t is equal to one of at most

2l12l2 ≤ 2l terms of the form r1/s1 + r2/s2, where r1, s1, r2, and s2 are division-free, the length of r1/s1

is at most 2l1 , and the length of r2/s2 is at most 2l2 . But then the length of (r1s2 + r2s1)/s1s2 is at most

2(2l1 + 2l2) < 2l, as required.

If t is of the form λ(t1), the claim follows from the inductive hypothesis, using Lemma 3.3.6. The other

cases are similar.

Lemma 3.5.2. Let ϕ be a quantifier-free formula with length l. Then there is a quantifier-free division-free

formula ϕ′ with length 2O(l) such that T ` ϕ ↔ ϕ′.

Proof. Enumerate all the different terms t0, . . . , tm−1 in ϕ such that, for each i < m, si is not a proper

subterm of any term in ϕ. Using the above lemma we can have a sequence of quantifier-free formulas ϕj

for j < 2l each of which is obtained by replacing each ti with an appropriate term and therefore has length

less than 2l. Notice that for each ϕj , as indicated in Lemma 3.3.6, there are some division-free atomic

formulas that T used to derive the equalities in question. Clearly for each ϕj there are less than l such

atomic formulas, each of which has length less than 2O(l). Let σj be the conjunction of them all. Let ϕ′ be

the formula
∨

j<2l(ϕj ∧ σj). The length of ϕ′ is again bounded by 2O(l), and clearly T ` ϕ ↔ ϕ′.

Finally, we need to clear denominators from atomic formulas of the form r/s < t/u and r/s = t/u, and

deal with atomic formulas of the form Dn(r/s). The first two require a disjunction over cases, depending
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on whether denominators are positive, negative, or zero. The third set of atomic formulas is handled as

described in the proofs of Lemma 3.3.7, 3.3.8. But each atomic formula occurring in a disjunct occurs to an

atomic formula in the original formula, ϕ, and there are at most l of these. It is not hard to verify that the

corresponding increase in length can be absorbed into the bound 2O(l).

Lemma 3.5.3. Let λ(t) be a term, where the length of t is l and x does not occur in the scope of any division

symbol in t. Then there is a sequence of terms 〈tk : k < 28l2 log l〉 such that

• T ` A(x) ∧ t > 0 → ∨
k<28l2 log l(λ(t) = tk),

• each tk is of the form sxi, where s is a term that does not contain x and i < l,

• each tk has length at most 224l

.

Proof. For any polynomial p in x, clearly the number of possible values of λ(p) of the form sxi, as in

Lemma 3.3.11, depends on the degree n of x in p. So let f(n) denote the number of possible values of λ(p).

Observe that the value of λ(p) is determined in the first case of Lemma 3.3.9, and when e = 1 in the second

case. An calculation shows that there are no more than (n + 1)(n + 2) possibilities in the first case, no

more than 2n(2n + 2) possibilities in the second case when e = 1, and no more than (n + 1)(n− 1)2(n + 2)

possibilities for all the remaining values of e. Hence we have the following equation:

f(n) ≤ (n + 1)(n + 2) + 2n(2n + 2) + (n + 1)(n− 1)2(n + 2)f(n− 1).

This can be simplified as f(n) < 10(n + 2)3f(n− 1). So we have f(n) < 28n log(n+2). Let the length of p be

l. Since n + 2 < l, we have f(n) < 28l log l < 28l2 log l.

Now the proof proceeds by induction on the λ-depth of x in t. If Λ(x, t) = 0, then t is a polynomial in

x. So we apply the above analysis to t and obtain no more than 28l log l possible values of λ(t) which are

all of the form sxi for some i < l. To compute the length of s, only note that each step of the iteration

produces a polynomial whose length is no more than the square of the length of the previous polynomial.

So we conclude that the length of s is no more than l2
l

< 224l

.

Now suppose the lemma holds for each term s with Λ(x, s) < d, and suppose Λ(x, t) = d. Enumerate

all the different terms λ(s0), . . . , λ(sm−1) in t such that λ(si) is not in the scope of any λ for each i < m.

Clearly Λ(x, si) < n for each i < m. So by the inductive hypothesis there are less than 28l2i log li possible

values for each λ(si), where li is the length of si. Since
∑

i<m li < l− 1, there are no more than 28(l−1)2 log l

possible values for t. Enumerate these possibilities as 〈tk : k < 28(l−1)2 log l〉. In each tk, λ(si) is replaced by

a term of the form sxj with j < li. So tk is a polynomial in x whose degree in x is less than l− 2. So there
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are 28(l−1)2 log l · 28l log l ≤ 28l2 log l possible values for λ(t). The length of each tk is bounded by 224(l−1)
, so

the length of each possible value of λ(t) is bounded by 224(l−1) · l · l2l

< 224l

.

Lemma 3.5.4. Let ϕ be a quantifier-free formula with length l. Assume x does not occur in the scope of

any division symbol in ϕ. Then there is a quantifier-free formula ϕ′ with length at most 22O(l)
such that ϕ′

is simple in x and T ` A(x) → (ϕ ↔ ϕ′).

Proof. First we claim there is a quantifier-free formula ϕ∗ with length at most 22O(l)
such that

• T ` A(x) → (ϕ ↔ ϕ∗),

• x does not occur in the scope of any division in ϕ∗,

• Λ(x, ϕ∗) = 0.

The proof is essentially the same as the proof of Lemma 3.5.2, using Lemma 3.5.3 instead of Lemma 3.5.1.

Next we need to deal with atomic formulas of the form Dn(p) in ϕ∗, as shown in Lemma 3.3.15. So p is

a polynomial in x whose degree in x is less than l. So there are at most 22O(l)
possible values for λ(p), the

length of each of which is bounded by 22O(l)
. So each Dn(p) can be replaced by a disjunction whose length

is less than 22O(l)
. So the bound does not change.

The increase in length in transforming ϕ∗ to a formula that is simple in x, as described in the proof of

Lemma 3.3.16, can be absorbed in the bound 22O(l)
.

Lemma 3.5.5. Let ϕ be a quantifier-free formula with length l. Then there is a quantifier-free formula ϕ′

with length at most 2O(l)
3 such that ϕ′ is simple in x and T proves A(x) → (ϕ ↔ ϕ′).

Proof. Immediate by Lemma 3.5.2 and Lemma 3.5.4.

Lemma 3.5.6. Each iteration of step 3 can be performed by an elementary function.

Proof. It is straightforward to verify that the procedure implicit in Lemmas 3.5.5 runs in time polynomial

in its output. As a result, step 3(a) is elementary. Step 3(b) is also clearly elementary. In fact, even though

putting a formula in disjunctive normal form can result in exponentially many disjuncts, since each disjunct

only involves atomic formulas from the original formula, the length of each disjunct is bounded in the length

of the original formula.

After step 3(a), the main increase therefore comes from the handling of the cases in (c) and (d), each

of which is easily seen to be elementary. Case (c) involves a call to a QE procedure for real closed ordered

fields, with a ∀∃ formula; case (d) involves calls to such a procedure, on existential formulas, across a number

of disjuncts that is exponential in the length of the original formula.
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Theorem 3.5.7. There is a procedure for eliminating a single block of existential quantifiers in theory T in

time 20
O(l), where l is the length of the original formula.

Proof. Steps 1 and 2 are clearly elementary, after which the procedure performs an elementary operation for

each quantifier over a power of two. As noted above, the number of such quantifiers can even be bounded

by the number of predicates Dn and λ’s in the original formula.

Corollary 3.5.8. There is a procedure for eliminating quantifiers in theory T that runs in time bounded by

O(l) iterations of the stack-of-twos function, where l is the length of the original formula.

Proof. Put the formula in prenex form, and iteratively apply the previous theorem to eliminate each block

of quantifiers.

3.6 Adding a predicate for the Fibonacci numbers

In this section we show that the theory of real closed ordered fields with a predicate for the Fibonacci

numbers is recursively axiomatizable and hence is decidable. Moreover, the decision procedure described in

the last section can be used to decide this theory.

The Fibonacci numbers are a sequence of natural numbers Fn defined by the recurrence relation

Fn+2 = Fn+1 + Fn

for n > 0 with F1 = F2 = 1. It is conventional to define F0 = 0. The first few Fibonacci numbers are 0, 1,

1, 2, 3, 5, 8, 13, 21, . . .

Let φ = 1+
√

5
2 . Let A be a predicate for the multiplicative subgroup φZ ⊆ R>0. By Binet’s Fibonacci

number formula the nth Fibonacci number can be computed as follows:

Fn =
φn − (−1)n

φn√
5

.

Therefore we can introduce a predicate F ∗ for the Fibonacci numbers with the following defining axiom:

F ∗(x) ↔ Γe(x) ∨ Γo(x), (3.6.1)
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where Γe(x) and Γo(x) are the formulas

∃y (
A(y) ∧ y ≥ 1 ∧ ∃z (A(z) ∧ y = z2) ∧ x =

y − 1
y√

5

)
,

∃y (
A(y) ∧ y ≥ 1 ∧ ∃z (A(z) ∧ y = φz2) ∧ x =

y + 1
y√

5

)
,

respectively.

Now we give a complete axiomatization of the theory of real closed ordered fields with the distinguished

Fibonacci numbers. We start with the theory of real closed ordered fields and a new predicate F for the

Fibonacci numbers. Let ∆(x, y) abbreviates the formula

F (x) ∧ F (y) ∧ x < y ∧ ∀z (x < z < y → ¬F (z)).

First we add the following axioms:

(A1) F (x) → x ≥ 0;

(A2) ∆(0, 1) ∧∆(1, 2);

(A3) x > 2 → (
F (x) ↔ ∃y, z (∆(y, z) ∧ x = y + z ∧ ∀w (z < w < x → ¬F (w)))

)
;

(A4) z ≥ 0 → ∃x, y (∆(x, y) ∧ x ≤ z < y).

Notice the following identities on the Fibonacci numbers:

F2n = Fn(2Fn+1 − Fn),

F2n+1 = F 2
n+1 + F 2

n .

Generalizing these we let Σ(e,o)(x, y) and Σ(o,e)(x, y) be the formulas

∃w, z (∆(w, z) ∧ x = w(2z − w) ∧ y = z2 + w2),

∃w, z (∆(w, z) ∧ x = z2 + w2 ∧ y = z(2w + z)),

respectively and obtain a new axiom:

(A5) ∆(x, y) ↔ Σ(e,o)(x, y) ∨ Σ(o,e)(x, y).
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This actually enables us to define the predicate A: let Θe(x) and Θo(x) be the formulas

∃y, w, z (∆(w, z) ∧ y = w(2z − w) ∧ y =
x− 1

x√
5

),

∃y, w, z (∆(w, z) ∧ y = z2 + w2 ∧ y =
x + 1

x√
5

),

respectively, then

A(x) ↔ x > 0 ∧ (Θe(x) ∨Θo(x) ∨Θe(
1
x

) ∨Θo(
1
x

)).

Now the idea is this. By the results in the last section there is a complete axiomatization of the theory of

(R, φZ) (see the last paragraph of Subsection 3.4), we may use F to define the predicate A and subsequently

use A to define the predicate F ∗ via 3.6.1. Finally we throw in some axioms to guarantee that

• A picks out a suitable multiplicative subgroup and

• F ∗ and F are the same.

This will axiomatize a complete, hence decidable, theory with a predicate for the Fibonacci numbers.

Let K be an ordered field with a valuation v. Two nonzero elements a, b of K are in the same Archimedean

class if 1
n < v(a

b ) < n for some positive integer n. Let us say that a “local relation” is a relation that holds

only among elements in the same Archimedean class and a “global relation” is a relation that is not local.

Some classic identities on the Fibonacci numbers can, when generalized, control the behaviors of the predicate

A, though only locally. For example, it is not hard to deduce the following:

∀x, y (∆(x, y) → y2 − yx− x2 = 1) ↔ ∀z (A(z) ↔ A(φz)).

But one should not think that such local identities are sufficient when elements in different Archimedean

classes are involved. In fact an axiom is needed for the predicate A’s multiplicative closure:

(A6) A(x) ∧A(y) → A(xy).

It is not hard to see that (A4) and (A6) together prove that

y > 0 → ∃x (A(x) ∧ x ≤ y < φx).

Finally we stipulate that

(A7) F (x) ↔ F ∗(x).
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One may of course recast some of the axioms above into a form that is more explicit about the Fibonacci

numbers. The calculations are easy but tedious. We shall not include them here. For example (A7) can be

transformed into

F (x) ↔ ∃a, b, c, d
(
∆(a, b) ∧∆(c, d)

∧ ((x = a(2b− a) ∧ P1(a, b, c, d)) ∨ (x = a2 + b2 ∧ P2(a, b, c, d)))
)
,

where P1(a, b, c, d) and P2(a, b, c, d) are the polynomials

(
5c4(2d− c)4 + 4c2(2d− c)2 − a2(2b− a)2

)

(
5(c2 + d2)4 − 4(c2 + d2)2 − a2(2b− a)2

)
= 0

and

(
5c4(2d− c)4 + 4c2(2d− c)2 − 5(a2 + b2)c2(2d− c)2 + (a2 + b2 − 1)2

)

(
5(c2 + d2)4 − 4(c2 + d2)2 − 5(a2 + b2)(c2 + d2)2 + (a2 + b2 + 1)2

)
= 0,

respectively. But these do not seem to be more natural than the ones that are listed above, even though it

is rather curious why these polynomials are sufficient to determine the complete theory.
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Chapter 4

Henselianity and the Denef-Pas
language

Abstract: We prove that if an equicharacteristic valued field has a Z-group as its value group and admits

quantifier elimination in the main sort of the prototypical Denef-Pas style language then it is henselian. In

fact the proof of this suggests that a reasonable class of Denef-Pas style languages is natural with respect to

henselianity.1

4.1 Introduction

Tarski’s theorem says that the theory RCF of real closed fields, as formulated in the language LOR of ordered

rings, admits quantifier elimination (QE). It is natural to ask whether any other ordered fields admit QE in

LOR. There is a good answer to this:

Theorem 4.1.1 (Macintyre, McKenna, van den Dries). Let K be an ordered field such that the theory of

K in LOR admits QE. Then K is real closed.

This is a prototypical example of a “converse QE” result; it shows that for the class of ordered fields,

real-closedness is equivalent to QE.

There are analogous results in the class of valued fields. In the forward direction, the first result is due

to Macintyre [37], who showed that the theory of p-adic fields, as formulated in the language LMac, admits

QE. In this case, we only have a partial converse:

Theorem 4.1.2 (Macintyre, McKenna, van den Dries). Let K be a p-field such that the theory of K in

LMac admits QE. Then K is p-adically closed.

The definition of a p-field is rather special: it is a substructure of a p-adically closed field (of p-rank 1)

with respect to LMac. Let K be a p-field and L a p-adically closed field such that K is an LMac-substructure

of L. The point is that, as L is henselian, each nth power predicate Pn defines a clopen subset of K in the

valuation topology of K, which is essential to the proof of the theorem. This way to interpret each Pn is
1This chapter has an unpolished longer version that contains more results on the Macintyre language of valued fields; see [54].
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not very satisfying since an element in Pn may not be an nth power at all in K. Hence it is asked in [38]

to extend the result to the class of valued fields where Pn is simply interpreted as the group of nth powers.

In [54] this is established for a subclass of such structures.

In this paper we shall prove a converse QE theorem for a different kind of language for valued fields:

Theorem 4.1.3. Let S = 〈K, K, Γ ∪ {∞} , v, ac〉 be a structure of the Denef-Pas style language LRRP such

that

1. K and K are fields such that charK = char K,

2. v : K −→ Γ is a valuation map and ac : K −→ K is an angular component map,

3. the value group Γ is a Z-group,

4. the theory Th(S) admits QE in the K-sort.

Then the valuation v is henselian.

This answers a question mentioned in [12]. This result also holds in slightly more general settings; see

Remark 4.4.11 and Remark 4.4.13. The relevant definitions will be given in the next section.

We thank the referee for several helpful suggestions.

4.2 Preliminaries

In this paper all valued fields are equicharacteristic and all valuation rings are proper subrings. We use O,

O1, etc. and M, M1, etc. to denote valuation rings and their maximal ideals, respectively. Valuation maps

are denoted by v, v1, etc. If v is a valuation of K then vK, K stand for the corresponding value group and

residue field, respectively.

Next we describe the Denef-Pas style language for valued fields.

Definition 4.2.1. Let K be a valued field and K its residue field. An angular component map is a function

ac : K −→ K such that

1. ac 0 = 0,

2. the restriction ac ¹ K× is a group homomorphism K× −→ K
×

,

3. the restriction ac ¹ (O\M) is the projection map, that is, ac u = u +M for all u ∈ O \M.
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The template for Denef-Pas style language has three sorts: the field sort, the residue field sort, and the

value group sort. These are usually denoted by K, K, and Γ, respectively. Sometimes we shall refer to

the K-sort as the “main sort”. The K-sort and K-sort use the language LR of rings. The Γ-sort uses the

langauge LOG of ordered groups, {+, <, 0}, and an additional symbol ∞ that designates the top element in

the ordering. There are two cross-sort function symbols: v : K −→ Γ, which stands for the valuation, and

ac : K −→ K, which stands for an angular component map.

Any language that expands this template is a Denef-Pas language. A prototypical example is the language

LRRP used in [41], in which the field sort and the residue field sort use the language LR and the Γ-sort uses

the language LPr∞ = LPr ∪ {∞}, where LPr is the Presburger language {+, <, 0, 1} ∪ {Dn : n > 1}. Let

S = 〈K, K,Γ ∪ {∞} , v, ac〉 be a structure of LRRP. One of the main results of [41] is that if K is henselian

and both K and K are of characteristic 0 then Th(S) admits QE in the K-sort; that is, for every formula ϕ

in LRRP there is a formula ϕ∗ in LRRP that does not contain K-quantifiers such that S |= ϕ ↔ ϕ∗. Hence

Theorem 4.1.3 contains a converse of this result with respect to henselianity under the additional assumption

that Γ is a Z-group.

The following notions are formulated for any Denef-Pas language L, where we use LK , LK , and LΓ∞ to

denote the languages used by the three sorts.

Definition 4.2.2. A formula ϕ in L is simple if ϕ does not contain any K-quantifiers.

Definition 4.2.3. A formula ϕ in LK ∪LΓ∞ is a Γ-formula if it does not contain K-quantifiers or atomic

formulas in LK . Similarly a formula ϕ in LK ∪LK is a K-formula if it does not contain K-quantifiers or

atomic formulas in LK .

Note that Γ-formulas and K-formulas may contain LK-terms. We shall simplify our terminology for

these formulas. For example, a literal Γ-formula shall be called a “Γ-literal”. Similarly for K-formulas.

4.3 Overview of the proof

The proof relies on the approximation technique devised in [38]. In general this technique consists of the

following steps. Let L be a language for valued fields in which henselianity is first-order expressible. The

main sort of L is the field sort. Let (K, v) be a valued field such that Th(K) admits QE in the main sort of

L, where Th(K) denotes the theory of K as a structure of L. Let O,M be its valuation ring and maximal

ideal.

• Step 1. Show that, except equations in the field, all formulas without quantifier ranging over the main

sort define open sets in (the product of) the valuation topology. Note that, for each formula ϕ(X),
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the assertion that it defines an open set can be expressed by a first-order sentence:

∀X (ϕ(X) → ∃Y (v(Y ) > v(X) ∧ ∀Z (v(Z) > v(Y ) → ϕ(X + Z)))).

• Step 2. Let F (X, ā) ∈ O[X] be a monic polynomial of degree n, where ā are the coefficients. Suppose

for contradiction that F (X, ā) is a counterexample to a version of Hensel’s Lemma: there is an s ∈ O
such that F (s, ā) ∈ M and F ′(s, ā) /∈ M but F (X, ā) has no root in K. We may assume that

F (X, ā) is irreducible over K. Let ϕ be the formula that defines the nonempty set of the tuples of

coefficients of all such counterexamples. By assumption, ϕ is equivalent to a formula that is quantifier-

free in the main sort. Without loss of generality we may assume that ϕ is in disjunctive normal form.

Using the fact that the Vandermonde matrix of F (X, ā) is invertible, we may construct polynomials

F1(Y ), . . . , Fn(Y ) ∈ O[Y ], where Y is a tuple of variables Y1, . . . , Yn, such that

1. they are algebraically independent over K,

2. F (X,F1(b̄), . . . , Fn(b̄)) has no root in K for every b̄ = (b1, . . . , bn) ∈ Kn with bi 6= 0 for some

i > 1,

3. F (X,F1(0, 1, 0, . . .), . . . , Fn(0, 1, 0, . . .)) = F (X, ā).

By continuity of polynomial maps, there is an open neighborhood U of (0, 1, 0, . . .) in the product

topology on Kn such that (F1(b̄), . . . , Fn(b̄)) satisfies ϕ for every b ∈ U . Since U is not contained

in any proper Zariski closed subset of Kn, there must be a disjunct ϕ0 of ϕ that lacks equational

conditions and hence, by Step 1, defines a nonempty open subset of Kn. Without loss of generality

ā ∈ ϕ0(Kn). For details see [38, Theorem 1, 4].

• Step 3. If K is dense in its henselization Kh then the approximation can be carried out as follows:

Choose a root r ∈ Kh of F (X, ā) and write

F (X, ā) = (X − r)F ∗(X, b̄),

where b̄ ∈ Kh are the coefficients of F ∗. Let U ⊆ ϕ0(Kn) be an open neighborhood of ā, where ϕ0

is as in Step 2. Now we can choose r′, b̄′ ∈ K that are arbitrarily close to r, b̄ with respect to the

valuation. Write

F (X, ā′) = (X − r′)F ∗(X, b̄′).

So ā′ are arbitrarily close to ā and hence ā′ ∈ U . But then F (X, ā′) have a root in K, contradicting
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the choice of U .

• Step 4. However, in general K is not dense in its henselization. The solution to this in [38] is

rather specialized. Dickmann [17] uses a more general method to get around this problem. Using

the Omitting Types Theorem, another valued field (L,w) may be constructed such that (L,w) is

elementarily equivalent to (K, v) with respect to L and w is of rank 1 (that is, wL is a subgroup of

the additive group of R with the canonical ordering). It is well-known that if the valuation w for L

is of rank 1 then L is dense in its henselization; see the discussion in [23, p. 53]. Hence the argument

outlined above can be used to show that (L,w) is henselian. Consequently (K, v) is henselian.

Note that Step 2 can always be implemented for any valued field that is not henselian. So the bulk of

the work in the sequel will concentrate on Step 1, 3, and 4.

4.4 Henselianity and Denef-Pas style languages

We shall prove Theorem 4.1.3 in this section. The proof of this theorem can be adapted for other Denef-Pas

style languages as well, provided that the value group satisfies certain mild conditions; see Remark 4.4.11.

Throughout this section let S = 〈K, K, Γ∪{∞} , v, ac〉 be a structure of LRRP that satisfies the assump-

tions of Theorem 4.1.3. We shall work in S.

In this section the following notational conventions are adopted. We use X,Y , etc. for K-sort variables,

M, N , etc. for Γ-sort variables, and Ξ,Λ, etc. for K-sort variables. The lowercase of these letters stands for

closed terms or elements in the corresponding sorts. Unless indicated otherwise, all these letters stand for

tuples of variables whenever they appear in a formula. We use lh X to denote the length of X. Let Z be

the subring generated by 1 in K and ZΓ the subgroup generated by 1 in Γ.

Remark 4.4.1. The theory of Z-groups with a top element in LPr∞ admits QE. This follows from a straight-

forward generalization of [41, Lemma 5.4, 5.5] to Z-groups.

The following lemma is slightly more general than [41, Lemma 5.3].

Lemma 4.4.2. Let ϕ be a simple formula in LRRP. Then ϕ is equivalent to a formula of the form

∨

i

(σi ∧ χi ∧ θi)

where σi is a quantifier-free formula in LK , χi a K-formula, and θi a Γ-formula.
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Proof. We can write ϕ in its prenex normal form Q1 . . . Qk ψ where each Qj is either a Γ-quantifier or a

K-quantifier and ψ is a quantifier-free formula. We proceed by induction on the number k of quantifiers.

If k = 0 then ϕ is quantifier-free. Since there are no symbols in LRRP relating the K-sort and the Γ-sort,

ϕ can be written in its disjunctive normal form

∨

i

(σi ∧ χi ∧ θi)

where σi is a conjunction of literals in LK , χi a conjunction of K-literals, and θi a conjunction of Γ-literals.

This proves the base case.

Suppose now k = l + 1 and Q1 is ∃N . So by the inductive hypothesis ϕ can be written in the form

Q1

∨

i

(σ′i ∧ χ′i ∧ θ′i)

where σ′i is a quantifier-free formula in LK , χ′i a K-formula, and θ′i a Γ-formula. Now we can simply push

the quantifier in and write ϕ as
∨

i

(σ′i ∧ χ′i ∧ ∃N θ′i).

If Q1 is ∀N then we can rewrite
∨

i(σ
′
i ∧χ′i ∧ θ′i) in its conjunctive normal form and then push the quantifier

in. The other two cases of Q1 being ∃Ξ or ∀Ξ are treated in the same way.

Simple formulas play an important role in this section. Let ϕ be a simple formula. By Lemma 4.4.2, ϕ

can be written as a disjunction of conjunctions of formulas of the following forms:

• Type I: F (X) ¤ 0, where ¤ is either = or 6= and F (X) ∈ Z[X].

• Type II: Γ-formulas. Suppose that Fi(X) ∈ Z[X] run through all the distinct polynomials that appear

in a formula of this type in the form vFi(X). For every i, since the formulas vFi(X) = ∞ and

vFi(X) 6= ∞ are equivalent to the formulas Fi(X) = 0 and Fi(X) 6= 0 respectively and the latter ones

can be assimilated into Type I, we may assume that vFi(X) = ∞ and vFi(X) 6= ∞ do not occur in ϕ

and Fi(X) 6= 0 is a conjunct in each disjunct of ϕ in which Fi(X) appears in a formula of this type.

• Type III: K-formulas. Suppose that Fi(X) ∈ Z[X] run through all the distinct polynomials that

appear in a formula of this type in the form acFi(X). Similar to Type II, for every i, since the

formulas ac Fi(X) = 0 and ac Fi(X) 6= 0 are equivalent to the formulas Fi(X) = 0 and Fi(X) 6= 0, we

may assume that acFi(X) = 0 and ac Fi(X) 6= 0 do not occur in ϕ and Fi(X) 6= 0 is a conjunct in

each disjunct of ϕ in which Fi(X) appears in a formula of this type.
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4.4.1 Step 1: Open sets

Since Step 2, 3, and 4 in Section 4.3 do not involve formulas that contain free K-variables or free Γ-variables,

we may limit our attention to such formulas of Type I, II, and III. We shall show that such formulas, except

equalities in the K-sort, define open sets in the corresponding product of the valuation topology. This takes

care of Step 1.

Since polynomials are continuous maps with respect to the valuation topology, it is clear that disequalities

in the K-sort define open sets.

Lemma 4.4.3. Let ϕ(X) be a formula of Type II. Then ϕ defines an open set.

Proof. First note that, for m ∈ Γ, sets of the forms {x : v(x) ¤ m}, where ¤ is one of the symbols =, 6=, <,

≥, are all open in the valuation topology. See [23, Remark 2.3.3].

Let Fi(X) ∈ Z[X] run through all the distinct polynomials that appear in ϕ(X) in the form vFi(X). Let

ϕ∗(M) be the formula obtained from ϕ(X) by replacing each vFi(X) with a new variable Mi. Let B be the

set
{〈m1, . . . , md〉 ∈ Γd : S |= ϕ∗(m1, . . . ,md)

}
,

where d = lh M . For each m = 〈m1, . . . , md〉 ∈ Γd let

Am =

{
x ∈ Ke :

d∧

i=1

vFi(x) = mi

}
,

where e = lh X. Since polynomial maps are continuous, each Am is open in the valuation topology. So

ϕ(Ke) =
⋃

m∈B Am is open.

Let O,M be the valuation ring and its maximal ideal that correspond to v. The following lemma

establishes a crucial relation between the valuation and the angular component map.

Lemma 4.4.4. For nonzero x, y ∈ K with v(x) = v(y) = m ∈ Γ, acx = ac y if and only if v(x− y) > m.

Proof. If x = y then the lemma is trivial. So we assume further that x 6= y.

For the “only if” direction, suppose for contradiction that acx = ac y but v(x− y) = m. So (x− y)/x is
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a unit. So

ac
x− y

x
= (1− y

x
) +M

= (1 +M)−
(y

x
+M

)

= (1 +M)− ac
y

x

= (1 +M)− ac y

acx

= 0.

So (x− y)/x = 0, so x = y, contradiction.

For the “if” direction, suppose for contradiction that v(x− y) > m but ac x 6= ac y. If m = 0, that is, x

and y are units in the valuation ring, then

x +M = ac x 6= ac y = y +M .

So x − y is a unit in the valuation ring, that is, v(x − y) = 0, contradiction. In general we may consider

1 − y/x: since v(1 − y/x) > 0 and y/x is a unit, we get ac 1 = ac(y/x) by the previous two sentences, so

ac x = ac y.

Lemma 4.4.5. Let λ ∈ K
×

and F (X) ∈ Z[X]. The set

Aλ = {x ∈ Ke : ac F (x) = λ}

is open, where e = lh X.

Proof. For any x ∈ Ke such that F (x) 6= 0 we consider the open set

U = {F (x) + z : z ∈ K and v(z) > vF (x)} .

Since F is continuous, there is an open neighborhood Ux of x such that F (Ux) ⊆ U . Since vF (y) = vF (x)

and v(F (y) − F (x)) > vF (x) for every y ∈ Ux, by Lemma 4.4.4, ac F (y) = acF (x). So Aλ =
⋃

x∈Aλ
Ux is

open.

Lemma 4.4.6. Let ϕ(X) be a formula of Type III. Then ϕ defines an open set.

Proof. Let Fi(X) ∈ Z[X] run through all the distinct polynomials that appear in ϕ(X) in the form acFi(X).

Let ϕ∗(Λ) be the formula obtained from ϕ(X) by replacing each ac Fi(X) with a new variable Λi. Let B be
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the set
{
〈λ1, . . . , λd〉 ∈ (K

×
)d : S |= ϕ∗(λ1, . . . , λd)

}
,

where d = lh Λ. For each λ = 〈λ1, . . . , λd〉 ∈ (K
×

)d let

Aλ =

{
x ∈ Ke :

d∧

i=1

ac Fi(x) = λi

}
,

where e = lh X. By Lemma 4.4.5 each Aλ is open. So ϕ(Ke) =
⋃

λ∈B Aλ is open.

4.4.2 Step 3 and 4: Omitting a type

If K is dense in its henselization then, combining the argument in Step 3 and the results in the last section,

we see that the conclusion of Theorem 4.1.3 holds. If K is not dense in its henselization then we need to

carry out Step 4. Thus, we shall show:

Theorem 4.4.7. There is a structure S1 = 〈K1,K1, Γ1 ∪ {∞} , v1, ac1〉 of LRRP such that S1 ≡ S and v1

is of rank 1.

For the rest of this section let X,Y be two single variables. For r, t ∈ O we say that they are comparable,

written as r ³ t, if there is a natural number n such that either v(rn) ≤ v(t) ≤ v(rn+1) or v(tn) ≤ v(r) ≤
v(tn+1). They are incomparable if they are not comparable. We write r ¿ t if r, t are incomparable and

v(r) < v(t).

By the Omitting Types Theorem, Theorem 4.4.7 may be proved by omitting the 2-type

Φ(X,Y ) =
{
0 < v(X l) < v(Y ) ∧ Y 6= 0 : l ≥ 1

}
.

Thus it suffices to show that this type is not isolated modulo Th(S). To that end, suppose for contradiction

that there is a formula π(X, Y ) such that the sentence ∃X,Y π(X, Y ) is in Th(S) and π(X, Y ) ` Φ(X,Y )

modulo Th(S). Since Th(S) admits QE in the main sort, by Lemma 4.4.2, π(X, Y ) is equivalent to a

disjunction of conjunctions of formulas of Type I, II, and III. Without loss of generality we may assume that

π(X, Y ) is just a conjunction of formulas of those three types.

The following lemma shows that in fact π(X, Y ) does not contain equations in the K-sort.

Lemma 4.4.8. For any nonzero r, t ∈ M with r ¿ t and any nonzero polynomial F (X,Y ) ∈ Z[X, Y ],

F (r, t) 6= 0.
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Proof. Suppose for contradiction F (r, t) = 0. Write F (X, Y ) as

Y d(Fl(X)Y l + . . . + F0(X)), (4.4.1)

where F0(X), . . . , Fl(X) ∈ Z[X]. If F (X,Y ) is a monomial in Y then it can be written as

(ekXk + . . . + e0)Y i (4.4.2)

for some i ≥ 0, where e0, . . . , ek ∈ Z. But no two summands in ekrk + . . . + e0 have the same valuation, for

otherwise we would have v(r) = 0. Hence v(ekrk + . . . + e0) < ∞, contradiction.

So we may assume that F (X,Y ) has at least two nonzero monomial summands. Now for some i > j ≥ 0

we have v(Fi(r)ti) = v(Fj(r)tj). So

v(ti−j) = v(Fj(r)/Fi(r)).

But again, in either Fi(r) or Fj(r), no two summands have the same valuation, so either Fj(r)/Fi(r) ¿ r

or Fj(r)/Fi(r) ³ r. So either t ¿ r or t ³ r, contradiction again.

Remark 4.4.9. This lemma is well-known. It is a corollary of the fundamental dimension inequality in the

theory of valued fields; see [23, Theorem 3.4.3]. We prefer to give an elementary proof here to make clear

that its failure in valued fields of mixed characteristics is the main reason that Theorem 4.1.3 has not been

extended to such fields in general. On the other hand, the above lemma clearly may be applied to the

case r = char(K) > 0. So Theorem 4.1.3 does hold for a particular subclass of valued fields of mixed

characteristics, namely tight valued fields; see Remark 4.4.13.

Lemma 4.4.10. Let ϕ(X,Y ) be a conjunction of formulas of Type II, where X, Y are the only free variables.

Let x, y ∈ M be nonzero such that x ¿ y and S |= ϕ(x, y). Then for every natural number k there is an

m ∈ Γ with v(xk) < m < v(xl) for some l > k such that for every t ∈M with v(t) = m we have S |= ϕ(x, t).

Proof. Let Fi(X, Y ) ∈ Z[X,Y ] run through all the distinct polynomials that appear in ϕ(X,Y ) in the form

vFi(X, Y ). We may assume that each Fi(X, Y ) is written in the form (4.4.1) in Lemma 4.4.8. It is not hard

to see that if we choose a k0 > 0 that is larger than the sum of all the exponents of X that appear in all

the polynomials Fi(X, Y ), then for each Fi(X, Y ) there are integers ei, di with ei < k0 such that for each

t ∈M, if v(t) > v(xk0) then

vFi(x, t) = v(xeitdi). (4.4.3)

Now substituting v(xeitdi) for vFi(x, t) in ϕ(x, t) and then substituting two variables N1, N2 for v(x), v(t)
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respectively in the resulting formula we obtain an LPr∞-formula ϕ∗(N1, N2) from ϕ(x, t) such that for all

t ∈M with v(t) > v(xk0)

S |= ϕ(x, t) if and only if Γ ∪ {∞} |= ϕ∗(v(x), v(t)). (4.4.4)

In particular we have Γ∪ {∞} |= ϕ∗(v(x), v(y)). Let v(x) = n. Let Γ(n) be the smallest Z-group generated

by n in Γ. It is easy to see that the set {kn : k ∈ N} is cofinal in Γ(n). By Remark 4.4.1, Γ(n) ∪ {∞} is an

elementary substructure of Γ ∪ {∞}. So for every natural number k ≥ k0 we have

Γ(n) ∪ {∞} |= ∃N (kn < N < ∞∧ ϕ∗(n,N)).

So for some m ∈ Γ(n) and some l > k we have

Γ(n) ∪ {∞} |= kn < m < ln ∧ ϕ∗(n,m).

So for every t ∈ M with v(t) = m we have Γ ∪ {∞} |= ϕ∗(n, v(t)). By (4.4.4) we have S |= ϕ(x, t), as

desired.

Remark 4.4.11. A close examination of the proof of Lemma 4.4.3 and Lemma 4.4.6 shows that, regardless

of what languages the group Γ and the field K use and what additional structures they have, formulas of

Type II and III always define open sets. Therefore Lemma 4.4.10 is actually the only place where we need

to use some special properties that hold in Z-groups, namely

1. for any element n in the Γ-sort the set {kn : k ∈ N} is cofinal in the submodel generated by n;

2. the theory of the Γ-sort in LΓ∞ is model-complete.

So our converse QE result holds for any group Γ, any field K, and any languages LΓ∞,LK , provided that

these two properties are satisfied.

Lemma 4.4.12. Let ϕ(X, Y ) be a formula of Type III, where X, Y are the only free variables. Let x, y ∈M
be nonzero such that x ¿ y and S |= ϕ(x, y). For every t ∈ M, if v(t) is sufficiently large and ac t = ac y,

then S |= ϕ(x, t).

Proof. Let Fi(X, Y ) ∈ Z[X,Y ] run through all the distinct polynomials that appear in ϕ(X,Y ) in the form

ac Fi(X, Y ). As in the previous lemma we choose a k0 > 0 that is larger than the sum of all the exponents of

X that appear in all the polynomials Fi(X, Y ). So for each t ∈M, if v(t) > v(xk0) then the equation (4.4.3)
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in Lemma 4.4.10 holds for each Fi(X, Y ). For such a t ∈ M, if Fi(X,Y ) is written in the form (4.4.1) in

Lemma 4.4.8, then we have

v(Fl(x)tl + . . . + F0(x)) = vF0(x)

and

v(Fl(x)tl + . . . + F1(x)t) > vF0(x)

if l > 0. Let F0(X) be written as Xb(ejX
j +. . .+e0), with e0, . . . , ej ∈ Z and e0 nonzero. So by Lemma 4.4.4

we have

ac Fi(x, t) = (ac t)d · acF0(x) = (ac t)d · (ac x)b · ac e0.

In particular, since x ¿ y, we have

acFi(x, y) = (ac y)d · (acx)b · ac e0.

Now if ac t = ac y then we have

ac Fi(x, t) = (ac t)d · (ac x)b · ac e0 = (ac y)d · (acx)b · ac e0 = ac Fi(x, y).

So clearly S |= ϕ(x, t), as desired.

Proof of Theorem 4.4.7. Let x ¿ y be such that S |= π(x, y). We shall show that there is a t ∈ M with

x ³ t such that S |= π(x, t). This shows that the type Φ(X, Y ) is not isolated by π(X,Y ) modulo Th(S).

By Lemma 4.4.8, π(X, Y ) cannot contain equalities in the K-sort. Clearly, for sufficiently large k, if

t ∈ M is nonzero and v(t) ≥ v(xk) then the pair (x, t) satisfies the disequalities in the K-sort that appear

in π(X,Y ). Finally, by Lemma 4.4.10 and 4.4.12 we can choose a sufficiently large k and a t ∈ M with

v(xk) < v(t) < v(xl) for some l > k and ac t = ac y such that S |= π(x, t), as desired.

Remark 4.4.13. If we replace the first assumption of Theorem 4.1.3 with charK = 0 and char(K) = p > 0

and then add another assumption that the valued field is tight, that is, v(p) is contained in the smallest

nontrivial convex subgroup ZΓ of Γ, then the argument above can be quite easily adapted to show that the

theorem still holds. To see this, first note that for some n ∈ ZΓ the sentence v(p) = n is in Th(S). Next, we

leave Step 1, 2, and 3 unchanged. For Step 4, it is enough to show that the 1-type

Φ(Y ) =
{
0 < v(pl) < v(Y ) ∧ Y 6= 0 : l ≥ 1

}
.
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is not isolated modulo Th(S). To that end, suppose for contradiction that there is a formula π(Y ) such that

the sentence ∃Y π(Y ) is in Th(S) and π(Y ) ` Φ(Y ) modulo Th(S). By QE in the K-sort, π(Y ) is equivalent

to, without loss of generality, a conjunction of formulas of Type I, II, and III with only one free K-sort

variable Y . Clearly Lemma 4.4.8 holds with r = p and Lemma 4.4.10, Lemma 4.4.12 hold with x = p. Now

the contradiction is that we can find an element t ∈ M such that v(t) ∈ ZΓ and S |= π(t). Finally, observe

that the tightness condition is necessary for Step 4, since, otherwise, the sentences v(p) > 1, v(p) > 2, . . . are

all in Th(S).
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Chapter 5

Grothendieck homomorphisms in
algebraically closed valued fields

Abstract: We give a presentation of the construction of motivic integration, that is, a homomorphism

between Grothendieck semigroups that are associated with a first-order theory of algebraically closed valued

fields, in the fundamental work of Hrushovski and Kazhdan [34]. We limit our attention to a simple major

subclass of V -minimal theories of the form ACVF0
S , that is, the theory of algebraically closed valued fields

of pure characteristic 0 expanded by a (VF, Γ)-generated substructure S in the language LRV. The main

advantage of this subclass is the presence of syntax. It enables us to simplify the arguments with many new

technical details while following the major steps of the Hrushovski-Kazhdan theory.

5.1 Introduction

The theory of motivic integration in valued fields has been progressing rapidly since its first introduction

by Kontsevich. Early developments by Denef and Loeser et al. have yielded many important results in

many directions. The reader is referred to [30] for an excellent introduction to the construction of mo-

tivic measure. There have been different approaches to motivic integration. The comprehensive study in

Cluckers-Loeser [14] has successfully united the major ones on a general foundation. Their construction

may be applied in general to the field of formal Laurent series over a field of characteristic 0 but heavily

relies on the Cell Decomposition Theorem of Denef-Pas [16, 41], which is only achieved for valued fields

of characteristic 0 that are equipped with an angular component map. However, an angular component

map is not guaranteed to exist for just any valued field, for example, algebraically closed valued fields. The

Hrushovski-Kazhdan integration theory [34] is a major development that does not require the presence of

an angular component map and hence is of great foundational importance. Its basic objects of study are

models of V -minimal theories. This class of theories encompasses a wide range of first-order expansions of

the theory of algebraically closed valued fields of pure characteristic 0 that have been shown to have nice

geometrical behaviors. Moreover, by compactness, when integrating a definable object, the theory may be

applied to valued fields with large positive residue characteristics.

63



In this paper, following the major steps of the construction of Grothendieck homomorphisms, that is,

homomorphisms between Grothendieck semigroups, but supplying new technical lemmas, we give a presen-

tation of the materials in the first eight chapters of [34]. In doing so, we limit our attention to a simple major

subclass of V -minimal theories, namely the theory of algebraically closed valued fields of pure characteristic

0 in the language LRV with parameters from the field sort and the (imaginary) value group sort allowed.

The main technical differences from the original construction are all results of this restriction. Our principal

aim is to reconstruct the Grothendieck homomorphisms in [34, Theorem 8.8]. Due to technical reason,

which we shall describe below, our reconstructed isomorphisms are actually quotients of the isomorphisms in

[34, Theorem 8.8]. Other similar homomorphisms that involve differential calculus are completely left out.

They will be presented in a sequel to this paper that is devoted to the study of Fourier transform in the

Hrushovski-Kazhdan theory and its extension to the adelic setting via Weispfenning’s fundamental work on

the model theory of boolean products [50].

5.1.1 Outline of the construction

The method of the Hrushovski-Kazhdan integration theory is based on a fine analysis of definable subsets up

to definable bijections in a Basarab-Kuhlmann style language LRV for valued fields. This language has two

sorts: the VF-sort and the RV-sort. One of the main features of LRV is that the residue field and the value

group are wrapped together in one sort RV; see Section 5.2 for details. Let (K, val) be a valued field and O,

M, K the corresponding valuation ring, its maximal ideal, and the residue field. Let RV(K) = K×/(1+M)

and rv : K× −→ RV(K) the quotient map. Note that, for each a ∈ K, val is constant on the subset

a + aM and hence there is a naturally induced map vrv from RV(K) onto the value group Γ. The situation

is illustrated in the following commutative diagram

K
×

RV(K)Â Ä //

O\M

K
×

quotient
²²²²

O\M K×Â Ä // K×

RV(K)

rv
²²²²

RV(K) Γ
vrv // //

K×

Γ

val

$$ $$JJJJJJJJJJJ

where the bottom sequence is exact. Note that the existence of an angular component ac : K× −→ K
×

is

equivalent to the existence of a group homomorphism from RV(K) onto K
×

in the diagram. For each γ ∈ Γ,

the fiber vrv
−1(γ) has a natural one-dimensional K-affine structure, which is denoted as Kγ . The direct

sum
⊕

γ∈Γ Kγ may be viewed as a generalized residue field.

Let ACVF be the theory of algebraically closed valued fields in LRV. Let VF∗[·] and RV[∗, ·] be two

categories of definable sets with respect to the VF-sort and the RV-sort, respectively. In order to integrate
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definable functions with RV-sort parameters, the objects in VF∗[·] are exactly the definable subobjects of

the products VFn×RVm and the morphisms are just the definable maps. On the other hand, for technical

reasons (particularly for keeping track of dimensions), RV[∗, ·] is formulated in a quite complicated way. All

this is explained in Section 5.6. One of the main goals of the Hrushovski-Kazhdan integration theory is

to construct a canonical homomorphism from the Grothendieck semigroup K+ VF∗[·] to the Grothendieck

semigroup K+ RV[∗, ·] modulo a semigroup congruence relation Isp on the latter. In fact, it may be turned

into an isomorphism if we take quotient with respect to a semigroup congruence relation Ibu on K+ VF∗[·].
This construction has three main steps.

• Step 1. First we define a lifting map L from the objects in RV[∗, ·] into the objects in VF∗[·]; see

Definition 5.6.16. Next we single out a subclass of isomorphisms in VF∗[·], which are called definable

special bijections; see Definition 5.7.5. Then we show that for any object X in VF∗[·] there is a special

bijection T on X and an object Y in RV[∗, ·] such that T (X) is isomorphic to L(Y ). This implies that

L hits every isomorphism class of VF∗[·]. Of course, for this result alone we do not have to limit our

means to special bijections. However, in Step 3 below, special bijections become an essential ingredient

in computing the congruence relation Isp.

• Step 2. For any two isomorphic objects Y1, Y2 in RV[∗, ·], their lifts L(Y1), L(Y2) in VF∗[·] are

isomorphic as well. This shows that L induces a semigroup homomorphism from K+ RV[∗, ·] into

K+ VF∗[·], which is also denoted as L.

• Step 3. In order to invert the homomorphism L, we need a precise description of the semigroup

congruence relation induced by it. The basic notion used in the description is that of a blowup of

an object in RV[∗, ·]; see Definition 5.11.1. We then show that, for any objects Y1, Y2 in RV[∗, ·],
there are piecewise isomorphic parameterized iterated blowups Y ]

1 , Y ]
2 of Y1, Y2 if and only if there

are parameterized special bijections T1, T2 on Y1, Y2 such that T1(L(Y1)), T2(L(Y2)) are piecewise

isomorphic. The “if” direction contains a form of Fubini’s Theorem and is the most technically

involved part of the construction. Its difficulty will be explained further below when we describe the

course of the paper.

The inverse of L thus obtained is a motivic integration; see Theorem 5.12.2.

5.1.2 Course of the paper

A remarkable feature of the Hrushovski-Kazhdan integration theory is that model-theoretic study of definable

sets plays a fundamental role and yet no advanced results from model theory, say, beyond the first five
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chapters of [40], are used. In section 5.2, after introducing the language LRV and the theory ACVF, we

briefly review some concepts and results in model theory. To suggest how they may be used later, some of

these, especially the various incarnations of the Compactness Theorem, are stated specifically for LRV and

ACVF. We also give a syntactical description of what it means to have imaginary elements as parameters

in defining sets. In section 5.3, we establish quantifier elimination for ACVF by one of the standard model-

theoretic tests. This is not proved in [34] and the reader is referred to [31]. The theme of the latter is

elimination of imaginaries and the relevant results use a much more complicated language than LRV, which

do not seem to imply quantifier elimination in ACVF in a straightforward fashion. Our proof, except some

fundamental facts in the theory of valued fields, is self-contained. In the following two sections we prove

some properties that delineate the basic geography of definable sets in ACVF. These properties are used

throughout the rest of the paper. As in [34], the key notion here is C-minimality, which was first introduced

in [39] and has been further studied in [32]. The main difference between Section 5.4 and Section 5.5 is that

in the former we work at the level of formulas with real parameters and in the latter we work at the level of

types with imaginary parameters allowed.

With the preparatory work done, we are now ready to move on to the actual construction of motivic in-

tegration. First of all, we discuss various dimensions, mainly VF-dimension and RV-dimension, and describe

the relevant categories of definable sets and the formulation of their Grothendieck semigroups in Section 5.6.

The fundamental lifting map L between VF-categories and RV-categories and the “dummy” functor E be-

tween RV-categories are also introduced here. The central topic of Section 5.7 is RV-products and special

bijections on them; see Definition 5.7.3 and Definition 5.7.5. The main result is Proposition 5.7.14, which

corresponds to Step 1 above. This section contains the most important technical tool that is not available

in [34], namely Proposition 5.7.13. With its presence, many hard lemmas in [34] have been simplified a

great deal (for example, [34, Lemma 7.8], which corresponds to Lemma 5.10.2 in this paper) or circumvented

(among the most notable ones are [34, Lemma 5.5] and the entire [34, Section 3.3]).

The notion of a 2-cell is introduced in Section 5.8, which corresponds to the notion of a bicell in [14].

This notion may look strange and is, perhaps, only of technical interest. It arises when we try to prove some

form of Fubini’s Theorem, such as Lemma 5.11.24. The difficulty is that, although, using C-minimality, the

construction of the integration of definable sets of VF-dimension 1 is very functorial (see Lemma 5.10.3), we

are unable to extend this construction to higher VF-dimensions. This is the concern of [34, Question 7.9]. It

has also occurred in [14] and may be traced back to [20]; see [14, Section 1.7]. Anyway, in this situation, the

natural strategy of integrating definable sets of higher VF-dimensions is to use the result for VF-dimension

1 and integrate with respect to one VF-sort variable at a time. As in the classical theory of integration, this
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strategy requires some form of Fubini’s Theorem: for a well-behaved integration, an integral should give the

same value when it is evaluated along different orders of VF-sort variables. By induction, this problem is

immediately reduced to the case of two VF-sort variables. A 2-cell is a definable subset of VF2 with certain

symmetrical geometrical structure that satisfies this Fubini type of requirement. Now the idea is that, if

we can find a definable partition for every definable subset such that each piece is a 2-cell indexed by some

RV-sort parameters, then, by compactness, every definable subset satisfies the Fubini type of requirement.

This kind of partition is achieved in Lemma 5.8.8.

Section 5.9 is devoted to showing Step 2 above. The notion of a γ-polynomial is introduced here, which

generalizes the relation between a polynomial with coefficients in the valuation ring and its projection into the

residue field. This leads to Lemma 5.9.2, a generalized form of the multivariate version of Hensel’s Lemma.

Note that in order to apply Lemma 5.9.2 to a given definable set we need to find suitable polynomials

with a simple common residue root. This is investigated in Lemma 5.9.4, which does not hold when the

substructure in question contains an excessive amount of parameters in the RV-sort. This is the reason

why motivic integration is constructed only for theories of the form ACVF0
S , where the structure S is

(VF, Γ)-generated. There is a straightforward remedy for this limitation. For every substructure S there is

a canonical expansion S∗ of S such that S∗ is (VF, Γ)-generated and may be embedded into every (VF, Γ)-

generated substructure that contains S; see [34, Proposition 3.51]. Then S and S∗ are identified for the

construction of integration. To keep the conceptual framework simple, we do not include this treatment in

the paper.

The key result of Section 5.10, Lemma 5.10.3, says that, modulo special bijections, every definable

bijection between two definable sets of VF-dimension 1 is equal to the lift of an isomorphism in RV[∗, ·].
As has been remarked above, it would be ideal to extend this result to definable sets of all VF-dimensions.

Being unable to do this, we introduce the notion of a standard contraction, which gives rise to the Fubini

type of problem described above; see Definition 5.10.6. Then in Lemma 5.10.8 we show that an essential

part of Lemma 5.10.3 holds for 2-cells, which is good enough for the rest of the construction.

The task of identifying the kernel of L, that is, Step 3 above, is carried out in Section 5.11. We introduce

the notion of a blowup in Definition 5.11.1 and then extend it in Definition 5.11.3 to a parameterized

version. The equivalence relation Isp[∗, ·] on RV[∗, ·] induced by parameterized blowups is indeed a semigroup

congruence relation; see 5.11.1 and Lemma 5.11.12. We also need to parameterize special bijections; see

Definition 5.11.19. This induces a semigroup congruence relation Ibu on VF∗[·]; see Definition 5.11.25. We

conclude this section with Lemma 5.11.26, which says that Isp[∗, ·] is the congruence relation induced by

the homomorphism L modulo Ibu. In the last section we assemble everything together and deduce the main
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theorem.

5.1.3 Technical differences from the original construction

We emphasize again that, in this paper, we do not work at the level of generality as in [34], that is, the

whole class of V -minimal theories. Instead, our construction is specialized for the theories of algebraically

closed valued fields of pure characteristic 0 expanded by a substructure S in the language LRV. As has

been discussed above, Step 2 of the construction requires S to be (VF,Γ)-generated, but other parts of the

construction in general do not require this restriction. For this subclass of V -minimal theories we are able

to work with syntax. Very often, in order to grasp the geometrical content of a definable set X, it is a

very fruitful exercise to analyze the logical structure of a typical formula that defines X, especially when

quantifier elimination is available. Consequently, in the context of this paper, syntactical analysis affords

simplifications of many lemmas in [34]. The main technical differences are described here roughly in the

order of their first appearances. For this purpose we fix a theory ACVF0
S , where S is (VF,Γ)-generated.

Let Lv be the two-sorted language for valued fields: one sort for the field and the other for the value group.

Every model of ACVF0
S may be turned naturally into a structure of Lv and consequently any definable subset

of any product VFn in ACVF0
S is S-definable in Lv. This translation provides the strategy in Section 5.3

to reduce quantifier elimination in LRV to that in Lv, which has been established by Weispfenning (see

Theorem 5.2.5). Another notable application of it is in Lemma 5.4.12, whose proof is conceptually much

simpler than the corresponding [34, Lemma 3.35].

In almost all sections in the first eight chapters of [34] there are results that we need to more or less

reproduce, except [34, Section 3.3], which has been completely dispensed with in this paper. Although,

according to [34, Remark (3), p. 34], the lemmas in [34, Section 3.3] are not needed for the construction

of integration maps, [34, Lemma 3.26] is used in the very important [34, Lemma 5.5], which is needed

for [34, Lemma 5.10], which in turn is directly applied in [34, Lemma 7.24] to settle the Fubini problem

described above. Because of Proposition 5.7.13 and its many consequences, we are still able to reproduce

[34, Lemma 5.10], namely Lemma 5.8.8, without [34, Lemma 5.5]. More details on Proposition 5.7.13 will

be given below.

In Section 5.5 we follow the syntactical treatment of imaginary elements described in Section 5.2. In

particular, we are able to show that an atomic closed ball or an atomic thin annulus cannot correspond

algebraically to an atomic open ball, which implies that one cannot define an atomic closed ball from an

atomic open ball; see Lemma 5.5.9 and Lemma 5.5.10. These and Lemma 5.5.11 yield (trivially) a special

case of [34, Lemma 3.46].
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In order to bypass the notion of measure-preserving isomorphisms in RV-categories (see [34, Defini-

tion 5.21]), which requires a discussion of differential calculus, the very simple notion of the weight of an

RV-sort tuple (Definition 5.6.10) is introduced in Section 5.6. This is used to formulate one of the condi-

tions in the definition of a morphism in RV-categories; see Definition 5.6.11. The idea is that, a morphism

F : X −→ Y in an RV-category should encode the ordering of the volumes of the lifts L(X), L(Y ) of X, Y

so that F itself may be lifted to the corresponding VF-category. To be more concrete, suppose that X = {1}
and Y = {∞}, then L(X) = rv−1(1) × {1} and L(Y ) = rv−1(∞) × {∞} = {(0,∞)} and hence if F is an

isomorphism then it is impossible to lift it to an isomorphism. The solution to this is to simply disqualify

F as a morphism but allow F−1 to be a morphism, which amounts to adopting the alternative definition of

RV-categories in [34, Section 3.8.1]. A main advantage of allowing the element ∞ in RV-categories is that

it makes the discussion of blowups in Section 5.11 more streamlined.

In [34, Chapter 4], Step 1 of the construction is accomplished through a class of bijections called admissible

transformations. Later in [34, Chapter 7] another class of bijections called special bijections are introduced

for Step 3. In this paper the two classes are adjusted so that they may be unified into one class and still

serve their original purposes; see Definition 5.7.5. Now we come to Proposition 5.7.13, which says that,

up to isomorphism classes, a polynomial map on an object in a VF-category may be projected down to a

morphism between two objects in the corresponding RV-category. To be more precise, let f(x1, . . . , xn) be

a polynomial with VF-sort coefficients and X a definable subset of VFn, then there is a definable special

bijection T on X such that there is a function f↓ : RVm −→ RV that makes the diagram

RVm RV
f↓

//

T (X)

RVm

rv

²²

T (X) f(X)f(X)

RV

rv

²²

X f(X)
f //XT (X) Too

commute. Moreover, this may be carried out simultaneously for any finite number of VF-sort polynomials.

Except Section 5.9, the remainder of the paper heavily relies on Proposition 5.7.13. Almost all its applications

involve the following procedure. Given a morphism f : X −→ Y in VF∗[·] that is defined by a formula φ, we

obtain a special bijection T on X such that for any term in φ of the form rv(g(x)) there is a commutative

diagram as above for g(x) and hence the morphism f ◦T−1 in VF∗[·] may be projected down to a morphism

in RV[∗, ·].
In Section 5.8 we give a more detailed treatment of 2-cells than in [34]. The lemmas that lead to

Lemma 5.8.8 should make clear the crucial role of Proposition 5.7.13.

Let t 6= ∞ be an RV-sort element that is algebraic over some other RV-sort elements. In Lemma 5.9.4,
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through analyzing a suitable formula that witnesses this algebraic relation, we find a minimal γ-polynomial

for t. This essentially reduces the task of lifting isomorphisms in RV[∗, ·] (Lemma 5.9.6) to the multivariate

version of Hensel’s Lemma. The proof of [34, Proposition 6.1] is thus simplified.

Section 5.10 and Section 5.11 more or less correspond to [34, Section 7.2, Section 7.3] and [34, Section 7.4,

Section 7.5], respectively. Most of the changes here are made with the hope that the difficult situation may

become easier to grasp. For example, unlike in [34, Section 7.5], we do not form additional categories

for the computation of the kernel of L. Instead, we work directly with objects in VF∗[·] and operations

on them called standard contractions, which are a natural conceptual extension of special bijections; see

Definition 5.10.6.

There is an important change in this last part of the paper that is of a different nature: since, for any

object X in VF∗[·], we can only establish the desired correspondence between standard contractions and

blowups on each piece of a suitable definable partition of X, the congruence relation Isp on K+ RV[∗, ·]
is defined through parameterized blowups instead of blowups. Consequently special bijections are param-

eterized as well so that we may have a canonical description of the image Ibu of Isp under the surjective

homomorphism L : K+ RV[∗, ·] −→ K+ VF∗[·], which is a congruence relation on K+ VF∗[·]. We note that

this complication seems to have been avoided in [34] through the use of [34, Lemma 7.20], which we are

unable to reproduce in this paper. In comparison with [34, Theorem 8.8], Theorem 5.12.2 offers a surjective

homomorphism instead of an isomorphism, which, of course, may be turned into an isomorphism if we take

quotient with respect to Ibu. However, no modified version of [34, Corollary 8.9] is obtained.

5.2 Logical preliminaries and the theory ACVF

In this section we review some of the basic concepts and results from model theory that will be used in the

construction. In order to make connections with our context as quickly as possible, many of them will be

stated in forms that directly involve the language LRV and the theory ACVF. The main advantage of being

particular here is that it allows us to exemplify the many ways to use compactness in [34]. Since a thorough

list of them all is not feasible, hopefully these examples may function as a guide so that every usage of

compactness below will be seen as an easy variation of one of them.

5.2.1 The setting of LRV and ACVF

Let us first introduce the Basarab-Kuhlmann style language LRV for algebraically closed valued fields. This

style first appeared in [5] and [6] and has been further investigated in [36] and [44]. Its main feature is the
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use of a countable collection of residue multiplicative structures, which are reduced to just one for valued

fields of pure characteristic 0.

Definition 5.2.1. The language LRV has the following sorts and symbols:

1. a VF-sort, which uses the language of rings LR = {0, 1,+,−,×};

2. an RV-sort, which uses

(a) the group language {1,×},

(b) two constant symbols 0 and ∞,

(c) a unary predicate K
×

,

(d) a binary function + : K
2 −→ K and a unary function − : K −→ K, where K = K

× ∪ {0},

(e) a binary relation ≤;

3. a function symbol rv from the VF-sort into the RV-sort.

Technically speaking, the constant 0 and the functions +, − in the RV-sort should all be relations.

This point of view may be more convenient in some of the statements and arguments below that are of a

syntactical nature. For notational convenience, we do not use different symbols for 0 and 1, since which ones

are being referred to should always be clear in context.

Notation 5.2.2. The two sorts without the zero elements are denoted as VF× and RV, RV \ {∞} is denoted

as RV×, and RV∪{0} is denoted as RV0. For any structure M of LRV and any formula φ with parameters

in M , we write φ(M) for the subset defined by φ in M . In particular, we write VF(M), RV(M), RV×(M),

K(M), etc. for the corresponding subsets of M . These are simply written as VF, RV, RV×, K, etc. when

the structure in question is clear or when the discussion takes place in an ambient monster model (that

is, a universal domain that embeds all “small” models that will occur in the discussion). For any subset

X ⊆ VF(M)n ×RV(M)m, we write a ∈ X to mean that every element in the tuple a is in X. In particular,

we often write (a, t) for a tuple of elements in M with the understanding that a ∈ VF and t ∈ RV. For such

a tuple (a, t) = (a1, . . . , an, t1, . . . tm), let

rv(a, t) = (rv(a1), . . . , rv(an), t)

rv−1(a, t) = {a} × rv−1(t1)× · · · × rv−1(tm);

similarly for other functions.
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Let M be a structure of LRV. For any subset A ⊆ M , the smallest substructure of M containing A is

denoted as 〈A〉. An element b ∈ M is A-definable if there is a tuple a ∈ A such that b is a-definable, that

is, b is defined by a formula φ(a). The definable closure of A in M , which is the smallest substructure of M

containing all the A-definable elements, is denoted as dcl(A). Note that, although in general 〈A〉 6= dcl(A),

they may be identified as far as definable sets are concerned. Except in Section 5.3, this is what we shall do

below. An element b ∈ M is algebraic over A, or A-algebraic, if it is algebraic over some a ∈ A, that is, there

is a formula φ(a) that defines a finite subset of M containing b. The algebraic closure of A in M , which is

the smallest substructure of M containing all the 〈A〉-algebraic elements, is denoted as acl(A). A basic fact

is that, if M models a complete theory in LRV, then acl(A) is the same (up to isomorphism, of course) in

any other model of the theory that contains A.

Let M be a structure of LRV, D ⊆ VF(M)n×RV(M)m a definable subset, and E a definable equivalence

relation on D. Each equivalence class under E is an imaginary element of M and the collection D/E of the

equivalence classes is an imaginary sort of M . An imaginary element may occur in a formula as a parameter.

Semantically, this means taking union of all the subsets defined by formulas φ(a, t), where the parameters

(a, t) run through all the “real” elements contained in the equivalence class. Syntactically, it corresponds

to an extra existential quantifier and the invariance of the subset that is being defined when a different

representative of the equivalence class is used. Examples will be given below after the imaginary sorts of

values and balls have been defined.

Definition 5.2.3. The theory of algebraically closed valued fields of characteristic 0 in LRV (hereafter

abbreviated as ACVF) states the following:

1. (VF, 0, 1,+,−,×) is an algebraically close field of characteristic 0;

2. (RV×, 1,×) is a divisible abelian group, where multiplication × is augmented by t×0 = 0 for all t ∈ K

and t×∞ = ∞ for all t ∈ RV0;

3. (K, 0, 1,+,−,×) is an algebraically closed field;

4. the relation ≤ is a preordering on RV with ∞ the top element and K
×

the equivalence class of 1;

5. the quotient RV /K
×

, denoted as Γ ∪ {∞}, is a divisible ordered abelian group with a top element,

where the ordering and the group operation are induced by ≤ and ×, respectively, and the quotient

map RV −→ Γ ∪ {∞} is denoted as vrv;

6. the function rv : VF× −→ RV× is a surjective group homomorphism augmented by rv(0) = ∞ such
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that the composite function

val = vrv ◦ rv : VF −→ Γ ∪ {∞}

is a valuation with the valuation ring O = rv−1(RV≥1) and its maximal ideal M = rv−1(RV>1), where

RV≥1 = {x ∈ RV : 1 ≤ x} ,

RV>1 = {x ∈ RV : 1 < x} ;

The set O\M of units in the valuation ring is sometimes denoted as U . In any model of ACVF, the

function rv ¹ VF× may be identified with the quotient map VF× −→ VF× /(1 + M). Hence an RV-sort

element t may be understood as a coset of (1+M). We occasionally treat t as a set and write a ∈ t to mean

that a ∈ rv−1(t).

Although we do not include the multiplicative inverse function in the VF-sort and the RV-sort, we always

assume that, without loss of generality, VF(S) is a field and RV×(S) is a group for a substructure S of a

model of ACVF.

Remark 5.2.4. Let Lv be the natural two-sorted language for valued fields: one sort for the field and the

other for the value group. With the imaginary Γ-sort and the valuation map val, LRV may be viewed

as an expansion of Lv. Each valued field may be turned naturally into an LRV-structure and hence an

Lv-structure. In fact, it is not hard to see that, under the natural interpretations, two valued fields are

isomorphic as LRV-structures if and only if they are isomorphic as Lv-structures. Henceforth we shall refer

to the two sorts of Lv as the VF-sort and the Γ-sort.

In Section 5.3 we shall establish quantifier elimination for ACVF. The strategy of the proof is to reduce

the problem to the following fundamental result of Weispfenning’s [51, Theorem 3.2]:

Theorem 5.2.5. The theory of algebraically closed valued fields of characteristic 0 as formulated in Lv

admits quantifier elimination.

It is equivalent to quantifier elimination that, for any substructure S of a model of ACVF, the theory

ACVFS — that is, the union of ACVF and the set of all quantifier-free formulas φ(a) with a ∈ S that hold in

S — is complete. This implies that, for every integer p ≥ 0, the theory ACVFp = ACVF∪{
charK = p

}
is

complete. It is a basic fact in model theory that monster models (that is, universal domains) are guaranteed

to exist for complete theories.

Convention 5.2.6. Henceforth, except in Section 5.3, we assume that everything happens in an ambient

monster model C of ACVF0
S , where S is a fixed “small” substructure of C. Accordingly, below, in terms such
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as “definable” (that is, “∅-definable”), a-definable, “acl(∅)”, “LRV”, etc. we shall always mean “S-definable”,

“〈S, a〉-definable”, “acl(S)”, “LRV ∪ S”, etc. When the additional parameters are not specified, we will just

say “parametrically definable”.

The imaginary sort Γ ∪ {∞} is called the Γ-sort. We write t ∈ γ to mean that vrv(t) = γ. For any

subset A, the assertion that vrv
−1(γi) ⊆ A for every γi in the tuple γ is abbreviated as γ ∈ A. A subset

X is γ-definable if there is a formula φ(z) such that X =
⋃

t∈γ Xt, where Xt is the subset defined by φ(t).

Syntactically, X is defined by any formula of the form

∃x (rv(x) ≤ t ∧ rv(x) ≥ t ∧ φ(rv(x))),

where t ∈ γ and no element in γ occurs in φ(rv(x)). Accordingly, when a subset A ⊆ VF∪RV∪Γ is used

as a source of parameters, the elements in Γ(A) can only occur in formulas of the above form. Naturally,

the definable closure dcl(A) of A also contains those elements that are definable with parameters in Γ(A).

Similarly for the algebraic closure acl(A) of A.

A substructure S is VF-generated if S = dcl(A) for some A ⊆ VF. Similarly for RV, Γ, and any

combination of the three sorts. From now on, unless specified otherwise, a substructure is always (VF, RV, Γ)-

generated.

Notation 5.2.7. Coordinate projection maps are ubiquitous in this paper. To facilitate the discussion, certain

notational conventions about them are adopted.

Let X ⊆ VFn×RVm. For any n ∈ N, let In = {1, . . . , n}. First of all, the VF-coordinates and the

RV-coordinates of X are indexed separately. It is cumbersome to actually distinguish them notationally, so

we just assume that the set of the indices of the VF-coordinates (VF-indices) is In and the set of the indices

of the RV-coordinates (RV-indices) is Im. This should never cause confusion in context. Let In,m = In]Im,

E ⊆ In,m, and Ẽ = In,m \ E. If E is a singleton {i} then we always write E as i and Ẽ as ĩ. We write

prE X for the projection of X to the coordinates in E. For any x ∈ prẼ X, the fiber {y : (y, x) ∈ X} is

denoted as fib(X, x). Note that, for notational convenience, we shall often tacitly identify the two subsets

fib(X, x) and fib(X, x) × {x}. Also, it is often more convenient to use simple descriptions as subscripts.

For example, if E = {1, . . . , k} etc. then we may write pr≤k etc. If E contains exactly the VF-indices

(respectively RV-indices) then prE is written as pVF (respectively pRV). Suppose that E′ is a subset of

the indices of the coordinates of prE X. Then the composition prE′ ◦prE is written as prE,E′ . Naturally

prE′ ◦pVF and prE′ ◦pRV are written as pVFE′ and pRVE′ .

Suppose that X, V , and W are all definable subsets and X ⊆ V × W . Sometimes we shall want to
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investigate the fibers of X of the form fib(X, v) with v ∈ V . Note that fib(X, v) is in general not definable.

Of course it is 〈v〉-definable. Many properties and notions below depend on the underlying substructure

from which the subsets in question are definable. Hence, below, when we study fibers of X, we shall always

assume that the underlying substructure has been expanded in an appropriate way.

We shall frequently need to keep track of the correspondence between the VF-indices and the RV-indices

in a subset derived from X. It is unduly complicated to describe a precise indexing scheme that is suitable

for this task and hence we shall not attempt it here. Instead, we shall give a few typical examples and then

rely on the reader’s intuition to figure out the actual indexing in each instance. There is a principle that

underlies these examples: coordinates of interest get indices as small as possible. Let

c(X) =
{
(a, rv(a), t) : (a, t) ∈ X

} ⊆ VFn×RVn+m .

Clearly X is definably bijective to c(X) in a canonical way. This bijection is called the canonical bijection

and is denoted as c. In c(X), the set of the new RV-indices created by the map rv is In. Next, let

X∗ =
⋃{

rv−1(t)× {
(a, t)

}
: (a, t) ∈ X

} ⊆ VFm+n×RVm .

In X∗, the set of the new VF-indices created by the “lifting” map rv−1 is Im. Lastly, let f : X −→
VFn×RVm be a definable function such that, for every (a, t) ∈ X, (pr>1 ◦f)(a, t) = pr>1(a, t). Let Y =

(pr>1 ◦ c ◦f)(X) ⊆ VFn−1×RVn+m and g : Y −→ VFn−1×RVn+m a definable function such that, for every

(a, t) ∈ Y , (pRV ◦g)(a, t) = t. Let Z = (pRV ◦ c ◦g)(Y ) ⊆ RV2n+m−1. Among the coordinates of Z there are

n special ones that correspond to the VF-coordinates of X, which have been truncated in the transformation

from X to Z. These special coordinates are indexed by 1, . . . , n.

We now turn to the other important kind of imaginary elements: balls. The open balls form a basis of

the valuation topology. Basic properties of balls will be explored in Section 5.4.

Definition 5.2.8. A subset b of VF is an open ball if there is a γ ∈ Γ and a b ∈ b such that a ∈ b if and

only if val(a− b) > γ. It is a closed ball if a ∈ b if and only if val(a− b) ≥ γ. It is an rv-ball if b = rv−1(t)

for some t ∈ RV. The value γ is the radius of b, which is denoted as rad(b). If val is constant on b — that

is, b is contained in an rv-ball — then val(b) is the valuative center of b; if val is not constant on b, that is,

0 ∈ b, then the valuative center of b is ∞. The valuative center of b is denoted by vcr(b).

Note that each point in VF is a closed ball of radius ∞. Also, we shall regard VF as a clopen ball of

radius −∞.
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A ball b may be represented by a triple (a, b, d) ∈ VF3, where a ∈ b, val(b) is the radius of b, and d = 1

if b is open and d = 0 if b is closed. A set B of balls is a subset of VF3 of triples of this form such that

if (a, b, d) ∈ B then for all a′ ∈ VF with rv(a − a′) ¤d b, where ¤d is > if d = 1 or ≥ if d = 0, there is a

b′ ∈ VF with val(b) = val(b′) such that (a′, b′, d) ∈ B. Clearly two triples (a, b, d), (a′, b′, d′) ∈ B represent

two different balls, which may or may not be disjoint, if and only if either (val(b), d) 6= (val(b′), d′) or, in

case that they are the same, rv(a− a′)¤d b does not hold.

We note the following terminological convention. The union of B, sometimes written as
⋃

B, is actually

the subset pr1 B. For any subset A ⊆ VF, the assertion that
⋃

B ⊆ A may simply be written as B ⊆ A.

We say that B is finite if it contains finitely many distinct balls. A subset of B is always a set of balls in B.

A function f of B is always a function on the balls in B; that is, f is a relation between B and a subset W

such that for every b ∈ B there is a unique w ∈ W between which and every (a, b, d) ∈ b the relation holds.

Notice that f may or may not be a function on the triples in B.

Remark 5.2.9. In a similar way a ball b may be represented by a triple in VF×RV2. This representation is

sometimes more convenient. Below we shall not distinguish these two representations.

We have seen above how to use elements in the imaginary Γ-sort as parameters in formulas. The idea

is the same for balls. Let b be a ball. A subset X is 〈b〉-definable if there is a formula φ(x, y, z) such that

X =
⋃

(a,b,d)∈b X(a,b,d), where (a, b, d) ∈ VF3 is a representative of b and X(a,b,d) is the subset defined by

φ(a, b, d). Syntactically, X is defined by any formula of the form

∃x, y, z (rv(x− a)¤d b ∧ rv(y) ≥ rv(b) ∧ rv(y) ≤ rv(b) ∧ z = d ∧ φ(x, y, z)),

where (a, b, d) ∈ VF3 is any representative of b and no representative of b occurs in φ(x, y, z) and ¤d is > if

d = 1 or ≥ if d = 0. Accordingly, if a subset A contains balls and is used as a source of parameters, then

the balls in A can only occur in formulas of the above form. With this understanding, the definable closure

dcl(A) and the algebraic closure acl(A) of A may be defined in the obvious way.

5.2.2 Compactness

The use of the Compactness Theorem in [34] is extensive. Here we prove a few lemmas to illustrate it.

Definition 5.2.10. Let X, Y be definable subsets and p : X −→ Y a definable function. A definable

function f is a p-function if there is a Y ′ ⊆ Y and a partial function f̂ on X such that dom(f̂) = p−1(Y ′)

and f = p × f̂ . Let Φ(p) be a set of p-functions. We say that Φ(p) is p-closed if for all f1, . . . , fn ∈ Φ(p)

there is an f ∈ Φ(p) such that dom(f) =
⋃

i dom(fi) and, for each y ∈ Y with p−1(y) ⊆ dom(f), there is an
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fi such that f ¹ p−1(y) = {y} × (f̂i ¹ p−1(y)), where f̂i is the partial function such that fi = p× f̂i.

Let X be a definable subset and p a definable function such that X ( dom(p). In this situation a

p-function with respect to X should always be understood as a (p ¹ X)-function.

Lemma 5.2.11. Let X, Y be definable subsets, p : X −→ Y a definable function, and Φ(p) a set of p-

functions that is p-closed. Suppose that, for every y ∈ Y , there is an fy ∈ Φ(p) such that fy is injective on

p−1(y). Then there is an f ∈ Φ(p) such that f : X −→ Y × Z is an injective function for some definable

subset Z.

Proof. Suppose for contradiction that no f ∈ Φ(p) is an injective function on X of the required form. Let

L = LRV ∪ {c}, where c are new constants. Consider the L-theory T that states the following:

1. everything in ACVF0
S ,

2. c ∈ Y ,

3. every f ∈ Φ(p) fails to be injective on p−1(c).

If T is not consistent then there is a finite list of functions fi ∈ Φ(p) such that, for all y ∈ Y , one of the

functions fi is injective on p−1(y). Since Φ(p) is p-closed, there is a function f ∈ Φ(p) on X such that, for

each y ∈ Y , there is an fi such that f(x) = (p(x), f̂i(x)) for every x ∈ p−1(y). Clearly f is an injective

function on X of the required form, contradiction. So T is consistent and there is a model N |= T . Since N

is also a model of ACVF0
S , we have that cN ∈ Y and, by assumption, there is an fcN ∈ Φ(p) that is injective

on p−1(cN ), contradiction again.

In application, the function p in this lemma is often taken to be the map rv; see, for example, Lemma 5.4.3.

The flexibility of Lemma 5.2.11 is twofold: on the one hand, injectivity may be replaced by other first-order

properties and, on the other hand, restrictions may be imposed on the set Φ(p) so that we can achieve better

control over the form of the function f . In the following sections, the phrase “by compactness” often means

“by a variation of Lemma 5.2.11”.

Lemma 5.2.12. Let t, s ∈ RV and X ⊆ rv−1(t) a t-definable subset such that, for every a ∈ X, s ∈ acl(a).

Then s ∈ acl(t).

Proof. Let L = LRV∪
{
t, s, c

}
, where c are new constants. Consider the L-theory T that states the following:

1. everything in ACVF0
〈t,s〉,

2. c ∈ X,
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3. for every L-formula φ that does not contain s and every integer k > 0, either the subset defined by φ

is of size at most k but does not contain s or it is of size greater than k.

By the assumption, T must be inconsistent. Therefore, there are integers k1, . . . , km, L-formulas φ1(x, y), . . . , φm(x, y)

that do not contain s, and subsets X1, . . . , Xm of X defined by φ∗1, . . . , φ
∗
m, where φ∗i is the formula

∃y1, . . . , yki
∀y


φi(x, y) →

∨

1≤j≤ki

y = yj


 ,

such that
⋃

i Xi = X and, for every a ∈ Xi, the formula φi(a, y) defines a finite subset Ua containing s of

size at most ki. Without loss of generality, we may assume that X1, . . . , Xm are pairwise disjoint. Then
⋂

a∈X Ua is a t-definable finite subset that contains s.

For the proof of the next lemma we need to assume quantifier elimination, which is to be established in

Section 5.3.

Lemma 5.2.13. The exchange principle holds in both sorts:

1. For any a, b ∈ VF, if a ∈ acl(b) \ acl(∅) then b ∈ acl(a).

2. For any t, s ∈ RV, if t ∈ acl(s) \ acl(∅) then s ∈ acl(t).

Proof. For the first item, let φ be a quantifier-free formula in disjunctive normal form that witnesses a ∈
acl(b). For any term rv(g(x)) in φ, where g(x) ∈ VF(〈b〉)[x], and any d ∈ VF, if val(d − a) is sufficiently

large then rv(g(a)) = rv(g(d)). On the other hand, clearly VF-sort disequalities cannot define nonempty

finite subset. Therefore every irredundant disjunct of φ has a conjunct of the form f(x, b) = 0, where

f(x, b) ∈ VF(〈b〉)[x]. If f(a, b) = 0 then, since a /∈ acl(∅), we must have that f(x, b) /∈ VF(〈∅〉)[x]. So the

item follows from the exchange principle in field theory.

For the second item, again let φ be a quantifier-free formula in disjunctive normal form that witnesses

t ∈ acl(s). Clearly we may assume that φ does not contain any VF-sort literal. So each literal in φ may be

assumed to be of the form

∑

i

(rv(ai) · ri · xni)¤ rv(a) · r · xm ·
∑

j

(rv(aj) · rj · xnj ),

where ai, a, aj ∈ VF(〈s〉), ri, r, rj ∈ RV(〈s〉), and ¤ is one of the symbols =, 6=, ≤, and >. It is easily seen

that, in φ, the inequalities cannot define nonempty finite subset and neither can the disequalities. Therefore

every irredundant disjunct of φ has an equality conjunct. Since t /∈ acl(∅), again, the item follows from the

exchange principle in field theory.
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Lemma 5.2.14. Let f : X −→ Y be a definable surjective function, where X, Y ⊆ VF. Then there are

definable disjoint subsets Y1, Y2 ⊆ Y with Y1 ∪ Y2 = Y such that Y1 is finite, f−1(b) is infinite for each

b ∈ Y1, and the function f ¹ f−1(Y2) is finite-to-one.

Proof. For each b ∈ Y , if f−1(b) is infinite then, by compactness, there is an a ∈ f−1(b) such that a /∈ acl(b).

Since b ∈ dcl(a) ⊆ acl(a), by Lemma 5.2.13, we must have that b /∈ acl(a) \ acl(∅) and hence b ∈ acl(∅). Let

L = LRV ∪ {c}, where c is a new constant. Consider the L-theory T that states the following:

1. everything in ACVF0
S ,

2. c ∈ Y ,

3.
∣∣f−1(c)

∣∣ > k for every integer k > 0,

4. for every LRV-formula φ and every integer k > 0, either the subset defined by φ is of size at most k

but it does not contain c or it is of size greater than k.

If N |= T then cN ∈ Y and f−1(cN ) is infinite and cN /∈ acl(∅), contradiction. So T is inconsistent. So there

is an LRV-formula φ and an integer k > 0 such that φ(C) is finite and, for every b ∈ Y , if
∣∣f−1(b)

∣∣ > k then

b ∈ φ(C). Let Y1 =
{
b ∈ Y : f−1(b) is infinite

}
and Y2 = Y \ Y1. Since Y1 ⊆ φ(C) and φ(C) is finite, clearly

Y1 is definable and hence Y2 is definable, as desired.

Lemma 5.2.15. Let f : X −→ Y be a definable function, where X, Y ⊆ VF. For every a ∈ X let Za be the

intersection of all definable subsets that contain a. Suppose that f ¹ Za is injective for every a ∈ X. Then

there is a finite definable partition X1, . . . , Xn of X such that f ¹ Xi is injective for every i.

Proof. Let L = LRV ∪ {c1, c2}, where c1, c2 are new constants. Consider the L-theory T that states the

following:

1. everything in ACVF0
S ,

2. c1, c2 ∈ X and c1 6= c2,

3. f(c1) = f(c2),

4. for every LRV-formula φ, either the subset defined by φ contains both c1 and c2 or it does not contain

either of them.

If N |= T then cN
1 , cN

2 are distinct elements in X and cN
1 ∈ ZcN

2
and f(cN

1 ) = f(cN
2 ), contradiction. So T is

inconsistent. So there are LRV-formulas φ1, . . . , φn such that, for every two distinct elements a1, a2 ∈ X, if
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f(a1) = f(a2) then φi(C) separates a1, a2 for some i. So the partition on X induced by φ1(C), . . . , φn(C) is

as desired.

Naturally injectivity may be replaced by other first-order properties in this lemma.

5.3 Quantifier elimination in ACVF

We shall show in this section that ACVF admits quantifier elimination. The following model-theoretic test

for quantifier elimination will be used; see [48] for a proof.

Fact 5.3.1. For any first-order theory T in a language that has at least one constant symbol, the following

are equivalent:

1. T admits quantifier elimination.

2. For any two models M1, M2 |= T such that M2 is ‖M1‖+-saturated and any isomorphism f between

two substructures N1 ⊆ M1 and N2 ⊆ M2, there is a monomorphism f∗ : M1 −→ M2 extending f .

Recall that our strategy is to establish the second item in this test for ACVF via reduction to Theo-

rem 5.2.5; see Remark 5.2.4.

Lemma 5.3.2. Let B ⊆ M |= ACVF and b0, . . . , bn ∈ VF(B). Let F (X) =
∑

0≤i≤n tiX
i be a nonzero

polynomial with coefficients in RV0 such that ti = rv(bi) if ti 6= 0. Let F (X) =
∑

0≤i≤n biX
i. For every

t ∈ RV(M), if F (t) = 0 and vrv(rv(bi)ti) > 0 for all ti = 0, then there is a b ∈ rv−1(t) such that F (b) = 0.

Proof. Fix a t ∈ RV(M) with F (t) = 0 and vrv(rv(bi)ti) > 0 for all ti = 0. Note that, since such a t

exists and F (X) is not the zero polynomial, we must have that F (X) is not a monomial and t 6= ∞. Let

m < n be the least number such that tm 6= 0. Let r1, . . . , rn ∈ VF(M) be the (possibly repeated) roots of

F (X). Let F ∗(X) =
∑

ti 6=0 biX
i. For any b ∈ t, if rv(b) 6= rv(ri) for every i then val(b − ri) = val(b) if

val(b) < val(ri) and val(b − ri) = val(ri) if val(b) ≥ val(ri). So
∏

i val(b − ri) ≤ val(bmbm/bn) and hence

val(F (b)) ≤ val(bmbm) = 0. Since val(bib
i) > 0 for all ti = 0, we have that val(F ∗(b)) = 0, contradicting the

choice of t. So t = rv(b) = rv(ri) for some i.

Notation 5.3.3. For a polynomial F (X) =
∑

i tiX
i with coefficients ti ∈ RV0 it is often convenient to choose

a bi ∈ ti for each nonzero ti and write F (X) as
∑

i rv(bi)Xi. Below, whenever F (X) is written in this form,

it should be understood that bi is chosen only if ti 6= 0.
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For the rest of this section, we fix two models M1, M2 |= ACVF such that M2 is ‖M1‖+-saturated. Let

S1 ⊆ M1 and f1 : S1 −→ M2 a monomorphism.

For any A ⊆ M |= ACVF, we write VF(A)ac, K(A)ac, etc. for the corresponding field-theoretic algebraic

closures.

Lemma 5.3.4. There is a P ⊆ M1 and a monomorphism g : P −→ M2 extending f1 such that

1. VF(P ) = VF(S1),

2. K(P ) is the algebraic closure of K(S1),

3. Γ(P ) is the divisible hull of Γ(S1).

Proof. First of all, there is a field homomorphism g1 : K(S1)ac −→ K(M2) extending f1 ¹ K(S1). Let
〈
K(S1)ac,RV(S1)

〉
= S2 and g2 : S2 −→ M2 be the monomorphism determined by

ts 7−→ g1(t)f1(s) for all t ∈ K(S1)ac and s ∈ RV(S1).

Next, let n > 1 be the least integer such that there is a t1 ∈ RV(M1) with tn1 ∈ RV(S2) but vrv(ti1) /∈ Γ(S2)

for every 0 < i < n. Let t2 ∈ RV(M2) such that g2(tn1 ) = tn2 . Let g3 : 〈S2, t1〉 −→ M2 be the monomorphism

determined by

t1s 7−→ t2g2(s) for all s ∈ S2.

Iterating this procedure the lemma follows.

In the light of this lemma, without loss of generality, we may assume that K(S1) is algebraically closed

and Γ(S1) is divisible.

Let S ⊆ M1 be a VF-generated substructure such that

1. VF(S1) ⊆ VF(S),

2. RV(S) ⊆ RV(S1),

3. there is a monomorphism f : S −→ M2 with f ¹ (S ∩ S1) = f1 ¹ (S ∩ S1).

Fix an e ∈ VF(M1) such that rv(e) ∈ RV(S1) \RV(S). In the next few lemmas, under various assumptions,

we shall prove the following claim:

Claim (?). RV(〈S, e〉) ⊆ RV(S1) and f may be extended to a monomorphism f∗ : 〈S, e〉 −→ M2 such that

f∗ ¹ RV(〈S, e〉) = f1 ¹ RV(〈S, e〉).
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Lemma 5.3.5. Let F (x) = xn +
∑

0≤i<n rv(ai)xi ∈ K(S)[x] be an irreducible polynomial with rv(a0) 6= 0.

Suppose that e ∈ U(M1) is a root of the polynomial F (x) = xn +
∑

0≤i<n aix
i ∈ O(S)[x]. If the valued field

(VF(S),O(S)) is henselian, then Claim (?) holds.

Proof. Obviously rv(e) is a root of F (x). Also, note that F (x) is irreducible over VF(S). The polynomial

f1(F (x)) = xn +
∑

0≤i<n

f1(rv(ai))xi ∈ f1(K(S))[x]

is irreducible over f1(K(S)) and f1(rv(e)) is a root of f1(F (x)). By Lemma 5.3.2, there is a root d ∈ VF(M2)

of f(F (x)) such that rv(d) = f1(rv(e)). By Remark 5.2.4, Theorem 5.2.5, and Fact 5.3.1, there is an Lv-

monomorphism f∗ : 〈S, e〉 −→ M2 extending f . Since (VF(S),O(S)) is henselian, without loss of generality,

we may assume that f∗(e) = d. By Remark 5.2.4 again, f∗ may be treated as an LRV-monomorphism

extending f with f∗(rv(e)) = f1(rv(e)).

Now, since [K(〈S, e〉) : K(S)] = [VF(〈S, e〉) : VF(S)], by the fundamental inequality of valuation theory

(see [23, Theorem 3.3.4]), we have that

K(〈S, e〉) = K(S)(rv(e)) ⊆ K(S1)

Γ(〈S, e〉) = Γ(S).

Therefore, RV(〈S, e〉) = RV(〈RV(S), rv(e)〉) ⊆ RV(S1), which clearly implies that f∗ ¹ RV(〈S, e〉) = f1 ¹

RV(〈S, e〉).

Lemma 5.3.6. Suppose that e /∈ U(M1), en = a ∈ VF(S) for some integer n > 1, and val(ei) /∈ Γ(S) for

all 0 < i < n. If (VF(S),O(S)) is henselian, then Claim (?) holds.

Proof. By the fundamental inequality of valuation theory and the assumption, we have that

n ≤ [Γ(〈S, e〉) : Γ(S)] ≤ [VF(〈S, e〉) : VF(S)] ≤ n.

So n = [Γ(〈S, e〉) : Γ(S)] and K(〈S, e〉) = K(S). Since Γ(S1) is divisible, we have that val(e) ∈ Γ(S1) and

Γ(〈S, e〉) ⊆ Γ(S1).

Any element b ∈ VF(〈S, e〉) may be written as a quotient of two elements of the form
∑

0≤i≤m bie
i, where

bi ∈ VF(S). Since en = a ∈ VF(S), we may assume that 0 ≤ m < n.

Claim. For some t ∈ RV(S) and some integer 0 ≤ k ≤ m, rv(b) = t · rv(ek).
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Proof. We do induction on m. Without loss of generality, we may assume that bm, b0 6= 0. We claim

that val(b0) 6= val(e
∑m

j=1 bje
j−1). Suppose for contradiction that this is not the case. By the inductive

hypothesis, rv(
∑m

j=1 bje
j−1) = t · rv(ek) for some t ∈ RV(S) and some integer 0 ≤ k ≤ m− 1. So

val


e

m∑

j=1

bje
j−1


 = vrv(t · rv(ek+1)) = vrv(rv(b0)).

So val(ek+1) ∈ Γ(S), which is a contradiction because 0 < k+1 < n. Now, since val(b0) 6= val(e
∑m

j=1 bje
j−1),

either rv(b) = rv(b0) or rv(b) = rv(e
∑m

j=1 bje
j−1) and hence rv(b) is of the desired form by the inductive

hypothesis.

Therefore, Γ(〈S, e〉) = Γ(〈Γ(S), val(e)〉) and RV(〈S, e〉) = RV(〈RV(S), rv(e)〉) ⊆ RV(S1).

Note that, since the roots of F (x) = xn − a are all of the same value, by the assumption on val(e), F (x)

is irreducible over VF(S). Let a1, . . . , an be the distinct roots of F (x) in M1. We consider the symmetric

polynomial

G(y1, . . . , yn) =
n∏

i=1

n∏

j=1

(
yj − rv(ai)

rv(aj)

)
.

In the expansion of G(y1, . . . , yn), the coefficient of each monomial is a sum of elements in the residue field

and hence may be written as a quotient of two terms:

rv(I(a1, . . . , an))
rv(J(a1, . . . , an))

,

where I(a1, . . . , an) is a symmetric VF-sort term and hence may be written as I(a). Moreover, if we substitute

y/ rv(aj) for yj in each monomial then the denominator of its coefficient becomes rv(
∏

i ai)n = rv(an). So

the term G(y/ rv(a1), . . . , y/ rv(an)) may be written as a summation G(y, a) of terms of the form

rv(I(a))ym

rv(an)
,

where m ≤ n2. Since RV(〈S, e〉) ⊆ RV(S1), it makes sense to write

S1 |= G(rv(e), a) = 0

and hence

f1(S1) |= G(f1(rv(e)), f(a)) = 0.
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So, by Lemma 5.3.2, there is a root d ∈ VF(M2) of the polynomial xn − f(a) such that rv(d) = f1(rv(e)).

As in the previous lemma, there is an Lv-monomorphism f∗ : 〈S, e〉 −→ M2 extending f with f∗(e) = d,

which may be treated as an LRV-monomorphism extending f with f∗(rv(e)) = f1(rv(e)). Since RV(〈S, e〉) =

RV(〈RV(S), rv(e)〉), we must have that f∗ ¹ RV(〈S, e〉) = f1 ¹ RV(〈S, e〉).

Lemma 5.3.7. Suppose that rv(e) ∈ K(S1) is transcendental over K(S). If Γ(S) is divisible, then Claim (?)

holds.

Proof. Clearly rv(e) does not contain any element that is algebraic over VF(S); in particular, e is transcen-

dental over VF(S). Similarly f1(rv(e)) does not contain any element that is algebraic over f(VF(S)). Fix a

d ∈ VF(M2) with rv(d) = f1(rv(e)).

By the dimension inequality of valuation theory (see [23, Theorem 3.4.3]), the rational rank of Γ(〈S, e〉)/Γ(S)

is 0. Since Γ(S) is divisible, we actually have that Γ(〈S, e〉) = Γ(S). So for every b ∈ VF(〈S, e〉) there

is an a ∈ VF(S) such that val(b/a) = 0. Let b =
∑

0≤i≤m bie
i ∈ VF(〈S, e〉), where bi ∈ VF(S), and

b∗ =
∑

0≤i≤m f(bi)di ∈ VF(〈f(S), d〉).

Claim. If val(b) = 0 then

1. rv(b) ∈ K(S)[rv(e)] and rv(b∗) ∈ K(f(S))[rv(d)],

2. val(b∗) = 0.

Proof. We do induction on m. Without loss of generality, we may assume that bm, b0 6= 0. First of all,

suppose that val(b0) 6= val(e
∑m

j=1 bje
j−1). Then either val(b) = val(b0) = 0 and val(

∑m
j=1 bje

j−1) >

0 or val(b) = val(
∑m

j=1 bje
j−1) = 0 and val(b0) > 0. In the former case, let a ∈ VF(S) be such

that val(a) = val(
∑m

j=1 bje
j−1). By the inductive hypothesis, val(

∑m
j=1 f(bj/a)dj−1) = 0 and hence

val(d
∑m

j=1 f(bj)dj−1) > 0. So val(b∗) = val(f(b0)) = 0 and rv(b∗) = rv(f(b0)) ∈ K(f(S))[rv(d)]. In the

latter case, by the inductive hypothesis, we have that val(d
∑m

j=1 f(bj)dj−1) = 0 and rv(
∑m

j=1 f(bj)dj−1) ∈
K(f(S))[rv(d)], which immediately imply that val(b∗) = 0 and

rv(b∗) = rv


d

m∑

j=1

f(bj)dj−1


 ∈ K(f(S))[rv(d)].

Similarly, for rv(b), since either rv(b) = rv(b0) or rv(b) = rv(e
∑m

j=1 bje
j−1), clearly rv(b) is of the desired

form. Next, if val(b0) = val(e
∑m

j=1 bje
j−1) < 0 then, since val(b/b0) > 0, we have that val(e

∑m
j=1 bje

j−1/b0+

1) > 0 and hence

rv(e) rv




m∑

j=1

bje
j−1

b0


 + 1 = 0.
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By the inductive hypothesis, rv(
∑m

j=1 bje
j−1/b0) ∈ K(S)[rv(e)]. So the equality implies that rv(e) is alge-

braic over K(S), contradiction. Now the only possibility left is that val(b0) = val(e
∑m

j=1 bje
j−1) = 0. In

this case,

rv(b) = rv(e) rv




m∑

j=1

bje
j−1


 + rv(b0) ∈ K(S)[rv(e)]

by the inductive hypothesis. For the second item, since val(
∑m

j=1 f(bj)dj−1) = 0 and rv(
∑m

j=1 f(bj)dj−1) ∈
K(f(S))[rv(d)], if val(b∗) > 0 then

rv(d) rv




m∑

j=1

f(bj)dj−1


 + rv(f(b0)) = 0

and hence rv(d) is algebraic over K(f(S)), contradiction. So val(b∗) = 0 and hence

rv(b∗) = rv(d) rv




m∑

j=1

f(bj)dj−1


 + rv(f(b0)) ∈ K(f(S))[rv(d)].

Note that, symmetrically, the claim still holds if b is replaced by b∗. It follows that the embedding

of the field VF(〈S, e〉) into the field VF(M2) determined by e 7−→ d induces an Lv-monomorphism f∗ :

〈S, e〉 −→ M2 extending f . As in the previous lemmas, f∗ may be identified as an LRV-monomorphism.

Since f∗(rv(e)) = f1(rv(e)) and, by the claim, RV(〈S, e〉) = RV(〈RV(S), rv(e)〉) ⊆ RV(S1), we must have

that f∗ ¹ RV(〈S, e〉) = f1 ¹ RV(〈S, e〉).

Lemma 5.3.8. Suppose that e is transcendental over VF(S) and val(e) is of infinite order modulo Γ(S).

Then for any b =
∑

0≤i≤m bie
i ∈ VF(〈S, e〉), where bi ∈ VF(S), if b 6= 0 then val(b) = min

{
val(bie

i) : 0 ≤ i ≤ m
}
.

Also, Γ(〈S, e〉) is the direct sum of Γ(S) and the cyclic group generated by val(e): Γ(〈S, e〉) = Γ(S) ⊕ (Z ·
val(e)).

Proof. This is well-known; see, for example, [42, Lemma 4.8].

Lemma 5.3.9. If K(S) = K(S1) and Γ(S) is divisible, then Claim (?) holds.

Proof. Note that, by the assumption, e /∈ U(M1), K(S) is algebraically closed, and val(e) /∈ Γ(S). Since Γ(S)

is divisible, clearly val(e) is of infinite order modulo Γ(S) and hence e is transcendental over VF(S). Choose

a d ∈ VF(M2) with rv(d) = f1(rv(e)). Then d is transcendental over f(VF(S)). It is not hard to see that, by

Lemma 5.3.8, the embedding of the field VF(〈S, e〉) into the field VF(M2) determined by e 7−→ d induces an

Lv-monomorphism f∗ : 〈S, e〉 −→ M2 extending f , which, as above, is identified as an LRV-monomorphism

f∗ : 〈S, e〉 −→ M2 extending f . Now, since the rational rank of Γ(〈S, e〉)/Γ(S) is nonzero and K(S) is
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algebraically closed, by the dimension inequality of valuation theory, we have that K(〈S, e〉) = K(S). By

Lemma 5.3.8 again, Γ(〈S, e〉) = Γ(S) ⊕ (Z · val(e)), that is, Γ(〈S, e〉) = Γ(〈Γ(S), val(e)〉). So RV(〈S, e〉) =

RV(〈RV(S), rv(e)〉) ⊆ RV(S1) and hence f∗ ¹ RV(〈S, e〉) = f1 ¹ RV(〈S, e〉).

Proposition 5.3.10. There is a monomorphism f∗1 : M1 −→ M2 extending f1.

Proof. First of all, since the henselization L of (VF(S1),O(S1)) in M1 is an immediate extension (in the sense

of valuation theory), we have that RV(〈L, S1〉) = RV(S1). So we may assume that f1 is a monomorphism

from 〈L, S1〉 into M2. Now we use Lemma 5.3.5 to extend f1 ¹ L to f2 : S2 −→ M2 by adding all the

elements in K(S1) that are algebraic over K(L). Manifestly K(S2) is algebraically closed. Then, starting

with the least n such that there is a γ ∈ Γ(S2) that is not divisible by n, we use Lemma 5.3.6 to extend f2 to

f3 : S3 −→ M2 such that Γ(S3) is divisible. Note that, by the proof of Lemma 5.3.6, K(S3) = K(S2). Next,

we use Lemma 5.3.7 to extend f3 to f4 : S4 −→ M2 by adding an element in K(S1) that is transcendental over

K(S3). Iterating this procedure we may exhaust all elements in K(S1) and hence obtain a monomorphism

f5 : S5 −→ M2 such that S5 satisfies the assumption of Lemma 5.3.9. Then, a combined application of

henzelization, Lemma 5.3.6, and Lemma 5.3.9 eventually brings a monomorphism f∗ : S∗ −→ M2 such that

f1 ⊆ f∗ and S∗ is VF-generated. In this case, the proposition follows from Remark 5.2.4, Theorem 5.2.5,

and Fact 5.3.1.

This proposition and Fact 5.3.1 immediately yields:

Theorem 5.3.11. The theory ACVF admits quantifier elimination.

5.4 Basic structural properties

From this section forth the background assumption is resumed: we work in a monster model C of ACVF0
S ,

where S is a fixed “small” substructure of C.

Although its proof only involves elementary calculations, the following simple lemma is vital to the

inductive arguments below. Its failure when charK > 0 is one of the major obstacles for generalizing the

Hrushovski-Kazhdan integration theory to valued fields of positive residue characteristics.

Lemma 5.4.1. Let c1, . . . , ck ∈ VF be distinct elements of the same value α such that their average is 0.

Then for some ci 6= cj we have that val(ci − cj) = α and hence rv is not constant on the set {c1, . . . , ck}.

Proof. Suppose for contradiction that val(ci − cj) > α for all ci 6= cj ∈ A. Since c1 = −(c2 + . . . + ck) and
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charK = 0, we have that

α = val(kc1) = val((k − 1)c1 − (c2 + . . . + ck)) = val

(
k∑

i=2

(c1 − ci)

)
> α,

contradiction.

Definition 5.4.2. Let A be a definable subset of VFm. A definable auxiliary projection of A is a definable

function of A of the form

(x1, . . . , xm) 7−→ (rv(g1), . . . , rv(gk)),

where each gi : A −→ VF is a definable function.

Lemma 5.4.3. Let A be a definable finite subset of VFn. Then there is a definable injective auxiliary

projection of A.

Proof. We do double induction on n and the number k of elements in A. For n = 1, let A = {c1, . . . , ck} ⊆
VF. Let c = (

∑k
i=1 ci)/k be the average of A. Then there is a definable bijective function from A onto

{c1 − c, . . . , ck − c}. So we may assume that the average of A is 0. Since the set val(A) is finite, for each

γ ∈ val(A), the set A ∩ val−1(γ) is definable. So by the inductive hypothesis we may also assume that

val is constant on A; say, val(ci) = α for all ci ∈ A. By Lemma 5.4.1, rv is not constant on A, that is,

1 < |rv(A)| ≤ k. So 1 ≤
∣∣rv−1(t) ∩A

∣∣ < k for each t ∈ rv(A). By the inductive hypothesis there is

a 〈t〉-definable injective auxiliary projection ft of rv−1(t) ∩ A for each t ∈ rv(A). It is easy to see that

for each ft there is a definable rv-function f∗t on a subset of A such that f∗t (ci) = (t, ft(ci)) for each

ci ∈ rv−1(t) ⊆ dom(f∗t ). Also, the collection of rv-functions f of A with ran(f) ⊆ RVm for some m is

rv-closed. Applying Lemma 5.2.11 we obtain a definable injective auxiliary projection of A.

Now suppose that n > 1. By the inductive hypothesis, there is a definable injective auxiliary projection

g of prn(A) and, for each c ∈ prn(A), a c-definable injective auxiliary projection fc of fib(A, c). As above,

for each fc,

1. there is a definable (g ◦ prn)-function f∗c on a subset of A such that f∗c (ci) = ((g ◦ prn)(ci), fc(ci)) for

each ci ∈ fib(A, c),

2. the collection of (g ◦ prn)-functions f of A with ran(f) ⊆ RVm for some m is (g ◦ prn)-closed.

Applying Lemma 5.2.11 we obtain a definable injective auxiliary projection of A.

Note that this proof has nothing to do with algebraic closedness and hence works for the theory of valued

fields as naturally formulated in LRV.
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The role of balls in a motivic measure on a valued field is similar to that of intervals in the Lebesgue

measure on the real line. We begin the study of balls with a list of easily seen properties.

Remark 5.4.4. Let a be an open ball and b a ball.

1. For any c ∈ VF, the subset a − c = {a− c : a ∈ a} is an open ball. If c ∈ a then vcr(a − c) = ∞ and

rad(a − c) = rad(a) and a − c is a union of rv-balls. If c /∈ a and val(c) ≤ rad(a) then vcr(a − c) ≤
rad(a− c) = rad(a). If c /∈ a and val(c) > rad(a) then a− c = a.

2. 0 /∈ a if and only if a is contained in an rv-ball if and only if vcr(a) 6= ∞ if and only if rad(a) ≥ vcr(a).

3. The average of finitely many elements in a is in a, which fails if char(K) > 0.

4. For any c1, c2 ∈ VF, (a−c1)∩(a−c2) 6= ∅ if and only if a−c1 = a−c2 if and only if val(c1−c2) > rad(a).

5. If a ∩ b = ∅ then val(a − b) = val(a′ − b′) for all a, a′ ∈ a and b, b′ ∈ b. The subset a − b =

{a− b : a ∈ a and b ∈ b} is a ball that does not contain 0. In fact, for any a ∈ a and b ∈ b, either

a− b = a− b or a− b = a− b.

6. Suppose that a ∩ b = ∅. Let c be the smallest closed ball that contains a. Clearly vcr(c) = vcr(a) and

rad(c) = rad(a). If b is a maximal open subball of c, that is, if b is an open ball contained in c with

rad(b) = rad(c), then a − b is an rv-ball rv−1(t) with val(t) = rad(a). This means that the collection

of maximal open subballs of c admits a K-affine structure.

7. Let f(x) be a polynomial with coefficients in VF and d1, . . . , dn the roots of f(x). Suppose that a is

contained in an rv-ball and does not contain any di. Then each a − di is contained in an rv-ball and

hence f(a) is contained in an rv-ball, that is, (rv ◦f)(a) is a singleton.

Similar properties are available if a is a closed ball.

Definition 5.4.5. A subset X of VF is a punctured (open, closed, rv-) ball if X = b \ ⋃n
i=1 hi, where b

is an (open, closed, rv-) ball, hi, . . . , hn are disjoint balls, and hi, . . . , hn ⊆ b. Each hi is a hole of X. The

radius and the valuative center of X are those of b. A subset Y of VF is a simplex if it is a finite union of

disjoint balls and punctured balls of the same radius and the same valuative center, which are defined to be

the radius and the valuative center of Y and are denoted by rad(Y ) and vcr(Y ).

A special kind of simplex is called a thin annulus: it is a punctured closed ball b with a single hole h

such that h is a maximal open ball contained in b. For example, an element γ ∈ Γ may be regarded as a

thin annulus: it is the punctured closed ball with radius γ and valuative center ∞ and the special maximal

open ball containing 0 removed.
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Remark 5.4.6. The theory ACVF0 is C-minimal; that is, every parametrically definable subset of VF is

a boolean combination of balls. This basically follows from [39, Theorem 4.11] and the easy fact that

any subset of VF that is parametrically definable in LRV is also parametrically definable in the two-sorted

language Lv for valued fields. Hence, for any parametrically definable subset X of VF, there are disjoint

balls and punctured balls a1, . . . , al obtained from a unique set of balls b1, . . . , bn, h1, . . . , hm such that

X =
⋃

i bi \
⋃

j hj . If we group a1, . . . , al by their radii and valuative centers then X may also be regarded

as the union of a unique set of disjoint parametrically definable simplexes. Each bi is a positive boolean

component of X and each hj is a negative boolean component of X. It follows that, as imaginary definable

subsets, Γ is o-minimal and the set of maximal open balls contained in a closed ball is strongly minimal.

Definition 5.4.7. Let b1, . . . , bn be the positive boolean components of a subset X ⊆ VF. The positive

closure of X is the set of the minimal closed balls {c1, . . . , cm} such that each ci contains some bj .

Note that, if X ⊆ VF is definable from a set of parameters then its positive closure is definable from the

same set of parameters.

Lemma 5.4.3 is of fundamental importance in the Hrushovski-Kazhdan theory. Other structural proper-

ties of functions between or within the two sorts will also be needed below. For example:

Lemma 5.4.8. Let W be a definable subset of RVm and f : W −→ VFn a definable function. Then f(W )

is finite.

Proof. The proof is by induction on n. For the base case n = 1, suppose for contradiction that f(W )

is infinite. By C-minimality, f(W ) is a union of disjoint balls and punctured balls b1, . . . , bl such that

rad bi < ∞ for some i, say b1. Let φ be a formula that defines f . By quantifier elimiation, φ may be

assumed to be a disjunction of conjunctions of literals. Since f(W ) is infinite, there is at least one disjunct

in φ, say φ∗, that does not have an irredundant VF-sort equality as a conjunct. Fix a b ∈ b1 and a t ∈ W

such that the pair (t, b) satisfies φ∗. For any term rv(g(x)) in φ∗, where g(x) ∈ VF(〈∅〉)[x], and any d ∈ VF,

if val(d − b) is sufficiently large then rv(g(b)) = rv(g(d)). So there is a d ∈ b1 such that the pair (t, d) also

satisfies φ∗, which is a contradiction as f is a function. In general, if n > 1, by the inductive hypothesis

both pr1 ◦f(W ) and pr>1 ◦f(W ) are finite, hence f(W ) is finite.

Lemma 5.4.9. Let b ⊆ VF be a ball such that b∩VF(acl(∅)) = ∅. For any definable function f : X −→ RVn

with b ⊆ X, f ¹ b is constant.

Proof. Clearly it is enough to show the case n = 1. Let φ be a quantifier-free formula in disjunctive normal

form that determines f ¹ b. We may assume that no disjunct of φ is redundant and hence φ does not
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contain any VF-sort literal. For any term rv(g(x)) in φ, where g(x) ∈ VF(〈∅〉)[x], and any root b of g(x),

since b ∈ VF(acl(∅)), we have that b /∈ b and hence there is a t ∈ RV such that b − b ⊆ rv−1(t). So

rv(g(a1)) = rv(g(a2)) for all a1, a2 ∈ b. It follows that |f(b)| = 1.

Lemma 5.4.10. Let f : X −→ Y be a definable surjective function, where X, Y ⊆ VF. Then there is a

definable function P : X −→ RVm such that, for each t ∈ ranP , f ¹ P−1(t) is either constant or injective.

Proof. Let Y1, Y2 be a partition of Y given by Lemma 5.2.14. By Lemma 5.4.3, there is an injective function

from Y1 into RVl for some l. The same holds for every f−1(b) with b ∈ Y2. So the lemma follows from

compactness.

Definition 5.4.11. Let B be a finite definable set of (open, closed, rv-) balls b1, . . . , bn. We call B an

algebraic set of balls,
⋃

B an algebraic union of balls, and each bi an algebraic (open, closed, rv-) ball. If

there is a definable subset C of
⋃

B and a definable surjective function f : B −→ C such that f(bi) ∈ bi

for every bi ∈ B then we say that B has definable centers and C is an definable set of centers of B.

It is not hard to see that, if S is VF-generated and X is a γ-definable subset of VFn, then X is γ-definable

in the two-sorted language Lv.

Lemma 5.4.12. Suppose that S is VF-generated and γ ∈ Γ. Let X be a γ-algebraic union of disjoint balls

b1, . . . , bn. Then there is a disjunction of VF-sort equalities
∨

j Fj(x) = 0, where Fj(x) ∈ VF(〈∅〉)[x], such

that (
∨

j Fj(VF) = 0) ∩ bi 6= ∅ for each bi.

Proof. Without loss of generality we may assume that rad bi < ∞ and 0 /∈ bi for each bi, that is, each bi is

an infinite subset and is contained in an rv-ball. Let φ be an Lv-formula such that φ(a, γ) defines X, where

a ∈ VF(〈∅〉). By Theorem 5.2.5, we may assume that φ is quantifier-free and is written in disjunctive normal

form. If φ does not contain any Γ-sort literal then each disjunct of φ must contain a VF-sort equality. In

this case the lemma is clear. So let us assume that some disjunct of φ contains an irredundant Γ-sort literal

and also lacks VF-sort equality. Let Γγ be the substructure of Γ generated by γ. Each Γ-sort literal in φ is

of the form

valF (x) ¤ valG(x) + ξ,

where F (x), G(x) ∈ VF(〈∅〉)[x], ξ ∈ Γγ , and ¤ is one of the symbols =, 6=, ≤, and >. Let Fj(x) enumerate

all polynomials in VF(〈∅〉)[x] that occur in the literals in φ.

We claim that
∨

j Fj(x) = 0 is as required. Suppose for contradiction that this is not the case, say

(
∨

j Fj(VF) = 0)∩ b1 = ∅. Let Rj be the set of the roots of Fj(x). For each r ∈ ⋃
Rj , since r /∈ b1, we have
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that vcr(b1 − r) < rad b1 ≤ ∞ if b1 is a closed ball and vcr(b1 − r) ≤ rad b1 < ∞ if b1 is an open ball. So

there is a d ∈ VF \X such that

1. val(d) = vcr(b1),

2. max {vcr(b1 − r) : r ∈ {0} ∪⋃
Rj} ≤ vcr(b1 − d) ≤ rad b1,

3. vcr(b1 − r) = val(d− r) for each r ∈ ⋃
Rj ,

4. d satisfies all VF-sort disequalities in φ.

Since b1 is an infinite subset, there is a b ∈ b1 such that b satisfies a disjunct φ′ of φ and φ′ lacks VF-sort

equality. Then d also satisfies φ′, contradiction.

Corollary 5.4.13. Suppose that S is VF-generated. If Γ(acl(∅)) is nontrivial then acl(∅) is a model of

ACVF0
S.

Lemma 5.4.14. Suppose that S is VF-generated. Let γ ∈ Γ and B a γ-algebraic set of balls b1, . . . , bn.

Then B has γ-definable centers.

Proof. The set B may be partitioned into subsets B1, . . . , Bm ⊆ B such that each Bi is an γ-algebraic

set of disjoint balls. So without loss of generality we may assume that B is a set of disjoint balls. By

Lemma 5.4.12, there is an algebraic subset C of VF such that C ∩ bi 6= ∅ for every i. So the set B gives rise

to a partition of C and the set of the averages of the parts of this partition is γ-definable. Since charK = 0,

the corresponding average remains in each bi.

Lemma 5.4.15. If B is a parametrically definable infinite set of closed balls then there is a parametrically

definable map of B onto a proper interval of Γ.

Proof. Since Γ is o-minimal, any parametrically definable infinite subset of Γ contains an interval. Therefore

it suffices to show that there is a parametrically definable map of B into Γ whose image is infinite. If either

the subset {rad b : b ∈ B} is infinite or the subset {vcr b : b ∈ B} is infinite then clearly such a map exists.

So, without loss of generality, we may assume that both rad and vcr are constant on B. Since B is infinite,

obviously vcrB 6= ∞. Now, by C-minimality, the subset pr1 B is a finite union of disjoint balls b1, . . . , bn,

some of which may be punctured. Clearly vcr bi = vcrB for every bi. Since every b ∈ B is closed and B

is infinite, we must have that rad b > rad bi for some bi, say b1. Choose a c ∈ b1 such that the open ball

{x ∈ VF : val(x− c) > rad b1} is contained in b1. Clearly the subset

{vcr(b− c) : b ∈ B and b ⊆ b1}
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is infinite. Hence the parametrically definable map of B given by b 7−→ vcr(b− c) is as desired.

Lemma 5.4.16. Suppose that S is (VF,Γ)-generated. Let t = (t1, . . . , tn) ∈ RV and B a t-algebraic set of

closed balls. Then B has t-definable centers.

Proof. The proof is by induction on n. The base case n = 0 is covered by Lemma 5.4.14. We proceed to

the inductive step. First note that for any γ ∈ Γ the subset Aγ = {t ∈ RV : vrv(t) = γ} is strongly minimal.

Let φ be a formula that defines B. Let vrv(t1) = γ1. For any s = (s1, t2, . . . , tn+1) with vrv(s1) = γ1, let

Ws ⊆ VF3 be the subset defined by φ(s). Let Bs = Ws if Ws is a finite set of closed balls; otherwise Bs = ∅.
Consider the set of closed balls D =

⋃
Bs, which contains B, and the subset

D =
⋃
{{s} ×Bs : s ∈ γ1 × {(t2, . . . , tn+1)}} ,

both of which are 〈γ1, t2, . . . , tn+1〉-definable. We claim that D is finite. Suppose for contradiction that D is

infinite. Since any two disjoint parametrically definable infinite subsets of D would give rise to two disjoint

parametrically definable infinite subsets of Aγ1 , which is a contradiction as Aγ1 is strongly minimal, we deduce

that D is strongly minimal. By Lemma 5.4.15, there is a parametrically definable map of D onto an interval

of Γ, which must be strongly minimal as well. However, the ordering of Γ is linear and dense, and hence

no interval of Γ is strongly minimal, contradiction. So D is finite. Applying the inductive hypothesis with

respect to the substructure 〈γ1〉 and the tuple (t2, . . . , tn+1), we conclude that B has t-definable centers.

Lemma 5.4.17. For any t ∈ RV, if rv−1(t) has a definable proper subset then it has definable center.

Proof. Let X be a definable proper subset of rv−1(t). Let b1, . . . , bn be the positive boolean components of

X and h1, . . . , hm the negative boolean components of X. Since X is a proper subset of rv−1(s), at least one

of these balls is a proper subball of rv−1(s) and hence its positive closure is also a proper subball of rv−1(s).

Then, by Lemma 5.4.16, there is a definable finite subset of rv−1(s) and hence, by taking the average, a

definable point in rv−1(s).

5.5 Parametric balls and atomic subsets

In this section let Q be a set of parameters that consists of balls of radius < ∞. Without loss of generality,

we may assume that no ball in Q is definable.

Definition 5.5.1. A subset X generates a complete Q-type if for all Q-definable subset Y either X ⊆ Y or

X ∩ Y = ∅. An Q-definable subset X is atomic over 〈Q〉 if it generates a complete Q-type.
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Lemma 5.5.2. Let T be an Q-definable set of balls and φ a formula such that, for all t1 6= t2 ∈ T , φ(t1)

and φ(t2) define two disjoint balls bt1 and bt2 . For each t ∈ T , if bt is not Q-algebraic then it is atomic over

〈Q, t〉.

Proof. Suppose for contradiction that there is a non-Q-algebraic bs and a formula ψ such that ψ(s) defines

a proper subset of bs. For each t ∈ T , let Xt be the set defined by ψ(t) if it is a proper subset of bt and

Xt = ∅ otherwise. Set X =
⋃

t∈T Xt, which is Q-definable. By C-minimality, X is a boolean combination

of some balls d1, . . . , dn. Since the balls bt are pairwise disjoint, there are only finitely many balls bt that

contain some di. Note that this finite collection of balls is Q-definable, which does not contain bs since bs is

not Q-algebraic. On the other hand, since bs ∩X 6= ∅, we must have that bs ⊆ X. This is a contradiction

because the balls bt being pairwise disjoint implies that bs ∩X is a proper subset of bs.

Lemma 5.5.3. Let X ⊆ VFn×RVm be atomic over 〈Q〉 and γ ∈ Γ. Then X is atomic over 〈Q, γ〉.

Proof. By induction this is immediately reduced to the case that the length of γ is 1. Suppose for

contradiction that there is a formula ψ(γ) that defines a proper subset of X. Then the subset ∆ =

{γ ∈ Γ : ψ(γ) defines a proper subset of X} is nonempty and is Q-definable. By o-minimality, some α ∈ ∆

is Q-definable, contradicting the assumption that X is atomic over 〈Q〉.

Definition 5.5.4. Let b1 and b2 be two (punctured) balls. We say that they are of the same haecceitistic

type if

1. rad(b1) = rad(b2) and vcr(b1) = vcr(b2),

2. they are both open balls or both closed balls or both thin annuli.

Lemma 5.5.5. Let X ⊆ VF be atomic over 〈Q〉. Then X is the union of disjoint balls b1, . . . , bn of the

same haecceitistic type.

Proof. By C-minimality, X is a union of disjoint balls b1, . . . , bn, some of which may be punctured. First

of all, since X is atomic, both vcr and rad must be constant on {b1, . . . , bn}, because otherwise there would

be an Q-definable proper subset of X according to min {vcr(b1), . . . , vcr(bn)} or min {rad(b1), . . . , rad(bn)}.
Similarly either b1, . . . , bn are all closed balls or are all open balls. Also, since the subset of X that contains

exactly every unpunctured ball bi is definable, we have that either b1, . . . , bn are all punctured or are all

unpunctured.

So it is enough to show that if bi is punctured then it must be a thin annulus. By atomicity again,

if b1, . . . , bn are punctured then each bi must contain the same number of holes. If bi has a hole h with
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rad(h) < rad(bi) then bi \ h∗ is nonempty, where h∗ is the closed ball that has radius (rad(bi) + rad(h))/2

and contains h. The collection of all such holes h1, . . . , hm is Q-definable and hence, if it is not empty,

then there would be a proper subset of X that is Q-defined by replacing each hi with h∗i . So each hole

in each bi is a maximal open ball in bi. Suppose for contradiction that b1 contains more than one holes

h1, . . . , hm. Without loss of generality we may assume that 0 /∈ h1. Since the subset h2−h1 is an rv-ball and

1 · (h2−h1), . . . , (m+1) · (h2−h1) are distinct rv-balls, for some 1 ≤ k ≤ m+1 we have that h1 +k · (h2−h1)

is a maximal open ball in b1 and is disjoint from
⋃

i hi. This means that there is a finite Q-definable set of

maximal open balls in b1, . . . , bn that strictly contains the set of holes in b1, . . . , bn. This readily implies

that X has a nonempty proper Q-definable subset, contradiction.

Note that, in the above lemma, if Q = ∅ then X cannot be a disjoint union of closed balls of radius

< ∞, because in that case, by Lemma 5.4.16, the closed balls would have definable centers. Now, if X ⊆ VF

is atomic over 〈Q〉 then the radius and the valuative center of X are well-defined quantities: they are

respectively the radius and the valuative center of the balls b1, . . . , bn in the above lemma. These are also

denoted by rad(X) and vcr(X). The balls b1, . . . , bn are called the haecceitistic components of X.

Corollary 5.5.6. If X ⊆ VF is atomic over 〈Q〉 and b ⊆ X is an open (closed) ball then every a ∈ X is

contained in an open (closed) ball da ⊆ X with rad(da) = rad(b).

Lemma 5.5.7. Let X ⊆ VF be atomic over 〈Q〉 and f : X −→ VF an Q-definable injective function. If X

has only one haecceitistic component then f(X) also has only one haecceitistic component.

Proof. Let b1, . . . , bn be the haecceitistic components of f(X) given by Lemma 5.5.5. Suppose that X is an

open ball or a closed ball or a thin annulus. Suppose for contradiction that n > 1. Then there is exactly one

of the components b1, . . . , bn, say b1, such that f−1(b1) contains the punctured ball X \⋃
j hj for some holes

hj . Consequently, since rad(f(X)) is Q-definable, the ball b1 and f−1(b1) are Q-definable, contradicting the

assumption that X is atomic.

Lemma 5.5.8. Let X ⊆ VF be atomic over 〈Q〉 with haecceitistic components b1, . . . , bn and b an open

(closed) ball properly contained in some bi. Set γ = rad(b). Then b is atomic over 〈Q, γ, b〉.

Proof. We assume that b is an open ball, since the proof for closed balls is identical. By Lemma 5.5.3, X is

atomic over 〈Q, γ〉. Since the infinite set of pairwise disjoint balls

D = {d ⊆ X : d is an open subball of X with rad(d) = γ}
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is 〈Q, γ〉-definable and
⋃

D = X, clearly no d ∈ D is 〈Q, γ〉-algebraic. So, by Lemma 5.5.2, every d ∈ D is

atomic over 〈Q, γ, d〉.

Lemma 5.5.9. Let o be an open ball and l a close ball or a thin annulus such that both o and l are atomic

over 〈Q〉. If X ⊆ o× l is Q-definable then the projection pr1 ¹ X cannot be finite-to-one.

Proof. We assume that l is a closed ball, since the proof for thin annuli is identical. Suppose for contradiction

that there is an Q-definable X ⊆ o× l such that the first coordinate projection on X is finite-to-one. Note

that, since o and l are atomic, we must have that pr1 X = o and pr2 X = l. Let M be the set of maximal

open subballs of l, which is Q-definable. For any x ∈ M, let Ax = pr1((pr2 ¹ X)−1(x)). By C-minimality each

Ax is a boolean combination of balls. In fact, for any x, y ∈ M, Ax and Ay must have the same number of

boolean components, because otherwise there would be an Q-definable proper subset of l. Let this number

be k.

For any x ∈ M, suppose that B = {b1, . . . , bk} is the set of the boolean components of Ax, we let

λx = min {rad(b1), . . . , rad(bk)}. Moreover, for any bi, bj ∈ B, if bi ∩ bj 6= ∅ then let ρ(bi, bj) =

min {rad(bi), rad(bj)}, otherwise let ρ(bi, bj) = val(bi − bj). Let ρx = min
{
ρ(bi, bj) : (bi, bj) ∈ B2

}
. Note

that the subsets Λ = {λx : x ∈ M} ⊆ Γ and ∆ = {ρx : x ∈ M} ⊆ Γ are both Q-definable. Since l is atomic,

we must have that both Λ and ∆ are singletons, say Λ = {λ} and ∆ = {ρ}. Also, we claim that λ < rad(o).

To see this, suppose for contradiction λx = rad(o) for every x ∈ M. This means that Ax has o as a positive

boolean component for every x ∈ M. Since o is open, we have that for any n and any x1, . . . , xn ∈ M there is

an a ∈ ⋂
i≤n Axi and hence there is a bi ∈ xi for every i ≤ n such that (a, bi) ∈ X. Therefore, by compactness,

there is an a ∈ o such that the fiber {b : (a, b) ∈ X} is infinite, contradicting the assumption that pr1 ¹ X is

finite-to-one.

Now, fix an x ∈ M. Again, since o is open, there is a proper open subball z of o that properly contains Ax.

Let Bz = pr2((pr1 ¹ X)−1(z)). Since Bz properly contains the maximal open subball x of l, by C-minimality,

either x is a boolean component of Bz that is disjoint from any other boolean component of Bz or l is a

positive boolean component of Bz. However, the former is impossible, because in that case Bz could only

have finitely many maximal open subballs of l as its positive boolean components and consequently, since

Λ = {λ} is a singleton, z could not be an open ball, contradiction. So we must have that l is a positive

boolean component of Bz. This means that, by C-minimality, Bz can only have finitely many maximal open

subballs of l as its negative boolean components, say x1, . . . , xn. Again, since Λ = {λ} and λ < rad(o),
⋃

i≤n Axi must be a proper subset of o\ z and hence there is a y ∈ M such that y ⊆ Bz and Ay has a boolean

component contained in z and another boolean component disjoint from z. This implies that ρy ≤ rad(z).

On the other hand, since Ax ⊆ z, we have that ρx > rad(z). This is a contradiction since ∆ is a singleton.
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Lemma 5.5.10. Let q be an open ball such that it is atomic over 〈q〉. Let X ⊆ VF be atomic over 〈q〉 such

that it only has one haecceitistic component. If X is infinite then it is either an open ball or a thin annulus.

Proof. Suppose for contradiction that X is a closed ball of radius < ∞. Let ψ be a quantifier-free formula

in disjunctive normal form that defines X. Note that, by Lemma 5.4.16, q must occur in ψ. Without loss of

generality, q is represented in ψ by some q ∈ q. We claim that any disjunct in ψ that contains a nontrivial

VF-sort equality f(x) = 0 as a conjunct is redundant: if q does not occur in f(x) then, since X is atomic,

f(a) 6= 0 for any a ∈ X; if q does occur in f(x) then we still have that f(a) 6= 0 for any a ∈ X, because

otherwise there would be an q-definable Y ⊆ q ×X with pr1 ¹ Y finite-to-one, contradicting Lemma 5.5.9.

Dually, we may also assume that no disjunct in ψ contains VF-sort disequality. Similarly, for any term

rv(g(x)) in ψ with g(x) nonconstant, we have that g(a) 6= 0 for any a ∈ X. It is not hard to see that, since

all the roots of all the nonconstant polynomials g(x) in all the terms of the form rv(g(x)) in ψ lie outside

X and X is a ball, there is a b /∈ X such that rv(g(b)) = rv(g(a1)) = rv(g(a2)) for any a1, a2 ∈ X. So b also

satisfies ψ, contradiction.

Lemma 5.5.11. Let X ⊆ VF be an open ball atomic over 〈Q〉 and f : X −→ VF an Q-definable injective

function. Then f(X) is also an atomic open ball.

Proof. By Lemma 5.5.7, f(X) is an open ball or a closed ball or a thin annulus. Then, according to

Lemma 5.5.9, f(X) must be an open ball.

Lemma 5.5.12. Let X ⊆ VF generate a complete type. Let f : VF −→ VF be a definable function such

that f ¹ X is injective. Then for every open ball b ⊆ X the image f(b) is also an open ball.

Proof. Fix an open ball b ⊆ X and set γ = rad(b). We claim that b is not γ-algebraic. To see this,

suppose for contradiction that there is a formula ψ(γ) in disjunctive normal form that defines a finite set

B = {b1, . . . , bn} of balls such that b1 = b. Without loss of generality we may assume that every bi is an

open ball of radius γ and, since B is finite,
⋃

B ⊆ X. So all VF-sort literals in ψ(γ) are redundant. For

any term rv(g(x)) in ψ with g(x) ∈ VF(〈∅〉)[x], clearly if g(x) is not a constant polynomial then g(b) 6= 0 for

any b ∈ bi. Since all the roots of all the nonconstant polynomials g(x) in all the terms of the form rv(g(x))

in ψ(γ) lie outside
⋃

B and B is finite, there is an a /∈ ⋃
B such that rv(g(a)) = rv(g(b1)) = rv(g(b2)) for

any b1, b2 ∈ b. Therefore a also satisfies ψ(γ), contradiction.

Now, since b is not γ-algebraic, by Lemma 5.5.2, b is atomic over 〈γ, b〉 and hence, by Lemma 5.5.11,

f(b) is an open ball.
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Proposition 5.5.13. Let X, Y ⊆ VF be definable and f : X −→ Y a definable bijection. Then there

are definable disjoint subsets X1, . . . , Xn ⊆ X with
⋃

Xi = X such that, for any open balls a ∈ Xi and

b ∈ f(Xi), both f(a) and f−1(b) are open balls.

Proof. For every a ∈ X let Za ⊆ X be the intersection of all definable subsets of X that contains a. So

Za generates a complete type. By Lemma 5.5.12, for every open ball a ⊆ Za, the image f(a) is an open

ball. This open-to-open property may be rephrased as follows: for every b ∈ Za and t ∈ RV let o(b, t) be

the open ball that contains b and has radius vrv(t), if o(b, t) ⊆ Za then f(o(b, t)) is an open ball. Therefore,

by compactness, there is a definable subset Da ⊆ X containing a such that f ¹ Da has this open-to-open

property. By compactness again, there are definable subsets X1, . . . , Xm ⊆ X with
⋃

Xi = X such that each

f ¹ Xi has this open-to-open property. Similarly there are definable subsets Y1, . . . , Yl ⊆ Y with
⋃

Yi = Y

such that each f−1 ¹ Yi has this open-to-open property. The partition of X determined by X1, . . . , Xm,

f−1(Y1), . . . , f−1(Yl) is as desired.

Let X ⊆ VFn×RVm and i ∈ {1, . . . , n}. A subset Y ⊆ X is an open ball contained in X[i] if Y is of

the form b × {x}, where b is an open ball and x ∈ prĩ X. Of course, if Y is an open ball contained in X[i]

and prĩ X is a singleton then we simply say that Y is an open ball contained in X. The same goes to closed

balls, rv-balls, simplexes, etc.

Definition 5.5.14. Let X ⊆ VFn1 ×RVm1 , Y ⊆ VFn2 ×RVm2 , and f : X −→ Y a bijection. Let

i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}. For any a ∈ prĩ X and any b ∈ prj̃ Y , let fa,b = f ¹ (fib(X, a) ∩
f−1(fib(Y, b))). We say that f has the (i, j)-open-to-open property if, for every a ∈ prĩ X and every b ∈ prj̃ Y ,

fa,b has the open-to-open property described in Proposition 5.5.13. If f has the (i, j)-open-to-open property

for every (i, j) ∈ {1, . . . , n1} × {1, . . . , n2} then f has the open-to-open property.

With this understanding, Proposition 5.5.13 may be easily generalized as follows:

Proposition 5.5.15. Let X ⊆ VFn1 ×RVm1 , Y ⊆ VFn2 ×RVm2 be definable subsets and f : X −→ Y

a definable bijection. Then there are definable disjoint subsets X1, . . . , Xn ⊆ X with
⋃

Xi = X such that

f ¹ Xi has the open-to-open property for every i.

Proof. First observe that if f has the (i, j)-open-to-open property then, for every subset X∗ ⊆ X, f ¹ X∗ has

the (i, j)-open-to-open property. Next, by Proposition 5.5.13, for any a ∈ pr>1 X and b ∈ pr>1 Y there is a

(a, b)-definable finite partition V1, . . . , Vn of dom(fa,b) such that each fa,b ¹ Vi has the open-to-open property.

Since V1, . . . , Vn may be extended into a definable partition V ∗
1 , . . . , V ∗

n of X such that V ∗
i ∩ dom(fa,b) = Vi

and for any finite collection of partitions P1, . . . , Pm of X there is a partition P of X such that P is finer
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than each Pi, by compactness, we obtain a definable partition V1,1, . . . , V1,n of X such that each f ¹ V1,i has

the (1, 1)-open-to-open property. Iterating this procedure for each (i, j) ∈ {1, . . . , n1} × {1, . . . , n2} on each

piece of the partition obtained in the previous step, we eventually get a partition of X that is as desired.

5.6 Categories of definable subsets

Motivic integrals will be constructed as homomorphisms between the Grothendieck semigroups (or semirings)

of various categories associated with the theory ACVF0
S .

5.6.1 Dimensions

Before we introduce the categories and their Grothendieck groups, two notions of dimension with respect to

the two different sorts are needed.

Definition 5.6.1. Let X ⊆ VFn×RVm be a definable subset. The VF-dimension of X, denoted as

dimVF X, is the smallest number k such that there is a definable finite-to-one function f : X −→ VFk ×RVl.

Lemma 5.6.2. Let X ⊆ VFn×RVm be a definable subset. Then dimVF X ≤ k if and only if there is a

definable injection f : X −→ VFk ×RVl for some l.

Proof. Suppose that dimVF X ≤ k. Let g : X −→ VFk ×RVl be a definable finite-to-one function. For every

(a, t) ∈ g(X), since g−1(a, t) is finite, by Lemma 5.4.3, there is an (a, t)-definable injection ha,t : g−1(a, t) −→
RVj for some j. By compactness, there is a definable function h : X −→ RVj for some j such that h ¹ g−1(a, t)

is injective for every (a, t) ∈ g(X). Then the function f on X given by (b, s) 7−→ (g(b, s), h(b, s)) is as desired.

The other direction is trivial.

Lemma 5.6.3. Let X ⊆ VFn×RVm be a definable subset and f : X −→ RVl a definable function. Then

dimVF X = max
{
dimVF f−1(t) : t ∈ ran(f)

}
.

Proof. Let max{dimVF f−1(t) : t ∈ RVl} = k. By Lemma 5.6.2, for every t ∈ ran(f), there is a t-definable

injective function ht : f−1(t) −→ VFk ×RVj for some j. By compactness, there is a definable function

h : X −→ VFk ×RVj for some j such that h ¹ f−1(t) is injective for every t ∈ ran(f). Then the function on

X given by (b, s) 7−→ (h(b, s), f(b, s)) is injective and hence dimVF X ≤ k. The other direction is trivial.

Lemma 5.6.4. Let X ⊆ VFn×RVm be a definable subset. Suppose that there is an (a, t) ∈ X such that

the transcendental degree of VF(〈a〉) over VF(〈∅〉) is k. Then dimVF X ≥ k.
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Proof. Suppose for contradiction that the transcendental degree of VF(〈a〉) over VF(〈∅〉) is k for some

(a, t) ∈ X but dimVF X = i < k. By Lemma 5.6.2, there is a definable bijection f : X −→ Y ⊆ VFi×RVl

for some l. Let f(a, t) = (b, s). By quantifier elimination, we have that VF(〈a〉)ac ⊆ VF(
〈
b
〉
)ac. So the

transcendental degree of VF(〈a〉) over VF(〈∅〉) is at most i, contradiction.

Corollary 5.6.5. Let X ⊆ VFn×RVm be a definable subset that contains a subset of the form {(0, . . . , 0)}×
rv−1(t)× {s} for some t ∈ (RV×)k. Then dimVF X ≥ k.

Definition 5.6.6. Let X ⊆ RVm be a definable subset. The RV-dimension of X, denoted as dimRV X, is

the smallest number k such that there is a definable finite-to-one function f : X −→ RVk.

Definition 5.6.7. Let X ⊆ VFn×RVm be a definable subset. The RV-fiber dimension of X, denoted as

dimfib
RV X, is max {dimRV(fib(X, a)) : a ∈ pVFX}.

Lemma 5.6.8. Let X ⊆ VFn1 ×RVm1 be a definable subset and f : X −→ VFn2 ×RVm2 a definable

injection. Then dimfib
RV X = dimfib

RV f(X).

Proof. Let dimfib
RV X = k1 and dimfib

RV f(X) = k2. Since for every b ∈ pVF f(X) there is a b-definable finite-

to-one function hb : fib(f(X), b) −→ RVk2 , by compactness, there is a definable function h : f(X) −→ RVk2

such that h ¹ fib(f(X), b) is finite-to-one for every b ∈ pVF f(X). For every a ∈ pVFX, by Lemma 5.4.8,

the subset (pVF ◦f)(fib(X, a)) is finite. So the function ga on fib(X, a) given by (a, t) 7−→ (h ◦ f)(a, t) is

a-definable and finite-to-one. So k1 ≤ k2. Symmetrically we also have k1 ≥ k2 and hence k1 = k2.

5.6.2 Categories of definable subsets

The class of the objects and the class of the morphisms of any category C are denoted as Ob C and Mor C,
respectively.

Definition 5.6.9 (VF-categories). The objects of the category VF[k, ·] are the definable subsets of VF-

dimension ≤ k. The morphisms in this category are the definable functions between the objects.

The category VF[k] is the full subcategory of VF[k, ·] of the definable subsets that have RV-fiber dimension

0 (that is, all the RV-fibers are finite). The category VF∗[·] is the union of the categories VF[k, ·]. The

category VF∗ is the union of the categories VF[k].

Note that, for any definable subset X, by Lemma 5.4.3 and Lemma 5.6.4, fib(X, t) is finite for any

t ∈ pRV X if and only if X ∈ ObVF[0, ·].

Definition 5.6.10. For any tuple t = (t1, . . . , tn) ∈ RV, the weight of t is the number |{i ≤ n : ti 6= ∞}|,
which is denoted as wgt t.
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Definition 5.6.11 (RV-categories). The objects of the category RV[k, ·] are the definable pairs (U, f), where

U ⊆ RVm for some m and f : U −→ RVk is a function (RV0 is taken to be the singleton {∞}). We often

denote the projections pri ◦f as f|i and write f as (f|1, . . . , f|k). The companion Uf of (U, f) is the subset

{(f(u), u) : u ∈ U}.
For any two objects (U, f), (U ′, f ′) in this category and any function F : U −→ U ′, the companion

Ff,f ′ : Uf −→ U ′
f ′ of F is the function given by

(f(u), u) 7−→ ((f ′ ◦ F )(u), F (u)).

If, for every u ∈ U , wgt f(u) ≤ wgt(f ′◦F )(u), then we say that F is volumetric. If F is definable, volumetric,

and, for every t ∈ ran(f), the subset

(pr≤k ◦Ff,f ′)({t} × f−1(t))

is finite, then it is a morphism in Mor RV[k, ·].
The category RV[k] is the full subcategory of RV[k, ·] of the pairs (U, f) such that f : U −→ RVk is

finite-to-one.

Direct sums over these categories are formed naturally:

RV[∗, ·] =
∐

0≤k

RV[k, ·], RV[∗] =
∐

0≤k

RV[k].

Notation 5.6.12. We just write X for the object (X, id) ∈ RV[k, ·]. For an object (U,prE) ∈ RV[k, ·] with

E ⊆ N and |E| = k, it is often much more convenient to assume that E = {1, . . . , k} and hence write

(U,prE) as (U,pr≤k). This should not cause any confusion in context.

Remark 5.6.13. One of the main reasons for the peculiar forms of the objects and the morphisms in the

RV-categories is that each isomorphism class in these categories may be “lifted” to an isomorphism class in

the corresponding VF-category. See Proposition 5.9.6 and Corollary 5.9.7 for details.

A subobject of an object X of a VF-category is just a definable subset. A subobject of an object (U, f)

of an RV-category is a definable pair (X, g) with X a definable subset of U and g = f ¹ X. Note that the

inclusion map is a morphism in both cases.

Notice that the cartesian product of two objects X, Y ∈ VF[k, ·] may or may not be in VF[k, ·]. On the

other hand, the cartesian product of two objects (U, f), (U ′, f ′) ∈ RV[k, ·] is the object (U × U ′, f × f ′) ∈
RV[2k, ·], which is definitely not in RV[k, ·] if k > 0. Hence, in RV[∗, ·] or RV[∗], multiplying with a singleton
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in general changes isomorphism class.

Remark 5.6.14. The categories VF∗[·] and VF∗ are formed through union instead of direct sum or other

means that induces more complicated structure. The reason for this is that the main goal of the Hrushovski-

Kazhdan integration theory is to assign motivic volumes, that is, elements in the Grothendieck groups of the

RV-categories, to the definable subsets, or rather, the isomorphism classes of the definable subsets, in the

VF-categories, and the simplest categories that contain all the definable subsets that may be “measured”

in this motivic way are VF∗[·] and VF∗. In contrast, the unions of the RV-categories are naturally endowed

with the structure of direct sum, which gives rise to graded Grothendieck semirings.

Definition 5.6.15. For any (U, f) ∈ ObRV[k, ·] and any F ∈ MorRV[k, ·], let Ek(f) be the function on U

given by u 7−→ (f(u),∞), Ek(U, f) = (U,Ek(f)), and Ek(F ) = F . Obviously Ek : RV[k, ·] −→ RV[k + 1, ·] is

a functor that is faithful, full, and injective on objects. For any i < j let Ei,j = Ej−1 ◦ . . . ◦Ei and Ei,i = id.

Motivic integrals shall be induced by the following fundamental maps.

Definition 5.6.16. For any (U, f) ∈ ObRV[k, ·], let

Lk(U, f) =
⋃ {

rv−1(f(u))× {u} : u ∈ U
}

.

The map Lk : Ob RV[k, ·] −→ ObVF[k, ·] is called the kth canonical RV-lift. The map L≤k : Ob RV[≤
k, ·] −→ ObVF[k, ·] is given by

((U1, f1), . . . , (Uk, fk)) 7−→
⊎

i≤k

(Lk ◦ Ei,k)(Ui, fi).

The map L : ObRV[∗, ·] −→ ObVF∗[·] is simply the union of the maps L≤k.

For notational convenience, when there is no danger of confusion, we shall drop the subscripts and simply

write E and L for these maps.

Remark 5.6.17. Observe that if (U, f) ∈ ObRV[k] then L(U, f) ∈ ObVF[k] and hence the restriction

L : ObRV[k] −→ ObVF[k] is well-defined. Similarly we have the maps L : Ob RV[≤ k] −→ ObVF[k] and

L : Ob RV[∗] −→ ObVF∗.

Note that rv(L(U, f)) = Uf for (U, f) ∈ Ob RV[k, ·].

Lemma 5.6.18. Let (U, f), (U ′, f ′) ∈ Ob RV[k, ·] and F : U −→ U ′ a definable volumetric function. Suppose
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that there is a definable function F ↑ : L(U, f) −→ L(U ′, f ′) such that the diagram

L(U ′, f ′) U ′
f ′rv

//

L(U, f)

L(U ′, f ′)

F↑

²²

L(U, f) Uf
rv // Uf

U ′
f ′

Ff,f′
²²

U ′
f ′ U ′

pr>k

//

Uf

U ′
f ′

²²

Uf U
pr>k // U

U ′

F

²²

commutes. Then F is a morphism in RV[k, ·].

Proof. It is enough to show that, for every u ∈ U and every i ≤ k, ((f ′)i ◦ F )(u) ∈ acl(f(u)), which is

equivalent to (pri ◦Ff,f ′)(f(u), u) ∈ acl(f(u)). To that end, fix a u ∈ U . Let a ∈ f(u) and F ↑(a, u) =

(b1, . . . , bk, u′). By an argument similar to the one in the proof of Lemma 5.4.8, we deduce that bi ∈ acl(a)

and hence rv(bi) ∈ acl(a) for each i ≤ k. By Lemma 5.2.12, we conclude that rv(bi) ∈ acl(f(u)).

Remark 5.6.19. In Lemma 5.6.18, if both F and F ↑ are bijections then we may drop the assumption that

F is volumetric, since it is guaranteed by the commutative diagram and Corollary 5.6.5.

5.6.3 Grothendieck groups

We now introduce the Grothendieck groups associated with the categories defined above. The construction

is of course the same for any reasonable category of definable sets of a first-order theory. For concreteness,

we shall limit our attention to the present context.

Convention 5.6.20. Let f1, . . . , fn be definable functions on subsets X1, . . . , Xn, respectively. Padding with

elements in dcl(∅) if necessary, we may glue f1, . . . , fn together to form one definable function f :
⊎

i Xi −→
⊎

i fi(Xi) in the obvious way. Below, when functions or other kinds of subsets are glued together in this

way, we shall always tacitly assume that sufficient padding work has been performed.

Let C be a VF-category or an RV-category. For any X ∈ Ob C, let [X] denote the isomorphism class

of X. The Grothendieck semigroup of C, denoted as K+ C, is the semigroup generated by the isomorphism

classes [X] of elements X ∈ Ob C, subject to the relation

[X] + [Y ] = [X ∪ Y ] + [X ∩ Y ].

It is easy to check that K+ C is actually a commutative monoid, the identity element being [∅] or ([∅], . . .).
Since C always has disjoint unions, the elements of K+ C are precisely the isomorphism classes of C. If C is

one of the categories VF∗[·], VF∗, RV[∗, ·], and RV[∗] then it is closed under cartesian product. In this case,
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K+ C has a semiring structure with multiplication given by

[X][Y ] = [X × Y ].

Since the symmetry isomorphisms X × Y −→ Y ×X and the association isomorphisms (X × Y ) × Z −→
X × (Y × Z) are always present in these categories, K+ C is always a commutative semiring.

Remark 5.6.21. If C is either VF∗[·] or VF∗ then the isomorphism class of definable singletons is the multi-

plicative identity element of K+ C. If C is RV[∗, ·] then we adjust multiplication when RV[0, ·] is involved as

follows. For any (U, f) ∈ RV[0, ·] and (X, g) ∈ RV[k, ·], let (U, f) £ (X, g) = (X, g) £ (U, f) = (U ×X, g∗),

where g∗ is the function on U ×X given by (t, s) 7−→ g(s). Let

[(U, f)][(X, g)] = [(U, f) £ (X, g)].

It is easily seen that, with this adjustment, K+ RV[∗, ·] becomes a filtrated semiring and its multiplicative

identity element is the isomorphism class of (∞, id) in RV[0, ·]. Multiplication in K+ RV[∗] is adjusted in

the same way.

Definition 5.6.22. A semigroup congruence relation on K+ C is a sub-semigroup R of the semigroup

K+ C ×K+ C such that R is an equivalence relation on K+ C. Similarly, a semiring congruence relation on

K+ C is a sub-semiring R of the semiring K+ C ×K+ C such that R is an equivalence relation on K+ C.

Let R be a semigroup congruence relation on K+ C and (x, y), (v, w) ∈ R. Then (x+ v, y + v), (y + v, y +

w) ∈ R and hence (x + v, y + w) ∈ R. Therefore the equivalence classes of R has a semigroup structure that

is induced by that of K+ C. This semigroup is denoted as K+ C/R and is also referred to as a Grothendieck

semigroup. Similarly, if R is a semiring congruence relation on K+ C then K+ C/R is actually a Grothendieck

semiring.

Remark 5.6.23. Let R be an equivalence relation on the semiring K+ C. If for every (x, y) ∈ R and every

z ∈ K+ C we have that (x + z, y + z) ∈ R and (xz, yz) ∈ R then R is a semiring congruence relation.

Let (ZK+ C ,⊕) be the free abelian group generated by the elements of K+ C and C the subgroup of

(ZK+ C ,⊕) generated by all elements of (ZK+ C ,⊕) of the types

(1 · x)⊕ ((−1) · x)

(1 · x)⊕ (1 · y)⊕ ((−1) · (x + y)),
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where x, y ∈ K+ C. The Grothendieck group of C, denoted as K C, is the formal groupification (Z(K+ C),⊕)/C

of K+ C, which is essentially unique by the universal mapping property. Clearly K+ C is canonically isomor-

phic to a sub-semigroup of K C. If K+ C is a semiring then K C is a commutative ring.

Remark 5.6.24. It is easily checked that Ek induces an injective semigroup homomprphisms K+ RV[k, ·] −→
K+ RV[k + 1, ·], which is also denoted as Ek.

Notation 5.6.25. For any definable subset X ⊆ RVn, we write [X]n for the isomorphism class [(X, id)] ∈
K+ RV[n, ·]. For any subset E ⊆ N with |E| = k, we write [X]E for the isomorphism class [(X, prE)] ∈
K+ RV[k, ·]. If E = {1, . . . , k} etc. then we may write [X]≤k etc. If X is a singleton then we just write [1]k

for the isomorphism class [(X, f)] ∈ K+ RV[k, ·].

5.7 RV-products and special bijections

Convention 5.7.1. Since definably bijective subsets are to be identified, we shall tacitly substitute c(X) for

a subset X in the discussion if it is necessary or is just more convenient.

Definition 5.7.2. A subset p is an (open, closed, rv-) polyball if it is of the form
∏

i≤n bi×t, where each bi is

an (open, closed, rv-) ball and t ∈ RV. In this case, the radius of p, denoted as rad(p), is min {rad(bi) : i ≤ n}.

For any definable subset X, both the subset of X that contains all the rv-polyballs contained in X and

the superset of X that contains all the rv-polyballs with nonempty intersection with X are definable.

Definition 5.7.3. For any subset U ⊆ VFn×RVm, the RV-hull of U , denoted by RVH(U), is the subset
⋃ {

rv−1(t)× {s} : (t, s) ∈ rv(U)
}
. If U = RVH(U), that is, if U is a union of rv-polyballs, then we say that

U is an RV-product.

Lemma 5.7.4. Let X ⊆ (VFn1 ×RVm1)× (VFn2 ×RVm2) be a definable subset such that, for each (a, t) ∈
prn1+m1

X, fib(X, (a, t)) is finite. Suppose that Y ⊆ VFn1+n2 ×RVm is an RV-product that is definably

bijective to X. Then, for any rv-polyball

rv−1(t1, . . . , tn1+n2)× {(t1, . . . , tn1+n2 , s)} ⊆ Y,

the weight of (t1, . . . , tn1+n2) is at most n1.

Proof. Clearly we have that dimVF X = dimVF(prn1+m1
X) ≤ n1. Suppose for contradiction that there is an

rv-polyball contained in Y such that the weight of the tuple in question is greater than n1. By Corollary 5.6.5,

dimVF Y > n1 and hence dimVF X > n1, contradiction.

104



Definition 5.7.5. Let X ⊆ VF×VFn×RVm. Let C ⊆ RVH(X) be an RV-product and λ : pr>1(C∩X) −→
VF a function such that (λ(a1, t), a, t) ∈ C for every (a1, t) = (a1, t1, . . . , tm) ∈ pr>1(C ∩X). Let

C] =
⋃

(a1,t)∈pr>1 C

((⋃ {
rv−1(t) : vrv(t) > vrv(t1)

})
× (a1, t)

)
,

RVH(X)] = C] ] (RVH(X) \ C).

The centripetal transformation η : X −→ RVH(X)] with respect to λ is defined by

η(a1, a1, t) = (a1 − λ(a1, t), a1, t)

on C ∩X and η = id on X \ C. Note that η is injective. The inverse of η is naturally called the centrifugal

transformation with respect to λ. The function λ is called a focus map of X. The RV-product C is called

the locus of λ. A special bijection T is an alternating composition of centripetal transformations and the

canonical bijection. The length of a special bijection T , denoted by lh T , is the number of centripetal

transformations in the composition of T . The image T (X) is sometimes denoted as X].

Note that we should have included the index of the targeted VF-coordinate as a part of the data of a

focus map. Since it should not cause confusion, below, we shall suppress mentioning it for notational ease.

Clearly if X is an RV-product and T is a special bijection on X then T (X) is an RV-product. Notice

that a special bijection T on X is definable if X and all the focus maps involved are definable. Since we are

only interested in definable subsets and definable functions on them, we further require a special bijection

to be definable.

Example 5.7.6. Let b ⊆ VF be a definable open ball properly contained in rv−1(t). By Convention 5.7.1, b

is identified with the subset b × {t}. By Lemma 5.4.17, rv−1(t) contains a definable element a, which may

or may not be in b. Let λ be the focus map t 7−→ a. Then the centripetal transformation on b with respect

to λ is given by (b, t) 7−→ (b− a, t).

Let F ⊆ rv−1(t)× rv−1(s) ⊆ VF2 be a definable finite-to-one function, which may be regarded as a focus

map of itself whose locus is rv−1(t)× rv−1(s). Let η1 be the corresponding centripetal transformation. Then

η1(F ) = dom(F )×{0}. For each b ∈ ran(F ) let b∗ be the average of F−1(b). Note that, by compactness, the

subset {b∗ : b ∈ ran(F )} is definable. Let λ2 : ran(F ) −→ dom(F ) be the focus map given by (a, b) 7−→ (b∗, b).

Let η2 be the corresponding centripetal transformation and F ∗ = (c ◦η2)(F ). Notice that, by Lemma 5.4.1,

rv is not constant on the subset F−1(b)− b∗. Hence F ∗ is a function from pr1 F ∗ onto pr2 F ∗ such that the

maximum size of its fibers on the first VF-coordinate is strictly smaller than that of F . This phenomenon
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will be the basis of many inductive arguments below.

Definition 5.7.7. A subset X is a deformed RV-product if there is a special bijection T such that T (X) is

an RV-product. In that case, if T is definable then we say that X is a definable deformed RV-product.

Lemma 5.7.8. Every definable subset X ⊆ VF×RVm is a definable deformed RV-product.

Proof. By compactness, it is enough to show that, for every (a, t) ∈ X, there is a special bijection T on X

such that T (a, t) is contained in an rv-polyball p ⊆ T (X). Fix an (a, t) ∈ X. Let Z be the union of the

rv-polyballs contained in X, which is a definable RV-product. If (a, t) ∈ Z then the canonical bijection is

as required. So, without loss of generality, we may assume that Z = ∅. By Convention 5.7.1, the canonical

bijection has been applied to X and hence, for any s = (s1, . . . , sm) ∈ pRV X, the s-definable subset fib(X, s)

is properly contained in the rv-ball rv−1(s1).

By C-minimality, fib(X, t) is a disjoint union of t-definable simplexes. Let s be the simplex that contains

(a, t). Let b1, . . . , bl, h1, . . . , hn be the boolean components of s, where each bi is positive and each hi is

negative. The proof now proceeds by induction on n.

For the base case n = 0, s is a disjoint union of balls b1, . . . , bl of the same radius and valuative center.

Without loss of generality, we may assume that a ∈ b1. Let {c1, . . . , ck} be the positive closure of s. Note

that this closure is also t-definable. We now start a secondary induction on k. For the base case k = 1, by

Lemma 5.4.16, there is a t-definable point c ∈ c1. Clearly c1− c ⊆ rv−1(rv(a))− c is a union of rv-balls. Let

C be a definable subset of RVH(X) and λ : pr>1(C ∩X) −→ VF a definable focus map such that (a, t) ∈ C

and λ(t) = c. Then the centripetal transformation η with respect to λ is as desired. For the inductive

step of the secondary induction, by Lemma 5.4.16 again, there is a t-definable set of centers {c1, . . . , ck}
with ci ∈ ci. Let c be the average of c1, . . . , ck. Let λ, η be as above such that λ(t) = c. If c ∈ b1 then,

as above, the centripetal transformation η with respect to λ is as desired. So suppose that c /∈ b1. Note

that if val is not constant on the set {c1 − c, . . . , ck − c} then rv is not constant on it and if val is constant

on it then, by Lemma 5.4.1, rv is still not constant on it. Consider the special bijection σ = c ◦η. We

have that σ(a, t) = (a − c, r, t) ∈ σ(X), where r = rv(a − c). Observe that the positive closure of the

(r, t)-definable subset fib(σ(X), (r, t)) is a proper subset of the set {c1 − c, . . . , ck − c} of closed balls. Hence,

by the inductive hypothesis, there is a special bijection T on σ(X) such that T (a− c, r, t) is contained in an

rv-polyball p ⊆ T ◦ σ(X). So T ◦ σ is as required. This completes the base case n = 0.

We proceed to the inductive step. Note that, since b1, . . . , bl are pairwise disjoint, the holes h1, . . . , hn

are also pairwise disjoint. Without loss of generality we may assume that all the holes h1, . . . , hn are of the

same radius. Let {c1, . . . , ck} be the positive closure of
⋃

i hi. The secondary induction on k above may be
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carried out here almost verbatim. Only note that, in the inductive step, after applying the special bijection

σ, the number of holes in the fiber that contains σ(a, t) decreases and hence the inductive hypothesis may

be applied.

Corollary 5.7.9. Let f : X −→ Y be a definable surjective function, where X, Y ⊆ VF. Then there is

a definable function P : X −→ RVm such that, for each t ∈ ranP , P−1(t) is an open ball or a point and

f ¹ P−1(t) is either constant or injective.

Proof. Let P1 : X −→ RVl be a function given by Lemma 5.4.10. Applying Lemma 5.7.8 to each fiber

P−1
1 (t), we see that desired function exists by compactness.

Remark 5.7.10. Corollary 5.7.9 and Lemma 5.4.8 imply that the theory ACVF0
S is b-minimal, in the sense

of [13].

Lemma 5.7.11. Let X ⊆ VF×RVm be a definable subset and T a special bijection on X such that T (X)

is an RV-product. Then there is a definable function ε : (pRV ◦T )(X) −→ VF such that, for every (t, s) ∈
(pRV ◦T )(X), we have that

(pVF ◦T−1)(rv−1(t)× {(t, s)}) = rv−1(t) + ε(t, s).

Proof. We do induction on the length of T . For the base case lh T = 1, let T = c ◦η, where η is a

centripetal transformation. Let λ and C ⊆ RVH(X) be the corresponding focus map and its locus. For each

(t, s) ∈ (pRV ◦T )(X), if s ∈ dom(λ) then set ε(t, s) = λ(s), otherwise set ε(t, s) = 0. Clearly ε is as required.

We proceed to the inductive step lh T = n > 1. Let T = c ◦ηn ◦ . . . ◦ c ◦η1 and T1 = c ◦ηn ◦ . . . ◦ c ◦η2. By

the inductive hypothesis, for the special bijection T1, there is a function ε1 : (pRV ◦T1)((c ◦η1)(X)) −→ VF

as required. Let λ and C ⊆ RVH(X) be the focus map and its locus for the centripetal transformation

η1. For each (t, s) ∈ (pRV ◦T )(X), if (pRV ◦T−1
1 )(rv−1(t) × {(t, s)}) = (r, u) and u ∈ dom(λ) then set

ε(t, s) = ε1(t, s) + λ(u), otherwise set ε(t, s) = ε1(t, s). Then ε is as required.

Remark 5.7.12. Note that, in Lemma 5.7.11, since dom(ε) ⊆ RVl for some l, by Lemma 5.4.8, ran(ε) is

actually finite.

The following technical result is very important for the rest of the construction.

Proposition 5.7.13. Let fl(x) = fl(x1, . . . , xn) ∈ VF(〈∅〉)[x] be a finite list of polynomials and t =

(t1, . . . , tn) ∈ RV a definable tuple. Then there is a special bijection T on rv−1(t) such that, for every

rv-polyball p ⊆ T (rv−1(t)) and every fl(x), the subset fl(T−1(p)) is contained in an rv-ball.
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Proof. We do induction on n. For the base case n = 1, we write t, x for t, x, respectively. By compactness,

it is enough to show that for any a ∈ rv−1(t) there is a special bijection T on rv−1(t) such that the image

of RVH(T (a)) under every composite map

RVH(T (a)) T−1
// rv−1(t)

fl // VF rv // RV

is a singleton. So fix an a ∈ rv−1(t). For any special bijection T on rv−1(t), let k(T ) be the number of

elements (b, s) ∈ RVH(T (a)) such that fl(T−1(b, s)) = 0 for some l. It is sufficient to prove the following:

Claim. For every special bijection T on rv−1(t) there is a special bijection T ∗ on T (rv−1(t)) such that the

image of RVH((T ∗ ◦ T )(a)) under every composite map

RVH((T ∗ ◦ T )(a))
(T∗◦T )−1

// rv−1(t)
fl // VF rv // RV

is a singleton.

Proof. We do induction on k(T ). For the base case k(T ) = 1, there is a definable subset Y ⊆ T (rv−1(t))

such that Y is the union of those rv-polyballs that contain exactly one d ∈ VF with fl(T−1(d)) = 0 for some

l. So there is a definable focus map λ : pRV Y −→ VF such that for every rv−1(s) × {(s, r)} ⊆ Y we have

that fl(T−1(λ(s, r))) = 0 for some l. Clearly the special bijection T ∗ given by

(b, s, r) 7−→ (b− λ(s, r), rv(b− λ(s, r)), s, r)

for (b, s, r) ∈ Y is as required. For the inductive step k(T ) > 1, there is a definable subset Y ⊆ T (rv−1(t))

such that Y is the union of those rv-polyballs that contain exactly k(T ) elements d ∈ VF with fl(T−1(d)) = 0

for some l. Let rv−1(s)×{(s, r)} ⊆ Y and d1, . . . , dk(T ) ∈ rv−1(s) enumerate these k(T ) elements. The focus

map λ defined above is now modified so that λ(s, r) is the average d of d1, . . . , dk(T ). Let T ∗ be defined as

above with respect to this λ. By Lemma 5.4.1, rv is not constant on the set
{
d1 − d, . . . , dk(T ) − d

}
. Hence

k(T ∗ ◦ T ) < k(T ) and the inductive hypothesis may be applied.

This completes the base case of the induction.

We now proceed to the inductive step. Let x1 = (x2, . . . , xn) and t1 = (t2, . . . , tn). For every a ∈ rv−1(t1),

by the inductive hypothesis, there is an a-definable special bijection Ta on rv−1(t1) such that every function

rv(fl(a, x1)) is constant on every subset T−1
a (p), where p is an rv-polyball contained in Ta(rv−1(t1)). By

compactness, there are definable disjoint subsets Y1, . . . , Ym ⊆ rv−1(t1) with
⋃

i Yi = rv−1(t1) and formulas
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φ1(x1), . . . , φm(x1) such that, for every a ∈ Yi, φi(a) defines a special bijection Ta on rv−1(t1) such that

the property just described holds with respect to Ta. Applying Lemma 5.7.8 repeatedly, we obtain a special

bijection T1 on rv−1(t1) such that each T1(Yi) is an RV-product.

Now, for every a ∈ rv−1(t1), each locus C involved in Ta is determined by an a-definable subset UC of

RVk for some k. Let χ(x1) be the formula that defines UC . Note that if Ta is defined by φi(a) then χ(x1)

may be taken as a subformula of φi(x1). Let χ∗(x1, z) be a quantifier-free formula in disjunctive normal

form that is equivalent to the formula χ(T−1
1 (x1, z)), where z are RV-sort variables. By compactness and

the base case above, there is a special bijection ρi on T1(Yi) such that each term rv(g(x1)) that occurs in

χ∗(x1, z) is constant on every subset ρ−1
i (p), where p is an rv-polyball contained in (ρi ◦ T1)(Yi). Hence,

for each a ∈ (ρi ◦ T1)−1(p), χ(a) defines the same loci for the corresponding centripetal transformations.

Consequently, by compactness again, we obtain a special bijection ρ on T1(rv−1(t1)) such that (ρ ◦ T1)(Yi)

is an RV-product for each i and, for each rv-polyball p ⊆ (ρ ◦ T1)(Yi) with pRV p = s, the formula φi((ρ ◦
T1)−1(x1, s)) defines a special bijection on p × rv−1(t1). So φi((ρ ◦ T1)−1(x1, s)) defines a special bijection

on (ρ ◦ T1)(rv−1(t1))× rv−1(t1), which is denoted as φi.

It is not hard to see that the special bijections φ1 ◦ ρ ◦ T1, . . . , φm ◦ ρ ◦ T1 actually form one special

bijection T2 on rv−1(t). Let rv−1(s)× {(s, r)} ⊆ T2(rv−1(t)), where s = (s1, . . . , sn). Let s1 = (s2, . . . , sn).

By the construction of T2, for each a1 ∈ rv−1(s1), every function rv(fl(x)) is constant on the subset

T−1
2 ({a1} × rv−1(s1)× {(s, r)}).

Let this constant value be ul
a1

. So the function hl : rv−1(s1) −→ RV given by a1 7−→ ul
a1

is (s, r)-definable.

For each l, let ψl(x1, z) be a quantifier-free formula in disjunctive normal form that defines the function

hl, where z is an RV-sort variable. We may assume that some conjunct in each disjunct of ψl(x1, z) is an

RV-sort equality. Let gi(x1) enumerate all the polynomials that occur in a term of the form rv(gi(x1)) in

some ψl(x1, z). By the base case, there is an (s, r)-definable special bijection Ts1 on rv−1(s1) such that, for

each rv-polyball p ⊆ Ts1(rv
−1(s1)), every term rv(gi(x1)) is constant on T−1

s1
(p) and hence every function

hl is constant on T−1
s1

(p). We may identify Ts1 with the function it naturally induces on rv−1(s)× {(s, r)}.
Therefore, every function rv(fl(x)) is constant on the subset

(Ts1 ◦ T2)−1(p× rv−1(s1)× {(s, r)}).

By compactness, we obtain a special bijection T3 on T2(rv−1(t)) such that the property just described holds

for every rv-polyball contained in (T3 ◦ T2)(rv−1(t)). This completes the inductive step.
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Lemma 5.7.8 is easily generalized as follows.

Proposition 5.7.14. Every definable subset X ⊆ VFn×RVm is a definable deformed RV-product.

Proof. This is by induction on n. The base case n = 1 is just Lemma 5.7.8. For the inductive step, by

compactness, without loss of generality, we may assume that pRV X is a singleton t = (t1, . . . , tn) ∈ RV. It

is not hard to see that, if we replace the conclusion of Proposition 5.7.13 with the desired property here,

then a simpler version of the argument in the inductive step of the proof of Proposition 5.7.13 works almost

verbatim. It is simpler because the last part of that argument is not needed here.

Corollary 5.7.15. The map L : Ob RV[k, ·] −→ ObVF[k, ·] is surjective on the isomorphism classes of

VF[k, ·].

Corollary 5.7.16. Let fl(x) ∈ VF(〈∅〉)[x] be a finite list of polynomials and X a definable subset of

VFn×RVm. Then there is a special bijection T on X such that T (X) is an RV-product and, for every

rv-polyball p ⊆ T (X), every subset fl(T−1(p)) is contained in an rv-ball.

Proof. By Proposition 5.7.14, there is a special bijection T1 on X such that T1(X) is an RV-product. Let

p = rv−1(t)×{
(t, s)

}
be an rv-polyball contained in T1(X). For each l, let ψl be a quantifier-free formula in

disjunctive normal form that defines the function rv(fl(T−1
1 (x, t, s))) on p. Clearly we may assume that some

conjunct in each disjunct of any ψl is an RV-sort equality. By Proposition 5.7.13, there is a (t, s)-definable

special bijection Tt,s on p such that each term rv(g(x)) that occurs in some ψl is constant on every subset

T−1
t,s

(q), where q is an rv-polyball contained in Tt,s(p), and hence rv(fl(x)) is constant on (Tt,s ◦ T1)−1(q).

By compactness, there is a special bijection T2 on T1(X) such that the property just described holds for

every rv-polyball contained in (T2 ◦ T1)(X).

Proposition 5.7.17. Let X ⊆ VFn×RVm be a definable subset. If pVF ¹ X is finite-to-one then there is

a Y ⊆ RVl such that pr≤n ¹ Y is finite-to-one and L(Y, pr≤n) is definably bijective to X.

Proof. By Proposition 5.7.14, there is a Y ⊆ RVl such that there is a definable bijection T : X −→
L(Y, pr≤n). Suppose for contradiction that there is a t ∈ pr≤n Y such that the subset fib(Y, t) is infinite. Fix

a tuple a ∈ t. Consider the a-definable function pVF ◦T−1 : {a} × fib(Y, t) −→ pVF X. By Lemma 5.4.8,

ran(pVF ◦T−1) is finite. Since pVF ¹ X is finite-to-one, we must have that the subset T−1({a} × fib(Y, t))

is finite and hence {a} × fib(Y, t) is finite, contradiction.

Corollary 5.7.18. The map L : Ob RV[k] −→ Ob VF[k] is surjective on the isomorphism classes of VF[k].
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5.8 2-cells

For functions between subsets that have only one VF-coordinate, composing with special bijections on the

right and their inverses on the left preserves the open-to-open property.

Lemma 5.8.1. Let X, Y ⊆ VF be definable and f : X −→ Y a definable bijection. Then there is a special

bijection T on X such that T (X) is an RV-product and, for each rv-polyball p ⊆ T (X), f ¹ T−1(p) has the

open-to-open property.

Proof. By Proposition 5.5.13, there is a definable finite partition of X such that the restriction of f to each

piece has the open-to-open property. Applying Proposition 5.7.14 to each piece or its subsequent image

yields the desired special bijection.

Lemma 5.8.2. Let X, Y ⊆ VF be definable open balls and f : X −→ Y a definable bijection that has the

open-to-open property. Let α ∈ Γ be definable. Then there is a special bijection T on X such that T (X) is

an RV-product and, for each rv-polyball p ⊆ T (X), the set

{
rad(b) : b is an open ball contained in T−1(p) with rad(f(b)) = α

}

is a singleton.

Proof. Let B be the collection of all open balls b ⊆ X with rad(f(b)) = α. Let ψ(x) be a quantifier-free

formula in disjunctive normal form that defines the radius function rad on B, where x is the VF-sort variable.

By Corollary 5.7.16, there is a special bijection T on X such that T (X) is an RV-product and each term

rv(g(x)) that occurs in ψ(x) is constant on every subset T−1(p), where p is an rv-polyball contained in T (X).

So T is as required.

Lemma 5.8.3. Let X ⊆ VF2 be a definable subset such that pr1 X is an open ball. Let f : pr1 X −→ pr2 X

be a definable bijection that has the open-to-open property. Suppose that for each a ∈ pr1 X there is a ta ∈ RV

such that

fib(X, a) = rv−1(ta) + f(a).

Then there is a special bijection T on pr1 X such that T (pr1 X) is an RV-product and, for each rv-polyball

p ⊆ T (pr1 X), the set
{
rv(a− f−1(b)) : a ∈ T−1(p) and b ∈ fib(X, a)

}

is a singleton.
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Proof. For each a ∈ pr1 X, let ba be the minimal closed ball that contains fib(X, a). Since fib(X, a)−f(a) =

rv−1(ta), we have that f(a) ∈ ba but f(a) /∈ fib(X, a) if ta 6= ∞. Hence a /∈ f−1(fib(X, a)) if ta 6= ∞
and {a} = f−1(fib(X, a)) if ta = ∞. Since f−1(fib(X, a)) is a ball, in either case, the function rv(a − x) is

constant on the subset f−1(fib(X, a)). The function h : pr1 X −→ RV given by a 7−→ rv(a− f−1(fib(X, a)))

is definable. Now we may proceed as in Lemma 5.8.2.

Definition 5.8.4. Let X ⊆ VF2 be such that pr1 X is an open ball. Let f : pr1 X −→ pr2 X be a bijection

that has the open-to-open property. We say that f is trapezoidal in X if there are t1, t2 ∈ RV such that, for

each a ∈ pr1 X,

1. fib(X, a) = rv−1(t2) + f(a),

2. f−1(fib(X, a)) = a− rv−1(t1).

The elements t1, t2 are called the paradigms of X.

Remark 5.8.5. Let f be trapezoidal in X with respect to t1, t2 ∈ RV. Let a ∈ pr1 X, b the minimal

closed ball that contains fib(X, a), and a the minimal closed ball that contains f−1(fib(X, a)). The following

properties are easily deduced:

1. f(a) /∈ fib(X, a) and hence a /∈ f−1(fib(X, a)).

2. vrv(t1) = rad(a) > rad(pr1 X) and vrv(t2) = rad(b) > rad(pr2 X).

3. f(a) ∈ b ⊆ pr2 X and a ∈ a ⊆ pr1 X.

4. Let oa, of(a) be the maximal open subballs of a, b that contains a, f(a), respectively. We have that,

for every a∗ ∈ f−1(of(a)),

fib(X, a∗) = rv−1(t2) + f(a∗) = rv−1(t2) + f(a) = fib(X, a)

and hence a∗ − rv−1(t1) = a− rv−1(t1); so a∗ ∈ oa. Symmetrically, for every b∗ ∈ f(oa),

f−1(fib(X, f−1(b∗))) = f−1(b∗)− rv−1(t1)

= a− rv−1(t1)

= f−1(fib(X, a))

and hence rv−1(t2) + b∗ = rv−1(t2) + f(a); so b∗ ∈ of(a). So actually f(oa) = of(a).
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5. Let A, B be the sets of maximal open subballs of a, b, respectively. Then f induces a bijection

f↓ : A −→ B.

6. For each o ∈ A, each c ∈ o, and each d ∈ fib(X, c), we have that

fib(X, c) = rv−1(t2) + f↓(o),

fib(X, d) = f−1(d) + rv−1(t1) = o.

So o− f−1(fib(X, c)) = rv−1(t1) and f↓(o)− fib(X, c) = − rv−1(t2). (Hence f is “trapezoidal”.)

7. The subset X is symmetrical in the following way:

⋃ {
o× (rv−1(t2) + f↓(o)) : o ∈ A

}

=
⋃ {

(f−1
↓ (o) + rv−1(t1))× o : o ∈ B

}

= X ∩ (a×VF)

= X ∩ (VF×b)

= X ∩ (a× b).

Definition 5.8.6. We say that a subset X is a 1-cell if it is either an open ball contained in one rv-ball or

a point in VF. We say that X is a 2-cell if

1. X ⊆ VF2 is contained in one rv-polyball and pr1 X is a 1-cell,

2. there is a function ε : pr1 X −→ VF and a t ∈ RV such that, for each a ∈ pr1 X, fib(X, a) =

rv−1(t) + ε(a),

3. one of the following three possibilities occurs:

(a) ε is constant,

(b) ε is injective, has the open-to-open property, and rad(ε(pr1 X)) ≥ vrv(t),

(c) ε is trapezoidal in X.

The function ε is called the positioning function of X and the element t is called the paradigm of X.

Remark 5.8.7. A subset X ⊆ VF×RVm is a 1-cell if for each t ∈ pRV X the fiber fib(X, t) is a 1-cell in the

sense of Definition 5.8.6. The concept of a 2-cell is generalized in the same way. A unit is definable if all the

relevant ingredients are definable.
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Suppose that X is a 2-cell. Clearly if its paradigm t is ∞ then X and its positioning function ε are

identical. It is also easy to see that, if t 6= ∞ and ε is not trapezoidal, then X is actually an open polyball.

Notice that Lemma 5.7.8 implies that for every definable subset X ⊆ VF×RVm there is a definable

function P : X −→ RVl such that, for each s ∈ ran P , the fiber P−1(s) is a 1-cell. The same holds for 2-cell:

Lemma 5.8.8. For every definable subset X ⊆ VF2 there is a definable function P : X −→ RVm such that,

for each s ∈ ranP , the fiber P−1(s) is a 2-cell.

Proof. Without loss of generality, we may assume that X is contained in one rv-polyball. For any a ∈ pr1 X,

by Lemma 5.7.8, there is an a-definable special bijection Ta on fib(X, a) such that Ta(fib(X, a)) is an RV-

product. By Lemma 5.7.11, there is an a-definable function εa : (pRV ◦Ta)(fib(X, a)) −→ VF such that, for

every (t, s) ∈ (pRV ◦Ta)(fib(X, a)), we have that

(pVF ◦T−1
a )(rv−1(t)× {(t, s)}) = rv−1(t) + εa(t, s).

By compactness, we may assume that there is a definable subset X ′ ⊆ pr1 X ×RVl and a definable function

ε : X ′ −→ VF such that, for each a ∈ pr1 X, fib(X ′, a) = (pRV ◦Ta)(fib(X, a)) and ε ¹ fib(X ′, a) = εa. Since,

for each (t, s) ∈ pRV X ′, ε ¹ fib(X ′, (t, s)) may be regarded as a (t, s)-definable function from VF into VF,

by Lemma 5.4.10, we are reduced to the case that each ε ¹ fib(X ′, (t, s)) is either constant or injective. If

no ε ¹ fib(X ′, (t, s)) is injective then we can finish by applying Lemma 5.7.8 to each fib(X ′, (t, s)) and then

compactness.

Suppose that ε(t,s) = ε ¹ fib(X ′, (t, s)) is injective. By Lemma 5.8.1, we are reduced to the case that

fib(X ′, (t, s)) is an open ball and ε(t,s) has the open-to-open property. Note that, if rad(ran ε(t,s)) < vrv(t),

then

ran ε(t,s) =
⋃

a∈fib(X′,(t,s))

(rv−1(t) + ε(t,s)(a)).

By Lemma 5.8.2, we are further reduced to the case that, if rad(ran ε(t,s)) < vrv(t), then there is a γ ∈ Γ

such that rad(ε−1
(t,s)(b)) = γ for every open ball b ⊆ ran ε(t,s) with rad(b) = vrv(t). By Lemma 5.8.3, we

are finally reduced to the case that, if rad(ran ε(t,s)) < vrv(t), then there is an r ∈ RV such that, for every

a ∈ fib(X ′, (t, s)),

rv(a− f−1(rv−1(t) + ε(t,s)(a))) = r

and hence

f−1(rv−1(t) + ε(t,s)(a)) = a− rv−1(r).
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So, in this case, ε(t,s) is trapezoidal. Now we are done by compactness.

5.9 Lifting functions from RV to VF

We shall show that the map L actually induces homomorphisms between various Grothendieck semigroups

when S is a (VF,Γ)-generated substructure.

Any polynomial in O[x] corresponds to a polynomial in K[x] via the canonical quotient map. The

following definition generalizes this phenomenon.

Definition 5.9.1. Let γ = (γ1, . . . , γn) ∈ Γ. A polynomial f(x) =
∑

ij aijx
i with coefficients aij ∈ VF is a

γ-polynomial if there is an α ∈ Γ such that α = val(aij)+i1γ1+ . . .+inγn for each ij = (i, j) = (i1, . . . , in, j).

In this case we say that α is a residue value of f(x) (with respect to γ). For a γ-polynomial f(x) with residue

value α and a t ∈ RV with vrv(t) = γ, if val f(a) > α for all a ∈ rv−1(t) then t is a residue root of f(x).

If t ∈ RV is a common residue root of the γ-polynomials f1(x), . . . , fn(x) but is not a residue root of the

γ-polynomial det ∂(f1, . . . , fn)/∂(x1, . . . , xn), then we say that f1(x), . . . , fn(x) are minimal for t and t is a

simple common residue root of f1(x), . . . , fn(x).

Therefore, according to this definition, every polynomial in K[x] is the projection of some (0, . . . , 0)-

polynomial f(x) with residue value 0.

Hensel’s Lemma is generalized as follows.

Lemma 5.9.2 (Generalized Hensel’s Lemma). Let f1(x), . . . , fn(x) be γ-polynomials with residue values

α1, . . . , αn, where γ = (γ1, . . . , γn) ∈ Γ. For every simple common residue root t = (t1, . . . , tn) ∈ RV of

f1(x), . . . , fn(x) there is a unique a ∈ rv−1(t) such that fi(a) = 0 for every i.

Proof. Fix a simple common residue root t = (t1, . . . , tn) ∈ RV of f1(x), . . . , fn(x). Choose a ci ∈ rv−1(ti).

Changing the coefficients accordingly we may rewrite each fi(x) as fi(x1/c1, . . . , xn/cn). Write yi for xi/ci.

Note that, for each i, the coefficients of the (0, . . . , 0)-polynomial fi(y) are all of the same value αi. For

each i choose an ei ∈ VF with val(ei) = −αi. We have that each (0, . . . , 0)-polynomial f∗i (y) = eifi(y) has

residue value 0 (that is, the coefficients of f∗i (y) is of value 0). Clearly (t1/ rv(c1), . . . , tn/ rv(cn)) = (1, . . . , 1)

is a common residue root of f∗1 (y), . . . , f∗n(y); that is, for every a ∈ rv−1(1, . . . , 1) and every i we have that

val f∗i (a) > 0. It is actually a simple root because for every a ∈ rv−1(1, . . . , 1) we have that

det ∂(f∗1 , . . . , f∗n)/∂(y1, . . . , yn)(a) =
(∏

i

eici

)
· det ∂(f1, . . . , fn)/∂(x1, . . . , xn)(ac),
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where ac = (a1c1, . . . , ancn), and hence

val(det ∂(f∗1 , . . . , f∗n)/∂(y1, . . . , yn)(a)) =
∑

i

(−αi + γi) +
∑

i

αi −
∑

i

γi = 0.

Now the lemma follows from the multivariate version of Hensel’s Lemma (e.g. see [9, Corollary 2, p. 224]).

Definition 5.9.3. Let X,Y be two RV-products, F a subset of X × Y , and A a subset of rv(X × Y ). We

say that F is a (X, Y )-lift of A from RV to VF, or just a lift of A for short, if F ∩ (p × q) is a bijective

function from p onto q for every rv-polyball p ⊆ X and every rv-polyball q ⊆ Y with rv(p × q) ∈ A. A

partial lift of A is a lift of any subset of A.

It would be ideal to lift all definable subsets of RVn×RVn with finite-to-finite correspondence for any

substructure S. However, the following crucial lemma fails when S is not (VF,Γ)-generated.

Lemma 5.9.4. Suppose that S is a (VF, Γ)-generated substructure. Let t = (t1, . . . , tn) ∈ RV be such

that tn 6= ∞ and tn ∈ acl(t1, . . . , tn−1). Let vrv(t) = (γ1, . . . , γn) = γ. Then there is a γ-polynomial

f(x1, . . . , xn) = f(x) with coefficients in VF(〈∅〉) such that the subset {r ∈ RV : (t1, . . . , tn−1, r) is a residue root of f(x)}
is finite and t is a residue root of f(x) but is not a residue root of ∂f(x)/∂xn.

Proof. Write (t1, . . . , tn−1) as tn. Let φ(x) be a formula such that φ(tn, xn) defines a finite subset that

contains tn. By quantifier elimination, there is a conjunction ψ(x) of RV-sort literals such that ψ(x) implies

φ(x) and ψ(t) holds. By C-minimality, we may assume that some conjunct θ(x) in ψ(x) is an RV-sort

equality such that θ(tn, xn) defines a finite subset. Since S is (VF, Γ)-generated, we may assume that θ(x)

does not contain parameters from RV(〈∅〉) \ rv(VF(〈∅〉)). Hence it is of the form

xk ·
∑

i

(rv(ai) · xi) = rv(a) · xl ·
∑

j

(rv(aj) · xj),

where ai, a, aj ∈ VF(〈∅〉). Fix an s ∈ RV such that vrv(s · tk) = vrv(s · rv(a) · tl) = 0. Let vrv(s) = δ. Note

that δ is tn-definable. Let h1(x, s) =
∑

i(s · rv(ai) · xi+k) and h2(x, s) =
∑

j(−s · rv(aaj) · xj+l). Consider

the RV-sort polynomial H(x, s) = h1(x, s) + h2(x, s). For any r ∈ RV, H(tn, s, r) = 0 if and only if either

∑

i

(rv(ai) · (tn, r)i) =
∑

j

(rv(aj) · (tn, r)j) = 0

or

rv(h1(tn, s, r)/s) = rv(−h2(tn, s, r)/s).
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Since r 6= tn in the former case, by C-minimality again, the equation H(tn, s, xn) = 0 defines a finite subset

that contains the subset defined by θ(tn, xn) and is actually tn-definable. Let m be the maximal exponent

of xn in H(x, s). For each i ≤ m let Hi(x, s) be the sum of all the monomials h(x, s) in H(x, s) such that

the exponent of xn in h(x, s) is i. Replacing s with a variable y and each rv(a) with a in Hi(x, s), we obtain

a VF-sort polynomial H∗
i (x, y) for each i ≤ m. Let

E =
{
i ≤ m : vrv(H∗

i (b, c)) = 0 for all (b, c) ∈ rv−1(t, s)
}

.

Since H(t, s) = 0, clearly |E| 6= 1. We claim that |E| > 1. To see this, suppose for contradiction that E = ∅.
Write H∗

i (x, y) as yxi
nGi(xn), where xn = (x1, . . . , xn−1). Let γn = (γ1, . . . , γn−1). Clearly each Gi(xn) is a

γn-polynomial with residue value −δ− iγn. Since vrv(cbi
nGi(bn)) > 0 for all c ∈ rv−1(s), bn ∈ rv−1(tn), and

bn ∈ rv−1(tn), we have that (tn) is a residue root of Gi(xn). So for all r ∈ RV with vrv(r) = vrv(tn) = γn we

have that vrv(cdiGi(bn)) > 0 for all c ∈ rv−1(s), d ∈ rv−1(r), and bn ∈ rv−1(tn) and hence Hi(tn, s, r) = 0.

So H(tn, s, r) = 0 for all r ∈ RV with vrv(r) = vrv(tn) = γn, which is a contradiction because the equation

H(tn, s, xn) = 0 defines a finite subset.

Let H∗(x, y) =
∑

i∈E H∗
i (x, y) =

∑
i∈E(yxi

nGi(xn)) = yG(x). Since (t, s) is a residue root of H∗(x, y),

clearly G(x) is a γ-polynomial with residue value −δ such that t is a residue root of it. Also, tn is not a

residue root of any Gi(xn). It follows that, for some k < maxE, t is a residue root of the γ-polynomial

∂G(x)/∂kxn but is not a residue root of the γ-polynomial ∂G(x)/∂k+1xn.

For definable subsets of the residue field, the situation may be further simplified. The following lemma

shows that the geometry of definable subsets over the residue field coincides with its algebraic geometry; in

other words, each definable subset over the residue field is a constructible subset (in the sense of algebraic

geometry) of the Zariski topological space Spec K(S)[x1, . . . , xn].

Lemma 5.9.5. If X ⊆ K
n

is definable then it is a boolean combination of subsets defined by equalities with

coefficients in K(S).

Proof. Let φ be a quantifier-free formula in disjunctive normal form that defines X and γ = (γ1, . . . , γm)

the Γ-sort parameters in ψ. Without loss of generality γi /∈ acl(VF(〈∅〉),RV(〈∅〉)) for all i. Since X ⊆ K
n
,

each conjunct in each disjunct of φ may be assumed to be of the form

∑

i

(rv(ai) · ri · xi)¤ rv(a) · r ·
∑

j

(rv(aj) · rj · xj),

where ai, a, aj ∈ VF(〈∅〉), ri, r, rj ∈ RV(〈∅〉), and ¤ is one of the symbols =, 6=, ≤, and >. It is easily seen
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that the literals involving ≤ or > are redundant. So each conjunct in φ is either an RV-sort equality or an

RV-sort disequality. Now the proof proceeds by induction on m. The base case m = 0 is clear. For the

inductive step, if one of the conjuncts in φ is an equality and contains some γi as an irredundant parameter

then, since X ⊆ K
n
, actually γi may be defined from other parameters in φ and hence, by the inductive

hypothesis, the lemma holds. By the same reason, we see that no nontrivial equality with parameters in

〈VF(〈∅〉),RV(〈∅〉)〉 may hold between γ and any s ∈ X. So each disequality in φ that contains some γi as

an irredundant parameter must define either the empty set or a superset of X and hence is redundant.

Proposition 5.9.6. Suppose that the substructure S is (VF, Γ)-generated. Let C ⊆ (RV×)n × (RV×)n be

a definable subset such that both pr≤n ¹ C and pr>n ¹ C are finite-to-one. Then there is a definable subset

C↑ ⊆ VFn×VFn that lifts C.

Proof. By compactness, the lemma is reduced to showing that for every (t, s) ∈ C there is a definable lift

of some subset of C that contains (t, s). Fix a (t, s) ∈ C and set (γ, δ) = vrv(t, s). Let φ(x, y) be a formula

that defines C. Consider the formulas ∃yi φ(x, y) and ∃xi φ(x, y), where yi = y \ yi and xi = x \ xi. By

Lemma 5.9.4, for each yi there is a (γ, δi)-polynomial µi(x, yi) with coefficients in VF(〈∅〉) such that (t, si)

is a residue root of µi(x, yi) but is not a residue root of ∂µi(x, yi)/∂yi. Similarly we obtain such a (γi, δ)-

polynomial νi(xi, y) for each xi. For each i, let ai(xy)ki and bi(xy)li be two monomials with ai, bi ∈ VF(〈∅〉)
such that

µ∗i (x, y) + ν∗i (x, y) = ai(xy)kiµi(x, yi) + bi(xy)liνi(xi, y)

is a (γ, δ)-polynomial. Let αi be the residue value of µ∗i (x, y)+ ν∗i (x, y). Note that for any (a, b) ∈ rv−1(t, s)

we have

val(∂µ∗i /∂yi)(a, b) = val(ai(ab)ki) + val(∂µi/∂yi)(a, b) = αi − δi

and for j 6= i we have

val(∂µ∗i /∂yj)(a, b) = val(ai) + val(∂(xy)ki/∂yj)(a, b) + valµi(a, bi)

> αi − δj .

Therefore,

val det(∂(µ∗1, . . . , µ
∗
n)/∂(y1, . . . , yn))(a, b) = val

∏

i

(∂µ∗i /∂yi)(a, b)

=
∑

i

αi −
∑

i

δi.

118



This shows that s is a simple common residue root of µ∗1(a, y), . . . , µ∗n(a, y) for any a ∈ rv−1(t). Similarly t

is a simple common residue root of ν∗1 (x, b), . . . , ν∗n(x, b) for any b ∈ rv−1(s). Now, it is not hard to see that

we may choose integers di, ei and form a (γ, δ)-polynomial

τi(x, y) = diµ
∗
i (x, y) + eiν

∗
i (x, y)

such that s is a simple common residue root of τ1(a, y), . . . , τn(a, y) for any a ∈ rv−1(t) and t is a simple

common residue root of τ1(x, b), . . . , τn(x, b) for any b ∈ rv−1(s). By the generalized Hensel’s Lemma 5.9.2,

for each a ∈ rv−1(t) there is a unique b ∈ rv−1(s) such that
∧

i τi(a, b) = 0, and vice versa.

Corollary 5.9.7. Suppose that the substructure S is (VF, Γ)-generated. The map L induces homomorphisms

between various Grothendieck semigroups: K+ RV[k, ·] −→ K+ VF[k, ·], K+ RV[k] −→ K+ VF[k], etc.

Proof. For any RV[k, ·]-isomorphism F : (U, f) −→ (V, g) and any u ∈ U , by definition, wgt f(u) = wgt(g ◦
F )(u). Therefore, L(U, f) and L(V, g) are VF[k, ·]-isomorphic by Proposition 5.9.6.

5.10 Contracting to RV

Definition 5.10.1. Let X ⊆ VFn×RVm be an RV-product and f : X −→ Y a function, where Y is also

an RV-product. We say that f is contractible if for every rv-polyball p ⊆ X the subset f(p) is contained in

an rv-polyball.

Clearly, for two (definable) RV-products X and Y , if f : X −→ Y is an (definable) contractible function,

then there is a unique (definable) function f↓ : rv(X) −→ rv(Y ) such that the diagram

rv(X) rv(Y )
f↓

//

X

rv(X)

rv

²²

X Y
f // Y

rv(Y )

rv

²²

commutes. Note that, in this case, if both f and f↓ are bijective then f is a lift of f↓. Equivalently, if f is

bijective and both f and f−1 are contractible then f is a lift of f↓.

Lemma 5.10.2. Let X ⊆ VFn1 ×RVm1 and Y ⊆ VFn2 ×RVm2 be definable subsets and f : X −→ Y a

definable function. Then there exist special bijections TX , TY on X, Y such that the function TY ◦ f ◦ T−1
X is

contractible.
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Proof. Recall that by Convention 5.7.1 the canonical bijection is automatically applied to all subsets. By

Proposition 5.7.14, there is a special bijection TY on Y such that TY (Y ) is an RV-product. So we may

assume that Y is an RV-product. Fix a sequence of quantifier-free formulas ψ1, . . . , ψm2 that define the

functions fi = pri ◦pRV ◦TY ◦ f for 1 ≤ i ≤ m2. Let gi(x) enumerate all the VF-sort polynomials that

occur in ψ1, . . . , ψm2 in the form rv(gi(x)). By Proposition 5.7.14 and Corollary 5.7.16, there is a special

bijection TX on X such that TX(X) is an RV-product and the function rv(gi(T−1
X (x))) is constant on every

rv-polyball p ⊆ TX(X) for every i. So on such an rv-polyball every fi ◦ T−1
X is constant.

Lemma 5.10.3. Let X ⊆ VF×RVm1 and Y ⊆ VF×RVm2 be definable subsets and f : X −→ Y a definable

bijection. Then there exist special bijections TX : X −→ X] and TY : Y −→ Y ] such that, in the commutative

diagram

Y Y ]

TY

//

X

Y

f

²²

X X]TX // X]

Y ]
²²

Y ] rv(Y ])
rv

//

X]

Y ]

f]

²²

X] rv(X])rv // rv(X])

rv(Y ])

f]
↓

²²

f ]
↓ is bijective and hence f ] is a lift of it.

Proof. By Proposition 5.5.15, there is a definable partition X1, . . . , Xn of X such that each f ¹ Xi has the

open-to-open property. Therefore, applying Lemma 5.10.2 to each f ¹ Xi or its subsequent image, we may

assume that X, Y are RV-products and f is contractible and has the open-to-open property. In particular,

for each rv-polyball p ⊆ X, f(p) is an open ball contained in an rv-polyball p∗ ⊆ Y . By Lemma 5.10.2 again,

there is a special bijection TY : Y −→ Y ] such that (TY ◦ f)−1 is contractible. Let TY = c ◦ηn ◦ . . . ◦ c ◦η1,

where each ηi is a centripetal transformation and c is the canonical bijection.

Now, by induction on n, we construct a special bijection TX = c ◦η∗n ◦ . . . ◦ c ◦η∗1 on X such that,

for each i, both Li ◦ f ◦ (L∗i )
−1 and (TY ◦ f ◦ L∗i )

−1 are contractible, where Li = c ◦ηi ◦ . . . ◦ c ◦η1 and

L∗i = c ◦η∗i ◦ . . . ◦ c ◦η∗1 . Then TX , TY will be as desired. To that end, suppose that η∗i has been constructed

for each i ≤ k < n. Let Zk = L∗k(X) and Z]
k = Lk(Y ). Let C ⊆ Z]

k be the locus of ηk+1 and λ the

corresponding focus map. Since Lk ◦ f ◦ (L∗k)−1 is contractible and has the open-to-open property, each

rv-polyball p ⊆ Z]
k is the union of disjoint subsets of the form (Lk ◦ f ◦ (L∗k)−1)(q), where q ⊆ Zk is an

rv-polyball. For each t = (t1, t1) ∈ dom(λ), let

Ot =
{
q ⊆ Zk : q is an rv-polyball and (Lk ◦ f ◦ (L∗k)−1)(q) ⊆ rv−1(t1)× {t1}

}
.

Then, for each t = (t1, t1) ∈ dom(λ), there is an open subball ot ⊆ rv−1(t1) × {t1} ⊆ C and a qt ∈ Ot

such that (λ(t), t) ∈ ot and (Lk ◦ f ◦ (L∗k)−1)(qt) = ot. Let C∗ =
⋃ {

qt : t ∈ dom(λ)
} ⊆ Zk and, for each
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t ∈ dom(λ),

at = (Lk ◦ f ◦ (L∗k)−1)−1(λ(t), t) ∈ qt.

Let λ∗ : pr>1 C∗ −→ VF be the corresponding focus map given by λ∗(pr>1 qt) = at. Note that both C∗

and λ∗ are definable. Let η∗k+1 be the centripetal transformation determined by C∗ and λ∗. For each

t ∈ dom(λ), the restriction of Lk+1 ◦ f ◦ (L∗k+1)
−1 to c(qt − at) is a bijection between the RV-products

c(qt−at) and c(ot−λ(t)) that is contractible in both ways. So, by the construction of L∗k, (TY ◦f ◦L∗k+1)
−1

is contractible. Also, for each t ∈ dom(λ) and any q ∈ Ot with q 6= qt, (Lk+1 ◦ f ◦ (L∗k+1)
−1)(c(q)) is an

open polyball contained in an rv-polyball. So Lk+1 ◦ f ◦ (L∗k+1)
−1 is contractible.

Corollary 5.10.4. Let (X1, g1), (X2, g2) ∈ ObRV[1, ·] be such that L(X1, g1) is definably bijective to

L(X2, g2). Then there are special bijections T1, T2 on L(X1, g1), L(X2, g2) such that (X∗
1 ,pr1) and (X∗

2 ,pr1)

are isomorphic, where

(X∗
1 , pr1) = ((pRV ◦T1)(L(X1, g1)), pr1),

(X∗
2 , pr1) = ((pRV ◦T2)(L(X2, g2)), pr1).

Proof. By Lemma 5.10.3, there are special bijections T1, T2 on L(X1, g1), L(X2, g2) such that there are

definable bijections

F : (rv ◦T1)(L(X1, g1)) −→ (rv ◦T2)(L(X2, g2))

F ↑ : T1(L(X1, g1)) −→ T2(L(X2, g2))

and F ↑ is a lift of F . Since F is a bijection between the companions of (X∗
1 ,pr1) and (X∗

2 , pr1), by Re-

mark 5.6.19, the natural projection of F is an isomorphism between the two.

Definition 5.10.5. Let X ⊆ VFn×RVm1 and Y ⊆ VFn×RVm2 and f : X −→ Y a bijection. Let E ⊆ N
be the set of the indices of the VF-coordinates. We say that f is relatively unary if there is an i ∈ E such

that (prEi
◦f)(x) = prEi

(x), where Ei = E \{i}. In this case we say that f is unary relative to the coordinate

i. If, in addition, f ¹ fib(X, a) is a special bijection on fib(X, a) for every a ∈ prEi
X then we say that f is

special relative to the coordinate i.

Obviously the inverse of a relatively unary bijection is a relatively unary bijection.

Let X ⊆ VFn×RVm, C ⊆ RVH(X) an RV-product, λ a focus map on pr>1 C, and η the centripetal

transformation with respect to λ. Let XC = X ∩ C. Clearly η ¹ XC is a special bijection relative to the
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coordinate 1. It follows that, for every special bijection T on X, T ¹ X is a composition of relatively special

bijections. Suppose that X is definable. Let i ≤ n and Ei = {1, . . . , n} \ {i}. By Proposition 5.7.14, for

every a ∈ prEi
X, there is an a-definable special bijection Ia such that Ia(fib(X, a)) is an RV-product and

hence, by compactness, there is a special bijection Ii relative to the coordinate i such that Ii(fib(X, a)) is

an RV-product for every a ∈ prEi
X. Let

Xi =
{
(ai, (pRV ◦Ii)(ai, ai, t), t) : (ai, ai, t) ∈ X

} ⊆ VFn−1×RVm+1 .

We write Îi : X −→ Xi for the function induced by Ii. Let j ≤ n with j 6= i. Repeating the above procedure

for Xi with respect to j, we obtain a subset Xj ⊆ VFn−2×RVm+2 and a function Îj : Xi −→ Xj , which

depend on the relatively special bijection Ij . Continuing this procedure, we see that, for any permutation σ

of {1, . . . , n}, there is a sequence of relatively special bijections Iσ(1), . . . , Iσ(n) and a corresponding function

Îσ : X −→ RVm+n such that there are an E ⊆ N with |E| = n and a special bijection Iσ = Iσ(n) ◦ . . .◦ Iσ(1) :

X −→ L(Îσ(X),prE). As before, after a permutation of indices, we may always assume that E = {1, . . . , n}.

Definition 5.10.6. The function Îσ is called a standard contraction of X.

Let X ⊆ VFn×RVm and Îid a standard contraction of X such that Iid(X) is of the form rv−1(ti) ×
{
(0, ti,∞, s)

}
, where 0 is a tuple of 0 of length n−1 and∞ is a tuple of∞ of length n−1. Let Iid = In◦. . .◦I1

and I≤i = Ii ◦ . . . ◦ I1. Clearly I≤i(X) is of the form rv−1(ti) ×
{
(0, a, ti,∞, s)

}
, where 0 is a tuple of 0 of

length i − 1, a ∈ VF is a tuple of length n − i, and ∞ is a tuple of ∞ of length i − 1. So for any distinct

(a, 0, ti,∞, s), (b, 0, ti,∞, s) ∈ Iid(X) we have that

(pVFi ◦I−1
id )(a, 0, ti,∞, s) 6= (pVFi ◦I−1

id )(b, 0, ti,∞, s).

This simple observation is used to prove the following:

Lemma 5.10.7. Let X ⊆ VFn×RVm1 , Y ⊆ VFn×RVm2 be definable subsets and f : X −→ Y a definable

bijection. Then there is a definable partition X1, . . . , Xk of X such that each f ¹ Xi is a composition of

definable relatively unary bijections.

Proof. We do induction on n. Since the base case n = 1 holds vacuously, we proceed to the inductive

step directly. By Lemma 5.7.14, for each a = (a1, . . . , an−1) ∈ pVF<n X, there is an a-definable standard

contraction Îid,a on f(fib(X, a)) such that (Iid,a ◦ f)(fib(X, a)) = Za is an RV-product. By Lemma 5.7.4,

in each tuple (t, s) = (t1, . . . , tn, s) ∈ pRV Za, there is at most one i ≤ n such that ti 6= ∞, that is,

each rv-polyball contained in Za is of the form rv−1(ti) ×
{
(0, ti,∞, s)

}
for some i ≤ n. So there is an
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a-definable partition A1, . . . , An of fib(X, a) such that if (a, an, r) ∈ Ai then (Iid,a ◦f)(a, an, r) is of the form

(bi, 0, ti,∞, s). By the observation above, if (bi, 0, ti,∞, s), (b′i, 0, ti,∞, s) are distinct elements in Za, then

(pVFi ◦I−1
id,a)(bi, 0, ti,∞, s) 6= (pVFi ◦I−1

id,a)(b′i, 0, ti,∞, s).

Let ga,i be the function on Ai given by

(a, an, r) 7−→ (a, di, r, ti,∞, s),

where (pRV ◦Iid,a ◦f)(a, an, r) = (ti,∞, s) and (pVFi ◦f)(a, an, r) = di. Therefore, after reindexing the VF-

coordinates in each Ai separately, each ga,i is an a-definable unary bijection on Ai relative to the coordinate

i such that pVFi ◦f = pVFi ◦ga,i. By compactness, there are a definable partition B1, . . . , Bn of X and

definable unary bijections gi on Bi relative to the coordinate i such that pVFi ◦f = pVFi ◦gi.

For each i ≤ n let hi be the function on gi(Bi) such that f ¹ Bi = hi◦gi. For each a ∈ (pVFi ◦gi)(Bi), since

hi(fib(gi(Bi), a)) = fib(f(Bi), a), by the inductive hypothesis, there is an a-definable partition D1, . . . , Dl

of fib(gi(Bi), a) such that each hi ¹ Dj is a composition of a-definable relatively unary bijections. So the

inductive step holds by compactness.

Lemma 5.10.8. Let X ⊆ VF2 be a definable 2-cell. Let 12, 21 denote the permutations of {1, 2}. Then

there are standard contractions Î12 and Ĵ21 of X such that (Î12(X), pr≤2) and (Ĵ21(X), pr≤2) are isomorphic.

Proof. Let ε be the positioning function of X and t ∈ RV the paradigm of X. If t = ∞ then X is the

function ε : pr1 X −→ pr2 X, which is either a constant function or a bijection. In the former case, since

X is essentially just an open ball, the lemma simply follows from Lemma 5.7.8. In the latter case, there

are special bijections I2, J1 on X relative to the coordinates 2, 1 such that I2(X) = (pr1 X)× {(0,∞)} and

J1(X) = {0} × (pr2 X)× {∞}. So the lemma simply follows from Lemma 5.10.3. For the rest of the proof

we assume that t 6= ∞.

If ε is not trapezoidal in X then X is an open polyball, that is, X = (pr1 X)×(pr2 X), where pr1 X, pr2 X

are definable open balls. By Lemma 5.7.8, there are special bijections T1, T2 on pr1 X, pr2 X such that

T1(pr1 X), T2(pr2 X) are RV-products. Trivially, the standard contractions determined by (T1, T2) and

(T2, T1) are the same.

Suppose that ε is trapezoidal in X. Let r be the other paradigm of X. Recall that ε : pr1 X −→ pr2 X

is again a bijection. Let I2 be the special bijection on X relative to the coordinate 2 given by (a, b) 7−→
(a, b− ε(a)) and J1 the special bijection on X relative to the coordinate 1 given by (a, b) 7−→ (a− ε−1(b), b),
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where (a, b) ∈ X. Clearly I2(X) = (pr1 X)× rv−1(t)×{t} and J1(X) = rv−1(r)× (pr2 X)×{r}. So, again,

the lemma follows from Lemma 5.10.3.

Corollary 5.10.9. Let X ⊆ VF2×RVm be a definable subset. Then there is a definable bijection f : X −→
VF2×RVl such that f is unary relative to both coordinates and there are standard contractions Î12 and

Ĵ21 of f(X) such that, for every t ∈ pRV f(X), (Î12(fib(f(X), t)), pr≤2) and (Ĵ21(fib(f(X), t)),pr≤2) are

isomorphic.

Proof. By Lemma 5.8.8, there is a definable function f : X −→ VF2×RVl such that, for each (a, t) ∈ X,

f(a, t) = (a, t, s) for some s ∈ RVl−m, and fib(f(X), (t, s)) is a 2-cell for every (t, s) ∈ pRV f(X). Now the

corollary follows from Lemma 5.10.8 and compactness.

5.11 The kernel of L

We identify all the semigroup homomorphisms induced by L with L. We shall show that the kernel of L,

that is, the semigroup (semiring) congruence relation induced by L on the domain of L, is in effect definable

and hence the inverse of L modulo the congruence relation is definable.

5.11.1 Blowups in RV and the congruence relation Isp

Definition 5.11.1. Let (Y, f) ∈ ObRV[k, ·] be such that, for all t ∈ Y , f|k(t) ∈ acl(f|1(t), . . . , f|k−1(t)) and

f|k(t) 6= ∞. Let (Y, f)] = (Y ], f ]) ∈ ObRV[k, ·] be such that Y ] = Y × RV>1 and, for any (t, s) ∈ Y ],

f ]
|i(t, s) = f|i(t) if 1 ≤ i < k and f ]

|k(t, s) = sf|k(t). The object (Y, f)] is an elementary blowup of (Y, f). An

elementary blowup of any subobject of (Y, f) is an elementary sub-blowup of (Y, f).

Let (X, g) ∈ ObRV[k, ·] and (C, g ¹ C) ∈ ObRV[k, ·] a subobject of (X, g). Let F : (Y, f) −→ (C, g ¹ C)

be an isomorphism. Then

(Y, f)] ] (X \ C, g ¹ (X \ C)) = (Y ] ] (X \ C), f ] ] (g ¹ (X \ C)))

is the blowup of (X, g) via F , written as (X, g)]
F , where the subscript F may be dropped when it is not

needed. The subset C is called the blowup locus of (X, g)]
F . Let (Z, h) ∈ ObRV[k, ·] be isomorphic to a

subobject of (X, g). Then the blowup of (Z, h) induced by F , that is, the disjoint union of an elementary

sub-blowup of (Y, f) and a subobject of (Z, h), is a sub-blowup of (X, g) via F .

An iterated blowup is a composition of finitely many blowups. The length of an iterated blowup is the

length of the composition, that is, the number of the blowups involved.
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Note that, for any (Y, f) ∈ ObRV[k, ·] and a coordinate of f(Y ), if there is an elementary blowup of

(Y, f) with respect to that coordinate then it is unique. We should have included the index of the “blown

up” coordinate as a part of the data for an elementary blowup. Since, in context, either this is clear or it

does not need to be spelled out, we shall suppress mentioning it below for notational ease.

Remark 5.11.2. Let (Y ], f ]) be an elementary blowup of (Y, f) ∈ ObRV[k, ·]. Since rk ∈ acl(rk) for each

(rk, rk) ∈ f(Y ), by compactness, the fiber fib(f(Y ), rk) is finite for each rk ∈ (pr<k ◦f)(Y ). By compactness

again, we see that actually the set {|fib(f(Y ), rk)| : rk ∈ (pr<k ◦f)(Y )} is bounded. By definition, for any

(rk, u) ∈ f ](Y ]) and (t, s) ∈ (f ])−1(rk, u), rk = (f|1(t), . . . , f|k−1(t)) and u = sf|k(t), where f|k(t) ∈
fib(f(Y ), rk). So the projection map pr≤k : Y ] −→ Y is an RV[k, ·]-morphism. Also, since

(f ])−1(rk, u) =
⋃

rk∈fib(f(Y ),rk)

{
f−1(rk, rk)× {s} : u = srk

}
,

clearly if (Y, f) ∈ RV[k] then (Y ], f ]) ∈ RV[k]. So any iterated blowup of an object in Ob RV[k] is an object

in ObRV[k].

Definition 5.11.1 is stated relative to the underlying substructure S. If an object (X, f) is a-definable for

some extra parameters a, then the iterated blowups of (X, f) should be a-definable.

Let (X, g) ∈ ObRV[k, ·] and p : X −→ RVm a definable function. Let Z =
{
(t, p(t)) : t ∈ X)

}
and h

the function on Z given by (t, p(t)) 7−→ g(t). Clearly (Z, h) is isomorphic to (X, g). For each s ∈ RVm let

(X]
s, g

]
s) be an s-definable blowup of (p−1(s), g ¹ p−1(s)). Let

(Z], h]) =
⋃

s∈RVm

(X]
s × {s} , g]

s × {s}).

By compactness, (Z], h]) ∈ ObRV[k, ·]. The projection of Z] to the last m coordinates is identified with the

function p.

Definition 5.11.3. The object (Z], h]) is a parameterized blowup of (X, g) with respect to p, or a p-blowup

for short. An iterated parameterized blowup (X], g]) of (X, g) is a composition of finitely many parameterized

blowups with respect to a sequence of functions of the form p1, p1 × p2, . . . , p1 × · · · × pn. To specify the

functions involved, we also say that it is a (p1, . . . , pn)-blowup. An iterated parameterized blowup (X]], g]])

of (X], g]) is a continuation of (X], g]) if it starts with a function of the form p1 × · · · × pn × pn+1. The

length of an iterated parameterized blowup is the length of the composition.

We could have allowed each (X]
s, g

]
s) to be an s-definable iterated blowup, but it is easily seen to be

equivalent to the above formulation. Note that if (X], g]) is a (p1, . . . , pn)-blowup of (X, g) ∈ ObRV[k, ·]
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and ran(
∏

p) ⊆ RVm then (X], g]) ∈ ObRV[k + m, ·].
The results below will be stated only for the more general categories RV[k, ·], RV[∗, ·], etc. But, by

Remark 5.11.2, they are easily seen to hold when restricted to RV[k], RV[∗], etc. as well.

Lemma 5.11.4. Let (Y1, f1), (Y2, f2) ∈ ObRV[k, ·] and (Y1, f1)], (Y2, f2)] two elementary blowups. If

(Y1, f1), (Y2, f2) are isomorphic then (Y1, f1)], (Y2, f2)] are isomorphic.

Proof. Let F : (Y1, f1) −→ (Y2, f2) be an isomorphism. Let F ] : Y ]
1 −→ Y ]

2 be the bijection given by

(t, s) 7−→ (F (t), s). We claim that F ] is an isomorphism.

We first check the condition of finite-to-finite correspondence. By compactness, for any rk = (r1, . . . , rk−1) ∈
(pr<k ◦f1)(Y1), the fiber fib(f1(Y1), rk) is finite and does not contain ∞. For any (rk, u) ∈ f ]

1(Y
]
1 ) and any

(t, s) ∈ Y ]
1 = Y1 × RV>1 with f ]

1(t, s) = (rk, u), there is an rk ∈ fib(f1(Y1), rk) such that f1|k(t) = rk and

u = srk. Let

A =
{
rk ∈ fib(f1(Y1), rk) : there is an s ∈ RV>1 such that srk = u

}
.

We have that

(f ]
2 ◦ F ] ◦ (f ]

1)
−1)(rk, u)

= (f ]
2 ◦ F ])

( ⋃

rk∈A

(
f−1
1 (rk, rk)×

{
u

rk

}))

= f ]
2

( ⋃

rk∈A

(
(F ◦ f−1

1 )(rk, rk)×
{

u

rk

}))

=
⋃

rk∈A

{
f ]
2

(
t,

u

rk

)
: t ∈ (F ◦ f−1

1 )(rk, rk)
}

=
⋃

rk∈A

{(
(pr<k ◦f2)(t),

uf2|k(t)
rk

)
: t ∈ (F ◦ f−1

1 )(rk, rk)
}

.

Since the subset (f2◦F ◦f−1
1 )(rk, rk) is finite for each rk ∈ A, it follows that the subset (f ]

2◦F ]◦(f ]
1)
−1)(rk, u)

is also finite. Similarly for the other direction f ]
1 ◦ (F ])−1 ◦ (f ]

2)
−1.

Next we check that F ] is volumetric, that is, the condition on weight. For any (t, s) ∈ Y ]
1 , if s 6= ∞

then wgt f ]
1(t, s) = wgt f1(t) and wgt(f ]

2◦)(t, s) = wgt(f2 ◦ F )(t). Since wgt f1(t) = (f2 ◦ F )(t), we deduce

that wgt f ]
1(t, s) = wgt(f ]

2 ◦ F ])(t, s). If s = ∞ then wgt f ]
1(t, s) = wgt f1(t) − 1 and wgt(f ]

2◦)(t, s) =

wgt(f2 ◦ F )(t)− 1 and hence wgt f ]
1(t, s) = wgt(f ]

2 ◦ F ])(t, s).

Corollary 5.11.5. Let (X1, g1), (X2, g2) ∈ ObRV[k, ·] be isomorphic. Let (X1, g1)], (X2, g2)] be two blowups

of (X1, g1), (X2, g2) with isomorphic blowup loci. Then (X1, g1)], (X2, g2)] are isomorphic.
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Lemma 5.11.6. Let (X1, g1), (X2, g2) ∈ ObRV[k, ·] be isomorphic. Let (Z1, h1), (Z2, h2) be two iter-

ated blowups of (X1, g1), (X2, g2) of length l1, l2, respectively. Then there are isomorphic iterated blowups

(Z∗1 , h∗1), (Z∗2 , h∗2) of (Z1, h1), (Z2, h2) of length l2, l1.

Proof. Fix an isomorphism I : (X1, g1) −→ (X2, g2). We do induction on the sum l = l1 + l2. For the

base case l = 1, without loss of generality, we assume that l2 = 0. Let C be the blowup locus of (Z1, h1).

Clearly (X2, g2) may be blown up by using the same elementary blowup as (Z1, h1), where the blowup locus

is changed to I(C). So the base case holds.

We proceed to the inductive step. Let (X1, g1)], (X2, g2)] be the first blowups in (Z1, h1), (Z2, h2) and

C1, C2 their blowup loci, respectively. Let (Y1, f1)], (Y2, f2)] be the corresponding elementary blowups.

If, say, l2 = 0, then by the argument in the base case (X2, g2) may be blown up to an object that is

isomorphic to (X1, g1)] and hence the inductive hypothesis may be applied. So let us assume that l1, l2 > 0.

Let A1 = C1 ∩ I−1(C2) and A2 = I(C1) ∩ C2. Since (A1, g1 ¹ A1) and (A2, g2 ¹ A2) are isomorphic,

by Lemma 5.11.4, the elementary sub-blowups of (Y1, f1)], (Y2, f2)] that correspond to (A1, g1 ¹ A1) and

(A2, g2 ¹ A2) are isomorphic. Then, it is not hard to see that the blowup (X1, g1)]] of (X1, g1)] using the

locus I−1(C2) \ C1 and its corresponding elementary sub-blowup of (Y2, f2)] and the blowup (X2, g2)]] of

(X2, g2)] using the locus I(C1)\C2 and its corresponding elementary sub-blowup of (Y1, f1)] are isomorphic.

Applying the inductive hypothesis to the iterated blowups (X1, g1)]], (Z1, h1) of (X1, g1)], we obtain an

iterated blowup (X∗
1 , g∗1) of (X1, g1)]] of length l1−1 and a blowup (Z1, h1)] of (Z1, h1) such that (X∗

1 , g∗1) and

(Z1, h1)] are isomorphic. Similarly, we obtain an iterated blowup (X∗
2 , g∗2) of (X2, g2)]] of length l2 − 1 and

a blowup (Z2, h2)] of (Z2, h2) such that (X∗
2 , g∗2) and (Z2, h2)] are isomorphic. Now, applying the inductive

hypothesis to the iterated blowups (X∗
1 , g∗1), (X∗

2 , g∗2) of (X1, g1)]], (X2, g2)]], we obtain an iterated blowup

(X∗∗
1 , g∗∗1 ) of (X∗

1 , g∗1) of length l2 − 1 and an iterated blowup (X∗∗
2 , g∗∗2 ) of (X∗

2 , g∗2) of length l1 − 1 such

that (X∗∗
1 , g∗∗1 ) and (X∗∗

2 , g∗∗2 ) are isomorphic. Finally, applying the inductive hypothesis to the iterated

blowups (X∗∗
1 , g∗∗1 ), (Z1, h1)] of (X∗

1 , g∗1), (Z1, h1)] and the iterated blowups (X∗∗
2 , g∗∗2 ), (Z2, h2)] of (X∗

2 , g∗2),

(Z2, h2)], we obtain an iterated blowup (Z∗1 , h∗1) of (Z1, h1)] of length l2−1 and an iterated blowup (Z∗2 , h∗2) of

(Z2, h2)] of length l1−1 such that (X∗∗
1 , g∗∗1 ), (Z∗1 , h∗1) are isomorphic and (X∗∗

2 , g∗∗2 ), (Z∗2 , h∗2) are isomorphic.
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This process is illustrated as follows:

(X2, g2) (X2, g2)]
1

(X1, g1)

(X2, g2)

(X1, g1) (X1, g1)]1 (X1, g1)]

(X2, g2)](X2, g2)] (Z2, h2)
l2−1

(X1, g1)]

(X2, g2)]

(X1, g1)] (Z1, h1)
l1−1

(Z1, h1)

(Z2, h2)

(X1, g1)]

(X1, g1)]]

1

(X2, g2)]

(X2, g2)]]

1

(X2, g2)]]

(X1, g1)]]

(Z1, h1) (Z1, h1)]1

(Z2, h2) (Z2, h2)]1

(X1, g1)]] (X∗
1 , g∗1)

l1−1

(X2, g2)]] (X∗
2 , g∗2)

l2−1

(Z1, h1)]

(X∗
1 , g∗1)

(Z2, h2)]

(X∗
2 , g∗2)

(X∗
1 , g∗1) (X∗∗

1 , g∗∗1 )
l2−1

(X∗
2 , g∗2) (X∗∗

2 , g∗∗2 )
l1−1

(X∗∗
2 , g∗∗2 )

(X∗∗
1 , g∗∗1 )

(Z1, h1)] (Z∗1 , h∗1)
l2−1

(Z2, h2)] (Z∗2 , h∗2)
l1−1

(Z∗2 , h∗2)

(X∗∗
2 , g∗∗2 )

(Z∗1 , h∗1)

(X∗∗
1 , g∗∗1 )

So (Z∗1 , h∗1) and (Z∗2 , h∗2) are as desired.

Definition 5.11.7. Two objects (X1, g1), (X2, g2) ∈ Ob RV[k, ·] are parametrically isomorphic if there are

definable functions p1 : X1 −→ RVm, p2 : X2 −→ RVm such that for every s ∈ RVm there is an s-definable

isomorphism between the subobjects (p−1
1 (s), g1 ¹ p−1

1 (s)), (p−1
2 (s), g2 ¹ p−1

2 (s)).

As usual, by compactness, if two objects are paremetrically isomorphic then there is a uniform formula

that witnesses the fiberwise isomorphisms.

Lemma 5.11.8. Let (X1, g1), (X2, g2), (X3, g3) ∈ ObRV[k, ·] be such that the first two are parametrically

isomorphic with respect to the functions p1, p2 and the last two are parametrically isomorphic with respect to

the functions q2, q3. Then (X1, g1), (X3, g3) are parametrically isomorphic.

Proof. Without loss of generality, we may suppose that ran p1, ran p2, ran q2, ran q3 are all subsets of RVm.

For every r, s ∈ RVm let Yr,s be the intersection of p−1
2 (r) and q−1

2 (t). Since the (r, s)-definable isomorphic

images of (Yr,s, g2 ¹ Yr,s) in (X1, g1), (X3, g3) are manifestly isomorphic, the lemma follows from compactness.

So “parametrically isomorphic” is an equivalence relation on Ob RV[k, ·]. For any (X, g) ∈ RV[k, ·] the

parametrical isomorphism class of (X, g) is denoted as [[(X, g)]]. Notation 5.6.25 is adapted for parametrical

isomorphism classes in the obvious way.

Lemma 5.11.9. Let (X1, g1), (X2, g2) ∈ ObRV[k, ·] be parametrically isomorphic with respect to o1, o2. Let

(Z1, h1) be a (p1, . . . , pl1)-blowup of (X1, g1) and (Z2, h2) a (q1, . . . , ql2)-blowup of (X2, g2). Then there are

parametrically isomorphic continuations (Z∗1 , h∗1), (Z∗2 , h∗2) of (Z1, h1), (Z2, h2) of length l2, l1.

Proof. Applying Lemma 5.11.6, it is not hard to see that, in the case l1 = l2 = 1, such continuations exist

and they are parametrically isomorphic with respect to o1 × p1 × q∗1 and o2 × p∗1 × q1, where q∗1 , p∗1 are

functions on X1, X2 induced by o1, o2. Then the proof is completely analogous to that of Lemma 5.11.6.
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The additional bookkeeping on the parameterizing functions is carried along inductively in a straightforward

way.

Definition 5.11.10. Let Isp[k, ·] be the subclass of ObRV[k, ·]×ObRV[k, ·] of those pairs ((X1, g1), (X2, g2))

such that there are a p-blowup (X]
1, g

]
1) of (X1, g1) and a q-blowup (X]

2, g
]
2) of (X2, g2) such that they are

parametrically isomorphic with respect to
∏

p and
∏

q. Let

Isp[∗, ·] =
∐

0≤k

Isp[k, ·],

Isp[k] = Isp[k, ·] ∩ (ObRV[k]×ObRV[k]),

Isp[∗] = Isp[∗, ·] ∩
∐

0≤k

(ObRV[k]×ObRV[k]).

We will just write Isp for all these classes if there is no danger of confusion. When the underlying

substructure S is expanded with some extra parameters a we shall write Isp〈a〉 for the accordingly expanded

classes.

Corollary 5.11.11. The class Isp[k, ·] is transitive.

Proof. This is immediate by Lemma 5.11.8 and Lemma 5.11.9.

Let (X1, g1), (Y1, f1), (X2, g2), (Y2, f2) ∈ ObRV[k, ·] such that the first two and the last two are

parametrically isomorphic. Then certainly we have that ((X1, g1), (Y1, f1)), ((X2, g2), (Y2, f2)) ∈ Isp. If

((X1, g1), (X2, g2)) ∈ Isp then, by Corollary 5.11.11, we have that ((Y1, f1), (Y2, f2)) ∈ Isp. So we may treat

Isp as a binary relation on parametrical isomorphism classes and hence on isomorphism classes. In fact,

Lemma 5.11.12. Isp[k, ·] is a semigroup congruence relation and Isp[∗, ·] is a semiring congruence relation.

Proof. Clearly Isp[k, ·] is reflexive and symmetric. It is also transitive by Corollary 5.11.11 and hence is

an equivalence relation. Suppose that ([(X1, g1)], [(X2, g2)]) ∈ Isp[k, ·]. For any [(Z, h)] ∈ K+ RV[k, ·], it is

easily checked that

([(X1, g1) ] (Z, h)], [(X2, g2) ] (Z, h)]) ∈ Isp[k, ·],

([(X1, g1)× (Z, h)], [(X2, g2)× (Z, h)]) ∈ Isp[∗, ·].

So the lemma follows from Remark 5.6.23.
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5.11.2 Blowups and special bijections

Lemma 5.11.13. Let (Y, f) ∈ ObRV[k, ·] and η a centripetal transformation on L(Y, f) with respect to

a focus map λ whose locus is L(Y, f). Let Z = (pRV ◦ c ◦η)(L(Y, f)). Then (Z, pr≤k) ∈ ObRV[k, ·] is

isomorphic to an elementary blowup of (Y, f).

Proof. Suppose that dom(λ) = pr>1 L(Y, f). Without loss of generality, we may assume that 0 /∈ ran(λ),

that is, ∞ /∈ pr1 f(Y ). Since λ is a function, for every (r1, r1) ∈ f(Y ) and every a1 ∈ rv−1(r1) we have that

r1 ∈ acl(a1) and hence, by Lemma 5.2.12, r1 ∈ acl(r1). So the elementary blowup (Y ], f ]) of (Y, f) with

respect to the first coordinate of f(Y ) does exist. Note that, by Convention 5.7.1, pr>k Z is the companion

Yf of (Y, f). Clearly the function F : Z −→ Y ] given by

(r1, r1, f(t1, t1), t1, t1) 7−→ (t1, t1, r1/f|1(t1, t1))

is an isomorphism between (Z, pr≤k) and (Y ], f ]), where (t1, t1) ∈ Y and f(t1, t1) = (f|1(t1, t1), r1).

Corollary 5.11.14. Let (X, g) ∈ ObRV[k, ·] and T a special bijection on L(X, g). Let (pRV ◦T )(L(X, g)) =

Z. Then (Z, pr≤k) ∈ ObRV[k, ·] is isomorphic to an iterated blowup of (X, g).

Proof. By induction on the length lh T of T and Lemma 5.11.6, this is immediately reduced to the case

lh T = 1, which follows from Lemma 5.11.13.

Corollary 5.11.15. Let (X1, g1), (X2, g2) ∈ Ob RV[1, ·] be such that L(X1, g1) is definably bijective to

L(X2, g2). Then ([(X1, g1)], [(X2, g2)]) ∈ Isp.

Proof. Let (pRV ◦T1)(L(X1, g1)) = Z1 and (pRV ◦T2)(L(X2, g2)) = Z2. By Corollary 5.10.4 and Re-

mark 5.6.19, there are special bijections T1, T2 on L(X1, g1), L(X2, g2) such that (Z1, pr1) and (Z2,pr1)

are isomorphic. So the corollary follows from Corollary 5.11.14.

Lemma 5.11.16. Suppose that the substructure S is (VF, Γ)-generated. Let (Y ], f ]) be an elementary

blowup of (Y, f) ∈ ObRV[k, ·]. Then there is a special bijection T of length 1 on L(Y, f) such that there is a

commutative diagram

L(Y ], f ]) Y ]

pRV
//

T (L(Y, f))

L(Y ], f ])

F

²²

T (L(Y, f)) Z
pRV // Z

Y ]

F↓
²²

L(Y, f) T (L(Y, f))T //

where Z = (pRV ◦T )(L(Y, f)) and both F and F↓ are definably bijective.
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Proof. For any t = (tk, tk) = (t1, . . . , tk−1, tk) ∈ f(Y ) and any centripetal transformation η on rv−1(t) with

respect to a focus map λ on rv−1(tk), the function

Ft : (c ◦η)(rv−1(t)× f−1(t)) −→ L(f−1(t)× RV>1, f ] ¹ (f−1(t)× RV>1))

given by

(c ◦η)(ak, ak, s) 7−→ (ak, ak − λ(ak), s, rv(ak − λ(ak))/tk)

is a bijection as required. So, by compactness, it is enough to show that there is a t-definable focus map

λ such that rv−1(tk) × f−1(t) ⊆ dom(λ). Let vrv(t) = (γ1, . . . , γk) = γ. Since tk ∈ acl(t1, . . . , tk−1) and

tk 6= ∞, by Lemma 5.9.4, there is a γ-polynomial p(x1, . . . , xk) = p(x) with coefficients in VF(〈∅〉) such that

t is a residue root of p(x) but is not a residue root of ∂p(x)/∂xk. This means that, for every ak ∈ rv−1(tk), tk

is a simple residue root of the γn-polynomial p(ak, xk) and hence, by the generalized Hensel’s Lemma 5.9.2,

there is a unique ak ∈ rv−1(tk) such that p(ak, ak) = 0. So there exists a focus map as desired.

Remark 5.11.17. By the conclusion of Lemma 5.11.16, F is a lift of F↓ and hence, by Remark 5.6.19,

F↓ ∈ MorRV[k, ·]. This gives an alternative proof of Lemma 5.11.4 for the case that the substructure S is

(VF, Γ)-generated.

Corollary 5.11.18. Suppose that the substructure S is (VF, Γ)-generated. Let (X, g), (Y, f) ∈ RV[k, ·] be

isomorphic and (Y ], f ]) an iterated blowup of (Y, f) of length l. Then there is a special bijection T of length

l on L(X, g) such that ((pRV ◦T )(L(X, g)), pr≤k), (Y ], f ]) are isomorphic.

Proof. By induction this is immediately reduced to the case l = 1, which follows from Corollary 5.11.5 and

Lemma 5.11.16.

Let X ∈ ObVF[k, ·] be an RV-product and p : X −→ RVm a definable contractible function. For

each s ∈ RVm let ηs be an s-definable centripetal transformation on p−1(s) × rv−1(s) with respect to a

VF-coordinate of X. Let

Z =
⋃ {

p−1(s)× rv−1(s) : s ∈ RVm
}

and η the centripetal transformation on Z given by (a, b) 7−→ ηrv(b)(a, b). By compactness, η is definable.

We identify p with the function on (c ◦η)(Z) induced by p and projection.

Definition 5.11.19. The subset (c ◦η)(Z) is a propagation of X with respect to p, or a p-propagation for

short. An iterated propagation X] of X is a composition of finitely many propagations with respect to a

sequence of functions of the form p1, p1× p2, . . . , p1×· · ·× pn. To specify the functions involved, we also say

131



that it is a (p1, . . . , pn)-propagation. An iterated propagation X]] of X] is a continuation of X] if it starts

with a function of the form p1 × · · · × pn × pn+1. The length of an iterated propagation is the length of the

composition.

Note that if X] is a (p1, . . . , pn)-propagation of X ∈ Ob VF[k, ·] and ran(
∏

p) ⊆ RVm then X] ∈
ObVF[k + m, ·].

Lemma 5.11.20. Let X ∈ ObVF[k, ·] be an RV-product. Let X] be a (p1, . . . , pl)-propagation of X with

ran(
∏

p) ⊆ RVm. Then there is a (q1, q2, . . . , ql)-blowup (Z], h]) of (pRV X, pr≤k) such that (Z], h]),

(pRV Y ],pr≤k+m) are parametrically isomorphic with respect to
∏

q,
∏

p.

Proof. By induction on l and Lemma 5.11.9, this is immediately reduced to the case l = 1, which follows

from compactness and a fiberwise application of Lemma 5.11.13, as in Corollary 5.11.14.

Lemma 5.11.21. Suppose that the substructure S is (VF, Γ)-generated. Let (X, g), (Y, f) ∈ ObRV[k, ·] be

parametrically isomorphic with respect to o1, o2, where ran o1, ran o2 ⊆ RVn. Let (Y ], f ]) be a (p1, . . . , pl)-

blowup of (Y, f) with ran(
∏

p) ⊆ RVm. Then there is an (o1× q1, q2, . . . , ql)-propagation L(X, g)] of L(X, g)

such that (Y ], f ]), (pRV(L(X, g)]),pr≤k+n+m) are parametrically isomorphic with respect to o2 ×
∏

p, o1 ×
∏

q.

Proof. By induction this is immediately reduced to the case l = 1. In that case, let q : X −→ RVm be the

function induced by p1 and the fiberwise isomorphisms. Then the lemma follows from compactness and a

fiberwise application of Corollary 5.11.5 and Lemma 5.11.16, as in Corollary 5.11.18.

Lemma 5.11.22. Let X1 ⊆ VFn×RVm1 , X2 ⊆ VFn×RVm2 be two definable subsets such that pVFX1 =

pVFX2 = A. Suppose that there is an E ⊆ N with |E| = k such that ([fib(X1, a)]E , [fib(X2, a)]E) ∈ Isp〈a〉
for every a ∈ A. Let Îσ, Ĵσ be two standard contractions of X1, X2 and E′ = E ∪ {1, . . . , n}. Then

([(Îσ(X1),prE′)], [(Ĵσ(X2),prE′)]) ∈ Isp .

Proof. By induction on n this is immediately reduced to the case n = 1. By an argument similar to the one

in the proof of Lemma 5.10.2, there is a special bijection TA on A such that the following hold.

1. TA(A) = A] is an RV-product.

2. For every rv-polyball p ⊆ A] and every a1, a2 ∈ A with TA(a1), TA(a2) ∈ p, fib(X1, a1) = fib(X1, a2)

and fib(X2, a1) = fib(X2, a2).
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3. Let h1 = TA◦(pVF ¹ X1) and h2 = TA◦(pVF ¹ X2). For any rv-polyball p ⊆ A] let h−1
1 (p) = Ap×Up,1

and h−1
2 (p) = Ap×Up,2, where Ap ⊆ A and Up,1 = fib(X1, a), Up,2 = fib(X2, a) for any a ∈ Ap. There

is a formula φ such that, for any a ∈ Ap, φ(a) defines the same iterated parameterized blowups that

witness ([Up,1]E , [Up,2]E) ∈ Isp〈a〉, and hence ([Up,1]E , [Up,2]E) ∈ Isp〈pRV p〉.

Let Y1 = L(Îσ(X1),pr1) and Y2 = L(Ĵσ(X2), pr1). Let

f1 = TA ◦ pVF ◦I−1
σ : Y1 −→ A]

and

f2 = TA ◦ pVF ◦J−1
σ : Y2 −→ A].

By Lemma 5.10.2, there are special bijections T1, T2 on Y1, Y2 such that f1 ◦T−1
1 , f2 ◦T−1

2 are contractible.

Let p ⊆ A] be an rv-polyball and Tp a special bijection on Ap such that Tp(Ap) = A]
p is an RV-product.

Since Isp〈pRV p〉 is a semiring congruence relation, by the third item above, clearly we have that

([(pRV A]
p)× Up,1]E′ , [(pRV A]

p)× Up,2]E′) ∈ Isp〈pRV p〉.

For any t ∈ prE Up,1, fib((T1 ◦ f−1
1 )(p), t) is an RV-product that is (pRV p, t)-definably bijective to the

RV-product fib(A]
p × Up,1, t). By Corollary 5.11.15, we have that

([pRV fib((T1 ◦ f−1
1 )(p), t)]1, [pRV fib(A]

p × Up,1, t)]1) ∈ Isp〈pRV p, t〉

and hence, by compactness,

([(pRV ◦T1 ◦ f−1
1 )(p)]E′ , [(pRV A]

p)× Up,1]E′) ∈ Isp〈pRV p〉.

Symmetrically we have that

([(pRV ◦T2 ◦ f−1
2 )(p)]E′ , [(pRV A]

p)× Up,2]E′) ∈ Isp〈pRV p〉

and hence

([(pRV ◦T1 ◦ f−1
1 )(p)]E′ , [(pRV ◦T2 ◦ f−1

2 )(p)]E′) ∈ Isp〈pRV p〉.
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Since f1 ◦ T−1
1 , f2 ◦ T−1

2 are contractible, we deduce that

([(pRV ◦T1)(Y1)]E′ , [(pRV ◦T2)(Y2)]E′) ∈ Isp .

For any t ∈ prE Îσ(X1), since T1, T2 are special bijections, fib(Y1, t) is an RV-product that is t-definably

bijective to the RV-product fib(T1(Y1), t). As above, by Corollary 5.11.15 and compactness, we conclude

that

([(pRV ◦T1)(Y1)]E′ , [Îσ(X1)]E′) ∈ Isp .

and, symmetrically,

([(pRV ◦T2)(Y2)]E′ , [Ĵσ(X2)]E′) ∈ Isp .

The claim follows.

Corollary 5.11.23. Let X1 ⊆ VFn×RVm1 , X2 ⊆ VFn×RVm2 be two definable subsets and f : X1 −→ X2

a unary bijection relative to the coordinate i. Then for any permutation σ of {1, . . . , n} with σ(1) = i and

any standard contractions Îσ, Ĵσ of X1, X2,

([Îσ(X1)]≤n, [Ĵσ(X2)]≤n) ∈ Isp .

Proof. Let E = {1, . . . , n} \ {i}. For any a ∈ prE X1 = prE X2 and any a-definable standard contractions Î,

Ĵ of fib(X1, a), fib(X2, a), by Corollary 5.11.15, we have that

([Î(fib(X1, a))]1, [Ĵ(fib(X2, a))]1) ∈ Isp〈a〉.

Then the corollary follows from Lemma 5.11.22.

Lemma 5.11.24. Let X ⊆ VFn×RVm be a definable subset. Let i, j ∈ {1, . . . , n} be distinct and σ1, σ2

two permutations of {1, . . . , n} such that σ1(1) = σ2(2) = i, σ1(2) = σ2(1) = j, and σ1 ¹ {3, . . . , n} = σ2 ¹

{3, . . . , n}. Then, for any standard contractions Îσ1 , Îσ2 of X,

([Îσ1(X)]≤n, [Îσ2(X)]≤n) ∈ Isp .

Proof. Let ij, ji denote the permutations of {i, j} and E = {1, . . . , n} \ {i, j}. By compactness and

Lemma 5.11.22, it is enough to show that, for any a ∈ prE X and any standard contractions Îij , Îji of
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fib(X, a),

([Îij(fib(X, a))]≤2, [Îji(fib(X, a))]≤2) ∈ Isp〈a〉.

To that end, fix an a ∈ prE X and let Y = fib(X, a). By Corollary 5.10.9, there are a definable bijection

f : Y −→ VF2×RVk that is unary relative to both coordinates and two standard contractions Ĵij , Ĵji of

f(Y ) such that, for every t ∈ pRV f(Y ),

([Ĵij(fib(f(Y ), t))]≤2, [Ĵji(fib(f(Y ), t))]≤2) ∈ Isp〈a, t〉.

and hence

([Ĵij(f(Y ))]≤2, [Ĵji(f(Y ))]≤2) ∈ Isp〈a〉.

Now the desired property follows from Corollary 5.11.23.

Definition 5.11.25. Let Ibu[k, ·] be the subclass of ObVF[k, ·]×ObVF[k, ·] of those pairs (X, Y ) such that

1. X, Y are RV-products,

2. there are a p-propagation X] of X and a q-propagation Y ] of Y , where ran p, ran q ⊆ RVm, such

that X], Y ] are isomorphic over their projections to RVm, that is, for every s ∈ RVm, fib(X], s) and

fib(Y ], s) are s-definably bijective.

Let

Ibu[∗, ·] =
⋃

k≥0

Ibu[k, ·],

Ibu[k] = Ibu[k, ·] ∩ (ObVF[k]×ObVF[k]),

Ibu[∗] =
⋃

k≥0

Ibu[k].

We will just write Ibu for all these classes if there is no danger of confusion.

If the substructure S is (VF, Γ)-generated then the congruence relation Isp is the congruence relation

induced by L modulo Ibu:

Proposition 5.11.26. Suppose that the substructure S is (VF, Γ)-generated. Let (X, g), (Y, f) ∈ ObRV[k, ·].
Then

(L(X, g),L(Y, f)) ∈ Ibu if and only if ((X, g), (Y, f)) ∈ Isp .

Proof. The “if” direction follows immediately from Lemma 5.11.21 and Corollary 5.9.7.
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For the “only if” direction, let L(X, g)] be a p-propagation of L(X, g) and L(Y, f)] a q-propagation

of L(Y, f), where ran p, ran q ⊆ RVm, such that they are isomorphic over their projections to RVm. By

Lemma 5.11.20, Lemma 5.11.9, and compactness, it is enough to show that, for every s ∈ RVm,

((fib(X], s), pr≤k+m), (fib(Y ], s),pr≤k+m)) ∈ Isp〈s〉.

To that end, suppose that F : fib(X], s) −→ fib(Y ], s) is an s-definable bijection. By Lemma 5.10.7, there

is a s-definable partition X1, . . . , Xn of fib(X], s) such that each Fi = F ¹ Xi is a composition of relatively

unary bijections. By Lemma 5.7.14, there are s-definable special bijections T1, T2 on fib(X], s), fib(Y ], s)

such that T1(Xi), (T2 ◦ F )(Xi) are RV-products for each i. Let

Gi = (T2 ¹ F (Xi)) ◦ Fi ◦ (T−1
1 ¹ T1(Xi)).

Note that each Gi is a composition of relatively unary bijections. By Corollary 5.11.14, it is enough to show

that, for each i,

([(pRV ◦T1)(Xi)]≤k, [(pRV ◦T2 ◦ F )(Xi)]≤k) ∈ Isp .

This follows from Corollary 5.11.23 and Lemma 5.11.24.

Remark 5.11.27. Since Isp is a semigroup (semiring) congruence relation, by Proposition 5.7.14 and Propo-

sition 5.11.26, we may also treat Ibu as a semigroup (semiring) congruence relation.

5.12 Motivic integration

In this section we assume that the substructure S is (VF, Γ)-generated.

As before, the results will be stated for the more general categories RV[k, ·], RV[∗, ·], etc. By Re-

mark 5.11.2, analogous results for the restricted categories RV[k], RV[∗], etc are easily seen to hold by

accordingly restricted arguments.

Proposition 5.12.1. For each k ≥ 0 there is a canonical surjective homomorphism of Grothendieck semi-

groups ∫

+

: K+ VF[k, ·] −→ K+ RV[k, ·]/ Isp

such that ∫

+

[X] = [(U, f)]/ Isp if and only if [X]/ Ibu = [L(U, f)]/ Ibu .
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Proof. Let Q : K+ VF[k, ·] −→ K+ VF[k, ·]/ Ibu be the quotient map. By Corollary 5.9.7, L induces a

canonical semigroup homomorphism

Q ◦ L : K+ RV[k, ·] −→ K+ VF[k, ·]/ Ibu .

By Corollary 5.7.15, Q ◦ L is surjective. By Proposition 5.11.26, the semigroup congruence relation on

K+ RV[k, ·] induced byQ◦L is precisely Isp and hence K+ RV[k, ·]/ Isp is canonically isomorphic to K+ VF[k, ·]/ Ibu.

Inverting this isomorphism and composing it with Q, we obtain the desired homomorphism.

Putting together Proposition 5.12.1 for all k, we obtain:

Theorem 5.12.2. There is a canonical surjective homomorphism of Grothendieck semirings

∫

+

: K+ VF∗[·] −→ K+ RV[∗, ·]/ Isp

such that ∫

+

[X] = [(U, f)]/ Isp if and only if [X]/ Ibu = [L(U, f)]/ Ibu .
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