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Abstract

Richard Dedekind has had an incredible influence on modern mathematics,
largely due to his methodological demands which are still valued by math-
ematicians today. Through an investigation of some of his works written
between 1854 and 1877, I reveal a connection between these methodological
demands and features of axiomatic reasoning that he employed. I discuss two
foundational/philosophic works (his Habilitationsrede and Stetigkeit und ir-
rationale Zahlen), and his first two versions of the theory of ideals. Dedekind
himself assists in the endeavor as he often expresses his reasoning for choos-
ing one method over another. This self-reflective feature of Dedekind’s efforts
provides a unique opportunity to use his comments as a guide to reading both
the foundational and mathematical works. Furthermore, his methodological
preferences can often inform an interpretation of the chronological develop-
ment of his work. Distinctive changes occurring between his first two versions
of the theory of ideals are particularly relevant to such a discussion. I provide
evidence demonstrating that Dedekind’s methodological demands surround-
ing the issues of ontology, domain extension, and conceptualization are most
fruitfully pursued using features of axiomatics.

iii



iv



Contents

1 Dedekind’s early foundational work 3
1.1 Dedekind’s Habilitationsrede . . . . . . . . . . . . . . . . . . . 4
1.2 Defining the real numbers . . . . . . . . . . . . . . . . . . . . 9

2 Overview of the theory of ideals 13
2.1 Why ideal divisors? . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Algebraic integers . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Ideal divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The first two versions 25
3.1 The theory of ideals: 1871 . . . . . . . . . . . . . . . . . . . . 25
3.2 The theory of ideals: 1877 . . . . . . . . . . . . . . . . . . . . 29

4 Method and practice 35
4.1 Ontological concerns . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Preservation of operations and properties . . . . . . . . . . . . 40
4.3 Conceptual reasoning . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Axiomatic characterization . . . . . . . . . . . . . . . . . . . . 48

v



vi CONTENTS



Introduction

Through the investigation of Dedekind’s early foundational and mathemati-
cal works I will show that his methodological demands are the driving force
behind his use of axiomatic reasoning. Dedekind is among the first “modern”
mathematicians, and his work is widely regarded as marking a turning point
in the method and practice of mathematics. There are a number of method-
ological guidelines prevalent throughout his work, and many of them were
even the object of his own considerations. Through an analysis of Dedekind’s
writings I intend to show that he employs features of modern axiomatics for
attaining other methodological goals. I do not claim that Dedekind focused
on axiomatization itself, but rather, that it was a necessary requirement for
fruitfully achieving his other goals.

I will focus on two of Dedekind’s foundational works, his Habilitationsrede
(1854), and Stetigkeit und irrationale Zahlen (1872), and his first two versions
of the theory of ideals, the first found in the Tenth Supplement to Dirichlet’s
Vorlesungen über Zahlentheorie (1871), and the second, a French version from
1877, Theory of Algebraic Integers (translated by John Stillwell in 1996). I
will first present each one of these independently, focusing on features of each
that best highlight some of his methodological concerns. In particular, three
general methodological guidelines followed by Dedekind will be emphasized.

First, there are ontological aspects which guide Dedekind in defining new
objects. Dedekind’s emphasis on the fundamental characteristics and prop-
erties of the rational and real number domains (in Stetigkeit) is analogous
to his method for extending the application of an operation on a limited
domain to an extension (in his Habilitation lecture). The term “Dedekind
abstraction” has come to be associated with one aspect of his method for
defining new number domains, particularly in his pamphlet on defining the
natural numbers Was sind und was sollen die Zahlen (1888). But there also
appears to be a connection to his definition of the real numbers in Stetigkeit.
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2 CONTENTS

Three requirements, explicitly stated by Dedekind, accompany any defini-
tion of a number domain. These methodological demands are shared in the
construction of the real numbers and the ideals. Each of the ontological
demands for defining mathematical concepts can best be achieved by focus-
ing one’s attention on the fundamental characteristics of the object under
consideration.

Second, Dedekind finds it valuable to extend domains in such a way that
fundamental operations, or properties, carry over to the extension. Of par-
ticular importance here will be the introduction of the product of ideals in
the second version of the ideal theory. There are properties of the ideals that
are analogous to those of the rational integers. Thus, one is, at times, able to
reason about the ideals in a similar manner. Furthermore, I will show that
the second presentation of the theory of ideals follows more closely the proof
of unique factorization on the rational integers, a feature of great importance
to Dedekind.

Finally, in several places Dedekind comments on his preference for con-
ceptual reasoning over algorithmic, or calculational reasoning. Dedekind
explicitly tries to focus on fundamental principles of mathematical objects
rather than on their representations and calculations based on these rep-
resentations. I will show that the manifestation of this method provides a
distinctive axiomatic flavor to Dedekind’s work. Exemplary of the method is
his isolation of two auxiliary propositions in the second version of the theory
of ideals.

Each of these three methodological pursuits is clearly present throughout
the works I will present, and they are most fruitfully implemented through
features of the axiomatic method. I do not argue that Dedekind has a fully
developed, modern axiomatic approach to mathematics; rather that the same
sorts of concerns that axiomatics addresses are required for fulfilling his
methodological demands. Modern axiomatics is usually associated with a
structural approach to mathematics, the objects being defined by their rela-
tion to other objects in the structure. There is some support for the position
that Dedekind did have a well developed notion of axiomatics, but my argu-
ment, that he used aspects of the axiomatic method in order to pursue his
other methodological demands, is not affected by such concerns.



Chapter 1

Dedekind’s early foundational
work

The mid-to-late 1850’s was a productive time for Dedekind’s foundational
work. On 30 June 1854 he delivered his Habilitationsrede, the talk which
accompanies the Habilitation paper required for German scholars entering
professional life. Candidates are required to submit three topics related to
their paper’s thesis, but intended to demonstrate breadth of knowledge, then
their committee chooses which will be presented. The title of Dedekind’s talk
was Über die Einführung neuer Funktionen in der Mathematik.1 The topic
relates the fruitful developments of mathematics to the introduction of new
functions (operations) or concepts. The discussion can be viewed as repre-
sentative of Dedekind’s earliest foundational thoughts and a foreshadowing
of many of his methodological principles.

In 1858 Dedekind taught a course on differential analysis, and, as a re-
sult, found great dissatisfaction in the central theorem’s reliance on appeals
to geometric considerations. Dedekind felt that such an appeal may be prag-
matically useful in understanding the subject but it does not provide “a
purely arithmetic and perfectly rigorous foundation for the principles of in-
finitesimal analysis” [3]. The period between 1858 and 1872 was a time of
great growth for Dedekind and the methodological changes are evident in
Stetigkeit und irrationale Zahlen. Although not published until 1872 it was
conceived in 1858 as Dedekind notes in the introduction to [3].

These two foundational works will be analyzed, in Chapter 4, with three

1On the Introduction of New Functions In Mathematics
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4 CHAPTER 1. DEDEKIND’S EARLY FOUNDATIONAL WORK

goals in mind. First, I show that similar methodological issues arise in the two
texts, and that Dedekind’s views evolve and grow between them. Second, I
will clarify those principles that are apparent in his formulation of the theory
of ideals. Finally, principles that have appeared in these earlier works will
be shown to be the motivation for the changes which occur in his second
presentation of ideal theory.

1.1 Dedekind’s Habilitationsrede

In this section I will focus on two features of Dedekind’s methodology that are
evident in his Habilitationsrede. By focusing on his examples of mineralogy
and law, I will clarify what Dedekind means when he says that the introduc-
tion of a concept can be seen as a hypothesis “one puts to the inner nature
of the science” [1, ¶3]. Then I will elucidate Dedekind’s emphasis on discov-
ering and utilizing basic, or characteristic, properties and laws for extending
operations. Dedekind’s explication of the manner in which exponentiation is
generalized will be helpful in this endeavor.

It is obvious that scientists form hypotheses as part of the scientific
method, but whether we can say the same of mathematicians is a contro-
versial point. Dedekind thinks that, in some sense (to be fully developed in
this section), when mathematicians introduce concepts, or form definitions,
they are doing just that. Dedekind provides two examples, mineralogy and
the science of law, that are helpful in understanding what he intends by such
a claim.

Mineralogy is the science dealing with the classification and properties
of minerals. Stated in this manner, the goal of mineralogy is open to any
number of methodological pursuits. That is, a mineralogist could attempt to
classify the minerals based on smell, hardness, solubility, color, or any other
discernible quality. But mineralogy is not in a state of complete disarray,
each scientist pursuing her own research methods. Dedekind notes that there
are, in fact, two qualities that are used in the classification process, chemical
composition and crystallography. One may question why these two, and none
of the others mentioned above, have come to the fore of the science. The
simple answer lies in the benefit of adopting them as fundamental distinctions
among minerals. “Each of these systems is perfectly justified, for science itself
shows that similar bodies group themselves together most naturally in these
ways” [1, ¶3]. Dedekind goes on to say that there is no a priori reason that
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such a conclusion be reached, rather it is through experience that color is
realized to be contingent to the “true nature of bodies” and that chemical
composition and crystallography are recognized by scientists as distinctive
characteristics. To clarify the relation these comments have to hypotheses
he concludes:

The introduction of such a concept as a motif for the arrangement
of the system is, as it were, a hypothesis which one puts to the
inner nature of the science; only in further development does
the science answer; the greater or lesser effectiveness of such a
concept determines its worth or worthlessness. [1, ¶3]

The phrase “as it were” should alert the reader to be careful not to take
the statement at face value. A hypothesis is normally interpreted as a con-
jecture offered to account for some state of affairs. In the sciences hypotheses
are suppositions that accord with known facts and provide a foundation for
research which will either produce evidence for the truth of the hypothesis
or its refutation. Thus, one should ask the question “In what sense does
the introduction of a concept meet such criteria?” In formulating the ba-
sic definitions scientists choose the concepts that are most perspicuous given
their background information. The definitions delimit testable hypotheses by
their logical form. Those hypotheses that are not compatible with the basic
concepts are eliminated from the research program. Scientists then choose
hypotheses that can best explain some phenomena and thereby determine
the path for future research. The success of the hypotheses (or progress of
the science) determines the “effectiveness” of the original concepts.

The example of law helps to further clarify this idea. In formulating laws,
legislators have specific guidelines they believe to be most beneficial to (at
least a portion of) society. That is, they have specific values that help to
shape the types of laws they will consider. Implementing these values through
laws can be considered the goal of their efforts. In order to systematize their
values certain definitions will be necessary. Dedekind proposes, for example,
that the definition of legal institutions would be essential. The form of the
definitions will restrict the laws that can be consistently formulated. As the
laws emerge some of them will be logical consequences of others, and all of
them “react upon the formation of the definitions” [1, ¶4]. So, again the
initial concepts act as hypotheses, this time their worth is determined by
how well the resulting laws capture the initial values of the legislators. It is
possible that the laws fail to do so, in which case it is necessary to go back and
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reformulate the definitions. “The greatest art of the systematizer lies in this
turning and manipulation of definitions for the sake of the discovered laws or
truths in which they play a role” [1, ¶4]. When the systematizer is required
to replace an old concept with a new, one can say that the concept failed as a
hypothesis in the most general sense. The intuitions of the systematizer were
not successful in predicting the most effective definitions for the foundation
of the science. It is the same as the mineralogist who first tried to classify
the minerals by color.

One of the mathematical examples from Dedekind’s Habilitationsrede in-
volves the operation of multiplication. Originally, multiplication is conceived
as a sort-of short hand for multiple applications of the addition operator on
the same value. For instance, the expression 4 + 4 + 4 + 4 + 4 is equiva-
lent to the expression 4 · 5 because the number 4 is added 5 times to the
number 0. If multiplication is nothing more than iterated addition then the
operation can handle the case when the multiplicand (from above, 4) and
multiplier (5) are both positive and when only the multiplier is positive (i.e.
(−3)+ (−3) = (−3) · 2). But, under this interpretation, multiplication is not
generally valid on the integers, for it makes no sense to say some number
is added to 0 a negative number of times. Therefore, if multiplication is to
be generally valid for the integers, it is necessary to define multiplication in
such a way that the multiplicand and the multiplier can both take positive
and negative values. In the context of hypotheses, the conception of multi-
plication as iterated addition has failed and a more general definition must
be proposed as the current “hypothesis”.

In mineralogy, a scientist chooses to pursue a particular research program,
such as using crystallography for classification purposes, and by doing so
“elevates [the distinction] to a chief touchstone of classification” [1, ¶3]. If
an operation needs to be extended, then, if the new definition is to arise in
a non-arbitrary, or necessary manner, a similar thing must occur.

Laws which emerge from the initial definitions and which are
characteristic2 for the concepts that they designate are to be con-
sidered as of general validity. Then these laws conversely become
the source of the generalized definitions if one asks: How must
the general definition be conceived in order that the discovered
characteristic3 laws be always satisfied? [1, ¶6]

2My emphasis.
3My emphasis.
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The passage implies that some of the laws resulting from the originally con-
ceived operation should be considered as essential to it. Dedekind does not
make it clear which laws are characteristic and which are not, but he does
provide an example that will help to clarify what he means.

The initial concept of exponentiation is the result of iterating multiplica-
tion. Or, more precisely, the product of a single rational number x by itself
y times can be seen as a single operation xy. But, this only makes sense for
nonzero natural number exponents. It is senseless to say that one multiplies
4 by itself -3, or 1

2
, times. Dedekind suggests that, in order to generalize the

conception of exponentiation, we compare numbers of the following sort:

xy, xy+z, xy−z, xy·z, xy/z

where x ∈ Q, y, z ∈ N and the exponent remains a natural number. “Once
the laws prevailing here are known, they yield in turn the generalized def-
inition if one requires that these laws set the standard for the character of
exponentiation in general” [1, ¶9].

Dedekind first directs our attention to the following theorem:

xy · x = x · · ·x︸ ︷︷ ︸
y times

·x = xy+1, (1.1)

which follows from the definition of exponentiation, and which he sees as
the starting point for our generalization. This is the simplest of operations
on exponents and the more complex operations arise naturally from it. By
applying the operation multiple times we achieve the addition theorem:

xy · xz = xy · x · · ·x︸ ︷︷ ︸
z times

= xy+1 · x · · ·x︸ ︷︷ ︸
z−1 times

= · · · = xy+z. (1.2)

For y, z ∈ N there exists w ∈ N such that y + z = w and thus y = w − z.
From this, the following theorem for subtraction is derived:

xw−z = xy = x · · ·x︸ ︷︷ ︸
y times

=

y+z times︷ ︸︸ ︷
x · · ·x
x · · ·x︸ ︷︷ ︸
z times

=

w times︷ ︸︸ ︷
x · · ·x
x · · ·x︸ ︷︷ ︸
z times

= xw/xz. (1.3)

For instance

x6−2 = x4 = x · x · x · x =
x · x · x · x · x · x

x · x
= x6/x2
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If we hold equation (1.3) to be generally valid, as the quote above demands,
the first two extensions of the operation are discovered, the rule for powers
with zero exponents:

x0 = xy−y = xy/xy = 1 for all rational numbers x, (1.4)

and a rule for negative whole number exponents:

x−y = x0−y = x0/xy = 1/xy. (1.5)

It is clear from equation (1.2), that we have the following theorem:

(xy)z = xy · · ·xy︸ ︷︷ ︸
z times

= x

z timesz }| {
y + · · · + y = xy·z (1.6)

Now, Dedekind claims “it obviously follows [from equation (1.6)] that the
division of an exponent requires us to perform the unique inverse of the
original operation of exponentiation, namely, to split a given number into an
(also given) number of equal factors” [1, ¶9]. While the exponent remains a
natural number, for y divisible by z there exists w ∈ N such that y/z = w,
hence:

xy/z = xw = xy· 1
z = (x1/z)y = x1/z · · ·x1/z︸ ︷︷ ︸

y times

(1.7)

which is represented as
xy/z = z

√
x · · · z

√
x︸ ︷︷ ︸

y times

.

Finally, if this law is to be valid in general then the properties that any
new definition of exponentiation must fulfill have been determined. Further-
more, this last theorem demonstrates the need for the irrational and complex
numbers. Consider, for instance, the examples:

21/2 =
√

2 and (−5)1/2 =
√
−5 =

√
−1
√

5 = i
√

5.

In the example Dedekind wants to show how the laws resulting from
the original conception of exponentiation, iterated multiplication, necessar-
ily determines the definition of its extension, which must be able to take all
rational numbers as exponents. The laws derived above, where the exponent
is a natural number are taken to be characteristic of the operation of expo-
nentiation. They are essential to the original conception of exponentiation
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because they make sense for multiplying a rational number by itself a speci-
fied number of times. If they are then taken to be generally valid, that is for
any y, z ∈ Z, then the new definition of exponentiation must be such that
these theorems are true. With the generalization of exponentiation, “one is
thereby compelled to create the irrational numbers (with which the concept
of limit appears). . . ” It is evident here that Dedekind recognizes the defi-
nition of the reals necessarily entail the property of continuity. There is no
suggestion for the correct method to define the real numbers, but whatever
it may be, the completeness of the new domain must be a result of the defi-
nition. In fact, this is the feature of the real numbers that he focuses on in
[3].

1.2 Defining the real numbers

Although there is some evidence that, in 1854, Dedekind thought the number
extensions could be defined through the operations themselves, such an as-
sumption does not affect my argument.4 Hence, I will not assume here that
he had any opinion on the subject at that time. The content of Dedekind’s
first published foundational work, Stetigkeit und irrationale Zahlen, was the
first precise implementation of his method for defining domain extensions,
in this case the extension from the rational to real numbers. However, there
are similarities between the method described in the Habilitationsrede and
the one used in Stetigkeit, after discussing the work I will describe them.

As mentioned above, the impetus for Dedekind’s concern regarding the
real numbers was the reliance of some proofs in differential calculus on geo-
metric intuitions. While he felt that these could be used as helpful aids in
teaching the subject they can not provide a solid foundation. It appeared to
Dedekind that the problem was that there was no arithmetic origin for the
notion of continuity, and so such a discovery would solve the difficulty.

In order to solve this problem Dedekind introduces some important prop-
erties of the rational numbers.

I. For all a, b, c ∈ Q, if a > b, and b > c, then a > c.

II. Let a, c ∈ Q, if a 6= c, then there are infinitely many numbers b ∈ Q
such that a < b < c or a > b > c.

4For an excellent discussion on this topic see [9].
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III. For a ∈ Q, all the numbers of the system Q fall into two classes, A1 and
A2, each of which contains infinitely many individuals; the first class
A1 is composed of all numbers a1 such that a1 < a, the second class
A2 is composed of all numbers a2 such that a2 > a; the number a itself
may be assigned to either the first or second class, being respectively
the greatest number of the first class or the least of the second.

Although the geometric considerations can not be used explicitly in solving
the problem, Dedekind does rely on them analogically. The above properties
can be interpreted as relating to the straight line by considering a, b, c to
be points and interpreting a < b as a being to the left of b on the line
(similarly for >). But there is an important difference between the two
domains, the straight line contains no “gaps” whereas the rational numbers
do. The analogy between the straight line and the rational numbers draws
out the feature of the rationals that must be improved upon. “Of the greatest
importance, however, is the fact that in the straight line L there are infinitely
many points which correspond to no rational number” [3, §III].

The real numbers, like the line, do not contain “gaps”. This leads
Dedekind to question the arithmetic “essence” of this continuity. “Every-
thing must depend on the answer to this question, and only through it shall
we obtain a scientific basis for the investigation of all continuous domains”
[3, §III]. He finds that the essence of continuity for the line lies in the fact that
whenever the line is divided into two classes, where every point in one class
is to the left of every point in the other class, there is a unique point that
has produced the division. Interpreted arithmetically, this becomes what
Dedekind takes to be the essence of continuity for the real numbers, and
then defines his basic concept for the domain extension.

If now any separation of the system R [the rational numbers] into
two classes A1, A2 is given which possesses only this characteristic
property that every number a1 in A1 is less than every number a2

in A2, then for brevity we shall call such a separation a cut and
designate it by (A1, A2). [3, §IV]

Now, it must be noted that every cut which is engendered by a rational
number contains either a greatest number in A1 or a least number in A2

that produces the cut, and this is just property III. Although these two
possibilities can be considered as different “objects”, it is suggested that
we consider them “not essentially different”. For instance, consider the cut
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engendered by the rational number 4
5
, either

A1 = {x ∈ Q | x ≤ 4
5
} , A2 = {x ∈ Q | x > 4

5
} ,

or

A1 = {x ∈ Q | x < 4
5
} , A2 = {x ∈ Q | x ≥ 4

5
} .

In the first case 4
5

is the greatest element of A1 and in the second 4
5

is the
least element of A2. It would be unnecessarily complicated to take these as
two different cuts, both of which are engendered by the number 4

5
. Hence,

we will say, at Dedekind’s behest, that they are not essentially different.
After showing that there are an infinite number of cuts not produced by

rational numbers—that is, there does not exist a greatest element of A1 nor a
least element of A2—Dedekind claims that this provides for us an arithmetic
account of the discontinuity of the rational numbers. If one considers the
straight line with a point taken to be the origin and another point, off of the
origin, then the distance between the two can be taken to be the unit length.
Now, the cuts the cuts which are not produced by any rational number are
intimately related to the points on the straight line that have incommensurate
measure with the unit length. Hence the irrational numbers are completely
defined by all those cuts which are not produced by a rational number. The
new numbers are distinguishable one from another by the cuts that they
produce, that is, by investigating the sets of rational numbers that are less
than and greater than them. Three simple theorems assure the reader that
the set of reals is a dense linear ordering.

Finally, Dedekind is in a position to show that his definition of cut satisfies
the theorem for completeness and therefore the reals also must satisfy the
property.

Theorem 1.2.1 If the set R (the real numbers) is divided into two sets A

and B such that for all a in A and for all b in B, a < b, then there exists
exactly one real number c which produces the separation.

The proof for the theorem relies heavily on the three properties (mentioned
before) of the rational numbers. By recognizing that any separation of the
real numbers corresponds to a cut on the rationals Dedekind is able to
fully utilize these properties. The completion of the proof is not the end
of Dedekind’s work, he also must show that the usual operations can be
defined for cuts.
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Since each real number corresponds uniquely to a cut, some method must
be found which take cuts as arguments and produces a cut which corresponds
to each operation on the real numbers. The operation of addition is easily
definable for cuts. Suppose that α and β in the real numbers, corresponding
to the cuts (A1, A2) and (B1, B2) respectively, are to be added. Their sum
equals the real number γ corresponding to (C1, C2). The cut (C1, C2) is
determined in the following way:

If c is any rational number, we put it into the class C1, provided
there are two numbers one a1 in A1 and one b1 in B1 such that
their sum a1 +b1 ≥ c; all other rational numbers shall be put into
the class C2. [3, §IV]

Although Dedekind did not use the modern set theoretic notation for this
definition, his language is clear enough that we can easily interpret it as

C1 = {c ∈ Q | ∃ a1 ∈ A1, b1 ∈ B1 (c ≤ a1 + b1)}.

Of course C2 would be the complement of C1 in the rationals. So, the cut
(C1, C2), corresponding to the sum of α and β, has been constructed using
their counterparts. Little more is needed to show that this characterization of
addition on cuts is sufficient. Dedekind claims that the other operations can
be defined in a similar manner—and though the definitions do become more
complicated, as can be seen in such a definition for multiplication—“and in
this way we arrive at proofs of the theorems (as, e.g.,

√
2 ·
√

3 =
√

6), which
to the best of my knowledge have never been established before” [3, §IV].



Chapter 2

Overview of the theory of ideals

I have pointed out key elements in Dedekind’s first two foundational works
that are relevant to his mathematical practice. Now I will shift focus and give
an overview of the theory of ideals. First, in §2.1, I will show why something
like Kummer’s ideal divisors were needed in number theoretic studies. This
will be followed, in §2.2, by an introduction to the algebraic integers, and a
demonstration of how unique factorization fails on this most general notion
of integer. Then, §2.3 will illustrate the manner in which Kummer was able
to reason about the ideal divisors by their behavior as divisors. Finally, I will
give, in §2.4, a brief account of Dedekind’s explanation of the investigations
that led him from Kummer’s ideal divisors to the definition of ideals.

2.1 Why ideal divisors?

In his Elements, Euclid presented not only geometric results but also key
results in the theory of numbers. Unique factorization is a characteristic
feature of the rational integers. Although Euclid did not prove that the
integers could be uniquely factored, in book seven, he demonstrated what
has come to be known as the Euclidean algorithm which ultimately leads
one to a proof of unique factorization.

The theorems of number theory are remarkable in that they relate features
of the well known rational integers in often surprising ways. Some of these
theorems can be proved by relying on unique factorization of extensions of the
rational integers. For instance, the Two Square Theorem (TST), discovered
by Fermat, can be proved using the unique factorization of the Gaussian

13



14 CHAPTER 2. OVERVIEW OF THE THEORY OF IDEALS

integers1:

Theorem 2.1.1 If a prime p ∈ Z is of the form 4n+1, then p = a2 + b2 for
some a, b ∈ Z.

Proof. Using Wilson’s lemma2, one can show that there exists m ∈ N such
that p | m2 + 1. In the complex numbers m2 + 1 = (m + i)(m − i). But
p - m ± i, therefore p is not prime in the complex numbers. Thus, there
exist x, y ∈ Z[i] such that neither x nor y is a unit, and p = xy, so that
p2 = N(p) = N(x)N(y). Thus, it must be the case that p = N(x) = N(y).
Remembering that N(x) = a2 + b2 for some a, b ∈ Z, the proof is complete.
�

Fermat claimed to have a proof of the theorem using the method of descent
though this one was not known to him.

Other theorems known by Fermat that are related to the TST hint at a
generalization:

p = x2 + 2y2 if and only if p = 8n + 1 or p = 8n + 3,

and p = x2 + 3y2 if and only if p = 3n + 1.

These theorems can be proved using the property of unique factorization in
extensions of the rational integers, the first for numbers of the form a+b

√
−2

and the second a + b
√
−3, a, b ∈ Z. It may appear that these theorems can

be easily generalized to yield a rule for primes that can be written x2 + dy2,
d ∈ Z. However, a difficulty arises immediately.

For primes that can also be written x2 + 5y2, the corresponding numbers
of the form a + b

√
−5 do not factor uniquely.3 For example,

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

In the two factorizations the factors can all be shown to be irreducible, that
is, they are only divisible by the units and their conjugates. By definition an

1The Guassian integers, Z[i], are the set of numbers of the form a + bi, where a, b ∈ Z
and i =

√
−1. For any number x+ yi ∈ Z[i] the norm is defined to be N(x+ yi) = x2 + y2

for some x, y ∈ Z, and N(xy) = N(x)N(y).
2For all rational primes p ∈ Q, (p− 1)! ≡ 0 (mod p).
3Those numbers of the form x2 + 4y2 can be reduced to x2 + (2y)2, hence they are a

special case of the Two Square theorem.



2.2. ALGEBRAIC INTEGERS 15

integer is prime when if it divides a product, it also divides one of the factors,
so 2, if it is prime, must divide either (1 +

√
−5) or (1 −

√
−5). Because

this is not possible the irreducible numbers in Z[
√
−5] are not necessarily

primes. This demonstrates a failure of unique factorization in the domain.
So, in order to reintroduce the desired property of unique factorization, new
numbers must be introduced that act like primes and are divisors of those
irreducible numbers that are not primes. In a similar way, in trying to
generate the higher reciprocity laws (anticipated by Gauss), Kummer was
led to develop his theory of ideal divisors.4

2.2 Algebraic integers

Kummer’s cyclotomic integers were the first extension of the notion of integer
since Gauss. The concept of algebraic integer, first introduced by Dedekind
in the tenth supplement to second edition of Dirichlet’s Vorlesungen über
Zahlentheorie, provided a fully generalized concept of integer. The definition
and its properties will help to clarify the problem of unique factorization
from this vantage point. Any number θ which satisfies the equation

θn + a1θ
n−1 + a2θ

n−2 + · · ·+ an−1θ + an = 0,

where a1, a2, . . . , an−1, an are rational numbers, is called an algebraic number
and if a1, a2, . . . , an−1, an are rational integers then the number is an algebraic
integer. From now on I will refer to these as integers and specify when
discussing the rational integers, which are the only algebraic integers in the
field of rational numbers. As Dedekind notes From the definition arises a
theorem which leads to the failure of unique factorization for these integers.

Theorem 2.2.1 For any two integers α, β the three numbers α+β, α−β, α·β
will also satisfy equations described above, so they are also integers.

The next theorem demonstrates the problem of unique factorization arising
from this formulation of the concept of integer.

4Actually Kummer’s theory of cyclotomic integers (or circle division, as it was known
in his lifetime) was limited to non-unit complex divisors of 1, but the discussion here, and
the one in §2.4, outline the general problem he encountered and a generalization of his
method to other domains.
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Theorem 2.2.2 Any number satisfying an equation of the form

F (ω) = ωm + αωm−1 + · · ·+ ε = 0,

where α, . . . , ε are integers, is also an integer.

In general, this implies that for any integer α, the number s
√

αr is also an
integer. An example might help to clarify why this causes difficulties.

Clearly the number −2 is an integer for it satisfies the equation

θ + 2 = 0.

Now, according to Theorem 2.2.2, any number satisfying the following equa-
tion is also an integer:

F (ω) = ω2 + (−2) = 0.

This implies that
√

2 is an integer, for

ω2 = 2 =⇒ ω = ±
√

2.

By similar reasoning, one can show that the square root of any integer is
also an integer. But this implies that every integer has an infinite number of
divisors. The proof of unique factorization in the integers rests on the fact
that the prime numbers are also irreducible, that is only divisible by itself
and 1. Thus it is clear that something must be done in order to recover
unique factorization.

An algebraic integer will satisfy an infinite number of equations of the
form above, but only one of these is minimal in degree. This equation, whose
lead exponent is smallest, will be said to be irreducible. Now, assume that
we have an irreducible equation satisfied by θ. The set of numbers generated
by the equation

φ(θ) = x0 + x1θ + x2θ
2 + · · ·+ xn−1θ

n−1, (2.1)

where x0, x1, . . . , xn−1 ∈ Q, will be called a field of degree n and represented
as Ω.5 The set is a field because, as in the field of rational numbers, these new
numbers are closed under addition, subtraction, multiplication, and division
(except by 0). A subset of this field are the integers of the field and will be
represented by o.6 This is the set on which Dedekind intends to introduce
unique factorization through his concept of ideal.

5In modern notation, we would denote Ω by Q[θ]
6I will discuss, in §3.1 and §3.2, an additional requirement for the theory, that o contain

all of the integers of the field. This means that, in general, o is larger than Z[θ].
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2.3 Ideal divisors

Here I will discuss an example in order to show how Kummer used divisibility
properties to reason about his ideal divisors.7 In particular, theorems from
number theory can be used to show that 2 acts like the square of an ideal
prime in the ring Z[

√
−5]. Then, I will demonstrate how Kummer could use

properties of divisibility to reason about the ideal divisor of 2. That is, he
does not actually introduce the ideal numbers as new objects in the domain,
but rather, he simply shows how such ideal numbers must behave as divisors
of the numbers in the domain.

The next two theorems from elementary number theory serve to charac-
terize the squares of primes.

Theorem 2.3.1 For any a ∈ N, if for every x, y ∈ N, a | x2y2 implies that
a | x2 or a | y2, then a = 1 or there exists a prime number p such that a = p
or a = p2.

Theorem 2.3.2 For any a ∈ N if there exists x ∈ N such that a - x and
a | x2, then there exists a y 6= 1 and z ∈ N such that a = y2z.

Suppose a satisfies the antecedents of the two theorems, that is:

(1) a | x2y2 =⇒ a | x2 or a | y2.

(2) There exists x ∈ N such that a - x and a | x2.

Then a is necessarily the square of a prime. Conversely, if a is the square
of a prime, then it will satisfy the two relations above. Therefore the two
properties completely characterize the squares of primes, and so they can be
used to show that the number 2 acts like the square of a prime in the domain
Z[
√
−5]. In order to do this it will be shown that the number 2 satisfies the

two properties in the domain. Doing so will require the introduction of three
concepts.

An irreducible equation will likely have more than one root. Let all of the
roots of an irreducible equation θ, θ1, θ2, . . . , θn−1 be called the conjugates of
the equation. As in the complex numbers, the numbers 1 + 2i and 1 − 2i
are said to be conjugates because they are the only numbers satisfying the
equation x2−2x+5 = 0. Obviously all of the conjugates will be integers since

7I will follow Dedekind’s description, found in [5, §8].
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they satisfy the same equation. So, also analogous to the complex numbers,
the norm of a number µ = φ(θ) in Ω will be defined as the product

N(µ) = µµ1µ2 · · ·µn−1,

where µ = φ(θ), µ1 = φ(θ1), . . . , µn−1 = φ(θn−1). This concept is extremely
important to the analysis of o, so I should mention a few of its properties.
The norm of any integer is always a rational integer and N(µ) = 0 if and
only if µ = 0. Furthermore, for any two α, β ∈ Ω,

N(αβ) = N(α)N(β).

Finally, for three numbers α, β, γ ∈ o say that α and β are congruent (or
incongruent) to one another modulo γ whenever ±(α − β) is divisible by γ
(or not). If they are congruent the relationship will be denoted

α ≡ β (mod γ).

Clearly, also analogous to the rational or complex numbers, o can be parti-
tioned into a finite number of classes modulo some number γ, except when
γ = 0. Now every number in a class is congruent (modulo γ) and any number
from a class is said to represent that class. Furthermore, Dedekind shows
that the number of classes modulo γ is less than or equal to N(γ). But this
implies that N(µ) = 1 just in case µ is a unit.

Now it is possible to show that 2 acts like the square of a prime in Z[
√
−5].

First, notice that any two conjugates x+yθ, x−yθ ∈ Z[
√
−5] are congruent

modulo 2, since their difference, ±2yθ, is divisible by 2. Now, let ω = x + yθ
and ω = x− yθ, so that

ω ≡ ω (mod 2) =⇒ ω2 ≡ N(ω) (mod 2) (2.2)

Hence, the same can be said to be true for any other ω′:

ω′2 ≡ N(ω′) (mod 2). (2.3)

Now, by the rules of congruence8

ω2ω′2 ≡ N(ω)N(ω′) (mod 2). (2.4)

8a ≡ b (mod c), d ≡ e (mod c) =⇒ ad ≡ be (mod c)
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For any values of x, y, x′, y′ for which 2 divides ω2ω′2, it must also be the
case, by equation (2.4), that 2 divides N(ω)N(ω′). But, norms are always
rational integers and since 2 is a rational prime, either 2 | N(ω) or 2 | N(ω′).
This, in conjunction with equation (2.2), necessitates the divisibility of either
ω2 or ω′2 by 2. Thus 2 satisfies the antecedent of Theorem 2.3.1. Furthermore,
if ω = x + yθ, where x and y are both odd, then 2 - ω, but a calculation9

shows 2 | ω2. Thus the antecedent of Theorem 2.3.2 is satisfied. Hence, 2
acts like the square of a prime number in Z[

√
−5].

As stated previously, Kummer did not introduce new mathematical ob-
jects into the domain. Rather, he defined a number α based on the divisibility
properties of it in the domain (in our example Z[

√
−5]). If the number α

existed in the domain, then it would be true that α2 = 2, therefore it can be
said that for any number ω,

αn | ω ⇐⇒ (αn)2 | ω2 ⇐⇒ α2n | ω2 ⇐⇒ (α2)n | ω2 ⇐⇒ 2n | ω2. (2.5)

Hence, for any number ω in Z[
√
−5] the highest power of α that divides it

is equal to the highest power of 2 that divides ω2. This will work fine for
this particular instance but it does not provide a general method for solving
problems of this sort. Equation (2.5) relies on the property that the ideal
divisor is the square of a rational prime, but this will not be true in general,
and so the method of calculation must only use α to the first power. In the
deduction of such an equation other important divisibility properties of α in
the domain will be discovered. The first is the primality of α in Z[

√
−5].

First, consider the situation where n=1 in equation (2.5), that is, 1 is the
highest power of 2 that divides ω2, and so 1 is also is the highest power of α
that divides ω. Then, for some a, b ∈ Z

2(a + bθ) = (x + yθ)2 = x2 + 2xyθ − 5y2 = (x2 − 5y2) + 2xyθ

=⇒ a + bθ =
x2 − 5y2

2
+ xyθ.

Hence, it must be the case that x2−5y2

2
is an integer, but N(ω) = x2 +5y2, so

N(ω) must be even. Now, assume that N(ω) is even, then for some n ∈ Z,

9If x, y are odd then there exist m,n ∈ Z such that

ω2 = ((2m + 1) + (2n + 1)θ)2

= 4m2 + 4m + 1 + 2(4mn + 2m + 2n + 1)θ + (4n2 + 4n + 1)θ2

= 4m2 − 20n2 + 8mn + 8m− 16n− 2 = 2(2m2 − 10n2 + 4mn + 4m− 8n− 1)
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2n = N(ω) = x2 +5y2. Considering cases shows that either x and y are both
even or both odd. A calculation proves that in either case

for all ω = x + yθ, α|ω ⇐⇒ x ≡ y (mod 2), (2.6)

or equivalently, when N(ω) is even.10 Kummer takes the divisibility prop-
erties of the ideal divisor α to define it in the domain. Additionally, from
equation (2.6) it can be proven that α actually acts like a prime number in
Z[
√
−5]. For any product ωω′,

α | ωω′ =⇒ N(ωω′) is even =⇒ N(ω)N(ω′) is even
=⇒ N(ω) is even, or N(ω′) is even
=⇒ α | N(ω) or α | N(ω′)
=⇒ α | ω or α | ω′.

(2.7)

But a complete method of reasoning about elements of the domain that
will determine the highest power of α by which it is divisible is desired. This
is accomplished by first proving the following (taken verbatim from [5, §8]):

Theorem 2.3.3 “The exponent of the highest power of α that divides a prod-
uct is equal to the sum of the exponents of the highest powers of α that divide
the factors.”

Proof. Suppose that s is the highest power of 2 that divides a number ω.
Then there must exist ω1 = x1 + y1θ ∈ Z[

√
−5] such that

ω = 2s(x1 + y1θ.)

We must consider three cases. First, x1 and y1 cannot both be even, otherwise
ω1 is divisible by two and ω is divisible by 2s+1. Second, if both are odd then,

10If N(ω) the first case

ω2 = (2m + 2nθ)2 = 4m2 + 4mnθ − 20n2 = 2(2m2 + 2mnθ − 10n2)

which is clearly divisible by 2. When x and y are both odd

ω2 = ((2m + 1) + (2n + 1)θ)2

= (4m2 + 4m + 1) + 2(4mn + 2m + 2n + 1)θ − 5(4n2 + 4n + 1)

= 4m2 + 4m− 20n2 − 20n− 4 + 2(4mn + 2m + 2n + 1)θ

= 2[2m2 + 2m− 10n2 − 10n− 4 + (4mn + 2m + 2n + 1)θ],

which is again divisible by 2.
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by equation (2.6), we have α | ω1 and the highest power of α that divides ω
is 2s + 1. Finally, if one of x1, y1 is even and the other odd we have α - ω1

so that 2s is the highest power of α dividing ω. This result combined with
equation (2.7) shows that the theorem is true. �

The complete characterization of the divisibility of a number in Z[
√
−5]

is near at hand. Notice that, according to equation (2.6), 1+θ is divisible by
α but it is not divisible by α2 = 2. This fact together with Theorem (2.3.3)
leads us directly to the following congruence determining the highest power
n of α that divides a number ω

ω(1 + θ)n ≡ 0 (mod 2n). (2.8)

This, of course, is equivalent to the statement that 2n | (ω(1 + θ)n). If ω
is divisible by α but not α2 then ω(1 + θ) will be divisible by α2 = 2 (by
Theorem 2.3.3), so that n = 1 in equation (2.8) as expected.

This example of the ideal divisor of 2 in the domain Z[
√
−5] will pro-

vide the means for understanding Dedekind’s development of the concept
of ideal, but first I will provide a quick overview of the process I have just
completed. As with the number 2 in Z[

√
−5], theorems from the theory of

rational integers can be used in order to determine the properties of those
rational primes that are irreducible but do not act like primes in other exten-
sions. In the example, 2 is the square of a prime. With similar information
it is possible to determine all the necessary ideal divisors for a domain. The
divisibility properties of the integers provides a method for determining the
highest power of the ideal divisors that divide any number in the domain.
Thus, the reintroduction of unique factorization in extensions of the rational
integers can be reclaimed.

2.4 Ideals

Now that we have seen a process similar to that used by Kummer for rein-
troducing unique factorization to the cyclotomic integers, the explanation
Dedekind provides for the development of the concept of ideal should be clear.
The first feature Dedekind recognizes relates to the fundamental method
Kummer used for defining the ideal divisors of a domain. They are defined
by all those numbers that they divide. So, it seems natural to begin by con-
sidering precisely that set of numbers. For any two numbers ω, ω′ in Z[

√
5]
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that are divisible by α, ω ≡ ω′ (mod α) and furthermore for any number
κ that is not divisible by α it is the case that ω 6≡ κ (mod α). That is, if
α | ω then the congruence relation can be used as a test to determine the
class of numbers that are all divisible by α. By thinking of the number α as
nothing more than the numbers that it divides one is not driven to sidestep
the question of what the ideal divisors are. Since the ideal divisors have
been introduced for the purpose of realizing unique factorization the actual
numbers in the domain must be represented in the same manner as the ideal
divisors. This is unproblematic because they can be considered as a special
case, that is they are generated by an integer in the domain. For instance,
in the domain Z[

√
−5], the set of numbers generated by the integer 7 can be

represented in modern notation by

[7] = {7ω | ω ∈ Z[
√
−5]}.

These considerations provide the reason for Dedekind’s focus on the class of
numbers divisible by the number the set is taken to represent.

Given the definition of integer in §2.2 there are two theorems that relate
divisibility properties of a number to addition (likewise subtraction) and
multiplication.

Theorem 2.4.1 If two integers α = µω, α′ = µω′ are divisible by the integer
µ, then so are their sum α + α′ = µ(ω + ω′) and their difference α − α′ =
µ(ω − ω′), since the sum ω + ω′ and difference ω − ω′ of two integers ω, ω′

are themselves integers.

Theorem 2.4.2 If α = µω is divisible by µ, each number αω′ = µ(ωω′)
divisible by α will also be divisible by µ, since each product ωω′ of integers
ω, ω′ is itself an integer.

These two theorems can now be related to the elements of the domain o in
the following way, where µ is a particular number in o, ω ∈ o, and a is the
set generated by µ (i.e. a = {µω | ω ∈ o}):

I. The sum and difference of any two numbers in the system a are always
numbers in the same system a.

II. Any product of a number in the system a by a number of the system o

is a number in the system a.
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Since these properties simply rely on the laws of divisibility and the ideal
divisors were designed to fulfill those laws, the properties can be extended to
them. That is, for example, the system of numbers in Z[

√
−5] divisible by

the ideal divisor α satisfies the two properties. Thus Dedekind has discovered
two properties that are necessary conditions for all of the integers, real and
ideal, in the domain. Therefore, these sets that represent the integers in
the domain will be called ideals, and those that are generated by actual
numbers in the domain will be especially designated as principal ideals, and
the ideal generated by the number η will be denoted oη. “A fact of the
highest importance, which [Dedekind] was able to prove rigorously only after
numerous vain attempts, and after surmounting the greatest difficulties, is
that conversely, each system enjoying properties I and II is also an ideal” [5,
Introduction]. That is, for any set of numbers satisfying the two properties,
the set corresponds to either an ideal divisor or an actual integer in the
domain. To demonstrate the connection the properties have to the class
generated by an ideal divisor, I will again consider the example of α2 = 2 in
Z[
√
−5].
Define a′ to be the set of all integers that are divisible by α (i.e. a′ =

{αω | ω ∈ Z[
√
−5]}), so that according to equation (2.6) for any two

integers ω, ω′ ∈ a′

x ≡ y (mod 2) and x′ ≡ y′ (mod 2).

By the rules of congruence, this implies that x + x′ ≡ y + y′ (mod 2) and
therefore

α|(x + x′ + (y + y′)θ) = (x + yθ) + (x′ + y′θ) = ω + ω′.

This simply states that the sum of any two numbers divisible by α is also
divisible by α (similar for subtraction). Furthermore, if α | ω and ω′ ∈
Z[
√
−5], then we have

2 | N(ω) =⇒ 2 | N(ω)N(ω′) =⇒ 2 | N(ωω′).

Therefore, α divides ωω′ and ωω′ ∈ a′. Thus, the two properties are fulfilled
by the set a′ whose generator is α, and a′ is an ideal. This should help clarify
how Dedekind came to found his explorations of the algebraic integers on the
concept of ideal.
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Chapter 3

The first two versions

This chapter will provide a high-level sketch of each of the first two versions of
the theory of ideals developed by Dedekind in 1871 and 1877. I will note some
of the changes occurring between them here, but leave a fuller discussion of
these changes and the motivation behind the distinguishing features to the
next chapter where I will focus on his methodology in relation to the changes
occurring between the two versions.

3.1 The theory of ideals: 1871

In this section I will follow the path carved out by Dedekind, in 1871, that led
to the unique factorization of the ideals. Following the introduction of some
concepts shared with the presentation of 1877, the fundamental theorem is
derived in three, very general, steps: introduce simple ideals, use simple
ideals to deduce important relationships, and then show that every prime
ideal is also a simple ideal.

The concepts of ideal, principal ideal, class, congruent, conjugate, and
norm have already been introduced in either §2.3 or §2.4. Because the num-
bers of the domain are to be represented by sets, any operations, or relations,
must be defined for sets. The number α is said to be divisible by the ideal a

if α is contained in the ideal a. Likewise the ideal a divides the ideal m if all
of the elements in m are also elements of a. Given two ideals a, b, the least
common multiple (LCM), m, can be defined as the intersection of a and b,
or equivalently, the set of all elements common to both ideals. Furthermore
the greatest common divisor (GCD), d, is simply the set of all sums α + β

25
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where α ∈ a and β ∈ b.
The next concept introduced is not relegated a term in 1871, but it is

important to the theory none the less. For any number η ∈ o and ideal a,
there exists an ideal r = {ρ | ηρ ≡ 0 (mod a)}, such that r | a.1 I will
say that such an ideal r arises from the correspondence-congruence for the
number η and the ideal a. The related statement for the rational integers
simply affirms that for all a, n ∈ Z, there exists r ∈ Z such that an | r. This
is evidently true as r can be taken to be the product of all the powers of
primes that divide a but do not divide n. Using this concept and the basic
laws of modules Dedekind deduces the following theorem.

Theorem 3.1.1 If a is any ideal, b = oη is a principal ideal, r is the ideal
dividing a that corresponds to η, and d is the GCD of a and b, then N(a) =
N(r)N(d).

Although he does not say so, it is obvious that the ideal r divides a as every
element of ρ ∈ r is divisible by a, and so ρ ∈ a.

In secondary school mathematics the notions of prime and irreducible are
often taken to be synonyms. This is because in the rational and complex
integers the two concepts are coextensive. But, in modern algebra the con-
cepts must be clearly distinguished one from another. In the two versions of
Dedekind’s theory of ideals an ideal is said to be prime when it is divisible by
no other ideals except o and p (usually this is considered to be irreducible).
But, he then shows that the prime ideals can be characterized by theorems
which are more closely related to the usual definition.

Theorem 3.1.2 If p is prime then ηρ ≡ 0 (mod p) (i.e. p | ηρ) implies
either p | η or p | ρ.

Next, Dedekind derives the converse of the theorem, thus demonstrating that
the prime ideals are completely characterized by Theorem 3.1.2. These two
theorems can be seen as a method, and are used, for testing the primality of
ideals. Furthermore, they necessitate that for any prime ideal p, the smallest
rational number, p, in p is a rational prime. Since op ⊆ p, it is also the case
that N(p) | N(p) = pn which implies that for some f ∈ N, N(p) = pf .

Theorem 3.1.2 is used almost immediately to introduce the key concept
of simple ideal. A preliminary theorem is required and then the concept can
be formally defined through the following theorem:

1Of course Dedekind did not use the set theoretic notation, but his language can clearly
be interpreted in it.
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Theorem 3.1.3 For any nonzero, nonunit µ ∈ o, there exists a number ν
such that all of the roots π of the congruence νπ ≡ 0 (mod µ) form a prime
ideal.

Dedekind thus writes “We will henceforth call prime ideals which arise as
the roots of such a congruence simple ideals” [2, §163.4]. If r ∈ N, then the
roots ρ of the congruence νrπ ≡ 0 (mod µr) will form an ideal called the rth

power of p, and it will be denoted pr. The set theoretic representation of the
simple ideals, and their powers, are clearly seen to be

p = {π | νπ ≡ 0 (mod µ)}

and

pr = {π | νrπ ≡ 0 (mod µr)}

respectively. It is helpful to consider what the theorem regarding simple
ideals says about the rational integers: for all nonzero, nonunit m ∈ Z there
exists n, p ∈ Z such that p is prime and m | np. If we suppose that m =
p1p2 · · · pk then n can be taken to be any number divisible by p1p2 · · · pk−1

and then p = pk. The same reasoning can be followed for the rth power of
p. Theorem 3.1.2 is used in conjunction with the definition of simple ideal
to deduce the theorems which make up the heart of the theory.

Unless specified otherwise, all future references to an ideal p will be about
simple ideals. The goal now is to build enough machinery, using the useful
concept of simple ideal, so that unique factorization is regained once it is
shown that all prime ideals are simple ideals. Although the two key theo-
rems discussed here may be clearly true for powers of primes in the rational
integers, they are nontrivially true for ideals. In fact, a further assumption
is required for these theorems.

After the introduction of simple ideals and their powers Dedekind moves
on to the following theorem:

Theorem 3.1.4 If s ≥ r, then pr | ps.

In the proof Dedekind informs the reader that a certain important quotient
is an integer in the field Ω, “and therefore contained in o, since o comprises
all the integers of the field Ω” [2, §163.4]. In the footnote attached to the
comment Dedekind informs the reader that the theorem is not generally valid
without this additional assumption. Dedekind does not make it clear which
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theorems rely on this property, but in fact all of the remaining theorems are
dependent on it, more or less, indirectly.

Until it is shown that all prime ideals are also simple ideals all of the the-
orems rely on the special manner in which the simple ideals arise. While the
analogous rational integer theorems would rest on the notion of multiplica-
tion, these are reliant on the inclusion relation for divisibility. The following
theorem exemplifies this pattern:

Theorem 3.1.5 If ρ ∈ o is nonzero, then there exists a highest power of p

that divides ρ.

Proof. There are only a finite number of incongruent numbers (mod ρ). Sup-
pose, for the sake of deriving a contradiction, that there are infinitely many
exponents r such that pr | ρ, then by the definition of simple ideals there
would be two, pq and ps, such that

νqρ ≡ 0 (mod µq) and νsρ ≡ 0 (mod µs),

would be equivalent (mod ρ); that is

νqρ

µq
≡ νsρ

µs
(mod ρ) =⇒

(
ν

µ

)q

=

(
ν

µ

)s

+ ω,

where ω is an integer. Thus, it must be the case (by Theorem 2.2.2) that
ν
µ

is an integer. From this, 1 · ν ≡ 0 (mod µ) implies that 1 ∈ p and p = o

which cannot be the case. �

The calculation involved in this proof will be important for later consider-
ations but for now it is enough to notice the use of simple ideals, and the
definition of divisibility. Furthermore, the connection between this theorem
and the rational integers needs no clarification.

Also key to the properties of simple ideals is the following very simple
theorem:

Theorem 3.1.6 Each power pr of a simple ideal p is not divisible by any
other prime ideal.

The proof relies only on the definitions of simple ideal, divisibility, primality,
and the primality test for prime ideals. In the rational integers the theorem
is interpreted in a straight forward manner. If p ∈ Z is prime then for any
n ∈ N, pn is not divisible by any prime other than p.

As Dedekind mentions, the importance of simple ideals to the theory is
demonstrated by the next theorem.
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Theorem 3.1.7 For all µ ∈ o, oµ is the LCM of all the powers of simple
ideals that divide µ.

Just as the statement that any n ∈ Z is the LCM of all the powers of primes
that divide it, so too this theorem expresses the uniqueness of factorization
for principal ideals by simple ideals. At this juncture the goal has nearly
been achieved, but notice that the theorem is relevant only to those ideals
generated by numbers in the domain o. Furthermore, these ideals are, now,
only uniquely factored by the special simple ideals, not the prime ideals in
general. Dedekind quickly dispels the second difficulty by showing that all
prime ideals are simple ideals. The only thing left to do is augment Theorem
3.1.7 to be true for all ideals and not just the principal.

Before coming to the final statement of unique factorization I would like
to draw attention to the restricted formulation. Remember that the test for
prime ideals is only testable for integers in o, not for ideals. Since Dedekind
has not defined the product of ideals this, of course, must be the case. For
this reason the theorem above cannot focus directly on the ideals, in general,
but must be restricted to principal ideals (i.e. those which are in direct
correlation to integers in o). The fully general proof of unique factorization
of ideals is proved in the equivalent formulation:

Theorem 3.1.8 If all the powers of prime ideals that divide an ideal m also
divide a number η, then m | η.

Clearly, this theorem, in conjunction with Theorem 3.1.7, states that once
the highest powers of prime ideals that divide an ideal m are known, then m

is completely determined.

3.2 The theory of ideals: 1877

Here I will sketch Dedekind’s presentation of the theory of ideals found in
1877. The overview will consist of four parts: first comes the definition of the
product of ideals, then I will explain what Dedekind takes to be, “the only
[difficulty] presented by the theory” [5, §23], next I will show how Dedekind
builds up to unique factorization for all ideals, lastly, the final piece to unique
factorization will be the generalization of a familiar theorem for norms. I will
rely on the concepts of divisibility, LCM, and GCD which are defined the
same for the two versions.
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In the last section I used the term correspondence-congruence in relation
to the ideal r which arises as the roots π of the congruence

ηπ ≡ 0 (mod a)

given the number η and the ideal a. Although, in 1877, Dedekind does
mention the congruence, he does not use it to introduce the ideal. In fact,
he merely points out that given the ideals b = oη and a, there exists an ideal
r, such that ηr is the least common multiple of oη and a. “This case occurs
frequently in what follows, and for that reason we say, for brevity, that the
ideal r dividing the ideal a corresponds to the number η” [5, §19]. Notice
the concept even adds the requirement of LCM to its counterpart in 1871,
but Dedekind does not find it necessary to focus on the calculations that
accompany the concept there.

The deduction of Theorem 3.1.1 relies on facts that are important to this
presentation, so I will provide the proof now.

Proof of Theorem 3.1.1 Let a and b be any two modules (ideals being a
special case of these) and d and m their GCD and LCM respectively. Let
(b, a) be the number of incongruent elements of b modulo the module a. In
the more general theory of modules Dedekind has shown that

(b, a) = (b, m) = (d, a), (3.1)

and since d is divisible by o,

(o, a) = (o, d)(d, a), (o, m) = (o, b)(b, m)

hence
N(a) = (b, a)N(d), N(m) = (b, a)N(b) (3.2)

and
N(m)N(d) = N(a)N(b). [5, §20]

So, in this case, by equations (3.1) and (3.2), N(a) = N(r)N(d) as was to be
shown. �

Using the definition of prime ideals, in 1877, Dedekind gives only the contra-
positive of Theorem 3.1.2. Thus, in contrast to 1871, here he does not prove
that the prime ideals are completely characterized by this theorem. Such a
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characterization is not necessary for the theory, so he has chosen to discard
it from the presentation.

In 1877 the feel of the theory of ideals is drastically changed by the
introduction of a very simple concept. For any two ideals a and b, and
α1, α2 ∈ a, β1, β2 ∈ b, let the ideal c be composed of the sums α1β1 +
α2β2. The ideal c will be called the product of the ideals a and b. Although
Dedekind did know the definition for the product of ideals in 1871, he did
not use it in that presentation. As I will discuss later, the definition allows
one to deduce that the order of multiplication for any number of ideals does
not change the result. Immediately one is able to define the related concept
of exponentiation. That is, if an ideal a is multiplied by itself m times, the
ideal will be called the mth power of a, and will be denoted am.

A few basic theorems for products of ideals demonstrate the close analogy
this version has with the rational integers. Most notably is the theorem which
extends the characteristic property of prime ideals, Theorem 3.1.2, to relate
ideals to one another (rather than to numbers in o).

Theorem 3.2.1 If p - a and p - b, then p - ab.

Proof. p - a and p - b imply that there exist elements α ∈ a, β ∈ b, such that
α, β 6∈ p. Hence αβ ∈ ab, but αβ 6∈ p (by Theorem 3.1.2). �

Dedekind states that many of the rational number theoretic theorems con-
necting primes, and relative primes, to all integers could easily be shown to
be true for ideals, but they cannot lead one to unique factorization of them.
A problem arises in connecting the concepts of product and divisibility.

In number theory one learns that a divides c, for a, c ∈ Z, simply means
that there exists a unique b ∈ Z such that ab = c. As I have shown, this
definition is not the one Dedekind uses in his theory of ideals. In fact, the
two definitions cannot be shown to be equivalent for ideals in an arbitrary
ring of algebraic integers. Sometimes it occurs that a | c but there does not
exist b in the domain such that ab = c.2 It is important to note that at this

2Dedekind gives the example of the field Ω “resulting from a root

θ =
−1 +

√
−3

2

of the equation θ2+θ+1 = 0 whose integer elements are generated by the basis [1,
√
−3].[5,

§23] Let p = [2, 1 +
√
−3] and o(2) = [2, 2 +

√
−3]. It happens that p | o(2), but there is

no ideal q such that pq = o(2), as is required.
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point in the theory Dedekind recognizes there is a more general theory, which
does not make the assumption that o contains all the integers in a field Ω,
as is required for his purposes, in the more restricted version.

Two lemmas requiring the additional premise are key calculational tools
relating the integers of the domain o. There is no mention of ideals, other
than o, in either the theorems or their proofs, but their importance to the
theory is exemplified by Dedekind’s dedication of a section to both an analysis
of the difficulty and the theorems themselves. I will have more to say about
these later, so that I may now move on to Dedekind’s development towards
rectifying the difficulty. That is, he must now show how his definition of
divisibility on the ideals corresponds to the definition found in the usual
presentation of the rational integers.

The next portion of 1877 is dedicated to showing that, given the necessary
assumption that o contains all the integers of Ω, for all a | c there exists a
unique b such that ab = c, so that divisibility and multiplication have the
right relationship to one another. Dedekind deduces a string of theorems
each of which achieves the desired result in a limited sense.

Theorem 3.2.2 For all prime ideals p there exists a number η and an ideal
d such that pd = oη.

The connection between principal ideals and o should assist one in appre-
ciating the significance of the theorem which clearly limits the goal by not
requiring every number divisible by p to fulfill the theorem that an ideal m

exists, but also restricting the divisor to prime ideals.
There are two other theorems of this nature. The first simply replaces

the prime ideal, in theorem 3.2.2, with an ideal which is divisible by p. But
Dedekind does add an important addendum to the theorem that the ideal
multiplied by p has norm less than the norm of the product. The last theorem,
stated in Dedekind’s own words, of this sort has nearly achieved generality
but does limit the product to principal ideals.

Theorem 3.2.3 Each ideal a, when multiplied by a suitable ideal m, becomes
a principal ideal.

Through these theorems Dedekind finds himself in a position to prove the
theorem in full generality. That is, for any two ideals a and c such that a | c,
there exists an ideal b such that ab = c.

In §2.3 I stated that, for two numbers in o, the norm of a product is
the product of their norms; this has not been shown to be true for ideals.
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This fact is the last theorem necessary for Dedekind to prove his theorem for
unique factorization of the ideals. A good deal of the machinery from the last
section is necessary for the proof which is by no means obvious. This theorem
was not required in 1871 as the product did not have a role in the theory. It
is another feature of the theory which is more analogous to previous theories
of unique factorization, this time that of the complex integers.

The theorem which demonstrates the unique factorization of ideals is
state in a slightly different form from the theorem in 1871.

Theorem 3.2.4 An ideal a (or a number α) is divisible by an ideal d (or a
number δ) if and only if each power of a prime ideal which divides d (or δ)
also divides a (or α).

The theory presented in 1877 follows much more closely rational num-
ber theoretic considerations for unique factorization. In fact, we will see in
§4.2 that the connection between divisibility and multiplication on the ide-
als allows Dedekind to finish the proof of unique factorization in a manner
nearly identical to that in which one proves unique factorization for the ratio-
nal integers. After stating Theorem 3.2.4 he even presents the more familiar
statement: “If we combine all factors of the same prime in the decomposition
of an ideal a then we find

a = paqbrc · · · ,

where p, q, r, . . . are different prime ideals” [5, §25]. No such statement occurs
in 1871. That the theory should be as similar as possible to the theory of
rational integers appears to be one of Dedekind’s methodological demands,
but he also seems to have had other reasons for changing the theory in the
manner in which he did. I will discuss these reasons in the next chapter.
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Chapter 4

Method and practice

In the first three chapters I have independently developed some of Dedekind’s
methodological concerns and his mathematical practice. The present chap-
ter will be devoted to demonstrating connections between the two. First,
in §4.1, I will discuss some of the ontological concerns relating both to his
foundational and mathematical work. Next, §4.2 will focus on Dedekind’s
requirement that essential properties and operations carry over from one do-
main to another. Following this will be, §4.3, a discussion of Dedekind’s
preference for conceptual over algorithmic reasoning, the latter being reason-
ing which relies on specific representations. Finally, in §4.4, I will argue that
all of these methodological demands require the use of axiomatic character-
izations, so that Dedekind should be viewed as implementing the axiomatic
method, and not emphasizing it as an independent goal or demand.

4.1 Ontological concerns

There are three features of Dedekind’s work that are relevant to a discussion
of his ontological concerns and their relation to defining new mathemati-
cal objects. I agree with Stein in the opinion that Dedekind is not overly
focused on the ontological status of mathematical objects themselves [10,
§VII]. Rather, this section will recognize the methodological demands he em-
phasizes when defining new objects. Additionally, I will briefly show how
these considerations relate to his preference for his ideals over Kummer’s
ideal divisors.

I would first like to mention what has come to be known in the literature as

35
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“Dedekind abstraction”. As I mentioned before, it was originally introduced
in relation to [4], but the method can be used informatively in the reading of
Stetigkeit. That is, through the method introduced in [4], one can determine
the necessary additions and interpretations required for understanding how
the method could be implemented in Stetigkeit.1 After using the notion of
cut to construct the real numbers Dedekind adds the following comment.

Whenever, then, we have to do with a cut (A1, A2) produced by
no rational number, we create a new, an irrational number α,
which we regard as completely defined by this cut (A1, A2); we
shall say that the number α corresponds to this cut, or that it
produces this cut. From now on, therefore, to every definite cut
there corresponds a definite rational or irrational number, and
we regard two numbers as different or unequal always and only
when they correspond to essentially different cuts. [3, §IV]

In this quote Dedekind refers to each cut corresponding to a real number
three times. It is quite clear that the real number should not be taken to
be the cut, but rather, the two have a special connection. This hallmark of
Dedekind’s definitions of number domains (even more explicit in Was sind
und was sollen die Zahlen) has been the topic of much discussion concerning
Dedekind (see [8], [11], or [12]). I will not say more about the topic here, as
it would take the discussion too far afield; however, it is an important aspect
of Dedekind’s methodology for defining number domains. Related to this are
the three demands he places on extending a number domain.

In his Habilitation lecture, Dedekind’s focus is on the method for extend-
ing operations themselves, not the domains. That is, he does not provide a
clear explanation for the manner in which one should define a domain (or its
extension).2 But, it is clear that by the first version of his theory of ideals
he did have a well conceived method for extending domains. The method,
is laid out in a footnote in the introduction to [5]. Additionally, the note
is a testament to the close relationship Dedekind saw between the theory
of ideals and real numbers. In the footnote Dedekind discusses the method
for introducing new elements and its relation to his introduction of the real
numbers in 1872. I will discuss not only the method as applied to cuts and

1Tait makes this suggestion in footnote 12 in [12].
2Although there is some ambiguity about whether Dedekind gives some explanation

for defining number domains, I will not concern myself here with the question. For a
discussion of the circularity involved in such an explanation see [9].
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the real numbers but also to the ideals and algebraic integers. As laid out in
1877, Dedekind stipulates three necessary requirements for any introduction
of “new arithmetic elements”:

1. The definition should be composed of elements available before the
introduction.

2. The new elements should all be engendered simultaneously.

3. Any necessary calculations must have clear definitions for the new ele-
ments.

As I said, these three requirements are also adhered to by Dedekind in the
construction of the ideals, but they are not the only similarities between
the two introductions of new numbers. Not only does Dedekind use infinite
sets of numbers in both presentations, the two constructions share a deeper
connection.

In both the introduction of the presentations, [2] and [3], Dedekind is
attempting to show that a specific property holds in the new domain, conti-
nuity on the reals and unique factorization on the ideals of a given field. In
order to do this he assumes that all of the usual facts about the restricted
domain (i.e. the rational numbers and algebraic integers respectively) may
be used for the purposes of reasoning. By considering special sets of the do-
mains, cuts and ideals, Dedekind is able to show that, when taken together,
the cuts fill in the “gaps” in the rationals and the ideals add the missing
primes to the algebraic integers.

Key to these considerations is Dedekind’s use of infinite sets of elements.
There are two fundamental features relevant to his definitions of cut and
ideal: the fact that Dedekind takes a set of elements to be a mathematical
object and that the sets contain a completed infinity. I will not spend much
time on either of these topics but I would like to mention that, in both
respects, Dedekind’s work was only accepted with skepticism by his peers in
the mathematical community and that his work had a great influence on the
modern view. Whether or not Dedekind had a “modern” understanding of
sets is unrelated to my considerations here; rather, I simply want to point to
the widespread use of set theoretic language by Dedekind.3 It is important
to note that Dedekind took sets of rational numbers as a given in the theory.

3For a further discussion of Dedekind’s set theoretic approach see [7, Chapters II and
III].



38 CHAPTER 4. METHOD AND PRACTICE

He did not think that by considering a set of the rational numbers he was
extending the foundation available to him for introducing the real numbers,
and this brings us to the first requirement mentioned above.

Dedekind required that “arithmetic remain free from intermixture with
extraneous elements” and that any definition of the real numbers should
“be based on phenomena one can already define clearly in the domain R of
rational numbers” [5, Introduction]. Clearly the cut satisfies this condition
as it is just two sets of rationals. Furthermore, given the notion of a field
of numbers and the algebraic integers of that field, the same can be said for
ideals. They are simply composed of the subset of the integers in the field
that are divisible by the integer or ideal number that they correspond to.
There are no further elements to add to the theory, so the theory of ideals
also satisfies the demand.

The second stipulation, that all the elements be “engendered simulta-
neously”, is slightly more complex, but Dedekind has good reason for the
condition. There are means, other than cuts, by which one may define the
real numbers. In fact, Dedekind cites the effort of Heine as a reason for his
decision to publish Stetigkeit. It is possible to define real numbers as roots of
equations or as logarithms, but in Dedekind’s opinion, these methods, and
others like them, make the mistake of allowing the new numbers to be intro-
duced consecutively, rather than all resulting from a single definition. The
problem with such a definition is that each element is reliant on the form
by which it is defined, and each element is the result of a different form.
Thus, any operations on the new numbers would be dependent on the form
of the number under consideration. Such a state of affairs was undesirable for
Dedekind, and his concept of cut was not open to this criticism. Although
two cuts may correspond to the same real number (i.e. for (A1, A2) generated
by a rational number, A1 has a greatest element or A2 has a least element),
Dedekind recognizes them as not essentially different and any calculation
involving the two would be identical, as it would only rely on the rational
numbers which approach the number that generated the cut. For the ideals
there isn’t even a distinction of this magnitude to be made. Furthermore, all
of the ideals are simultaneously generated by the definition.

As Dedekind’s goal for the theory of real numbers was a solid grounding
for arithmetic, it is necessary to show that all of the usual operations be de-
finable on the new elements. I have shown Dedekind’s definition for addition
(subtraction could be defined similarly) on cuts, and although the definition
of multiplication and division are more complex they may be clearly defined.
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The situation for the theory of ideals is a little more complicated than that
for the real numbers. In 1871 Dedekind demonstrates that multiplication is
not a necessary operation for proving unique factorization on the ideals; all
that is required is a non-operational sense of divisibility, and the operations
GCD and LCM. But in the quote above he says that “a general definition
of their multiplication, seems all the more necessary since the ideal numbers
do not actually exist in the numerical domain o.” The fact that he changes
the theory of ideals to include multiplication relates to his methodological
demands in an important way which will be explored in §4.3. For now it is
enough to notice that because unique factorization of the algebraic integers is
the goal for the theory of ideals it is not required to define addition, subtrac-
tion, and the other operations. Hence, the third requirement for introducing
new elements has been fulfilled.

The last ontological concern on which I will focus is one reason for
Dedekind’s preference for his ideals over the ideal divisors; that is, having
a definition which provides some reference. Remember that the ideal divi-
sors are defined only by their action as divisors in the domain. That is, the
ideal divisors are never given explicit definitions, instead, one can only reason
about their properties. Dedekind finds this aspect of Kummer’s treatment of
ideal divisors to be a shortcoming of the theory. In response to the possibility
of achieving unique factorization in the algebraic integers via a theory which
employs a general notion of the ideal divisors Dedekind remarks as follows.

In particular, the notion of product of arbitrary factors, actual or
ideal, cannot be exactly defined without going into minute detail.
Because of these difficulties, it has seemed desirable to replace the
ideal number of Kummer, which is never defined in its own right,
but only as a divisor of actual numbers ω in the domain o, by a
noun for something which actually exists, and this can be done
in several ways. [5, §10]

Let me clarify the line of reasoning that Dedekind is here pursuing. As I
explained in the discussion above, Dedekind requires that, when introducing
new numbers, one is able to give definitions for the necessary operations.
Furthermore, in the introduction to [5], he claims that since the ideal numbers
do not actually exist in the domain o a general definition of multiplication
“seems all the more necessary”. In order to accomplish this, in the simplest
manner, one must have some objects to refer to. In this way the ideals are
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considered to be superior to the ideal divisors as the product of two ideals is
easily defined.

4.2 Preservation of operations and properties

In §1.1 I discussed Dedekind’s opinion, expressed in his Habilitationsrede,
that the introduction of a concept serves as an hypothesis in a theory. The
concept of multiplication of ideals, in his second version of the theory of
ideals, is no exception to the rule. Remember that the success of the hypoth-
esis depends on the fruitfulness of the science, and the role played by the
concept. Thus, it will be good to ask what are the changes that Dedekind
finds of value in the new theory. In addition to the benefits described in this
section I will show, in §4.3, how the second version focuses less on calculation
and representation and more on the fundamental properties of the theory,
another demand of great importance to Dedekind. But there seems to be
another, very basic, feature of the new theory that Dedekind is attracted to.
The new theory is much more in accord with the theory of rational integers
than the previous.

Dedekind often speaks of carrying over properties, or theorems, from one
theory to another. Whenever possible he attempts to simplify the theory
by relying on already known principles whose conditions for truth are not
only met in some previously known theory, but also in the theory he is
considering. For a very simple example consider Dedekind’s more general
theory of modules introduced prior to the theory of ideals. He shows that
ideals are simply special cases of the modules so that “we immediately carry
over to ideals the notion of divisibility of modules” [5, §19]. In the second
version, the analogy with the theory of rational integers can be exploited to a
much greater extent because multiplication actually has a role in the theory.

The first meaningful occurrence of a reference to the theory of rational
integers occurs in §22 where Dedekind introduces the concept of multiplica-
tion of ideals. After defining the concept, he wants to show that one can
multiply any number of ideals, in any order, and the outcome will be the
same.

It follows immediately from this definition that oa = a, ab = ba

and, if c is any third ideal, (ab)c = a(bc), whence we conclude by
well-known arguments that in a product of any number of ideals
a1, a2, . . . , am the order of the multiplications, which combine two
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ideals into a single product, has no influence on the final result,
which can be written simply as a1a2 · · · am. . .

The clause “well-known arguments” is accompanied by a footnote referring
the reader to a passage in Dirichlet’s Vorlesungen über Zahlentheorie. Thus,
one can rely on the proof in the rational integers which shows that if the
three properties on multiplication hold, then it can be determined that order
of multiplication does not change the result. Dedekind again directs the
reader’s attention to Dirichlet’s work in the proof of the following theorem.

Theorem 4.2.1 For all ideals a 6= o, a is prime or uniquely expressible as
a product of primes.

The proof is very similar to that of the rational integers, with the exception
that it relies on the concept of norm. Dedekind has already shown that every
ideal is divisible by a prime. If a is only divisible by that prime and o, then
we are finished. If a is divisible by the prime ideal and another ideal, then
we can use the same reasoning to break the new composite ideal down into a
prime ideal and another, each time the resulting ideals have norm less than
or equal to the norm of a. This shows that every ideal can be represented
as a product of prime ideals. To achieve the uniqueness, Dedekind assumes
that there are two (not necessarily different) products of prime ideals that
equal a:

a = p1p2 · · · pm = q1q2 · · · qm.

Now, since one of these pi must divide one of the qj (by Theorem 3.2.1), it
can be assumed, without loss of generality, that p1 | q1, and since neither of
these are o, they must be equal, so that

p1(p2p3 · · · pm) = p1(q2q3 · · · qm).

This implies that
p2p3 · · · pm = q2q3 · · · qm

so that by relying on the same argument as in the theory of rational numbers
it is determined that each factor of the two products has an equivalent ideal
in the other factor, so that the product of prime ideals is unique.

It is obvious that Dedekind is concerned with relying on corresponding
theorems in the rational integers for proving things about the ideals. But
there is more to it than this. Mathematicians are very comfortable with the
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reasoning accompanying the theory of rational integers, the second version
of the theory of ideals is therefore much more intuitive. The first version
does not even utilize the notion of product which is logically prior to the
concept of divisibility in the usual presentation of the rational integers. In the
opening section of the 1877 version Dedekind even mentions the connection.
In relation to the fact that when every ideal of a field is a principal ideal,
the indecomposable and prime numbers are coextensive so that the laws of
the rational integers will govern the field. “This will follow easily from the
results below, but I mention it now to encourage the reader to make continual
comparisons with the special cases, and especially the theory of rational
numbers, because without doubt it will help greatly in understanding our
general theory.” [5, §19]

Dedekind criticizes Kummer’s theory on this point; while remarking that
the definition of ideal divisor is legitimate, he also says that

it is nevertheless to be feared at first that the language which
speaks of ideal numbers being determined by their products, pre-
sumably in analogy with the theory of rational integers, may lead
to hasty conclusions and incomplete proofs. And in fact this
danger is not always completely avoided. On the other hand,
a precise definition covering all the ideal numbers that may be
introduced in a particular numerical domain o, and at the same
time a general definition of their multiplication, seems all the
more necessary since the ideal numbers do not actually exist in
the numerical domain o. [5, Introduction]

So, because it would be preferable to reason about the ideals (and integers)
in a manner similar to the rational integers, one must be able to speak of
the product of ideals. Since this is not possible for the ideal divisors, it is
possible that faulty reasoning, due to the analogy, could lead one to make
mistakes.

4.3 Conceptual reasoning

This section will focus on Dedekind’s emphasis on conceptual reasoning, as
opposed to calculation or algorithmic reasoning. A representation, or form,
is required for any calculation, so I will take Dedekind’s desire to suppress
calculation and/or representation to be one and the same. In either case the
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antithesis will be the use of fundamental concepts, or properties, which do not
rely on particular representations, or calculation, for developing the theory. I
will first discuss how this relates to another reason for Dedekind’s preference
for his ideals over a generalized theory similar to Kummer’s method. This
will be followed by related comments on the absence of simple ideals, which
are akin to Kummer’s ideal divisors, from the second version of the theory
of ideals. Lastly I will discuss the importance of the auxiliary propositions
and a likely reason, beyond the fact that they require o to contain all the
integers in Ω, for Dedekind’s setting them apart in the presentation.

I have already discussed both Kummer’s ideal divisors and Dedekind’s
ideals, but I will now focus on the motivation behind his preference for ideals,
their conceptual power in formulating a theory which does not rely exces-
sively on calculation. In §2.3 I provided an example of how one can use the
divisibility of the number 2 in Z[

√
−5] to reason about its ideal divisor α,

where α2 = 2. Remember that for ω ∈ Z[
√
−5], α | ω = x + y

√
−5, where

x, y ∈ Z, if and only if x ≡ y (mod 2) (by equation 2.6). But this means that
for some z ∈ Z, x = y + 2z, and by substitution ω = 2z + (1 +

√
−5)y, that

is the multiples of α form an module whose basis consists of the numbers 2
and (1 +

√
−5). This can be represented as

a = [2, 1 +
√
−5].

Dedekind notes that such a module is also an ideal because the sum/difference
of any two numbers in a is also in a, and the product of any element in a

and an element of Z[
√
−5] is again in a.

If all the ideals of the domain are to be represented by this form, then
one discovers that there is a general form for them. Dedekind uses properties
of the norm of an element in the domain to show that all of the ideals can
be represented as

m = [ma,m(b +
√
−5)],

where a, b, m ∈ Z and
b2 ≡ −5 (mod a).

Furthermore, the ideal m is unchanged by substituting any number congruent
to b modulo a for the number b. Thus, it is also the case that

a = [2,−1 +
√
−5].

In order to show how such a theory might achieve unique factorization in
the domain Dedekind goes on to define principal ideals, congruence, norm,
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multiplication, and divisibility on these representations of ideals. Next it is
necessary to demonstrate that multiplication and divisibility are related in
the appropriate way. Accomplishing this requires a great deal of calculations
relying on congruence relations, determinants of various systems, and also
norms. Finally, the notion of a prime ideal is introduced as an ideal divisible
only by itself and o. For some number η, the ideal r, consisting of all the
roots ρ of the congruence ηρ ≡ 0 (mod p), which is either o or p is then used
to show that p has the characteristic feature of primes; for any product of
numbers divisible by p one of the factors must be divisible by p. Finally, the
contrapositive of the theorem is deduced, but this time for ideals rather than
numbers. This leads one immediately to the theorem for unique factorization
in the domain.

Dedekind is unsatisfied with the methods employed in such a theory. His
main complaint is that the proofs of the propositions rely on the representa-
tion of the ideals. As stated above, the ideal a has two different representa-
tions. So, for instance, there are two different proofs for the same theorem
involving a, and this will always be the case for the theory. Any theory reliant
on such arbitrary features as these does not rely on characteristic elements.

Even if there were such a theory, based on calculation, it still
would not be of the highest degree of perfection, in my opinion.
It is preferable, as in the modern theory of functions, to seek
proofs based immediately on fundamental characteristics, rather
than on calculation, and indeed to construct the theory in such
a way that it is able to predict the results of calculation (for
example the composition of decomposable forms of all degrees).
[5, §12]

As with the definitions of operations in Dedekind’s Habilitationsrede, he
hopes to express that, to a great extent, mathematics proceeds in a nec-
essary fashion, not dependent on the mathematician. A theory in greater
accord with Kummer’s ideal divisors relies heavily on the calculation, and
arbitrary representation, therefore it would be in conflict with this principle.

There is a close connection between Kummer’s ideal divisors and the
simple ideals. The latter relies on representation in much the same way as the
former, and this seems to be the primary reason for Dedekind’s reformulation
in 1877 which is free from explicit definition of the special prime ideals. As
I have not yet shown the connection, nor the manner in which simple ideals
are reliant on representation let me do so now. Again, I must refer the reader
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to the discussion in §2.3 regarding the ideal divisor of the number 2. Recall
that the final deduction in that demonstration is equation (2.8)

ω(1 + θ)n ≡ 0 (mod 2n),

which serves as a test to determine whether a number is divisible by αn. Or
equivalently it can be thought of as a definition for the ideal generated by
αn. That is, the ideal consisting of all the roots ω of the above equivalence.
Clearly this is closely related to the definition of the power of a simple ideal.

Remember that the rth power of a simple ideal p is a prime ideal that
arises as roots, ρ, of the equivalence

ρνr ≡ 0 (mod µr),

where µ is a nonzero (non-unit) number in o, and ν is an appropriately chosen
number in o. In the example it is known that, in Z[

√
−5], the number 2 is

indecomposable, but not prime so that there must exist an ideal divisor α.
Then, by reasoning about the divisibility properties of 2 in the domain it was
deduced that α | (1 + θ) and α2 - (1 + θ). Hence, in this example, the goal is
to find the prime ideal which divides the number 2, and the properly chosen
ν in the domain is (1+θ). Similarly, the number which will divide this prime
ideal is precisely the ideal divisor α.

In this example it is discovered that the ideal corresponding to the ideal
divisor α must depend on the two numbers 2 and 1 + θ. But, the ideal could
similarly rely on the numbers 2 and −1 + θ, so that the ideal can in some
sense be represented by different pairs of numbers. As stated previously, the
presentation in 1871 relies heavily on these special prime ideals and therefore
on their special representation. In fact, many of the proofs of the theorems
rely on the special relationships arising from the numbers ν and µ. Dedekind
says as much about a theory which would follow Kummer’s method.

One notices, in fact, that the proofs of the most important propo-
sitions depend upon the representation of an ideal by the expres-
sion [ma, m(b + θ)]. [5, §12]

Because of the similarities between this method and the 1871 presentation,
this comment, can be taken as a reason for the changes occurring in his
theory of ideals between 1871 and 1877.

Dedekind has isolated two theorems in a section titled Auxiliary proposi-
tions because they are the first two in his theory which must rely on the fact
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that all the integers of Ω must be in the domain o. In the 1871 version he does
mention the additional property, but Dedekind prefers his new presentation
on this matter as “the principal difficulty to be surmounted is now thrown
more clearly into relief” [5, Chapter 4]. Remember that the “principal diffi-
culty” is to show that when a | c there is a unique ideal b such that ab = c.
This property requires us to assume that o contains all of the integers in Ω.
It is important to notice that the property is not even expressible in terms
available in the 1871 version. That is, since the product of ideals was not a
part of the theory, the “principal difficulty” manifested itself in a different
form.

Although the additional requirement is first mentioned in the proof of
Theorem 3.1.4, the “difficulty” is most clearly evident in Theorem 3.1.5
(which I reproduce here):

If ρ ∈ o is nonzero, then there exists a highest power of p that
divides ρ.

Because the 1871 theory does not follow the modern route to proving unique
factorization of the rational integers, it is difficult to see the relationship, but
the proofs of this theorem and the first of the auxiliary propositions will help
to clarify its reliance on o containing all the integers of Ω.

Theorem 4.3.1 Let ω, µ, ν be three nonzero numbers in o such that µ - ν.
Then all of the terms

ω, ω
ν

µ
, ω

(
ν

µ

)2

, ω

(
ν

µ

)3

, . . . ,

up to some finite number e,

ω

(
ν

µ

)e

will be in o (will all be integers), and beyond that none of them will be.

The first part of the proof is identical to the proof for Theorem 3.1.5 with ω
replacing ρ, ω′ replacing ω, and setting η equal to ν

µ
. The second part is just

another means to show that all powers of p greater than e do not divide ω.
Thus, the theorem could be restated:

For every integer ω satisfying the congruence ων ≡ 0 (mod µ),
which taken together make up the prime ideal p, there is some
highest power e such that ωνe ≡ 0 (mod µe), so that pe | ω, but
pe+1 - ω.
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The proof of the second auxiliary proposition also plays a role in the 1871
theory.

Theorem 4.3.2 Let µ, ν be nonzero elements of o such that µ - ν. Then
there exists two nonzero elements of κ, λ ∈ o such that

κ

λ
=

ν

µ

and λ - κ2.

The proof follows the same reasoning found in 1871 used to support the claim
that for any simple ideal p, the two ideals pr and pr+1 are distinct. The proof
relies on the supposition that e ≥ 1 is the highest power of p = {ω | ων ≡ 0
(mod µ) which divides µ itself, or in terms of 1877, e is the last integral term
of the series

µ, µ
ν

µ
, µ

(
ν

µ

)2

, . . . , µ

(
ν

µ

)e

.

Then, by defining λµ
(

ν
µ

)e−1

, the desired result follows immediately:

κ

λ
=

ν

µ
,

κ2

λ
= µ

(
ν

µ

)e+1

,

the latter of which is not an integral, by our assumption, so that λ - κ2.
Although this is all that is said in 1871, the reasoning continues in 1871 in
the following manner. Since

κ

λ
=

ν

µ
=⇒ λν = κµ (i.e. p | λ) =⇒ νλν =

(κµ

λ

)
λν2 =

(
κ2

λ

)
µ2.

Remember that κ2

λ
is not an integer so that p2 - λ. Finally, this implies

that pr | λr and pr+1 - λr so that pr and pr+1 really are distinct. Hence, it
has been shown that the reasoning in Dedekind’s two auxiliary propositions,
from 1877, is used in 1871 to support claims about prime ideals, in particular
simple ideals, as these considerations occur before the proof that all prime
ideals are also simple ideals. Now, I would like to provide a reason, in accor-
dance with Dedekind’s methodological demands, that inspired the separation
of the auxiliary propositions and their neglect of ideals (other than o).
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In addition to the two auxiliary propositions reliance on that additional
premise that o contain all of the integers in Ω, I would like to point out that
Dedekind also uses the section to isolate the bulk of algorithmic reasoning
necessary for the theory. In neither the statement of the two theorems nor
their proofs does Dedekind refer to ideals (other than o). The section is
completely devoted to properties of the numbers in Ω. As the 1871 version
does rely on similar arguments, Dedekind could easily have formulated the-
orems which seemed less ad hoc and included reasoning about ideals. But
this would have infected his theory of ideals with undue calculations, and
in Dedekind’s view reduced the value of including the product of ideals in
the theory. Instead, Dedekind accepts the result that these two theorems
seem unconnected to the rest of his theory of ideals in order to maintain the
conceptual purity of the rest of his theory. Additionally, there seems to be
no way around the feeling of ad hoc requirements in the theory, as that is
precisely why Dedekind has isolated these theorems in the first place. There
can be no argument for o containing all of the integers, only the explanation
that the theory cannot be completed without the stipulation. So, in order to
maintain a conceptually pure theory of ideals, the two auxiliary propositions
are purposefully stated in such a manner that ideals are not mentioned.

4.4 Axiomatic characterization

Now that I have described what I take to be (at least some of) Dedekind’s
methodological demands, I would like to focus on the role of axiomatic char-
acterization in both his foundational and mathematical works. My concern
is not whether a modern notion of axiomatics is either a methodological pri-
ority for Dedekind or even present in the works I have investigated.4 Rather,
I suggest that many of the characteristic features of the axiomatic method
aid Dedekind in best accomplishing his methodological goals. In this sec-
tion I will show how Dedekind uses features of axiomatics for achieving his
methodological demands described in the previous three sections. But before
I do this I would like to draw attention to a similar reliance on characteristic,
or fundamental, properties in the two foundational works.

Much of Dedekind’s effort in Stetigkeit has an axiomatic character. He is
very clear about what properties he allows himself to rely on for reasoning

4A more developed use of axiomatic reasoning is evident in Was sind und was sollen
die Zahlen.
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about the rational numbers. Since he is mostly concerned with achieving the
continuity principle for the real numbers he focuses on the ordering principles
of the rationals. But, as his further goal is to construct a system which will
provide a “scientific foundation for arithmetic” [3, Introduction], he must
be able to use the new domain for everything the real numbers are used
for in arithmetic. In §159, of [2], Dedekind notes that “system” R (the
set of rational numbers) is closed under the four fundamental operations
(with the exception of division by 0). That is, as clarified in 1877, the
rational numbers are a member of the general class of fields [5, §15]. Together
with the three properties given for the rational numbers (at the beginning of
this section), which Dedekind notes are more important for his purposes, he
has provided a complete list of the fundamental properties open to him for
reasoning purposes.

Dedekind’s treatment foreshadows the modern axiomatic method in ad-
ditional ways. He also makes a list of features that must be satisfied by the
new domain, the real numbers, corresponding to the cuts on rationals. So,
although he does not simply give the axioms for the real number domain,
what he does, is show that any definition intended to capture the same prop-
erties as the real numbers must satisfy the same fundamental properties that
modern mathematicians take as the axioms for the real numbers. The three
properties given for the rational numbers, which Dedekind also shows to be
true for the reals, and the property of continuity provide an axiomatic char-
acterization of the ordering of the real numbers up to an isomorphism.5 But
continuity of the cuts is not enough to show that they can be used to reason
about the real numebrs. Dedekind goes on to say that “the problem is to
indicate a precise characteristic of continuity that can serve as a basis for
valid deductions” [3, §3]. These “deductions” that he refers to are simply
the usual operational facts associated with the real numbers. This seems
clear when one considers a passage found soon after the previous quote:

Still lengthier considerations seem to loom up when we attempt
to adapt the numerous theorems of the arithmetic of the rational
numbers (as, e.g., the theorem (a + b)c = ac + bc) to any real
numbers. [3, §6]

Hence, Dedekind recognizes the importance of those characteristic results, or
in modern terms, the axioms. Something similar to this reliance on funda-
mental characteristics also occurs in Dedekind’s Habilitation lecture.

5While Dedekind did not explicitly show that this was the case, [8] explores the issue.
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The definition of cut, which serves as the basic object for constructing
the real numbers, focuses on the characteristic property of arithmetic con-
tinuity. In the Habilitationsrede, once it is discovered that a new definition
for an operation must be provided (because the old one is not applicable to
the extended domain), Dedekind directs the investigation to the “character-
istic” features of the operation. These are determined to be the properties
that must be true for any definition intended to take members of the domain
extension as arguments. For instance, since exponentiation must be defined
in such a way that negative numbers can occur in the exponent, one should
investigate the manner in which negative integers result from the positive
integers (i.e. y − z for y, z ∈ N and z > y) as exponents. This necessitates
a property (xy−z = xy

xz for all y, z ∈ Z) that any definition of exponentiation
must fulfill. Again, Dedekind has given a list of the necessary properties that
must result from any newly proposed definition of the operation. One feature
of the axiomatic method is to define objects by their necessary and sufficient
conditions. Although Dedekind does not define the operations, nor the do-
mains, by giving their necessary and sufficient conditions (or fundamental
characteristics), he does make it clear that the definition of the operation, or
domain, must satisfy these properties.

In §4.1, I argued that the construction of real numbers and ideals both sat-
isfy the three requirements for domain extensions which were also described
there. Each of the requirements expresses one of Dedekind’s methodological
concerns, which rely on different features of the axiomatic method. When he
requires that the properties of the rational numbers, and his definition of cut,
be the only elements used in the construction of the real numbers he brings
to light the paths of reasoning open to us. In a sense, the properties are just
the axioms of the rationals, and their logical results. Then, as he states what
must be true for the construction, the axioms for the reals, Dedekind shows
that his definition and the properties of the rational numbers are enough.
Thus, the method appears to be of the following nature. Using the axioma-
tization of the rational numbers, Dedekind must find a definition that, with
the properties of the rationals, is able to fulfill the axiomatization of the real
numbers.

The simultaneous creation of all of the numbers in the domain to be
defined is the second demand for introducing new domains suggested by
Dedekind. In order to achieve such a goal, one must isolate those features
of the mathematical objects that are sufficient for picking them out. By
doing so, one is able to determine what sorts of properties are required for
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any proposed definition. Obviously, when this is accomplished all of the
elements of the domain can be defined by the single definition which satisfies
the required properties.

The final aspect of Dedekind’s demands on defining new domains is that
all of the necessary operations for a domain be definable on the new objects.
This is simply a recognition that the new domains are not completely de-
fined without the usual operations and their properties (like the distributive
property of multiplication over addition on the real numbers). Here again,
the usual axioms for operations are shown to be deducible given the three
properties of the rational numbers and the definition of cut. So, although the
fundamental characteristics of the real numbers are not taken as a definition
for the domain, they are necessarily derivable from the definition of cut.

In §4.2 I claimed that carrying operations and properties over from a
one domain to another is of great importance to Dedekind. By investigating
what is required for such an accomplishment, and looking at an example in
Dedekind’s work I will show how he, once again, relies on axiomatic thinking.
As I have already discussed the way in which operations should be extended
I will now focus the discussion on properties, as expressible in theorems. If a
theorem is true in a restricted domain and one hopes that it also be true in
an extension then one of two possibilities must occur, either it must rely on
a subset of the axioms that are also axioms for the extension, or one must
be able to derive the lemmas in the extension on which the theorem relies
in the restricted domain. Since Dedekind does not have an explicit list of
axioms for either the rational numbers, nor the ideals, only the latter option
is open.

In the second version of the theory of ideals Dedekind introduces multi-
plication as a fundamental operation, and by doing so he is able to rely on
proofs from the theory of rational integers to fill out the particulars of proofs
on the ideals. As I showed in §4.2, one is able to multiply ideals in any order
without changing the result. In the rational numbers one finds that the prod-
uct of two rational numbers is commutative, so that for all a, b ∈ Z, ab = ba.
Furthermore, multiplication is associative on the rational numbers, for all
a, b, c ∈ Z, a(bc) = (ab)c. These two properties on multiplication determine
that the order of multiplying any number of rational numbers will not change
the product. Similarly, once it is know that the product of ideals is commu-
tative and associative, it can further be claimed that the order of multiplying
any number of ideals does not change the product. So, because the ideals
have been shown to have the right properties in common with the rational
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integers, we can determine that it shares other properties. Obviously this
example, once again, highlights Dedekind’s emphasis on listing the necessary
properties, this time for proving a theorem. Therefore, by relying on this
feature of the axiomatic method Dedekind is able to show how reasoning on
the rational integers can be used for the ideals.

Very often, Dedekind makes comments about the importance of funda-
mental characteristics, and conceptual reasoning. I have highlighted some of
these comments in §4.3, and also shown how his methodology is evident in
the theory of ideals. There are two aspects of conceptual reasoning on which
I will comment. First, if mathematics should not rely on representation, and
calculation, then it must rely on those features of the concepts which pick
it out in some other way. That is, like with the ideals, the necessary and
sufficient conditions which determine the objects are of utmost importance.
But this is just a demand for axiomatic characterizations of systems of math-
ematical objects. Dedekind’s constant focus on the fundamental concepts, or
characteristics, thus requires an axiomatic standpoint. Second, although it is
sometimes unclear what is meant by “conceptual” reasoning in mathematics,
it should not be denied that the rise of axiomatics has played a major role
in a more conceptual practice. Furthermore, it is Dedekind’s emphasis on
these fundamental features of operations, mathematical objects (like fields,
rings, and ideals), and domains that flavor his work with a more conceptual
approach. He ultimately desires to isolate those properties that are neces-
sary and sufficient for reasoning so that it is perfectly clear what must be
assumed in a theory. This is also a characteristic of the axiomatic method.
The auxiliary propositions in 1877 are an excellent example of his adherence
to the approach.

Dedekind makes a list of the necessary requirements on o, in the theory,
up to the auxiliary propositions:

(a) The system o is a finitely generated module [ω1, ω2, . . . , ωn]
whose basis is also a basis for the field Ω.

(b) The number 1 is in o, hence so are all the rational numbers.

(c) Each product of two numbers in o is also in o. [5, §23]

This list of properties on o could be interpreted as the axioms, relating to o,
necessary for the more general theory of ideals (which Dedekind even refers
to). Dedekind comments that
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By attentively considering the theory developed until now, one
notices that all the definitions retain their meaning, and the
proofs of all theorems still hold, when one no longer supposes
that the domain o consists of all integers in the field Ω. [5, §23]

But for the completion of unique factorization of the ideals this is not enough.
For that, one must make the extra assumption that o contain all the integers
of Ω. The addition of the section, in 1877, devoted to the two auxiliary propo-
sitions exemplify Dedekind’s strict demand that the required assumptions for
a theory be clearly spelled out, analogous to axioms.

In all of the circumstances one finds Dedekind pursuing a methodological
goal that can best be achieved through axiomatic characterizations, or listing
of required properties. Thus, it seems quite clear that his methodological
demands drive him to rely on an axiomatic approach.

While Dedekind continued to publish important works through the 1890s,
my analysis has been limited to those works published by 1877. Further re-
search investigating Dedekind’s axiomatic tendencies through his final pub-
lications should prove to be very interesting and informative, not only to
Dedekind’s work but also with respect to the modern view of axiomatics.
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