
Combinatorics in Bounded Arithmetic

(Ph.D. Dissertation)

Kerry Ojakian

June 23 2004

Committee:
Jeremy Avigad (Advisor)

James Cummings
Ramamoorthi Ravi

Rick Statman

Abstract

A basic aim of logic is to consider what axioms are used in proving various theorems of mathematics.
This thesis will be concerned with such issues applied to a particular area of mathematics: com-
binatorics. We will consider two widely known groups of proof methods in combinatorics, namely,
probabilistic methods and methods using linear algebra. We will consider certain applications of
such methods, both of which are significant to Ramsey theory. The systems we choose to work in
are various theories of bounded arithmetic.

For the probabilistic method, the key point is that we use the weak pigeonhole principle to
simulate the probabilistic reasoning. We formalize various applications of the ordinary probabilistic
method and linearity of expectations, making partial progress on the Local Lemma. In the case
of linearity of expectations, we show how to eliminate the weak pigeonhole principle by simulating
the derandomization technique of “conditional probabilities.”

We consider linear algebra methods applied to various set system theorems. We formalize some
theorems using a linear algebra principle as an extra axiom. We also show how weaker results can
be attained by giving alternative proofs that avoid linear algebra, and thus also avoid the extra
axiom.

We formalize upper and lower Ramsey bounds. For the lower bounds, both the probabilistic
methods and the linear algebra methods are used. We provide a stratification of the various Ramsey
lower bounds, showing that stronger bounds can be proved in stronger theories.

A natural question is whether or not the axioms used are necessary. We provide “reversals”
in a few cases, showing that the principle used to prove the theorem is in fact a consequence of
the theorem (over some base theory). Thus this work can be seen as a (humble) beginning in the
direction of developing the Reverse Mathematics of finite combinatorics.

1

Acknowledgments

I would like to thank my parents for understanding my work in their own way. Thanks to numerous
friends for providing diversion from the work. And of course thanks to my advisor Jeremy Avigad for
his patience and guidance. Thanks to the rest of my committee: James Cummings, Ramamoorthi
Ravi, and Rick Statman. A number of other mathematicians have helped in various ways: Steve
Cook, Paola D’Aquino, Jan Kraj́ıček, Pavel Pudlák, and Steve Simpson.

2

Contents

1 Introduction 5

2 First-Order Bounded Arithmetic 9

2.1 The Theory I∆0 . 10

2.2 The Theory S2 . 13

2.3 The Pigeonhole Principle . 18

2.4 Coding Issues . 19

3 Probabilistic Methods in Bounded Arithmetic 23

3.1 Ordinary Probabilistic Method . 24

3.1.1 A Ramsey Lower Bound . 25

3.1.2 Dominating Sets in Tournaments . 29

3.1.3 2-coloring Hypergraphs . 34

3.2 Linearity of Expectations . 36

3.2.1 Using the Weak Pigeonhole Principle . 36

3.2.2 Conditional Probabilities . 41

3.3 The Local Lemma . 45

4 Second Order Bounded Arithmetic 49

4.1 The Second-Order Theory . 50

4.2 Translations . 56

3

CONTENTS 4

4.3 Counting . 57

4.4 Trees . 62

4.5 Unary Arithmetic . 74

5 Set Systems in Bounded Arithmetic 79

5.1 Avoiding Linear Algebra . 82

5.2 Using Linear Algebra . 90

5.2.1 Formalizing Linear Algebra . 90

5.2.2 The Non-Uniform Fisher Inequality . 96

5.2.3 The RCW theorem . 97

6 Ramsey Theory in Bounded Arithmetic 115

6.1 Ramsey Upper Bounds . 115

6.1.1 General Improvement . 116

6.1.2 Special Case: k = 3 . 120

6.2 The Ramsey Reversals . 122

6.3 Constructive Lower Bounds . 126

6.4 Comparing Ramsey Lower Bounds . 131

7 Conclusion 133

A Pigeonhole Principle Proof 135

B Questions 138

Chapter 1

Introduction

A basic aim of logic is to consider what axioms are used in proving various theorems of mathematics.
This thesis will be concerned with such issues applied to a particular area of mathematics: com-
binatorics. We will consider two widely known groups of proof methods in combinatorics, namely,
probabilistic methods and methods using linear algebra. We will consider certain applications of
such methods, both of which are significant to Ramsey theory. The systems we choose to work in
are various theories of bounded arithmetic.

Others have considered formalizing various aspects of mathematics in the context of bounded
arithmetic. Paris, Wilkie and Woods [39] did some number theory, in particular, showing the
infinitude of the primes. D’Aquino and Macintyre have formalized a number of theorems of num-
ber theory ([14], [15], [16], [17]). Soltys and Cook [43] have considered aspects of linear algebra,
developing systems for feasible reasoning about matrices. Pudlák [40] formalized Ramsey’s the-
orem. Pudlák’s work inspired much of this work, with Ramsey theory motivating much of our
formalization.

The term“bounded arithmetic,” originally applied to Parikh’s I∆0 [38], is used of a number of
different theories. However the essential commonality is that such a theory is axiomatized by a set
of bounded formulae. A consequence of this is that such a theory can not prove the totality of the
exponential function (assuming the language is sufficiently limited). This limitation is especially
interesting for finite combinatorics because much of it can be formalized without a thought in a
theory of arithmetic that has exponentiation. Thus trying to formalizing combinatorics within
some theory of bounded arithmetic is like asking how the proofs and notions must change in the
absence of exponentiation.

One of the most significant properties of theories of bounded arithmetic is their close connection
to computational complexity theory. Cook [11] originally developed the equational theory called PV
with the goal of capturing polynomial time reasoning. Buss [9] developed a first-order arithmetic

5

CHAPTER 1. INTRODUCTION 6

version of this, called S1
2. The provably total functions given by definitions of a certain complexity

are exactly the polynomial time functions (this will be discussed in detail in chapter 2). He extended
S1

2 to an entire hierarchy of bounded theories called S2, which correspond to the polynomial time
hierarchy. In an analogous way, the original theory I∆0 corresponds to the linear time hierarchy,
though we will not discuss this. We will be concerned with formalizing proofs in the vicinity of
the theory S1

2, considered one of the most fundamental theories of bounded arithmetic, due to its
connection to one of the most studied complexity classes.

After discussing some of the details of first-order bounded arithmetic (in chapter 2), in chapter 3
we consider some well-known probabilistic method proofs. These are non-constructive proofs which
argue that certain objects exist without constructing the object. As would be expected, such proofs
will require a little more than S1

2. Even with a little extra, there is a problem dealing with the
probability spaces or carrying out all the counting in the proofs. The basic idea of this chapter is
to simulate this counting argument using the weak pigeonhole principle. In some cases, we can
avoid the use of the weak pigeonhole principle, by formalizing an algorithm.

One of the applications of the probabilistic methods we formalize in chapter 3 is a non-
constructive Ramsey lower bound; the proof shows that a certain coloring exists without exhibiting
it explicitly. We consider constructive Ramsey lower bounds in the chapter on Ramsey theory,
chapter 6. One of the main constructive lower bounds we consider is the well-known construction
of Frankl and Wilson [25]. They use a construction based on set systems, which let the vertices
be certain sets, and color the edges according to the intersection size of these sets. The key to their
proof is to apply linear algebra methods to such set systems. Thus in chapter 5 we develop the
necessary linear algebra to formalize this argument and other work on set systems.

Though one of the main motivations of chapter 5 is its application to Ramsey theory, we also
consider set system theorems for their own sake. For this work, we will use second-order systems
of bounded arithmetic, working in between the theory V0 and the strictly stronger theory V1,
developed by Zambella [48], but based on Buss [9]; we discuss second-order bounded arithmetic in
chapter 4. The second-order theory V1 is isomorphic to the first-order theory S1

2, so we essentially
use these second-order systems as a convenient way to work below our central theory S1

2 (see the
beginning of chapter 4 for a picture of how the various theories hang together). The typical set
system argument (i.e. the ones from [5]) use linear algebra and so we formalize them in the theory
V0 plus some principles, including a special linear algebra principle (this mostly takes place in
V1). We have found that we can give alternative proofs which avoid linear algebra but have worse
bounds. Thus we have a trade off between the strength of the axioms used and the strength of the
bound in the theorem. We refer to this phenomenon as the proof-strength vs. bound-strength
trade-off.

Chapter 6 on Ramsey theory has already been discussed in so far as how it fits in with other
aspects of the thesis. In this chapter we will also look at some Ramsey upper bounds. Pudlák [40]
originally proved such a bound in bounded arithmetic. Working in the same theory, we improve his

CHAPTER 1. INTRODUCTION 7

bounds. We will also look at the idea of reversals, showing that some Ramsey principles imply
the key principles used to prove them. We will prove a reversal in the context of the set system
theorems of chapter 5.

The basic motivation for this work can be seen as analogous to that of Reverse Mathematics
and the related work on subsystems of second order arithmetic (see Simpson’s book [42]). In that
work they formalize ordinary mathematics, taking RCA0 as their “base theory,” meaning that they
always assume at least that much proof-strength, adding axioms as needed. The idea is of course to
add the weakest axioms necessary to prove the theorem at hand; this can be made precise by proving
a reversal over the base theory, showing that the theorem is in fact equivalent to the extra axiom
used to prove it. Though RCA0 is weaker than Peano Arithmetic, it is strong enough to assert
the existence of recursive sets. For lots of finite combinatorics such a base theory is much stronger
than necessary, thus to develop a similar program of Reverse Mathematics for finite combinatorics
requires a much weaker context. Bounded Arithmetic is a very convenient context for such a study.
The proofs we provide do not seem to be using much more proof strength than required, and we in
fact have reversals in some cases. We discuss some more details along these lines in the conclusion.

Notation

We give some widely used notation which will be discussed, but is gathered here for easy reference.

• Let N be the set of natural numbers {0, 1, 2, . . .}.
• For functions and relations on N and subsets of N, we use the boldface font (e.g. function f

and relation R).

• For formulae we use this font.

• For function and relation symbols in some language we use this font.

• For a natural number n, [n] is the set {0, 1, . . . n − 1}.
• �x or �X is a finite list of variables in some language.

• A := B means that A is defined to be equal to expression B, using this notation to distinguish
from equality testing.

• log x means �log2 x� unless otherwise mentioned.

• pow(x, y) is xy.

• ‖X‖ is the size of set X.

CHAPTER 1. INTRODUCTION 8

• ForX ⊆ Y , X is the complement of X in Y ; Y will be indicated by context.

• A multifunction on some domain D, is a binary relation R such that for all x ∈ D, there is
a y such that R(x, y).

Chapter 2

First-Order Bounded Arithmetic

Peano Arithmetic (PA) is one of the most well-known and well-studied logical theories. It is
intended to be a theory of the natural numbers N, with the usual arithmetic operations such as
addition and multiplication. This theory consists of a finite number of defining axioms for the basic
operations, along with an infinite schema of induction axioms. A typical choice of language for
PA consists of the set {+, ∗, 0, 1,≤, =}, these symbols having their usual intended interpretations
on N. In general when we refer to a language we mean some set of symbols (function, relation,
and constant symbols) beyond the usual logical symbols of first-order logic; terms and formulae are
built up in the usual way. We have the usual logical symbols, though we use “⇒” and “⇔” for the
implication and equivalence symbols, respectively. By convention, “⇒” and “⇔” bind most weakly.
By a theory we simply mean a set of formulae built up from some language (we do not require
a theory to be deductively closed). We will always be dealing with theories of arithmetic that are
weaker than PA. The various strengths of the theories we work with will essentially depend on the
strength of their induction axioms.

Definition 2.0.1 Given a formula ψ, let ψ−IND be:

ψ(0) ∧ ∀x (ψ(x) ⇒ ψ(x + 1)) ⇒ ∀x ψ(x).

PA has ψ−IND for any first-order formula ψ. The various theories of bounded arithmetic are
basically PA, with ψ−IND restricted to ψ which are bounded formulae (to be defined). Parikh
[38] originally introduced bounded arithmetic in 1971, motivated by the idea of trying to capture
feasible reasoning; his theory is called I∆0 . One of the desired limitations of this theory is that the
exponentiation function cannot be defined, so given a number n, we do not know that 2n exists.
However for a number of purposes I∆0 is too limited. In PA, all sorts of sequences can be coded
by numbers, while in I∆0 only sequences of some standard length can be coded (by a standard
natural number we mean an actual natural number in the set N, as opposed to an element of some

9

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 10

non-standard model of arithmetic). This limitation interferes with developing meta-mathematics
within the system, as well as (apparently) hampering our ability to formalize certain mathematics.
A compromise is to strengthen I∆0 with an axiom that states that for any natural number n, n�log n�

exists; this axiom is called Ω1. The theory I∆0 + Ω1 is still too weak to define the exponentiation
function, but it is strong enough to more easily formalize mathematics; in particular we can now
work with “short” sequences whose length is < (log n)k for a standard k. In 1986 Buss [9] developed
S2, a theory which is essentially equivalent to I∆0 + Ω1. We will discuss I∆0 and S2. Then we
discuss some issues relating to both theories.

We note some technical conventions used here and throughout this thesis. We typically refer to
the formulae in a theory as axioms. When these axioms have free variables we mean the universal
closure of the axioms. It may be helpful to keep in mind that all the theories will be defined by
specifying a finite set of basic defining axioms for the symbols of the language (denoted BASIC
with some superscript), along with a schema of induction axioms for formulae of some specified
complexity. For a set of formulae Φ, Φ−IND refers to the set of formulae {ψ−IND | ψ ∈ Φ}. A
finite list of variables is abbreviated �x using some letter x. Unless otherwise stated, it is always
assumed that the free variables of a formula ψ(�x) are contained in �x . However we will sometimes
state that a formula may contain unmentioned free variables; we use the name parameters loosely
to describe variables that may not be explicitly included in a formula description. If we exhibit a
formula with a semi-colon as in ψ(�x;�a), we mean that the �a are parameters; we may leave off this
list of parameters just writing ψ(�x). Intuitively, parameters are fixed objects with some property
as opposed to arbitrary variables that we quantify over. Since we always deal with theories of
arithmetic, a number is a natural number, unless otherwise stated; we let N = {0, 1, 2, . . .} be the
set of natural numbers. For a number n, by [n] we mean the set {0, 1, . . . , n − 1}. When we refer
to a number n as the domain or range of a function we mean the set [n]. By [a, b], for a ≤ b, we
mean the set {a, a + 1, . . . , b}; the intervals (a, b), (a, b], and [a, b) are defined similarly. We will
sometimes write A := B as a short way to define A to be equal to B.

2.1 The Theory I∆0

We discuss some aspects of I∆0; a good reference for more detail is [27, chapter 5]. The language
of the theory is {+, ∗, 0, 1,≤, =}. We have the following basic axioms.

Definition 2.1.1 Let BASIC0 be:

1. x + 1 �= 0

2. x + 1 = y + 1 ⇒ x = y

3. x + 0 = 0

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 11

4. x + (y + 1) = (x + y) + 1

5. x ∗ 0 = 0

6. x ∗ (y + 1) = (x ∗ y) + x

7. x ≤ x + y

8. (x ≤ y ∧ y ≤ x) ⇒ x = y

9. 0 + 1 = 1

We will introduce the induction axiom for various classes of bounded formulae, defined using
the following restricted notions of quantification.

Definition 2.1.2 For a term t and a formula ψ:

• Let ∃x < t ψ abbreviate: ∃x (x < t ∧ ψ).

• Let ∀x < t ψ abbreviate: ∀x (x < t ⇒ ψ).

By a first-order bounded quantifier we mean a quantifier of one of the two above types. We
may leave off the qualification of “first-order,” when the meaning is clear. A formula that only has
bounded quantifiers is called a bounded formula; the set of such formulae is denoted ∆0. We
can now define Parikh’s original notion of bounded arithmetic.

Definition 2.1.3 I∆0 is the theory consisting of BASIC0 and ∆0−IND.

As mentioned, a key aspect of I∆0 is that the exponentiation function cannot be defined. This
will follow from Parikh’s theorem which states that for any function definable with a ∆0 formula,
we can bound the value of the function by a term in the language. This theorem in fact holds for
any bounded theory, this being a theory that can be axiomatized by bounded formulae (allowing
free variables). Notice that I∆0 is a bounded theory because the induction axioms can be restated
as bounded formulae. Now we can state Parikh’s theorem in a general way referring to any bounded
theory.

Theorem 2.1.4 (Parikh’s Theorem [38]) Suppose T is a first-order bounded theory containing I∆0

and ψ(�x, y) is a ∆0 formula such that T proves ∀�x∃y ψ(�x, y). Then there is a term t, not containing
y, such that T proves ∀�x∃y < t ψ(�x, y).

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 12

One of the main applications of Parikh’s theorem is to show that there is no ∆0 definition of
the exponentiation function in a bounded theory T. Let exp(x, y, z) be the relation that holds
if xy = z. Here and throughout, we use boldface to refer to actual relations on N = {0, 1, 2, . . .} or
subsets of N, distinguishing them from formulae in some language. If there were a ∆0 definition of
the exponentiation function in T, that would mean that that T could prove that ∀x, y ∃z exp(x, y, z),
where exp is a ∆0 definition of the relation exp. The problem would be that by Parikh’s theorem, T
would then be able to prove that ∀x, y ∃z < t(x, y) exp(x, y, z), for some term t in the language; this
is false, because terms in this language are polynomials, which grow slower than the exponential
function. However, a non-obvious fact (by Paris, but discussed in [20]) is that the exponentiation
relation exp(x, y, z) is definable by a ∆0 formula exp, and I∆0 can prove the basic properties of
this formula (see [27, p.299]). We will often re-visit this useful relation. Throughout this thesis, if
we say that a function or relation on N, named say “example,” is definable by some formula, then
we will henceforth use “example” to refer to this particular definition.

It is common in any theory to add a number of functions and relations that make life easier
without increasing the power of the theory, that is, to add them conservatively. It is well known
that we can simply add definable functions and relations.

Definition 2.1.5 Let Φ be some class of formulae.

• A relation R(�x) is Φ definable if there is a formula ψ(�x) in Φ such that R(�x) holds iff ψ(�x)
holds in N.

• A function f(�x) is a Φ definable function in theory T if there is a formula ψ(�x, y) in Φ
such that T proves ∀�x∃!y ψ(�x, y); we say that ψ defines a function in T.

Notice that we want the function or relation to be given by the formula on N, and in the case of
the functions we want to be able to prove it is a function in some theory (which implies that it has
the right properties on N). We will actually not be so concerned with definability on N, though it
will sometimes clarify the discussion to begin in the context of N. Once we define the appropriate
formula, we will only care that we can prove certain properties in the theory at hand, no longer
concerned with N.

Lemma 2.1.6 Let T be a theory.

• For a new relation symbol R(�x) and a formula ψ(�x), T + (R(�x) ⇔ ψ(�x)) is a conservative
extension of T.

• Suppose ψ(�x, y) defines a function in T. Then for a new function symbol f, the theory
T + (f(�x) = y ⇔ ψ(�x, y)) is a conservative extension of T.

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 13

Note that the above theorem does not state that these function and relation symbols can be
used in the induction axioms. However sometimes this is the case, which is especially useful.

Definition 2.1.7 (Relativizing) Let R be a new function or relation symbol which we “relativize”
with respect to.

• By ∆0(R) we mean the set of ∆0 formulae in the language augmented by R.

• By I∆0(R) we mean the theory BASIC0 + ∆0(R)−IND.

We present a number of results (here and in later sections), indicating when a relativized extension
is in fact a conservative extension.

Theorem 2.1.8 (Relativized Extensions)

• If ψ(�x, y) is a ∆0 formula defining a function in I∆0, then for a new function symbol f,
I∆0(f) + (f(�x) = y ⇔ ψ(�x, y)) is a conservative extension of I∆0.

• If ψ(�x) is a ∆0 formula then for a new relation symbol R, I∆0(R) + (R(�x) ⇔ ψ(�x)) is a
conservative extension of I∆0.

Thus when functions or relations have such definitions we will use them freely. For simple functions
we will typically use them with little or no discussion, though we are really employing this theorem.

Now consider strengthening I∆0. The following axiom says that the exponentiation function is
defined for all numbers.

Definition 2.1.9 Let EXP be the axiom: ∀x, y ∃z exp(x, y, z).

The axiom EXP is too strong for our use, except in a few cases where we show a principle is difficult
due to its equivalence to EXP. Rather than adding EXP we will consider adding the weaker axiom
Ω1, alluded to earlier. Formally, Ω1 is the statement ∀x∃z exp(x, log x, z), or more informally, “xlog x

exists;” by log x we always mean �log2 x� unless stated otherwise. We noted that an interesting
extension of I∆0 is the theory I∆0 + Ω1. This theory is essentially equivalent to S2, which we now
go on to discuss in the next section.

2.2 The Theory S2

The work of this section is all from Buss [9]. S2 is the theory of bounded arithmetic which basically
consists of the theory I∆0 extended by the faster growing function “#” (called smash). The

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 14

growth rate of this function is what gives the correspondence between S2 and the polynomial time
hierarchy (this will be discussed later). The language is {+, ∗, #, | · |, �·/2�, 0, 1}. The function |x|
is the length of the binary representation of x, or essentially log2 x (for example: |5| = 3 since
the binary representation of 5 is 101). The intended meaning of the binary function # is that
a#b = 2|a|∗|b|. Note that n#n ≈ nlog n (they are virtually equal), which is why S2 is essentially the
same as I∆0 + Ω1.

In S2 we can define bounded formulae as we did for I∆0, though the language is different. We
let Σb∞ refer to the bounded formulae in the language of S2. We can now go on to define S2 by
specifying some basic axioms and the allowed induction axioms.

Definition 2.2.1 Let BASIC1 be the usual set of 32 defining axioms from Buss [9] (it includes
BASIC0).

Definition 2.2.2 Let S2 be the theory consisting of BASIC1 + Σb∞−IND.

We will be interested in subtheories of S2, which will be defined by further restricting the
induction axioms to bounded formulae with only a limited amount of bounded quantifier alterna-
tion. When we count the alternation of bounded quantifiers, we will not count certain kinds of
bounded quantifiers called sharply bounded quantifiers, by which we mean bounded quantifiers
in which the bounding term is of the form |t| where t is a term in the language (for example,
“∀x < |a + b|” is a sharply bounded quantifier). Given a number i ≥ 0, Σb

i is roughly the col-
lection of bounded formulae which begin with a bounded existential quantifier and then have i
bounded quantifier alternations, not counting the sharply bounded quantifiers; notice that the “b”
just indicates “bounded.” Πb

i is defined similarly, except that such formulae begin with a universal
quantifier. For example, the following formula ψ(p) is a Πb

1 expression that p is prime:

p > 1 ∧ ∀x < p (x = 1 ∨ ¬∃y < p (y ∗ x = p)).

Definition 2.2.3

1. Πb
0 = Σb

0 is the set of formulae all of whose quantifiers are sharply bounded.

2. Σb
i+1 is defined inductively by:

• Πb
i ⊆ Σb

i+1.

• If ψ is in Σb
i+1 then so are ∃x ≤ t ψ and ∀x ≤ |t| ψ.

• If ψ and φ are in Σb
i+1 then so are ψ ∧ φ and ψ ∨ φ.

• If ψ is in Σb
i+1 and φ is in Πb

i+1 then ¬φ and φ ⇒ ψ are in Σb
i+1.

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 15

3. Πb
i+1 is defined inductively by:

• Σb
i ⊆ Πb

i+1.
• If ψ is in Πb

i+1 then so are ∀x ≤ t ψ and ∃x ≤ |t| ψ.
• If ψ and φ are in Πb

i+1 then so are ψ ∧ φ and ψ ∨ φ.
• If ψ is in Πb

i+1 and φ is in Σb
i+1 then ¬φ and φ ⇒ ψ are in Πb

i+1.

4. Σb
i+1 and Πb

i+1 are the smallest sets satisfying these properties.

We can now define natural subtheories of S2.

Definition 2.2.4 For i ≥ 0, let Ti
2 be the theory consisting of BASIC1 + Σb

i −IND.

It turns out that subtheories defined with an alternative form of induction are interesting. We
define an apparently weaker kind of induction axiom, length induction (provably equivalent to a
form of induction called polynomial induction).

Definition 2.2.5 Given a formula ψ, let ψ−LIND be:

ψ(0) ∧ ∀x (ψ(x) ⇒ ψ(x + 1)) ⇒ ∀x ψ(|x|)

We can now define more subtheories of S2.

Definition 2.2.6 Let Si
2 be the theory consisting of BASIC1 + Σb

i −LIND.

This gives us a hierarchy within S2.

Theorem 2.2.7

• S0
2 ⊆ T0

2 ⊆ S1
2 ⊆ T1

2 ⊆ . . .S2.

• S2 =
⋃
i∈N

Ti
2 =
⋃
i∈N

Si
2.

It should be noted that it is a major open question as to whether or not the hierarchy of theories
in S2 is actually proper (it is only known that S0

2 �= T0
2).

As before it will be useful to discuss relativized extensions of theories. Given a new symbol f, by
Σb

i(f) we mean the class of formula defined like Σb
i with f added to the language; we can give such

relativized definitions for other formulae classes with similar kinds of definitions. So the relativized
theory Si

2(f) is BASIC1 + Σb
i (f)−LIND; other relativized extensions are defined similarly. We now

discuss some useful relativized extensions which are conservative extensions.

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 16

Theorem 2.2.8 If ψ(�x, y) is a Σb
1 (or Πb

1) formula defining a function in S1
2, then for the theory

T (either Si
2 or Ti

2, for i ≥ 1), and a new function symbol f, T(f) + (f(�x) = y ⇔ ψ(�x, y)) is a
conservative extension of T.

A similar fact will hold for relations of less complexity.

Definition 2.2.9 Let T be some theory. A formula ψ is ∆b
i in T if it is Σb

i and there is a Πb
i

formula φ such that T proves ψ ⇔ φ.

Theorem 2.2.10 If ψ(�x) is ∆b
1 in S1

2, then for the theory T (either Si
2 or Ti

2, for i ≥ 1) and a
new relation symbol R, T(R) + (ψ(�x) ⇔ R(�x)) is a conservative extension of T.

Note that Parikh’s theorem applies to S2 and its subtheories, so the exponentiation function
cannot be defined. We in fact have Parikh’s theorem (theorem 2.1.4) with S0

2 replacing I∆0.

Theorem 2.2.11 (Parikh’s Theorem for S2) Suppose T is a first-order bounded theory containing
S0

2 and ψ(�x, y) is a bounded formula such that T proves ∀�x∃y ψ(�x, y). Then there is a term t, not
containing y, such that T proves ∀�x∃y < t ψ(�x, y).

The theories contained in S2 are all bounded theories, so Parikh’s theorem applies to them.

Another central feature is the correspondence between S2 and the polynomial time hierarchy.
We now discuss some aspects of that connection, assuming some basic knowledge of computational
complexity theory. In complexity theory, we define the complexity of a function or relation in
terms of the “length” of the arguments. In some contexts the arguments are actually given as
binary strings, so we simply take the length as the length of this binary string. We will be working
with natural numbers, and so we will define our complexity in terms of the lengths of the numbers,
that is, given a number x, we consider |x|, and given a list of input numbers �x = 〈x1, . . . , xk〉,
we consider 〈|x1|, . . . , |xk|〉, where this latter list of lengths is abbreviated |�x|. First we recall the
usual definition of the polynomial time hierarchy of predicates where our arguments are lists
of natural numbers.

Definition 2.2.12 (Polynomial Time Hierarchy)

1. Let Σp
1, the NP relations, be the set of relations R(�x) such that there is a polynomial

p and a non-deterministic Turing machine M , with the property that for any �x, M non-
deterministically decides in time p(|�x|) whether or not R(�x) holds.

2. For i > 1, let Σp
i be the set of relations computable with an NP relation that has access to a

Σp
i−1 oracle.

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 17

Theorem 2.2.13 Let i ≥ 1. A relation is in Σp
i iff it is Σb

i definable.

Note that there is no issue of provability in this claim; the Σb
i formulae are simply viewed as relations

on N. We will in fact be more interested in a polynomial time hierarchy of functions which can be
connected to provability.

Definition 2.2.14

1. Let �p
1 , the polynomial time functions, be the set of functions f(�x) such that there is a

polynomial p and a Turing machine M , with the property that for any �x, M computes the
function value f(�x) in time p(|�x|).

2. For i > 1, let �p
i be the set of functions in �p

1 that have access to an oracle from Σp
i−1.

Now we can state Buss’ well-known witnessing theorem, which builds on the work of Cook
[11]. There are a number of theorems in bounded arithmetic of this sort, stating that if a particular
theory can prove that something exists with a formula description of a certain complexity, then we
can find a computational procedure of some complexity that actually finds such an object for us.

Theorem 2.2.15 (Buss [9]) Let i ≥ 1. A function is in �p
i iff it can be Σb

i defined in Si
2.

Note that for the case of i = 1, we get that the polynomial time functions (i.e. �p
1) correspond

exactly to the functions that are Σb
1 definable in S1

2. Recall theorem 2.2.8 which states that we
can conservatively add to S1

2 all its Σb
i defined functions. Thus we can conservatively add all the

polynomial time functions to S1
2. Such facts about S1

2 are why it is taken to be one of the most
significant theories of bounded arithmetic.

The aspect of the above theorem referred to as “witnessing” is the claim that a Σb
i defined

function in Si
2 is in fact a �p

i function. One of the significant applications of this is to show the
independence of some theorem. Suppose for example that we want to show that S1

2 does not prove
the sentence ∀x∃y ψ(x, y), where ψ is of complexity Σb

1. If S1
2 did prove it, then by the witnessing

theorem, we would have a polynomial time function f(x) such that for all natural numbers n,
ψ(n, f(n)) holds (it is a small but useful technical point that we don’t in fact need a unique y to
apply this theorem). So if we can show that there is no such polynomial time algorithm, then we
have the desired independence. Typically such independence results either assume a complexity
class separation or apply to a relativized theory Si

2(R). In the case of Si
2(R), the witnessing theorem

relativizes, meaning that the �p
i function works for any oracle R substituted for R; to show

independence amounts to finding a troublesome oracle R.

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 18

2.3 The Pigeonhole Principle

Now we discuss one of the most useful principles connected with bounded arithmetic, the pi-
geonhole principle. Informally, the pigeonhole principle (PHPm

n) says that a function map-
ping m to n (recall that this means a mapping from the set [m] = {0, 1, . . . , m − 1} to the set
[n] = {0, 1, . . . , n − 1}) is not injective. A typical choice for m is n + 1, yielding the usual pigeon-
hole principle. The function will be described using a new 2-place relation symbol R, where the
first argument is taken to be the function argument, and the second is the value of the function.
Formally, we have two variants to consider.

Definition 2.3.1

• Functional Form:

Let R be a 2 place relation symbol. Then fPHPm
n (R) is the formula

∀x < m ∃!d < n R(x, d) ⇒ ∃x < y < m ∃d < n R(x, d) ∧ R(y, d).

• Relational (or multi-function) Form:

Let rPHPm
n (R) be the same except that the ∃! quantifier is replaced by ∃.

When we write PHP without a prefix of “r” or “f” we mean for our comments or claims to refer to
both versions.

Now we consider provability of PHPm
n (R) for various values of m, working in theories relativized

with respect to the relation symbol R. For the usual pigeonhole principle, with m = n + 1, there is
the following significant independence result.

Theorem 2.3.2 [6] S2(R) does not prove PHPn+1
n (R).

This result extended the work of Ajtai [1], which showed the independence in the weaker theory of
I∆0(R). However a form of the pigeonhole principle, PHP2n

n , called the weak pigeonhole principle
is more easily proven. Paris, Wilkie, and Woods [39] first proved the weak pigeonhole principle in
the context of bounded arithmetic. Their results were strengthened by Maciel, Pitassi and Woods
[35] to obtain the following result.

Theorem 2.3.3 For any Σb
1(R) formula ψ(R), T2

2(R) proves rPHP2n
n (ψ(R)).

We emphasize that the relational form is provable, which implies that the weaker functional form
is provable in the same theory. A common application of this theorem is to simply take ψ(R) to

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 19

be R. This result is sharp in terms of the standard hierarchy of theories in S2. Since Kraj́ıček [31]
showed that S2

2(R) does not prove even the weaker function form fPHP2n
n (R) (see also [33], p. 216).

Note that in the weaker theory I∆0(R) even the provability of the weak pigeonhole principle is an
open question.

We also note that the various forms of the PHPm
n for different values of m are essentially

equivalent in a strong enough theory of bounded arithmetic. The following theorem essentially
comes from [39]. Provable connections of this sort are explicitly mentioned in [34, theorem 6.1] and
[46, lemma 2.1]. We state the particular form we will need later.

Theorem 2.3.4 Let i ≥ 1 and φ(R) be a formula of complexity Σb
i(R); let b(n) be a term, and ε > 0

be a standard rational. Then there is a formula ψ(R) of complexity Σb
i(R) such that Si

2(R) proves
PHP

b(n)
n (ψ(R)) ⇒ PHP

(1+ε)n
n (φ(R)).

Given the above theorem we see that as long as m is a little bit larger than n + 1, the principles
all collapse in the appropriately strong theory. Thus we will often only be interested in referring
to any one of these principles. However, to be specific we use the common notation of rWPHP(R)
to refer to rPHP2n

n (R), and fWPHP(R) to refer to fPHP2n
n (R); by WPHP(R) we mean either one. In

both cases, we freely use the above theorem to strengthen our applications of WPHP.

We will have cause to use these principles in a number of contexts. One modification is to
substitute a formula ψ (with 2 free variables) for the relation symbol R, to obtain PHPm

n (ψ). For
a set of formula Φ, we use PHPm

n (Φ), to denote the set of formulae {PHPm
n (ψ) | ψ ∈ Φ}; such

formulae will typically be added as an axiom schema to a theory. Notice that the provability
of the schema version of the weak pigeonhole principle (for bounded formulae) follows from the
provability of WPHP(R) for a relation symbol R. While S2 cannot prove PHPn+1

n (R), the provability
of PHPn+1

n (Σb∞) is unknown.

We will also use the pigeonhole principle in the second-order context (discussed in chapter 4)
with a set variable in place of the relation symbol R.

2.4 Coding Issues

Theories of arithmetic have natural numbers as their intended objects. However, natural numbers
can be used to code all kinds of objects, including one of the most basic objects, sequences of
numbers. Using such sequences, we will be able to talk about things like trees and colorings of
graphs. We will discuss such codings in general before pointing out the differences between working
in I∆0 and S1

2 (unless we say otherwise we are working simultaneously in both theories). We will
not give that much detail since this has been worked and re-worked (see [9] for S1

2 and [27] for I∆0).

Sequences will be coded by viewing numbers as their binary expansion. Certain numbers will

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 20

have binary expansions of the correct form, and so given such a number s, it will satisfy a ∆0 formula
we call seq(s). We can then do a number of natural operations on sequences. If seq(s) holds and
n is a number, then there is a number t such that seq(t) holds, and t encodes the sequence s with
the number n appended to it. We can determine the length of a sequence, and given a number s
coding a sequence, we can find the ith entry in s, denoted si. The heuristic is that we can prove
any basic facts about sequences as long as they do not assert the existence of any sequences or
numbers that are “too big.”

We now consider the important issue of how big our objects can grow. This is in fact the
essential difference between sequences in I∆0 and S1

2. Basically, we can work with any sequences
whose encoding is a number we know to exist. The coding of a sequence of length y, containing
elements < x can be naturally coded by a number of size about xy. Thus to talk about such
sequences we need to know that xy exists; more precisely, we need to know that ∃z exp(x, y, z)
holds, which we sometimes abbreviate exists(xy). In I∆0, if we know that x exists then we can form
sequences with elements < x of length k, where k is standard, since we know xk exists. However
suppose we want a length log x sequence. In S1

2 this is fine, because xlog x exists, but this is a
problem for I∆0. Length x sequences are a problem for both theories, because without the totality
of the exponentiation function we do not know that xx exists. Sequences in S1

2 are relatively robust.
However we will have to be careful in I∆0, checking that the necessary operations do not require
the existence of numbers beyond our grasp.

A useful notion for S1
2 is:

Definition 2.4.1 Let small(y) abbreviate ∃m y < |m|.

Note that S1
2 proves ∃z exp(x, y, z) ⇔ small(y). If a number y is small we are free to use sequences

of this length in S1
2.

To improve readability we will often simply refer to exponential size terms, which means that
we are implicitly assuming their existence. So for example if we assert that φ(xy), we mean
∃z exp(x, y, z)∧φ(z). Using the existence of nk we can code a number of objects. One issue is with
referring to

(
n
k

)
. We can compute n! using a length n sequence s in which s0 = 1 and si = i∗si−1, for

i > 0; so n! is just the value of sn. This length n sequence contains large numbers bounded by nn,
so s is coded by a number of size about (nn)n = nn2

= 2n2 log n = 2n#2n#n. Thus in S1
2, as long as n

is small (so 2n exists) we can deal with
(
n
k

)
in this way. However in I∆0, knowing that 2n exists does

not guarantee the existence of 2n2
. In I∆0 this approach would require the additional assumption

that 2n2
exists. We can avoid this by using a result of D’Aquino [14]. Let choose(n, k, y) be the

relation on N that holds if y =
(
n
k

)
. D’Aquino gives a ∆0 definition of this relation and furthermore

shows that I∆0 can prove a number of its basic properties. When we say that
(
n
k

)
exists in the

context of I∆0 (or its second order extensions), we mean that ∃y choose(n, k, y). We point out
some important facts about this relation.

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 21

Lemma 2.4.2 [14, lemma 20] I∆0 proves k
(
n
k

)
=
(

n
k−1

)
(n − k + 1).

We prove the following three lemmas by induction and the use of the above lemma; we give the
proof for just the first of the following three lemmas.

Lemma 2.4.3 I∆0 proves that if
(
n
k

)
exists then (n−k

k)k exists and (n−k
k)k ≤ (nk).

Proof

Proceed by induction on k on the formula:

choose(n, k, y) ⇒ ∃x ≤ y exp(
n − k

k
, k, x).

Consider the inductive step:(
n

k

)
=

n − k + 1
k

(
n

k − 1

)
by lemma 2.4.2

≥ n − k + 1
k

(
n − k + 1

k − 1

)k−1

by inductive hypothesis

≥
(

n − k

k

)k

�

Lemma 2.4.4 I∆0 proves that if nk exists then
(
n
k

)
exists and

(
n
k

) ≤ nk.

We know that if xy exists, then so do smaller powers. We want something similar to hold for the
choose operator.

Lemma 2.4.5 I∆0 proves that if
(
n
k

)
exists and j < k ≤ n/2, then

(
n
j

)
exists.

For the last lemma, notice that
(
n
k

)
is increasing until k = n/2, so

(
n
k

)
is large enough to bound the

appropriate terms in the inductive proof; if k > n/2,
(
n
k

)
could become too small. Since we often

need the existence of the
(
n
j

)
for j smaller than some k, we will sometimes restrict claims to the

case of k ≤ n/2; of course this claim also holds if we add a standard number to k, so we just need
k near n/2 to apply this lemma.

We will sometimes want to encode a sequence in a very compact way. Suppose we have a
sequence 〈ak−1, . . . , a0〉, where ai < n, so it is coded by a number of size around nk; in fact the

CHAPTER 2. FIRST-ORDER BOUNDED ARITHMETIC 22

number is a little bigger in order to code delimiters between elements in the sequence. As a more
compact way, we could associate this sequence with its base n representation, which is just the
number

∑
i<k ain

i. All the nk length k sequence with elements < n are associated with a unique
number < nk; note that moving to the left, the entries become more significant, which will always
be our convention. We can not get a general notion of sequences this way, since we do not know
where one element ends and the next begins, but for particular applications we will sometimes wish
to associate sequences with their base n representation. Note that pairing is a special case of this
(for k = 2).

Chapter 3

Probabilistic Methods in Bounded
Arithmetic

A number of techniques in combinatorics go by the name “probabilistic methods.” A common
feature is that they use probability theory to prove theorems of combinatorics, where these theorems
(mostly) do not explicitly mention anything about probability. We consider formalizing these
theorems in the first-order context of S2. To formalize such techniques in bounded arithmetic we
need to avoid explicit mention of probability, since this requires us to refer to the exponentially large
probability spaces. It is often pointed out that such methods can just be seen as counting arguments
which do not make reference to any probability theory. Though this kind of conversion will be a first
step in our formalization, we are still stuck with exponentially many sets to count. Such difficulties
will be discussed more explicitly for a concrete case that we formalize in section 3.1. The basic idea
behind formalizing the probabilistic methods in bounded arithmetic is to use the weak pigeonhole
principle to simulate the probabilistic counting argument, sidestepping the difficulty.

In section 3.1 we consider the “ordinary” probabilistic method, applied to three examples: A
Ramsey lower bound, dominating sets in tournaments, and 2-coloring hypergraphs. By the ordinary
probabilistic method we mean that an object is shown to exist by showing it exists with non-zero
probability.

In section 3.2 we consider the method called “linearity of expectations,” applied to two theorems.
In this method one upper or lower bounds the number of objects of some kind by finding the
expectation of some random variable. We can again use the weak pigeonhole principle to formalize
the counting argument. We then discuss how the algorithmic method of “conditional probabilities”
can be used to strengthen the theorems.

In section 3.3 we consider the Local Lemma, essentially an extension of the ordinary probabilistic
method to the case in which the events in question have rare dependencies. We apply this to another

23

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 24

example of 2-coloring a hypergraph, one which cannot be solved by the ordinary probabilistic
method. We make partial progress in this direction, offering some speculation on how to fully solve
the problem.

We will reference the originators for their work, though the results are conveniently collected
together in the book “The Probabilistic Method” [4].

Before moving into the results we should point out a relevant theorem. The various formaliza-
tions to follow will be carried out in S1

2 + WPHP(Σb
1). The following is an unpublished result of

Wilkie presented by Kraj́ıček [33] (slightly modified to match our context).

Theorem 3.0.6 (Wilkie) Let ψ(x, y) be a Σb
1 formula and suppose S1

2+rWPHP(Σb
1) proves ∀x∃y ψ(x, y).

Then there is a bounded error polynomial-time probabilistic function f such that ψ(x, f(x)) holds.

To say that a function f is bounded error polynomial-time probabilistic (for short just
“probabilistic function”) we mean that in polynomial time it gives an output which is correct with
probability ≥ 3/4. We will discuss this theorem in relation to some of the concrete cases to follow.

3.1 Ordinary Probabilistic Method

The ordinary probabilistic method shows the existence of an object as follows. We consider some
sample space Ω with a probability distribution. A number of events A1, . . . , Am ⊂ Ω are the “bad”
events, meaning that as long as an object from the sample space is not contained in any Ai, the
object has the desired properties, or is “good.” We then show that prob(A1) + . . . + prob(Am) < 1
which means that the good object is in the sample space; thus we have an existence argument. This
can be restated as a counting argument. Let N be the number of elements in the sample space Ω.
Then showing ‖A1‖ + . . . + ‖Am‖ < N , allows us to arrive at the same conclusion (here, by ‖Ai‖
we mean the size of the set Ai).

In bounded arithmetic, neither argument will formalize directly when N is not small, since then
the subsets Ai ⊂ Ω are too large to code as numbers. Our way around this is to avoid explicitly
talking about these subsets. Instead we define a function (with a bounded formula) from the number
N to (1/2)N ; if the good object did not exist then the function would be injective, violating the
weak pigeonhole principle. This function will mimic the counting argument by essentially grouping
together the Ai without explicitly referring to them.

Thus a key issue in all of these proofs (the ordinary probabilistic method and the other prob-
abilistic methods of the later sections) will be the fact that we can give a bounded definition of
this function that mimics the counting argument. For this approach we need to be able to find
a relatively constructive definition (i.e. definition by bounded formula), even though we are for-
malizing non-constructive probabilistic arguments. Thus to formalize a non-constructive existence

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 25

argument can be seen as showing that it has some degree of constructivity.

3.1.1 A Ramsey Lower Bound

Our first application of the ordinary probabilistic method is proving a Ramsey lower bound. We
begin with some discussion of Ramsey theory; this will be used here and throughout the thesis
when dealing with Ramsey theory.

For a number n, let Kn be the complete graph on n vertices, that is, a graph with n
vertices and a single edge between any two distinct vertices. We use the conventional arrow notation
n → (k)r to mean that if each of the edges of Kn is assigned one of r colors then there is a size k
subset X of the vertices, such that all of the edges with vertices in X are assigned the same color
(X is called monochromatic). The assignment of colors is called an r-coloring if we are allowed
to use r colors (we always assume r ≥ 2). The smallest such n that makes the arrow relation hold
is denoted Rr(k).

Now we define the Ramsey principle. It uses a 3 argument relation symbol H to refer to the
colors of edges; the first two arguments are vertices and the third argument is the color of the edge
connecting them. The principle uses [n] as its vertices and [r] as its colors, saying that if H is a
valid r−coloring, then there is a monochromatic set of the correct size. We use the capital letter
X to denote a number that codes a set. It is coded as a sequence of non-repeating numbers. We
use “size” as a more suggestive name to refer to the length of a sequence which encodes a set; we
sometimes use ‖X‖ to refer to the size of X when it is clear that we do not mean to be applying
the “binary length” operator twice.

Definition 3.1.1 Let H be a relation symbol with 3 arguments.

• Let coloring(H, n, r) be: ∀x < y < n ∃!d < r H(x, y, d).

• Let monochromatic(H, X, n, r) be: ∃d < r ∀u, v ∈ X H(u, v, d).

• Let Ramsey(H, n → (k)r) be:

coloring(H, n, r) ⇒ ∃X ⊆ [n] (size(X) = k ∧ monochromatic(H, X, n, r)).

In one of the first applications of the probabilistic method Erdős [21] showed that for n = 2k/2,
there exists a 2-coloring of Kn with no size k monochromatic set, or in other words R2(k) > 2k/2.
To formalize this we will want to be able to refer to the existence of a coloring, so we will use
numbers to code colorings. A 2−coloring on n vertices will be coded by a number G < pow(2,

(
n
2

)
),

where pow(x, y) is just xy. The number G can be interpreted as a binary string of length
(
n
2

)
, so

each of the
(
n
2

)
edges is colored “0” or “1” accordingly (often more intuitively referred to as “blue”

or “red”); note that the number of vertices n must be small, which will be implicit throughout our

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 26

discussion. The above Ramsey principle is formalized with a relation symbol, but we can naturally
substitute our number encoding for the relation symbol (later we use the Ramsey principle in its
form with a relation symbol). Finally we formalize the claim by proving the following.

Theorem 3.1.2 S1
2 + rWPHP(Σb

1) proves ∃G < pow(2,
(
2k/2

2

)
) ¬Ramsey(G, 2k/2 → (k)2).

Note that as a corollary T2
2 proves the statement in the above theorem, as an immediate

consequence of theorem 2.3.3. We will not mention this for future proofs that go through in
S1

2 + rWPHP(Σb
1); these comments also apply to S1

2 + fWPHP(Σb
1) since the theory S1

2 + rWPHP(Σb
1)

is at least as strong.

To prove the theorem first consider the informal probabilistic argument restated as a counting
argument. Call a coloring “bad” if it has a size k monochromatic set, and “good” otherwise. So
our goal is to show that a good coloring exists. There are

(
n
k

)
size k subsets of vertices and for

each such subset there are pow(2,
(
n
2

)− (k2)+ 1) colorings that make it monochromatic. Thus the
number of bad colorings is bounded by

(
n
k

)
pow(2,

(
n
2

)− (k2)+ 1) =
(
n
k

)
pow(2, 1 − (k2))pow(2,

(
n
2

)
).

Since n = 2k/2, a calculation shows that
(
n
k

)
pow(2, 1 − (k2)) < 1, so the number of bad colorings is

less than pow(2,
(
n
2

)
), which is the total number of colorings. So there must be a good coloring.

The lack of exponentiation in S2 precludes formalizing this argument directly since the above
proof involves counting large sets of colorings. To formalize the theorem we reformulate the proof,
using the structure of the counting argument to define a multi-function on the set of all colorings,
simulating the argument using rWPHP.

Suppose for sake of contradiction that the theorem does not hold. So for some small k and n,
where we let n = 2k/2, every coloring G < pow(2,

(
n
2

)
) is bad. We now define a Σb

1 multi-function,
F , from the set of all colorings (i.e. numbers < pow(2,

(
n
2

)
)) to a set which counts all the bad

colorings (numbers bounded by (1/2)pow(2,
(
n
2

)
)). F will be an injective multi-function and so

violate rWPHP(Σb
1).

First we sketch the definition of F . Given a coloring G < pow(2,
(
n
2

)
), F will find a size k

monochromatic set X in G, which exists by our assumption. The function setNumber (to be
defined) will map the set X to s, 0 ≤ s <

(
n
k

)
; each set is mapped to a different number. Many

colorings have X as its monochromatic set, so to uniquely identify G, we indicate which of the
2 colors X has, and for the remaining

(
n
2

) − (k2) edges, we choose the appropriate coloring of the
edges. This can be seen as a binary string of length

(
n
2

)− (k2)+ 1, so we arrive at a number, say v,
where v < pow(2,

(
n
2

)− (k2)+ 1). We can obtain this v by a Σb
1 definable (in S1

2) function rest, so
rest(G, X) = v. G is then mapped to s ∗ pow(2,

(
n
2

)− (k2)+ 1) + v.

Now we define the function setNumber, a sort of lexicographic ordering which assigns set
{0, 1, . . . , k − 1} to 0, {n − k, . . . , n − 1} to

(
n
k

)− 1, and other sets to intermediate numbers in an
injective manner.

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 27

Definition 3.1.3 For X ⊆ [n], let setNumber(X; n) = f0(X; n), where

• fa({}; n) = 0 for 0 ≤ a ≤ n

• fa(X; n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fa+1(X − {a}; n) if a ∈ X,

(
n − a − 1

size(X) − 1

)
+ fa+1(X; n) otherwise.

This recursively defined function can be given by a Σb
1 formula using sequences of small size n. We

now prove some properties about it in S1
2. When n is clear from context, we may just write fa(x)

instead of fa(x; n).

Lemma 3.1.4 S1
2 proves fa(X) <

(
n−a

size(X)

)
, for X ⊆ {a, . . . , n − 1}.

Proof

We show this by induction on a from n down to 0. For the inductive step we assume
the claim for a + 1 and then need to show fa(X) <

(
n−a

size(X)

)
, where X ⊆ {a, . . . , n− 1}.

If a ∈ X, then fa(X) = fa+1(X − {a}) <
(

n−a−1
size(X)−1

) ≤ (n−a
size(X)

)
.

Otherwise, a �∈ X. For X = {} we are done. Otherwise we carry out the following
calculation:

fa(X) =
(

n−a−1
size(X)−1

)
+ fa+1(X) <

(
n−a−1

size(X)−1

)
+
(

n−a−1
size(X)

)
=
(

n−a
size(X)

)
.

�

The lemma shows that the range of setNumber (i.e. f0) really is [
(
n
k

)
], for size k subsets of [n].

We can also see that it is injective on size k subsets of [n]. Consider two distinct sets X, Y ⊆ [n],
both of size k. Let b be the smallest element in one set, but not in the other; suppose b ∈ X, and
b �∈ Y . Since the recursive procedure will be the same up to b, we get that f0(X) = m + fb(X ′)
and f0(Y) = m+fb(Y ′), for some number m; the sets X ′ and Y ′ come from X and Y , respectively,
with the same elements from {0, . . . , b − 1} removed by the recursive procedure (so in particular,
the size of the primed sets are also the same). It now suffices to show that fb(X ′) < fb(Y ′). We

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 28

have

fb(X ′) = fb+1(X ′ − {b})
<

(
n − b − 1

size(X ′) − 1

)
≤ fb+1(Y ′) +

(
n − b − 1

size(X ′) − 1

)
= fb(Y ′).

We can now define the multi-function F , with the coloring G as input, and y as the output.

Definition 3.1.5 Let F (G, y) be the following Σb
1 formula

∃X ⊆ [n] ∃s, v size(X) = k ∧
monochromatic(G, X, n, 2) ∧
setNumber(X) = s ∧
rest(G, X) = v ∧
y = s ∗ pow(2,

(
n
2

)− (k2)+ 1) + v

By the assumption there exists such X, so F is a multi-function. F is injective, since setNumber
and rest are injective and v < pow(2,

(
n
2

)− (k2)+ 1). To show that the range of F is (1/2)pow(2,
(
n
2

)
)

we prove the following bound (essentially from [4]).

Claim 3.1.6 S1
2 proves y ≤ (1/2)pow(2,

(
n
2

)
).

Proof

From the definition, s ≤ (nk)− 1 and v < pow(2,
(
n
2

)− (k2)+ 1), so

y < (
(

n

k

)
− 1)pow(2,

(
n

2

)
−
(

k

2

)
+ 1) + pow(2,

(
n

2

)
−
(

k

2

)
+ 1)

=
(

n

k

)
pow(2,

(
n

2

)
−
(

k

2

)
+ 1)

= pow(2,

(
n

2

)
)
(

n

k

)
pow(2, 1 −

(
k

2

)
).

We are done when we show that
(
n
k

)
pow(2, 1 − (k2)) < 1/2.

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 29

(
n

k

)
pow(2, 1 −

(
k

2

)
) <

nk

k!
pow(2, 1 + k/2)
pow(2, k2/2)

≤ pow(2, 1 + k/2)
k!

(pow(2, k/2))k

pow(2, k2/2)
,

substituting 2k/2 for n.

The last expression is bounded by 1/2 for most k (k ≥ 4).

�

That finishes the entire proof since we have now arrived at a contradiction, namely, a multi-function
F violating the weak pigeonhole principle.

The technique used in this proof provides a recipe for formalizing such non-constructive count-
ing arguments, as long as the counting argument is constructive enough to allow such a function to
be defined. The complexity of the function definition affects what theory suffices. We recall theo-
rem 3.0.6 which gives us a probabilistic witnessing function. We have shown that S1

2 + rWPHP(Σb
1)

proves ∃G < pow(2,
(
2k/2

2

)
) ¬Ramsey(G, 2k/2 → (k)2), but we cannot quite apply the witnessing

theorem since the formula proven is Σb
2. The only quantifiers that matter (i.e. the rest are sharply

bounded) are the “∃G” and “¬∃X ⊆ [n]” which yield the indicated complexity. If we could by
some trick bring the complexity of the formula down to Σb

1, we would obtain a probabilistic algo-
rithm (polynomial in the number of vertices) to find G. In fact we already have such an algorithm:
Randomly color each edge red or blue, with probability 1/2. Preceding calculations (i.e. claim 3.1.6)
show that this produces the desired coloring with probability (1− ε) ≥ 3/4 for sufficiently large k.

3.1.2 Dominating Sets in Tournaments

Now we consider some theorems of Erdős [23] concerning tournaments.

Definition 3.1.7

1. A tournament is a directed graph in which any two distinct vertices have exactly one directed
edge between them. If there is an edge starting at u and pointing at v, we say that u beats v.

2. A dominating set in a tournament is a set D of vertices such that for any vertex w not in
D, there is a vertex u ∈ D that beats it.

Theorem 3.1.8 (Erdős [23]) A tournament with n vertices has a dominating set of size log n.

The proof proceeds by choosing a vertex that beats at least half of the other vertices (true by an
averaging argument). The beat vertices are thrown out and the process continues for at most log n
steps.

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 30

To formalize this we let [n] be our set of vertices. The tournament is exhibited by a two-place
relation symbol R: For x �= y < n, R(x, y) holds if and only if x beats y. A dominating set is referred
to by a number D coding a subset of [n].

Definition 3.1.9

• Let tournament(R, n) be: ∀x < y < n (R(x, y) ⇔ ¬R(y, x)).

• Let dominating(R, D, n) be: ∀v < n (v ∈ D ∨ ∃u ∈ D R(u, v)).

Kraj́ıček posed the question of whether or not a formalization of Erdős’ theorem can be proved
in bounded arithmetic (possibly weakening the theorem by letting the size of D be larger than
log n).

Question 3.1.10 (Kraj́ıček) Does some theory of bounded arithmetic prove the “Tournament Prin-
ciple”:

tournament(R, n) ⇒ ∃D ⊆ [n] (dominating(R, D, n) ∧ size(D) = log n)?

Erdős also considered the dual question of showing that there exists a tournament that does
not have a dominating set of a certain size.

Theorem 3.1.11 [23] If
(
n
k

)
(1 − 2−k)n−k < 1 then there is a tournament on n vertices with no

size k dominating set.

By a calculation he obtains a corollary.

Corollary 3.1.12 [23] For any positive number ε, there exists a positive number K, such that
whenever k > K, and n > 2kk2 loge(2 + ε), there is a tournament on n vertices that does not have
a dominating set of size k.

Restated this says that for any ε > 0 and sufficiently large n there is a tournament on n vertices
with no size (1 − ε) log n dominating set; theorem 3.1.8 says that there is a dominating set of size
log n.

We will formalize the last two claims. Formalizing theorem 3.1.11 follows section 3.1.1 closely,
though corollary 3.1.12 does not. In order to assert the existence of a tournament, we will code
a tournament on n vertices with a number T < 2(n

2), in a manner similar to the last section on
Ramsey theory. We view T as a length

(
n
2

)
binary string, with each bit indicating which direction

the edge points. Given u, v < n, by T (u, v) we mean that u beats v. We can naturally substitute
the number T for the relation symbol R in our definitions.

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 31

We first prove a theorem similar to theorem 3.1.11, requiring a bound of 1/2 in order to apply
rWPHP. Keeping the bound of 1 would require the full pigeonhole principle. The proof is similar
to that of the Ramsey lower bound, theorem 3.1.2, so we will skip many details, pointing out the
features unique to this problem.

Theorem 3.1.13 S1
2 + rWPHP(Σb

1) proves that if
(
n
k

)
(1 − 2−k)n−k ≤ 1/2 then

∃T < 2(n
2) (tournament(T, n) ∧ ¬∃D ⊆ [n] (dominating(T, D, n) ∧ size(D) = k)).

Proof

We assume for contradiction that all the tournaments have size k dominating sets,
and then define a multifunction F from the the set of all tournaments (i.e. numbers
T < 2(n

2)) to those with size k dominating sets. The multifunction F (T, y) will be Σb
1,

defined as follows:

∃X ⊆ [n] ∃s, v size(X) = k ∧
dominating(T, X, n) ∧
setNumber(X) = s ∧
rest(G, X) = v ∧
y = s ∗ (2k − 1)n−k ∗ pow(2,

(
k
2

)
+
(
n−k

2

)
) + v

setNumber is defined as in section 3.1.1, but rest is defined differently. Once we have
a particular dominating set X we count the possible edge arrangements by considering
3 groups of edges: those with exactly 0,1,or 2 vertices in X. To count those with
exactly one vertex in X we consider each of the n − k vertices u1, . . . , un−k, outside
of X. For each ui we cannot have it beating all of X, so there are 2k − 1 ways of
drawing edges between ui and X; this relationship can be represented by a number
ai < 2k − 1. Since we have n − k ui’s there are (2k − 1)n−k ways to draw these edges;
we represent this relationship by the sequence (a1, . . . , an−k) which we encode by its
base 2k − 1 representation, a number a < (2k − 1)n−k. There are

(
k
2

)
edges with two

vertices in X, coded by a binary string of that length, so a number b < pow(2,
(
k
2

)
).

Similarly, those edges with no vertices in X are coded by a number c < pow(2,
(
n−k

2

)
).

So rest(T, X) = abc < (2k − 1)n−k ∗ pow(2,
(
k
2

)
+
(
n−k

2

)
).

To see that F is injective and the range is as desired, we calculate some bounds.

From our definitions we know that v < (2k − 1)n−kpow(2,
(
k
2

)
+
(
n−k

2

)
). This combined

with the definition of the number y ensures that the function F really is injective. Now
the key calculation is the following.

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 32

Claim 3.1.14 S1
2 proves that y ≤ (1/2)2(n

2).

Proof

By substituting the largest allowed numbers for s and v, we see that y <(
n
k

)
(2k − 1)n−kpow(2,

(
k
2

)
+
(
n−k

2

)
).

Now for a calculation that follows Erdős closely.

(
n
k

)
(2k − 1)n−kpow(2,

(
k
2

)
+
(
n−k

2

)
) =

(
n
k

)
(1 − 2−k)n−k2k(n−k)pow(2,

(
k
2

)
+
(
n−k

2

)
)

=
(
n
k

)
(1 − 2−k)n−k2(n

2)

≤ (1/2)2(n
2).

Note that the second equality follows by a calculation which shows that

k(n − k) +
(

k

2

)
+
(

n − k

2

)
=
(

n

2

)
.

�

We now see that F violates rWPHP, finishing the proof.

�

We now prove a formalization of corollary 3.1.12, which showed n = 2kk2 loge(2 + ε) vertices is
enough to avoid a size k dominating set. We will use 2 instead of e, and for ease of readability, we
fix the constant ε = 2, though we could choose ε > 0 to be any standard rational.

Corollary 3.1.15 S1
2 + rWPHP(Σb

1) proves for k ≥ 7 and n = k22k+1,

∃T < 2(n
2) (tournament(T, n) ∧ ¬∃D ⊆ [n] (dominating(T, D, n) ∧ size(D) = k)).

A bound used by Erdős in this proof is: 1− 2−k < e−2−k
. This follows easily from the fact that

1 + x ≤ ex, which can be proved by use of derivatives. To avoid dealing with e, we replace it by
2. We also replace the proof using calculus with a proof using arithmetic and induction, since it is
not clear how much calculus we can do in bounded arithmetic.

Lemma 3.1.16 S1
2 proves for all k ≥ 0, 1 − 2−k ≤ 2−2−k

.

Proof

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 33

We first show two facts about bounds on the roots of numbers, and then apply this to
prove the lemma.

First, for x > 1,
√

x ≤ 1+x
2 (this is generally true, though in bounded arithmetic we

take x to be a rational). This is true because

√
x ≤ 1 + x

2
iff x − 2

√
x + 1 ≥ 0

iff (
√

x − 1)2 ≥ 0;

this last expression is clearly true.

Second, we will show by induction on k, that 22−k ≤ 1 + 2−k, for k ≥ 0. Consider the
inductive step.

22−(k+1)
=

√
22−k

≤ 1+22−k

2 , by the first fact
≤ 1+1+2−k

2 , by inductive hypothesis
= 1 + 2−(k+1)

Now to prove the lemma.

2−2−k
= 1

22−k

≥ 1
1+2−k , by the second fact

≥ 1 − 2−k,

where that last inequality holds because

1
1 + 2−k

≥ 1 − 2−k iff 1 ≥ (1 + 2−k)(1 − 2−k) = 1 − 2−2k,

and the latter expression (1 ≥ 1 − 2−2k) is clearly true.

�

Now we prove the corollary which essentially follows Erdős’ proof. We include it here for
completeness and to show that the calculation works in S1

2.

Proof

By theorem 3.1.13 it suffices to show that
(
n
k

)
(1 − 2−k)n−k ≤ 1/2 under the given

constraints. We have:

•
(

n

k

)
<

nk

k!
, immediately from the definition of the choose operator, and

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 34

• (1 − 2−k) ≤ 2−2−k
, by lemma 3.1.16

Thus, (
n

k

)
(1 − 2−k)n−k <

nk

k!
2(−2−k)(n−k) =

2k2−k

k!
nk2−n2−k

.

Consider the last expression. It’s first part 2k2−k

k! = (22−k
)k

k! ≤ 2k

k! ≤ 1/2, for k ≥ 5; Erdős
ignores this term since it is < 1. Now we just need the latter part of the expression
nk2−n2−k ≤ 1.

2 ≥ 1 + (1/k) log 2k2, for k ≥ 7, which implies 2k ≥ log k22k+1. Thus

1
k2k

=
2k

k22k+1
≥ log k22k+1

k22k+1
=

log n

n
.

From 1
k2k ≥ log n

n we obtain nk2−n2−k ≤ 1.

�

3.1.3 2-coloring Hypergraphs

We consider a coloring problem for hypergraphs. Though it is similar to the previous two proofs,
we will discuss an extension of it in section 3.3.

Definition 3.1.17

• A hypergraph is a pair (V,E), where V is some finite set (called the vertices or the ground
set) and E is a collection of subsets of V (these subsets are called hyperedges).

• A hypergraph is called k-uniform if all of its hyperedges are sets of size k.

• A 2-coloring is a coloring of the ground set by 2 colors. A hypergraph is 2-colorable if
there is a 2-coloring, such that every hyperedge contains a vertex of both colors.

Theorem 3.1.18 (Erdős [22]) A k-uniform hypergraph with < 2k−1 hyperedges is 2-colorable.

The probabilistic argument can be seen as follows. We want to find a good coloring, where good
means that every hyperedge contains vertices of both colors. For each hyperedge i, let Ai be the
event consisting of all the bad colorings in which hyperedge i is monochromatic. The probability
of some bad event occurring is < 1, therefore, there is a good coloring.

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 35

In considering how we are going to formalize this statement, notice that to say a hypergraph
is 2-colorable requires asserting that a 2−coloring of the ground set exists. If the ground set is [n],
then we code a 2-coloring by a number C < 2n in the natural way, so n will be small; for x < n,
by C(x) we mean the color of vertex x. We also need to refer to the hypergraph, a collection of
subsets of [n]. Coding the hypergraph as a number would require 2n to be small, but this can
be avoided by using a binary relation symbol H to refer to the hypergraph. H(i, x) will say that
element x < n is in the ith hyperedge. Since the ith hyperedge is {x < n | H(i, x)} ⊆ [n], and n is
small, S1

2 can code it as a number which we call “Hi.” We use “size” (again) to refer to the length
of this sequence. To say a number C coding a coloring makes Hi monochromatic can be stated by
monochromaticHyper(H, C, i):

∀x, y < n (H(i, x) ∧ H(i, y) ⇒ C(x) = C(y)).

We now formalize theorem 3.1.18 by the following weaker claim, which allows 2k−2 edges, rather
than 2k−1, in order to apply rWPHP. The stronger claim would use the full pigeonhole principle.

Theorem 3.1.19 S1
2(H) + rWPHP(Σb

1(H)) proves

∀i < 2k−2 (size(Hi) = k ∧∀x(H(i, x) ⇒ x < n)) ⇒ ∃C < 2n∀i < 2k−2 ¬monochromaticHyper(H, C, i).

Proof

Assume for sake of contradiction that all the colorings are bad, each one making some
hyperedge monochromatic. We define a function F from 2n (the set of all colorings) to
(1/2)2n, which due to our assumption will be an injective multi-function. Given C < 2n,
∃i < 2k−2 monochromaticHyper(H, C, i). That gives us a bounded existential quantifier
in our definition of F , so the definition becomes Σb

1(H) (notice monochromaticHyper uses
sharply bounded quantifiers so we do not count such quantifiers).

Once we have found such an i, there are 2 ways to color the vertices of hyperedge Hi

(all one color or all the other) and 2n−k ways to color the remaining vertices; let rest(C)
pick the appropriate one for C, so rest(C) < 2n−k+1. F maps C to:

i ∗ 2n−k+1 + rest(C) < (2k−2 − 1)(2n−k+1) + 2n−k+1

= 2k−22n−k+1

= (1/2)2n.

We have arrived at a contradiction because this violates rWPHP.

�

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 36

We have one concluding remark on the ordinary probabilistic method. The proofs all worked in
S1

2+rWPHP(Σb
1) by defining a Σb

1 multi-function. They could also be carried out in S1
2+fWPHP(Σb

2),
since we can make a multi-function R into a function F by choosing defining F (x) to be the smallest
y such that R(x, y). This leads to the following question.

Question 3.1.20 Can the ordinary probabilistic method be formalized in a theory weaker than
S1

2 + rWPHP(Σb
1)? For example, does S1

2 + fWPHP(Σb
1) suffice?

We will pursue this question further in the conclusion.

3.2 Linearity of Expectations

We will consider another type of probabilistic method, called “Linearity of Expectations,” given
this name because a key step for this approach is that the expectation of a sum is equal to the
sum of the expectations. As in the ordinary probabilistic method, we can use the weak pigeonhole
principle to simulate the counting argument, although the use will follow a different pattern. We
will then show how the weak pigeonhole principle can be eliminated by formalizing the “method of
conditional probabilities,” an algorithm which finds an object, rather than just showing existence.
We will apply these methods to formalize two theorems.

3.2.1 Using the Weak Pigeonhole Principle

Recall that Kn is the complete graph on n vertices. There are a total of
(
n
4

)
K4 subgraphs (i.e.

complete subgraphs on 4 vertices). The following theorem shows there is a coloring of the edges in
which at most a fraction of these K4 subgraphs are monochromatic.

Theorem 3.2.1 [4] There is a 2-coloring of the edges of Kn such that the number of monochromatic
K4 subgraphs is at most

(
n
4

)
2−5.

For the probabilistic proof let X be the random variable giving the number of monochromatic K4

subgraphs for a random 2-coloring of the edges, over the uniform probability space in which each
coloring is equally likely. The expectation E(X) = E(X0 + . . . + Xr−1), where r =

(
n
4

)
and Xi is

the indicator random variable which is 1 if the ith K4 subgraph is monochromatic, and 0 otherwise.

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 37

By linearity of expectations we can calculate as follows:

E(X) = E(X0 + . . . + Xr−1)
= E(X0) + . . . + E(Xr−1)
= 2−5 + . . . + 2−5

=
(

n

4

)
2−5

Thus there must in fact be a coloring with at most
(
n
4

)
2−5 monochromatic K4.

We formalize the statement of the theorem by letting a number < 2(n
2) represent an edge coloring

as before. Thus n will be small, so we can code a sequence that refers to a set of
(
n
4

)
K4 subgraphs.

Theorem 3.2.2 S1
2 + fWPHP(Σb

1) proves

∃C < 2(n
2)∀S (S is a set of monochromatic K4 in C) ⇒ size(S) <

(
n

4

)
2−5.

As a first step to the formalization we restate the probabilistic argument as a counting argument,
not yet concerned with bounded arithmetic.

Consider a 2(n
2) × (n4) matrix with the columns labeled by the all the K4 subgraphs

and the rows labeled by the 2-colorings of the edges. Put a 1 in entry (i, j) if the K4

subgraph of column j is monochromatic for the coloring of row i, and a 0 otherwise.
For each K4, 2(n

2)2−5 of the colorings make it monochromatic, so we have this many 1’s
per a column. Thus the total number of 1’s in the matrix is

(
n
4

)
2(n

2)2−5. Now, assume
for sake of contradiction that there is no coloring with

(
n
4

)
2−5 or fewer monochromatic

K4; thus every row has at least (
(
n
4

)
2−5 + 1) 1’s. Since we have 2(n

2) rows, we have at

least 2(n
2)(
(
n
4

)
2−5 + 1) 1’s in the matrix, contradicting the above total.

One technical issue is how we refer to the matrix in bounded arithmetic. Given n, the number
of vertices, consider the matrix in the above counting argument, except that the rows are labeled
by numbers < 2(n

2), and the columns are labeled by numbers <
(
n
4

)
, both in increasing order.

The row labeling naturally represents colors by considering the binary expansion of the number.
The column labeling can be viewed as the

(
n
4

)
K4 subgraphs by recalling the function setNumber

(definition 3.1.3); we associate the numbers to sets by using the inverse of setNumber, thus using a
lexicographic ordering. It would now be natural to define the matrix by a bounded formula, giving
the entry at any position (a, b). However we would run into a problem in the proof: We want to
be able to consider some column and find the ith row with a 1 for this column. We will define

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 38

the matrix using an enumerating function Ek(c, i), where c <
(
n
4

)
represents a K4 subgraph, and

i < 2(n
2)2−5 is an index:

Ek(c, i) := the row in which the ith 1 of column c occurs.

Ek is Σb
1 definable in S1

2 so we can add it conservatively. This can be seen by describing a polynomial
time (in n, not |n|) algorithm for this function, though we also want a formula which we can prove
things about. For the unconvinced we provide a Σb

1 description of Ek:

Let c <
(
n
4

)
and i < 2(n

2)2−5 be our input. The number c corresponds to a K4 subgraph, and
so gives us 6 distinct edges which correspond to 6 distinct bit positions 0 ≤ p1 < . . . < p6 <

(
n
2

)
of

a binary string of length
(
n
2

)
. Suppose the most significant of these 6 bits p6 has k more significant

bits to the left and
(
n
2

)− k − 1 less significant bits to the right. Now we want Ek to pick out the

2(n
2)2−5 colorings that make all the pi the same color, and furthermore we want this to be done in

the usual order for length
(
n
2

)
binary strings. Before a formal description we give a picture of this

order:

k bits p6 p5 p4 p3 p2 p1︷ ︸︸ ︷
0 0

︷︸︸︷
0 0 . . . 0

︷︸︸︷
0 0 . . . 0

︷︸︸︷
0 0 . . . 0

︷︸︸︷
0 0 . . . 0

︷︸︸︷
0 0 . . . 0

︷︸︸︷
0 0 . . . 0

...
0 0 0 1 . . . 1 0 1 . . . 1 0 1 . . . 1 0 1 . . . 1 0 1 . . . 1 0 1 . . . 1
0 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0

...
0 0 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1
0 1 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

...

...
1 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1

We can take i to be a binary string with
(
n
2

)− 5 bits viewed as 3 segments as follows: A0A1A2,
where the A0 are the k most significant bits, A1 is a single bit and A2 is a binary string with(
n
2

)− k − 6 bits. Ek(c, i) is a number < 2(n
2) which we can define by describing a binary string of

the form: A0A1A
′
2, where A0 and A1 are exactly as in string i. The A′

2 is A2 with 5 bits inserted
so they appear at positions p1 < . . . < p5; these bits are all set equal to bit A1.

To formalize this proof in bounded arithmetic, we mimic this counting proof, using the weak
pigeonhole principle. For the ordinary probabilistic method, intuitively, the pattern was to map
the set of all objects to the set of codings for the bad objects. The intuition here is to map the 1’s

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 39

of matrix injectively into itself by viewing the 1’s of the matrix in two ways: As row/column pairs
in which the row is given first, and in which the column is given first. Now we prove theorem 3.2.2.

Proof

Supposing the claim is false we will define a Σb
1 injection from

(
n

4

)
2(n

2)2−5

(
1 +

25(
n
4

)) to(
n
4

)
2(n

2)2−5. This contradicts the strengthened version of the weak pigeonhole principle
which follows from fWPHP, due to theorem 2.3.4, relying on the fact that n is small, so
(1 + 25

(n
4)

) is sufficiently large.

Now we define F . Given a number <
(
n
4

)
2(n

2)2−5(1 + 25

(n
4)

) = 2(n
2)(
(
n
4

)
2−5 + 1) we can

see it as a pair 〈r, c〉, r < 2(n
2) and c <

(
n
4

)
2−5 + 1. F maps 〈r, c〉 to the pair 〈u, v〉,

where u <
(
n
4

)
is the column in which the cth 1 of row r appears, and v < 2(n

2)2−5

satisfies Ek(u, v) = r; so the range can be taken to be
(
n
4

)
2(n

2)2−5. Note that there is
such a u because our assumption guarantees enough 1’s for each row; furthermore, since
the row length

(
n
4

)
is small, we can progress up this row till we find the proper column

u. Thus we have a well-defined function. To see it is injective, suppose two distinct
pairs 〈r, c〉 and 〈r′, c′〉 are mapped to 〈u, v〉 and 〈u′, v′〉 respectively. If r = r′ (the rows
are the same) and c �= c′ then the cth 1 and the c′th 1 occur in different columns, so
u �= u′. If r �= r′ (suppose r < r′) then assuming u = u′ (otherwise we are done)
v = Ek(u, r) < Ek(u, r′) = v′. The map F is Σb

1 since it only uses Ek and other Σb
1

defined functions (in S1
2).

�

Now we consider another theorem proved by the same method.

Theorem 3.2.3 [4] A graph with e edges and n vertices contains a bipartite subgraph with at least
en+1

2n edges.

If the vertex set is [n], then this theorem says that there is a subset B ⊆ [n], so that the number
of crossing edges for B (i.e. an edge is “crossing” for B if it has one vertex in B and one outside B)
is at least en+1

2n . This can be proven by a similar probabilistic argument and associated counting
argument. We give the counting argument.

Proof

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 40

Let G be a graph with vertices [n] and e edges. The proof comes in two cases, for n
even or odd. Just consider the case of n even, so n = 2r (n odd is similar).

Consider the
(
2r
r

)×e matrix in which the columns are labeled by the e edges and the rows
are labeled by the

(
2r
r

)
size r subsets of [2r]. Put a 1 in entry (i, j) if the edge at column

j is crossing for the set at row i, and a 0 otherwise. For each edge, 2
(
2r−2
r−1

)
= r

2r−1

(
2r
r

)
of the subsets are crossing for it, so that number gives the number of 1’s per a column.
Thus the total number of 1’s in the matrix is e r

2r−1

(
2r
r

)
.

Now, assume for sake of contradiction that there is no bipartite subgraph with e r
2r−1 ≥

en+1
2n edges; thus any subset of the vertices has at most e r

2r−1 − 1
2r−1 crossing edges.

So the number of 1’s in any row of the matrix is at most this, and since we have
(
2r
r

)
rows, we have at most

(
2r
r

)
(e r

2r−1 − 1
2r−1) <

(
2r
r

)
e r

2r−1 1’s in the matrix, contradicting
the above total.

�

Notice that if we considered the matrix to have 2n rows, one for each subset, not restricting
them to be of size about n/2, then the proof would be almost the same as theorem 3.2.1, though
the bound in theorem 3.2.3 would be weakened from en+1

2n to e/2.

To formalize this, we will code graphs in the usual way as a number < 2(n
2). The bipartite

subgraph can just be taken to be a subset of the vertices [n] and so we code it as a number < 2n.

Theorem 3.2.4 S1
2 + fWPHP(Σb

1) proves

∀G < 2(n
2) (G has ≥ e edges ⇒ ∃B ⊆ [n] number of edges from B to ([n] − B) is ≥ e

n + 1
2n

).

The proof will be similar to the proof of theorem 3.2.2 though referring to the matrix will be a
little more complicated. We will use a matrix in which the rows are labeled by numbers <

(
2r
r

)
, in

increasing order. We associate these numbers in [
(
2r
r

)
] with the sets {X ⊆ [2r] | ‖X‖ = r}, via the

function setNumber (recall definition 3.1.3). There is no problem using setNumber’s inverse since
setNumber is injective. The columns are labeled by numbers < e. We now define our enumerating
function for the matrix, which we call En:

En(t, i) = the row in which the ith 1 of column t occurs.

En is Σb
1 definable in S1

2 so we can add it conservatively. We sketch the idea. Let D :=

{X ⊆ [2r] | ‖X‖ = r and (u ∈ X iff v �∈ X)}.
It suffices to define the inverse to En, a function f : D → [2

(
2r−2
r−1

)
]. This function is defined

analogously to setNumber, but is more complicated. In the case of setNumber we were given a

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 41

set X ⊆ [2r] of some size and we gave an iterative definition with parameter a that began by
considering a = 0. At each step the function considered whether or not a was in X. If a was not
in X, the function added an offset and moved on to a + 1; otherwise it moved on to a + 1 without
adding an offset. f is similar, except that the offset depends on where a is relative to u and v. Now
in bounded arithmetic, using fWPHP we prove theorem 3.2.4.

Proof

We do the case of n even, so n = 2r. Assuming the theorem is false we can define an
injection F from e

(
2r
r

)
r

2r−1 to
(
2r
r

)
e r

2r−1(1 − (1/er)) which violates fWPHP because n

and e ≤ (n2) are small. Given a number < e
(
2r
r

)
r

2r−1 we can see it as a pair 〈t, i〉, where
t < e, and i <

(
2r
r

)
r

2r−1 .

Let a = En(t, i). F maps 〈t, i〉 to a pair whose first entry is a. For the second entry
we sum row a up to column t; this can be done because e is small. By assumption
this sum is ≤ (e r

2r−1 − 1
2r−1). So the entire map has a range of

(
2r
r

)
(e r

2r−1 − 1
2r−1) =(

2r
r

)
e r

2r−1(1 − (1/er)). This map is Σb
1 since it only uses En and other Σb

1 defined
functions (in S1

2).

�

Recall theorem 3.0.6 about probabilistic witnessing. It can be applied to the statements in both
theorem 3.2.2 and 3.2.4, so not surprisingly we get probabilistic algorithms to find the objects in
question. The next section provides proofs in S1

2 and thus polynomial time algorithms.

3.2.2 Conditional Probabilities

We apply the method of conditional probabilities to the two theorems we just discussed, in fact
showing that the same theorems can be formalized in just S1

2, without the weak pigeonhole principle.
We work this out in detail for theorem 3.2.1 and then note how the approach also works for
theorem 3.2.3.

Supposing a probabilistic argument shows that some object (like a coloring) exists, the method
of conditional probabilities can sometimes provide an algorithm for finding such an object. Applied
to theorem 3.2.1 this method finds an appropriate 2-coloring of the ground set [n] in polynomial (in
n) time. We successively color the edges. At a given stage we will have colored some edges in such a
way that the expected number of monochromatic K4 subgraphs (conditioned on the current partial
coloring) is ≤ (n4)2−5. We then consider the two ways to color the next edge, doing a computation
to find out which one maintains the bound on the expectation; in the end we actually have a desired
coloring. A key point for the algorithm is that it needs to be able to compute the expectation in

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 42

polynomial time. Corresponding to this, we will need to be able to compute an analogous weight
function within S1

2, showing that it provably has the right properties.

Theorem 3.2.5 S1
2 proves

∃C < 2(n
2)∀S (S is a set of monochromatic K4) ⇒ size(S) <

(
n

4

)
2−5.

Proof

For ease of readability we let m =
(
n
2

)
(the number of edges).

To simulate the algorithm we want to be able to deal with partial colorings. It will
be helpful to discuss these issues in terms of the matrix referred to in the proof of
theorem 3.2.2. Recall that its rows are labeled by the colors, numbers < 2(n

2), viewed
as binary strings of length

(
n
2

)
. The labels are given in increasing order, yielding the

following picture:

“00”

“01”

00 . . . 0

001 . . . 1
010 . . . 0

01 . . . 1
10 . . . 0

1 . . . 1

By the partial coloring 〈00〉 we mean that the first 2 edges are each colored “0”, where
we start by coloring edges given by the most significant bits. The region of the matrix
marked “00” (denoted R〈00〉) indicates the rows of those colorings that can extend the
partial coloring 〈00〉. For the partial coloring 〈01〉 we have the corresponding region
“01” and for the empty coloring 〈〉 we have the entire matrix. In general, for a partial
coloring q, the associated region Rq has 2m−|q| rows. Given a partial coloring q, the
expected number of monochromatic K4 that we get by randomly extending q is just∑
t<(n

4)
prob(column t has a 1 in region Rq). Modeled on this we define a weight function

E(q) =
∑

t<(n
4)

W (t, q),

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 43

where W (t, q) will be a weight function for column t, under partial coloring q. We would
like to say

W (t, q) :=
number of 1’s in column t of Rq

2m−|q| ,

but to find the numerator directly by summing cannot be done since the sum could be
long, unlike the sum used to define E (since n is small).

To get around this we will define two functions, first(t, q) and last(t, q), where t is
a column and q is a partial coloring, such that the numerator will equal last(t, q) −
first(t, q) + 1.

first(t, q) := the index i such that Ek(t, i) is the first row after the start of
region Rq in which column t has a 1; if there is no such 1, then it is just
2m2−5.

last is defined similarly, except that we get the last row before the end of Rq, and if there
is no such 1, we let it be −1 (we can make sense of a negative number). The extremal
values of 2m2−5 and −1 for first and last, respectively, are not that important, but
are chosen so that certain properties follow more smoothly (i.e. as in the properties
contained in the proof of the next claim). A Πb

1 definition of first(t, q) is obtained by
defining it to be the smallest i such that Ek(t, i) ≥ q2m−|q|. last(t, q) is the largest i
such that Ek(t, i) < (q + 1)2m−|q|. Since these functions have Πb

1 definitions, we can
conservatively add them in S1

2. Now we can define the weight of a column under a
partial coloring by:

W (t, q) :=
last(t, q) − first(t, q) + 1

2m−|q| .

One of the key properties of the expectation is mimicked by E in the following claim
(by q � p we mean the concatenation of the 2 binary strings q and p).

Claim 3.2.6 S1
2 proves that for a partial coloring q,

E(q) =
E(q � 0) + E(q � 1)

2
.

Proof

First we note some properties of first and last that can be checked in S1
2:

1. first(t, q) = first(t, q � 0)
2. last(t, q) = last(t, q � 1)
3. first(t, q � 1) = last(t, q � 0) + 1

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 44

Now we give a calculation demonstrating the analogous claim for W .

W (t, q) =
last(t, q) − first(t, q) + 1

2m−|q|

=
(last(t, q � 1) − first(t, q � 0) + 1) + (last(t, q � 0) − first(t, q � 1) + 1)

2m−|q|

, because the second bracketed term in the numerator is equal to zero, and
the first one is equal to the previous numerator (using the above properties
of first and last). Continuing the calculation, the last expression equals:

last(t, q � 1) − first(t, q � 1) + 1
2m−|q|−1

+
last(t, q � 0) − first(t, q � 0) + 1

2m−|q|−1

2

=
W (t, q � 1) + W (t, q � 0)

2
.

Since E(q) is defined in terms of sums of W (t, q), a short calculation finishes
the proof.
�

This claim immediately leads to the property:

E(q) ≤ b ⇒ E(q � 0) ≤ b ∨ E(q � 1) ≤ b.

Note that E(〈〉) =
∑

t<(n
4)

W (t, 〈〉) =
(

n

4

)
2m2−5

2m
=
(

n

4

)
2−5. Now using the above prop-

erty we can carry out the process described before this theorem. Starting with 〈〉 we
take m steps, at each step, extending our partial coloring by one more color, maintaining
the bound of

(
n
4

)
2−5 on the weight. At the end of the process we arrive at our desired

total coloring q such that E(q) ≤ (n4)2−5. Since m is small, this process can be carried
out in S1

2.

�

Theorem 3.2.2 and 3.2.5 both prove the same statement, but the more complicated proof of
3.2.5 works in a weaker theory. A similar phenomenon occurs with theorem 3.2.4.

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 45

Theorem 3.2.7 S1
2 proves

∀G < 2(n
2) (G has ≥ e edges ⇒ ∃B ⊆ [n] number of edges from B to ([n] − B) is ≥ e

n + 1
2n

).

The proof is basically identical to that of theorem 3.2.5, though now we use En instead of Ek,
redefining the functions first and last in terms of it. To find the set B ⊆ [n] can be thought of as
finding a 2-coloring of the vertices [n]. Thus the proof mimics the process of successively coloring
the vertices in such a way that the weight stays above (rather than below) the proper bound.
Another modification is to stop the process once we have r vertices colored one of the 2 colors.

How general is the this phenomenon? It is unlikely that S1
2 proves fWPHP(Σb

1). However perhaps
there is some kind of conservativity result.

Question 3.2.8 Is S1
2 + fWPHP(Σb

1) conservative over S1
2 under certain conditions related to lin-

earity of expectations?

3.3 The Local Lemma

We will discuss a theorem concerning hypergraphs and then discuss partial progress towards formal-
izing this in bounded arithmetic. Theorem 3.1.18 was concerned with showing certain hypergraphs
are 2-colorable; we will consider another theorem of this sort. The two key parameters of the-
orem 3.1.18 were m := the number of hyperedges, and k := the minimum size of a hyperedge.
Making m larger generally makes it harder to find a good 2-coloring, while making k larger makes
this easier. Given that there is a trade-off between these two parameters, it is natural to ask what
relationship between these parameters allows for a good 2-coloring. Theorem 3.1.18 answered this
question by showing that m < 2k−1 suffices. We now consider the parameter d := a bound on
the number of hyperedges any given hyperedge can intersect. We ignore m and note that there is
a trade-off between the parameters k and d as far as finding a 2-coloring. Finding a good trade-
off between these two parameters that allows for a good 2-coloring is answered by the following
theorem.

Theorem 3.3.1 [4] Given a hypergraph in which each hyperedge has at least k elements and inter-
sects at most d other hyperedges, if e(d + 1) ≤ 2k−1, then the hypergraph is 2-colorable.

The only known proof of this theorem uses the Local Lemma. The Local Lemma was proved by
Erdős and Lovász [24]; we state what is referred to as the symmetric case of the Local Lemma.

Theorem 3.3.2 (Local Lemma) [24] Let A1, . . . , Am be events in some probability space. Suppose
each Ai is mutually independent of all but at most d other events Aj, and for each Ai, prob(Ai) ≤ p.
If ep(d + 1) ≤ 1 then prob(

∧n
i=1 Ai) > 0.

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 46

Applying the Local Lemma to prove the above hypergraph theorem, our (uniform) probability
space will be the set of all vertex colorings. Event Ai consists of the set of colorings which make the
ith hyperedge monochromatic. Two events are independent in just the case that their corresponding
hyperedges do not intersect, so each event is mutually independent of all but d other events.
prob(Ai) ≤ 1

2k−1 since we have at least k vertices in a hyperedge. Thus the condition of theorem 3.3.1
is exactly what is needed to apply the Local Lemma. Thus prob(

∧n
i=1 Ai) > 0, and so there exists

a coloring not contained in any of the events Ai, that is a good 2-coloring.

We now consider the formalization in bounded arithmetic. The hypergraph will be defined as
before on the ground set [n], using a 2-place relation symbol H. The parameters n and k will be
small as before, but we don’t have to impose a restriction on m. An additional issue is that we
have to bound the number of hyperedge intersections by d. We can avoid restricting d to be small
by introducing a 2-place function symbol G which tells us which hyperedges intersect, in a way that
allows us to easily talk about how many hyperedges a given hyperedge intersects. For r < d and
i < m, the value j := G(i, r) tells us the index of the rth hyperedge intersecting hyperedge Hi. To
code that G is done enumerating we will let G(i, u) = G(i, u+1) for some u < d; the last non-repeated
value is the last number in the enumeration. So we can say that hyperedge i intersects hyperedge
j with the formula intersect(i → j):

∃r < d (G(i, r) = j ∧ ∀u < r G(i, u) �= G(i, u + 1)).

Our definition of a hypergraph will (indirectly) make this relation symmetric. We can now say that
H and G work together to give us a hypergraph with the desired parameters, where n and k are
small, but m and d need not be.

Definition 3.3.3 Let isHyperGraph(H, G, m, n, k, d) be:

(∀i < m size(Hi) = k) ∧ ∀x (H(i, x) ⇒ x < n)
∧ (∀i < m ∃r < d G(i, r) = G(i, r + 1))

∧ (∀i �= j < m (intersect(i → j) ⇔ ∃x < n H(i, x) ∧ H(j, x))).

Now we can state a conjecture corresponding to theorem 3.3.1, allowing for the possibility that
the formalization may involve a weaker relationship between the parameters d and k.

Conjecture 1 For some standard rational r > 1, S2(H, G) proves that

isHyperGraph(H, G, m, n, k, d) ∧ dr ≤ 2k−2 ⇒ ∃C < 2n∀i < m ¬monocromaticHyper(H, C, i).

In fact it seems that S1
2 plus some applications of the weak pigeonhole principle will suffice to prove

this, with the parameter r not much bigger than 3. We now discuss two approaches towards proving
this conjecture. The first approach is to break up the proof into two cases, depending on whether
or not d is small. The second approach is to use the ideas in Alon’s parallel algorithm for finding
a coloring.

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 47

Approach 1: Two Cases

This approach is based on the following simple fact.

Proposition 3.3.4 A hypergraph with m edges and n vertices, such that any hyperedge interests
at most d other hyperedges, satisfies: m ≤ (d + 1)n.

Proof

For any vertex, at most d+1 hyperedges contain it, otherwise we exceed d intersections.
Since we have n vertices, m ≤ (d + 1)n. �

For this approach, we break up the proof into two cases: Either 1) d is small or 2) d is not
small. In case (2) we will see that the ordinary Probabilistic Method can be applied, yielding only
a small weakening in the d, k relationship. In case (1), if d is small, the above proposition (which
we will formalize) forces m to be small too (recall n is always small). With m being small we can
refer to sequences of size m, so many aspects of the usual proof of the Local Lemma can be carried
out. However we do not know if the entire proof can be formalized in this case. We provide a
formalization of the above proposition.

Lemma 3.3.5 S1
2(H, G) + rWPHP(Πb

1(H, G)) proves isHyperGraph(H, G, m, n, k, d) ⇒ m ≤ 2(d + 1)n.

Proof

We can give a Πb
1 definition of an onto function h from (d + 1)n to m. This can

immediately be turned into an injective multi-function from m to (d+1)n, thus implying
by rWPHP that m ≤ 2(d + 1)n.

h is defined by mapping a pair 〈x, i〉, where x < n and i < d + 1, to a number < m.
First we consider x and let f(x) := the smallest y < m such that H(y, x) (y = 0 if x is
in no hyperedge); this makes the definition Πb

1. Then we consider this y. If i = 0, then
h(〈x, i〉) := y. Otherwise h maps 〈x, i〉 to G(y, i − 1), the ith set intersecting Hy.

h is onto because given any y < m, take any vertex x such that H(y, x). If f(x) = y, then
〈x, 0〉 is mapped to y. Otherwise Hf(x) intersects Hy, so for some u < d G(f(x), u) = y,
so h maps 〈x, u + 1〉 to y.

�

For this approach consider what happens if d is not small. In this case we can do an application
of the ordinary probabilistic method, using theorem 3.1.19, which requires m ≤ 2k−2. Since n is

CHAPTER 3. PROBABILISTIC METHODS IN BOUNDED ARITHMETIC 48

small and d is not, n < dε for any standard rational ε > 0. Thus m ≤ 2(d + 1)n < d1+ε ≤ 2k−2,
for any standard rational ε > 0. So for the case of d not small we can prove the conjecture for
r := 1 + ε, working in S1

2(H, G) + rWPHP(Πb
1(H, G)). If d is small then since m ≤ 2(d + 1)n, m is

also small. Given that all the parameters are small, this facilitates talking about various objects
appearing in the standard proof of the Local Lemma; perhaps this would allow us to formalize this
case.

Approach 2: Alon’s algorithm

Another approach to the conjecture is to try formalizing an algorithm. Beck [7] found a polynomial
time (in m and n) algorithm for finding a good 2-coloring of the hypergraph of theorem 3.3.1, with
a weakening in the d, k relationship. Alon [2] strengthened this to a parallel algorithm which uses
polynomial (in m and n) many processors, but runs in polynomial (in log m) time, also suffering a
weakening in the relationship between d and k. It seems very feasible that one of these could be
used to prove the conjecture. In fact I believe Alon’s approach will formalize. It is possible that
it could be used in conjunction with the first approach to improve the d, k relationship over just
using Alon’s approach by itself.

Chapter 4

Second Order Bounded Arithmetic

T2
2

↑
S1

2 + rWPHP(Σb
1)

↑
S1

2 + fWPHP(Σb
1)

↑

V1 ≡ S1
2

↗ ↖
V0 + enum + modDim + ∆1,b

1 −CA U1

↖ ↗
V0 + enum + ∆1,b

1 −CA
↗ ↖

V0 + enum V0 + PHP
�↖ �↗

V0

We will develop second-order bounded arithmetic for use in the next chapter on set systems
and some of the work on Ramsey theory in chapter 6. Of the various theories of this sort, we will
describe (in section 4.1) Cook and Kolokolova’s presentation [12] of Zambella’s systems [48]. A
well-known translation (presented in section 4.2) shows that a hierarchy of second order theories is
isomorphic to Buss’ first-order hierarchy within S2. Thus this work can be taken to refer to Buss’

49

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 50

standard theories. We will in fact be interested in working in between the second order theories V0

and V1. V1 is isomorphic to S1
2 and V0 is strictly weaker than V1, thus we are using the second

order theories as a convenient way to work below S1
2. We choose to use the second order theories

rather than the first-order theories for at least two reasons. On the one hand they provide an
intuitive context for theorems that make a lot of reference to sets. Secondly, the weaker second
order theory is more natural from the standpoint of complexity theory, since V0 corresponds to the
complexity class AC0, while S0

2 has no apparent complexity class as a friend.

Before giving the formal definitions we consider the general picture of how the various theories tie
together (see the above figure). We note that “V1 ≡ S1

2,” meaning the two theories are isomorphic
(as discussed in section 4.2). Writing T1 → T2 we mean that theory T2 is at least as strong as
T1; if the arrow has a slash (i.e. “�→”) this indicates T2 is strictly stronger. Above S1

2 we have
the two kinds of WPHP schema used in the probabilistic method (chapter 3). V1 corresponds to
polynomial time reasoning and V0 to AC0 reasoning. In between these two theories we indicate
the theories of interest to us. PHP and enum are each a single formula, referred to collectively as
counting principles (developed in section 4.3). When added to V0 they yield proper extensions
as indicated. None of the other extensions are known to be proper, though this is believed to be
the case. ∆1,b

1 −CA is a comprehension schema and modDim is a linear algebra principle given by
a single formula (discussed in the next chapter). We will not discuss U1 in detail, just mentioning
it for context. By U1 we mean Buss’ U1

1(BD) modified a la Zambella as V1
1(BD) was modified to

become V1. Thus V0 is acting as our base theory which we add axioms to as needed.

Working over the weak base theory V0 we will have to be careful about coding issues, so we
will provide more detail in this context than has been provided for the first-order case. We develop
trees in section 4.4 and some machinery for working with them over V0. Objects ranging from
sequences of numbers, to matrices, to polynomials will be coded using trees. In section 4.5 we use
trees to formalize sequences of numbers and associated operations.

4.1 The Second-Order Theory

The theorems and definitions of this section mostly come from [12], which is based on Zambella’s
work [48]. We will now have two kinds of basic objects in our theory, numbers and sets of numbers
(sets will always be taken to be finite sets of natural numbers unless otherwise stated). This second
order theory will be built on top of I∆0 by taking that theory as its first-order part, and then
adding certain comprehension axioms along with a few basic facts about sets.

The language consists of {0, 1, +, ∗, 0, max,∈}. There are two kinds of variables, number vari-
ables (denoted by lower case letters) and set variables (denoted by upper case letters). The symbols
have their usual intended meaning, though max requires some explanation. Given a set X, max(X)
is one plus the largest number in X (so max({0, 2, 6}) = 7, while max({}) = 0); not being the literal

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 51

maximum fits the empty set nicely into this definition. This highlights a key aspect of this theory:
All sets are bounded, so max is well-defined. A useful abbreviation is “X < n”, which stands for
(∀x ∈ X x < n).

An alternative view of these second order theories will be to view sets as binary strings. Given
a set X, such that n = max(X), X can be viewed as a length (n − 1) binary string ω(X), where
bit i (i < (n − 1)) is 1 iff i ∈ X. For example, if X = {0, 2, 6}, then the corresponding string
ω(X) is 000101. Note that the element (max(X)− 1) ∈ X just serves to indicate when the leading
zeroes (if any) end. In referring to binary strings we say that a bit is to the right of another bit,
if it occupies a less significant bit, and left if more significant, corresponding to how we wrote the
example X above. In keeping with this view, all strings and sequences built on top of these sets
will respect this order. We switch views of the second order objects (sets versus strings) depending
on the application at hand.

As in the first order case, we have a finite set of defining axioms for the symbols of the language.

Definition 4.1.1 Let BASIC2 be BASIC0 plus the following set of formulae:

1. 0 ≤ x

2. (x ≤ y ∧ y ≤ z) ⇒ x ≤ z

3. x ≤ y ∨ y ≤ x

4. x ≤ y ⇔ x < y + 1

5. x �= 0 ⇒ ∃y(y + 1 = x)

6. y ∈ X ⇒ y < max(X)

7. y + 1 = max(X) ⇒ y ∈ X

The last two axioms are the only new basic axioms referring to sets. The other ones are in fact
theorems of I∆0 (using induction). The second order theories have comprehension axioms instead
of induction axioms, but induction claims will be theorems (theorem 4.1.5).

Definition 4.1.2 (Comprehension Axiom) For a formula ψ, ψ−CA is:

∃X < y∀z < y (z ∈ X ⇔ ψ(z))

When we use this notation it is implicit that X does not appear free in ψ, though other unmentioned
number and set variables may appear in ψ.

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 52

Notice that in addition to the defining formula ψ, the comprehension axiom requires the bound y.
If Φ is a class of formulae, then Φ−CA is the set of formulae {ψ−CA | ψ in Φ}.

In the first-order case we had induction axioms for various first-order bounded formulae. We
will define analogous formulae classes for the second order context, for use in the comprehension
axioms.

Definition 4.1.3 We call the following kinds of quantifiers bounded set quantifiers. In what
follows, t is a term not containing the set variable X.

• Let (∃X < t ψ) abbreviate ∃X (X < t ∧ ψ).

• Let (∀X < t ψ) abbreviate ∀X (X < t ⇒ ψ).

By a second-order bounded formula, we mean a formula in which all the quantifiers are either
first or second order bounded quantifiers, with free variables of both kinds allowed. We now define
subclasses of the second-order bounded formulae. We define Σ1,b

i and Π1,b
i formulae exactly like

the first-order Σb
i and Πb

i , respectively, except that now we count the alternation of the bounded
set quantifiers and ignore the bounded number quantifiers. This is a non-essential deviation from
Cook’s more strict definition (this is discussed further following lemma 4.1.11). For a theory T a
formula ψ is ∆1,b

i (in T) if ψ is in Σ1,b
i and there is a formula φ in Π1,b

i with the property that T
proves ψ ⇔ φ; if T is clear from context we do not mention it.

Note that while the names for the first-order classes of formulae, such as Σb
i , is quite standard,

there are some different ways to refer to the second order formulae classes. We choose the above
notation because of its resemblance to the first-order case. It should be noted that Buss uses the
same notation for formulas defined in the same way, but in a language with the smash function
#. Now we define the systems Vi introduced by Zambella (he originally called these systems
Σp

i −comp).

Definition 4.1.4 For i ≥ 0, let Vi be the theory consisting of BASIC2 and Σ1,b
i −CA.

Note that for i ≥ 1, Vi is simply a nicer presentation of Buss’ Vi
1(BD) in which set variables are

not required to have term superscripts indicating their bound.

It is helpful to know that we can obtain induction in these theories. V0 is strong enough to
prove induction for a set variable, that is X−IND. This notation was originally used to refer to
a schema, though we use it to refer to a single axiom with the set variable X in place of the a
formula.

Theorem 4.1.5 V0 proves X−IND.

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 53

The idea of the proof is to Σ1,b
0 define the numbers where the inductive claim fails, and find the

least one. Notice we use Σ1,b
0 −CA to carry out this argument. This theorem allows us to freely use

Φ−IND in a theory that contains both V0 and Φ−CA.

As in the first-order case, a version of Parikh’s theorem holds for these theories. The definition of
a bounded theory is exactly as before, though now we are allowed second-order bounded quantifiers
in addition to the first-order bounded quantifiers.

Theorem 4.1.6 (Parikh’s Theorem for Second-Order Theories) If T is a second-order bounded
theory that contains V0 and ψ(�x, �X, y, Y) is a second-order bounded formula such that T proves
∀�x, �X ∃y, Y ψ(�x, �X, y, Y), then there is a term t, not containing y or Y such that T proves
∀�x, �X ∃y < t ∃Y < t ψ(�x, �X, y, Y).

As in the first order theories we will want to add functions or relations conservatively. As
before (lemma 2.1.6), we can add definable functions and relations, noting that we can now have
set parameters. It is especially useful when we can use the new function and relation symbols in
the comprehension axioms (analogously for the first-order theories we wanted to use the symbols
in the induction axioms). For a new function or relation symbol R, let Σ1,b

i (R) be defined as Σ1,b
i is,

though in the language extended by R; other formulae classes are relativized similarly. By Vi(R) we
mean BASIC2 + Σ1,b

i (R)−CA. For a bounded theory T extending Vi we let T(R) be T + Vi(R). A
new distinction for second order logic is to distinguish two kinds of functions, those with a number
as output (number-valued) and those with a set as output (set-valued); otherwise we use the
same definitions from first-order logic.

Theorem 4.1.7 Let T be a bounded theory containing V0.

1. If ψ(�x, �X, y) Σ1,b
0 defines a number valued function in T, then for a new function symbol f

T(f) + (ψ(�x, �X, y) ⇔ f(�x, �X) = y) is a conservative extension of T.

2. If ψ(�x, �X) is Σ1,b
0 and R is a new relation symbol, then T(R) + (ψ(�x, �X) ⇔ R(�x, �X)) is a

conservative extension of T.

In V0 we can add certain number-valued functions, but set-valued functions present a problem
since referring to the value of the function requires a set quantifier; this means such functions
cannot be used in the comprehension axioms of V0. However special set valued functions with bit
definitions can be added.

Definition 4.1.8 Let Φ be a formula class. A set valued function f(�x, �X) is Φ bit definable if
there is a formula ψ(�x, �X, i) in Φ and a term t such that for any �x and �X ,

i ∈ f(�x, �X) iff i < t(�x,max(�X)) and ψ(�x, �X, i).

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 54

Notice that given any such formula and term, we can take it as bit defining some function; if the
definition is simple enough we can add it conservatively to a relativized extension.

Lemma 4.1.9 Let T be a bounded theory containing V0. If ψ(�x, �X, y) is a Σ1,b
0 formula and t is a

term, then for a new function symbol f, T(f) + (f(�x, �X) = Y ⇔ (∀i i ∈ Y ⇔ i < t(�x,max(�X)) ∧
ψ(�x, �X, i))) is a conservative extension of T.

We will mainly be concerned with V0, V1, and theories in between. One of the main in between
theories will be to consider V0 with stronger comprehension.

Definition 4.1.10 Let ∆1,b
i −CA be the following schema:

(∀�x, �X ψ(�x, �X) ⇔ φ(�x, �X)) ⇒ ψ−CA,

where ψ is Σ1,b
i and φ is Π1,b

i .

Our use of this axiom will always be for the case where i = 1, considering the theory V0 +
∆1,b

1 −CA, plus some special axioms. Note that due to theorem 4.1.5, if we are working in at least
V0 + ∆1,b

i −CA, we can use ∆1,b
i −IND. Furthermore, we can conservatively add more functions.

Lemma 4.1.11 Let T be a bounded theory that contains V0. Suppose T+∆1,b
1 −CA can ∆1,b

1 define
a function (number or set valued) or relation. Then the function (or relation) may be conservatively
added to T + ∆1,b

1 −CA and freely used in the CA axioms.

We now remark on a non-essential deviation from Cook which is motivated by the ∆1,b
i formulae.

For him the Σ1,b
i and Π1,b

i formulae are defined more strictly to be a series of bounded set quantifiers
followed by a Σ1,b

0 formula. However in, Vi, for i ≥ 1, given a Σ1,b
i (or Π1,b

i) formula, we can find
an equivalent one of the same complexity using the strict definition. This is not the case for ∆1,b

i

formulae in a theory below Vi. Thus we use the more flexible definition based on Buss’ definition.

To simplify working in these theories, note that we can work with sets of tuples as opposed to
just sets of numbers, because the theory is built on top of I∆0, which can code standard length
sequences as single numbers. When we want to code a function as a set we will do it in the usual
way as a set of tuples. We can then express that F is a function from the set X to the set Y by
stating

∀x ∈ X∃!y ∈ Y F (x, y),

which we abbreviate “F : X → Y ”. For ease of readability, we will often write F (x) = y, rather
than the more precise F (x, y). It is often important that a set parameter can be bounded in order
to control the complexity of some formula. To bound a set F that codes a function such that

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 55

F : X → Y , notice that the largest element in F will be the number coded by the largest pair in F ,
which will be bound by the code of the pair 〈max(X), max(Y)〉 (we assume that the pair encoding
is monotone). We refer to this bounding term by Fbd(X, Y), so F < Fbd(X, Y).

We now consider the connections to complexity theory. Now our functions and relations will
have number and set arguments. In keeping with standard complexity theory, our sets will be
viewed as binary strings. A peculiarity is that all number arguments must be input in unary, so
a number input n is not taken to have length log2 n, but actually n. Thus a function F(�x, �X) is
in polynomial time (in the second order sense) (denoted P) if there is a polynomial p and
a Turing machine M such that M computes F(�x, �X) in time p(�x,max(�Y)). We can now state the
witnessing theorem for V1.

Theorem 4.1.12 A function is in P iff it is Σ1,b
1 definable in V1.

As we shall see in section 4.2 on translating, V1 corresponds to S1
2, so this is basically a second-

order restatement of Buss’ witnessing theorem. There are similar witnessing theorems for Vi (i > 1)
corresponding to Buss’ witnessing theorems for Si

2. However, unique to this context is a witnessing
theorem for V0.

For V0 we will obtain a correspondence to uniform AC0. A relation R(X) of one string argument
is just a set of binary strings, often called a language in complexity theory; we call such R a
string relation. Recall that AC0 is the set of string relations that can be recognized by a constant
depth polynomial size (in the length of the input string) circuit family with unbounded fan-in. By
uniform, we mean that the circuit family can be exhibited by a log space Turing machine M , that
is, the nth circuit in the family is the output when n (in unary) is input to M . When referring
to AC0 we will always mean the uniform version. We begin with a definability correspondence to
AC0.

Lemma 4.1.13 A string relation R is in AC0 iff R is Σ1,b
0 definable.

To obtain witnessing theorems we will extend the notion of AC0 to functions and relations of
many arguments. Based on this lemma we extend AC0 to relations, by saying that R(�x, �X) is in
AC0 iff R is Σ1,b

0 definable. This definition can be tied up explicitly to a complexity class as follows.

Lemma 4.1.14 A relation R(�x, �X) is Σ1,b
0 definable iff R is recognized by a log-time constant-

alternation alternating Turing machine.

So as a special case, the string relations recognized by a log-time constant-alternation alternating
Turing machine are exactly the string relations in AC0. We now extend AC0 further, to the class
of AC0 functions FAC0.

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 56

Definition 4.1.15 A set valued function F(�x, �X) = Y is in FAC0 if there is an AC0 relation R
and a polynomial p such that:

i ∈ Y iff i < p(�x,max(�X)) and R(i, �x, �X)

Now we can state the witnessing theorem for V0.

Theorem 4.1.16 (AC0 Witnessing) A set valued function is in FAC0 iff it is Σ1,b
1 definable in V0.

We will apply this witnessing theorem in the section on counting to prove a counting principle
is independent of V0. Since V1 proves this principle, a corollary is that V1 is strictly stronger than
V0. This fits with the intuition that two theories corresponding to genuinely different complexity
classes (i.e. P is stronger than AC0) should themselves genuinely be different.

4.2 Translations

We now discuss the translations between Buss’ Si
2 and Zambella’s Vi, for i ≥ 1. These translations

have been worked out by various people ([32], [41], [45]), using Buss’ equivalent Vi
1(BD). We will

sketch some of the ideas behind the translation following Takeuti’s discussion ([44] and [45]). Note
that the translation breaks down below S1

2, so the nice complexity correspondence for V0 does not
carry over to S0

2.

There is a translation that takes a formula ψ in the language of Si
2 and produces a formula ψH

in the language of Vi. The main claim about this translation is that:

Theorem 4.2.1 Let i ≥ i. Si
2 proves ψ iff Vi proves ψH .

There is also a translation taking a formula φ in the language of Vi to a formula φL in the language
of Si

2 such that:

Theorem 4.2.2 Let i ≥ i. Vi proves φ iff Si
2 proves φL.

Tieing together the two translations is the following theorem.

Theorem 4.2.3 Let i ≥ i.

• Si
2 proves (ψ ⇔ (ψH)L).

• Vi proves (φ ⇔ (φL)H).

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 57

We now discuss roughly how these translations work. For the translation from Vi to Si
2, we

have to deal with sets in the first order context. We do this by coding the sets of Vi by numbers
in Si

2. As noted earlier (see the discussion surrounding definition 2.4.1) we can code “small” length
sequences (i.e. small size sets) in Si

2. This will be fine, since the numbers of Vi will essentially be
interpreted by the small numbers of Si

2. A set X of Vi has a number bound max(X) which will
become small under the translation, so X can be coded by a number s < 2max(X) in Si

2, since we can
exponentiate for small powers. The elements of the set are then checked by accessing the bits of s.
In the actual syntactic translation from φ to φL, we apply the length operator to the free number
variables and to the number variables bound by an unbounded quantifier, otherwise building up
terms in the same manner. For example, if φ is ∃x∀y < (z + 1) x + y > z, then φL would be
∃x∀y < |z| + 1 |x| + y > |z|. This causes the bounded number quantifiers of ψ to become sharply
bounded quantifiers in ψL; the bounded set quantifiers become regular bounded quantifiers. Thus
the axioms, which depend on formula complexity are preserved by this translation.

For the translation from Si
2 to Vi, the issue is to get around the fact that Vi does not have

the smash function. To do this, the numbers of Si
2 are coded as strings. The operations of Si

2

are all translated to operations on strings, where intuitively, the string X is viewed as the number∑
i<max(X)

2i, its binary expansion. So a number x < 2n of S1
2 is translated to a string X with bound n,

having 1’s in places according to x. To translate the operations to the strings of Vi we just consider
the example of smash. Recall that for two numbers x and y, x#y = 2|x||y|. Given two sets (with
bounds) A < a and B < b we want to define “A#B.” Viewing A and B as their binary expansions,
the length of A is just max(A) and length of B is max(B). So A#B should be 2max(A)max(B), which
as a binary expansion is just the set C with a single 1 at the max(A)max(B) + 1 bit. The set C is
easy to describe and is bound by ab + 1, which is a term in the language.

Syntactically a term of Si
2 becomes a term/formula pair (t, A) in Vi, where the formula A

describes the set and the term t provides the bound on the set. The operations of Si
2 are translated

by describing analogous operations on these pairs. In fact once we have the above intuition on how
to view strings, the definitions of the operations are virtually forced. In our example with smash,
the sets A and B are given by such term/formula pairs and the set C would be defined in terms of
them, following exactly our intuitive description.

4.3 Counting

We will consider adding two counting principles, the pigeonhole principle, and a principle which
allows us to find the number of elements in a set. First we consider adding the pigeonhole principle
in the second order context. Recall that we had the formula PHPm

n (R) in the first-order context,
where R was a 2-place relation symbol. We write PHPm

n (F), where F is a set variable to mean

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 58

basically the same thing, with the 2-place relation variable F in place of the relation symbol R.
Also recall that I∆0(R) does not prove PHPn+1

n (R), while the provability of PHP2n
n (R) is an open

question. This in fact implies that V0 does not prove PHPn+1
n (F). To see this, consider the theory

I∆0(set) (I∆0 extended by set variables but no extra axioms), which cannot prove PHPn+1
n (F).

Now it suffices to show that V0 is a conservative extension of I∆0(set) for formulae with no set
quantifiers. This is true because a model M of I∆0(set) can be extended to a model of V0 by
adding sets defined by Σ1,b

0 formulae (with parameters from M).

Given the fact that we do not know the status of the weak pigeonhole principle in V0, we will
just work with the usual one in this context. Furthermore, we had two versions of the pigeonhole
principle, the functional and relational version. Over V0 they are equivalent, since from a multi-
function F we can define a function F ′ by setting F ′(x) equal to the smallest y such that F (x) = y.
Thus we will write PHP to refer to PHPn+1

n with either the “r” or “f” prefix allowed. Notice we
often leave out reference to the free variable F which can be taken as free or universally quantified
over.

A useful consequence of PHP, which turns out to be equivalent (over V0) is a principle we call
the injective property, which states that having an injective function from a to b implies that
a ≤ b. We can state that a function F (F : X → Y) is injective with the following Σ1,b

0 formula

∀a �= b ∈ X F (x) �= F (y),

which we denote injective(F). By “F : X ↪→ Y ” we mean that F : X → Y and injective(F).

We can define similar formulae expressing surjectivity and bijectivity, denoted surjective and
bijective; the domain X and range Y will be implicit from context.

Definition 4.3.1 Let InjectiveProperty be:

∃F (F : [a] ↪→ [b]) ⇒ a ≤ b

Lemma 4.3.2 V0 proves InjectiveProperty ⇔ PHP.

The equivalence is easy to show. Also note that PHP is outright provable in V1, though this will
be improved upon by theorem 4.3.9.

Now we consider adding counting axioms that allow us to count the number of elements in a
set. In translation to first-order logic, this essentially corresponds to a function which counts the
number of 1’s in the binary representation of a number. Such a function is definable in S1

2, and so
we shall see that this counting can be done in the corresponding second order theory V1. However,
we will work over V0 where adding such counting axioms is a genuine strengthening.

A common notion of counting in bounded arithmetic uses the census function. We will
introduce this approach and then describe an equivalent method that we find more convenient to

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 59

work with, using enumerating functions. Given a set X a census function C for X is a function
of one number argument defined for n ≤ max(X), such that C(n) is the number of x < n such that
x ∈ X. So C(max(X)) is the number of elements in X. isCensus(C, X) says that C is the census
function for the set X.

Lemma 4.3.3 isCensus(C, X) is Σ1,b
0 definable.

Proof

Let a abbreviate max(X) and define isCensus(C, X) as follows:

(C : [a + 1] → [a + 1]) ∧ C(0) = 0
∧

∀u < a (u ∈ X ⇒ C(u + 1) = C(u) + 1)
∧

∀u < a (u �∈ X ⇒ C(u + 1) = C(u)).

�

We now introduce counting via enumerating functions. An enumerating function F , for a set X,
is a bijection from some number a to X, which is increasing; so F (0) gives us the first element of X,
F (1) the second, and so on, till F (a−1) gives us the ath and final element of X. Let CF(F, a → X)
be the following Σ1,b

0 formula expressing that F is such a function giving a bijection from a to X:

(F : [a] → X) ∧ bijective(F) ∧ ∀x ≤ y < a F (x) ≤ F (y).

And now we can define the counting axioms, which assert that for any set there is a function
(census or enumerating type) that counts it.

Definition 4.3.4 (Counting Axioms)

• Let enum(X) be the axiom: ∃F, a CF(F, a → X)

• Let census(X) be the axiom: ∃C isCensus(C, X)

An important point about the above two axioms is that they can be stated as bounded formulae,
in fact Σ1,b

1 formulae. For enum, we can bound F and a in terms of max(X), using the term Fbd
(recall the discussion following lemma 4.1.11). In fact note that from enum(X) with witnesses
F and a, we can conclude that a ≤ max(X); this is so because we can show by induction that
F (i) ≥ i. When we refer to one of these axioms without the parameter X, we take this to mean
that X is universally quantified over. We mentioned earlier that counting in the two different ways
is equivalent; by that we mean the following.

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 60

Lemma 4.3.5 V0 proves enum ⇔ census

Proof

(⇒) Given X, let F and a satisfy CF(F, a → X). For u ≤ max(X) define

C(u) :=

⎧⎨⎩
0 if u ≤ F (0)
a if u > F (a − 1)
i if F (i − 1) < u ≤ F (i)

C has a Σ1,b
0 definition and V0 proves isCensus(C, X).

(⇐) Given X, let C be a census function for it. Let a := C(max(X)). Now we define F ,
a function from a to X by a Σ1,b

0 definition. For i < a, let F (i) := the number u ∈ X
such that C(u) = i and C(u + 1) = i + 1. V0 proves CF(F, a → X).

�

Since we have this equivalence between census counting and enumeration, we will not discuss the
census approach any further. Our purpose for introducing it was just to provide evidence for the
naturalness of this approach to counting.

An important point about counting a set is that two enumeration functions for the same set,
give it the same size; in fact they must be the same function.

Lemma 4.3.6 V0 proves: CF(F, a → X) ∧ CF(G, b → X) ⇒ (a = b) ∧ ∀u ≤ a F (u) = G(u).

Proof

Fix F ,G, and X, then proceed by Σ1,b
0 induction on r up to max(X) on the formula

∀u ≤ r F (u) = G(u). The inductive step holds because the increasing property of
the enumerations forces them both to pick the same “next” element of X (if any) as r
increases.

�

This lemma is another reason for our choice of counting axiom. It would be natural to consider an
enumerating axiom which did not require the enumerating function to be increasing. However, in
addition to losing the correspondence to the census counting, we appear to lose the property (in
V0) of being well-defined, meaning that two such counting functions for the same set could put
it into bijective correspondence with different numbers. With the PHP we could prove that such
functions are well-defined. However we will want to be able to use enum without the PHP.

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 61

Theorem 4.3.7 V1 proves enum.

Proof

Given X, we need F and a such that CF(F, a → X). Do Σ1,b
1 induction on r up to

max(X) on the formula:
∃F, m CF(F, m → X ∩ [r])

�

Now we will use the AC0 witnessing theorem to show that V0 does not prove enum. This will
depend on the significant fact (shown by H̊astad [28]), that Parity is not in AC0, where Parity is
the string relation that holds of exactly those strings with an odd number of 1’s.

Lemma 4.3.8 V0 does not prove enum.

Proof

Suppose that V0 proves enum. Then it proves that ∀X ∃a ∃F CF(F, a → X). Then by
witnessing theorem 4.1.16 we would have an FAC0 function that from a string X can
find its number of 1’s and thus its parity, contradicting the fact that Parity is not in
AC0.

�

We have the two counting principles enum and PHP, both provable in V1. However we obtain
the following connection. The proof essentially restates Woods’ [47] proof in a different context.

Theorem 4.3.9 V0 + enum + ∆1,b
1 −CA proves PHP.

The proof uses material developed later in this chapter so we put the proof in the appendix. There
are other questions concerning the relationship between PHP and enum. Since the principles are
both independent of V0, the following question is natural.

Question 4.3.10 What is the relationship between enum and PHP over V0?

At least a difference in style is that enum asserts that a certain counting function exists, while PHP
asserts properties of special functions, but asserts no existence. It seems that neither implies the
other over V0.

An issue we did not explore is the possibility of interesting witnessing theorems for theorems
extending V0. Given the correspondence between V0 and AC0 it is natural to expect certain
extensions of V0 to correspond to AC0 extended by special gates.

In the presence of enum we will often use ‖X‖ to refer to the size of the set X.

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 62

4.4 Trees

We will want to code the following kinds of objects as sets: binary sequences, sequences of binary
sequences, sequences of such sequences, and so on. It will be useful to code these all as trees. We
will first discuss a general encoding of trees as sets, calling them string trees. We will then define
a certain kind of tree we call a simple tree, which will have a structure given by a number (not
a string) that codes a tree. We develop simple trees because they will sometimes allow us to work
in a weaker theory.

We will use a notion of tree with a designated root, ordered children (given by the child
function), and a finite number of nodes.

Definition 4.4.1 We have an infinite set we call the nodes. A tree t is a triple (Nt, rt, childt),
where Nt is a non-empty finite set of nodes, rt ∈ Nt is called the root of t, and childt is a partial
function (Nt × N) → Nt. The set of trees is defined inductively as follows:

• ({r}, r, ∅) is a tree for any node r and the empty child function ∅.
• Suppose t0, . . . , tc are trees and r is a node such that Nt0 , . . . , Ntc , {r} are mutually disjoint.

Then t := (Nt0 ∪ . . . ∪ Ntc ∪ {r}, r, childt) is a tree where

childt(n, i) :=
{

rti if n = r
childtj (n, i) if n ∈ Ntj

The t0, . . . , tc are called the immediate subtrees of t; given a tree t, we use ti to refer to these
trees. The subtrees of t are t itself, the immediate subtrees of t, along with together with all their
subtrees.

A path (of length k) in a tree is a non-empty sequence of nodes (a0, . . . , ak) such that a0 is the
root and for i, 0 ≤ i ≤ k − 1, ai+1 is a child of ai. The height of a tree is the length of its longest
path. Sometimes we refer to labeled trees, which just means that there is an associated function
on some of the nodes assigning number or set labels. A node with no children is called a leaf. By
the height of a tree we mean the length of the longest path in the tree. By the nodes at level k we
mean those nodes n such that there is a path of length k ending at n.

We will be interested in coding trees where each leaf is labeled by a binary string. First we
describe a string relation isTree with its intended meaning. Then we use a formula isTree to
describe it. In order to code trees we will need delimiters, in addition to just the symbols 0 and 1.
To do this, we will think of pairs of binary digits as our basic symbols, giving us 4 basic symbols
which we will use in the following way (more details will follow):

• The length 2 string “01” is abbreviated 0 , and is intended to stand for the single digit “0”.

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 63

• “10” is abbreviated 1 , intended to stand for “1”.

• “00” and “11” are used as delimiters.

We will want delimiters of order k, for k > 0. We refer to such a delimiter with the symbol
“|k”, which will be taken as a shorthand for the string “0011 . . . 1100” where there are 2k consecutive
1’s in the binary string, with 2 zeroes at either end; we say that the basic symbols 0 and 1 are of
order 0. To facilitate referring to these basic symbols we define a function which tells us the length
of a string encoding a symbol of order k:

blen(k) :=
{

2 if k = 0
2k + 4 if k ≥ 1

We start with an example describing a tree by a usual picture for a tree with the root at the
top and children indicated by a line.

Example 4.4.2 Let t be the following tree with leaves labeled as indicated by the binary strings in
parentheses: a0

a1(0) a2

a3(10) a4(11)

This can be represented by the following binary string T : |2 0 |2 |1 1 0 |1 1 1 |1 |2.

Notice that in keeping with our construction using sets, the children of a node, are ordered from
the right being the least significant, to the most significant at the left. We may also write trees
sideways, so we could write the above tree as:

a0
�

a2
�

a4(11)
�a3(10)

�a1(0)

Now we give precise definitions.

Definition 4.4.3 (String Trees)

• An order 0 string tree is a non-empty finite string of elements from {0, 1}.

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 64

• For k > 0, an order k string tree is a binary string of the following form:

|k Tc−1 |k . . . |k T1 |k T0 |k,
where the Ti are string trees of order 0 or order (k − 1).

Notice that a string tree T is essentially a particular sequence of basic symbols, where each basic
symbol is in turn some binary string. We let isTree(T) be the string relation holding of those
binary strings that are string trees. The labeled tree we intend to encode by a string tree can be
recursively defined.

Definition 4.4.4 Suppose T is a string tree of order k. We define a tree t(T).

1. If k = 0 then t(T) is a single root node labeled by the string T , replacing 0 by 0 and 1 by 1.

2. If k > 0, then T looks like:
|k Tc−1 |k . . . |k T1 |k T0 |k.

Then we construct t(T) by taking a new root node r with c children, where child i is the root
of tree t(Ti).

In the example we presented, T was a string tree of order 2, such that t was t(T). It is natural
to ask why we do not use the more typical encoding of trees which uses left and right brackets,
which match up in the proper way. One advantage of that approach is that the size of the delimiters
is fixed. However a more significant disadvantage for our purposes is the fact that using brackets
seems to require counting, so the following Σ1,b

0 definition would not be possible. Recall that when
speaking about binary strings we use the convention that a less significant bit is to the right of a
more significant bit. We use the same convention for basic symbols, which we commonly view as a
single symbol, even though they are really particular binary strings.

Lemma 4.4.5 isTree(T) is Σ1,b
0 definable.

Proof

First we check for the case that T is just a sequence of 0 ’s and 1 ’s in which case it is
an order 0 string tree and we are done.

Otherwise, we check that it begins and ends with same order delimiter, say order k,
which should be two distinct delimiters and be the highest order delimiter appearing in
T . Then consider any 2 distinct delimiters d0 and d1 appearing in T , both of order m,
with d0 to the right of d1. If there are no order m or higher delimiters in between d0

and d1, then check that we have one of the two cases:

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 65

1. We have all 0 ’s and 1 ’s in between.

2. We have two distinct order (m − 1) delimiters, one immediately to the left of d0

and a different one immediately to the right of d1.

�

Notice that the common object, the binary string is coded by a tree of order 0 (given a string
tree T we can easily define its order with a Σ1,b

0 formula order(T)).

Definition 4.4.6 Let isBinarySeq(X) abbreviate isTree(X) ∧ order(X) = 0.

To work with these trees it will often be convenient to isolate one of the basic symbols. For this
operation, given a tree T we will simply view it as a sequence of basic symbols, ignoring its tree
structure. Given some basic symbol b , we let T (b) be exactly T with the basic symbols b (suppose
they are of length r) replaced by 0 . . . 01, (r− 1) 0’s followed by a single 1; the other basic symbols
are replaced everywhere by 0’s.

Lemma 4.4.7 T (b) is Σ1,b
0 bit-definable.

Proof

Our bounding term is just max(T). Given some x < max(T), it will be in T (b) if x is
the rightmost bit of some basic symbol b , otherwise we leave it out.

�

A significant use of this will be that we can count the number of basic symbols b in T by
counting the number of 1’s in T (b); we call this function symbolCount(T, b). We can define
symbolCount(T, b) = a by the following Σ1,b

1 formula:

∃F < Fbd(T, T) CF(F, a → T (b)).

Note that substituting the Σ1,b
0 formula T (b) for a set variable makes sense. Furthermore, due to

its complexity, V0 can find a set B equal to T (b). By enum we can then find the F counting B,
asserted to exist in the above definition, so V0 + enum shows that the above formula defines a
function. It also proves that this F is unique, so the Σ1,b

1 definition of symbolCount is equivalent
(over V0 + enum) to the following Π1,b

1 definition:

∀F < Fbd(T, T) CF(F, a → T (b)).

Thus we have a ∆1,b
1 definition of symbolCount and have proved the following lemma.

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 66

Lemma 4.4.8 symbolCount(T, b) is a ∆1,b
1 definable function in V0 + enum.

A number of proofs will follow the above style. We will want to obtain a ∆1,b
1 definition of a function

or relation, whose definition basically consists of starting with a set, making some Σ1,b
0 modifications

to it, and then counting the result. In the future, for similar proofs, we will be more brief about
such descriptions, though we have the above as our model of what is really going on. Another point
on such definitions is that V0 + enum allows us to add such functions conservatively, but it does not
allow us to use these new functions in the comprehension axioms; if we wish to use such functions
freely in the comprehension axioms we need to move up to the theory V0 + enum + ∆1,b

1 −CA.

Oftentimes our trees T are best thought of as sequences, where the objects in the sequence
are the immediate subtrees of T . Those children of T can in turn be thought of as sequences and
so on. So given a tree T , we will refer to its number of children as its length len(T). We define
this function for a string tree T of order k > 0 by counting the number of type k delimiters, and
subtracting 1. For T a binary sequence, we take len(T) to be the total number of 0 ’s and 1 ’s.
From our definition of symbolCount we obtain the following lemma.

Lemma 4.4.9 len(T) is a ∆1,b
1 definable function in V0 + enum.

We will want to be able to index into trees. Given a string tree T of order k and length m, given
a number i < m, by Ti we mean the ith immediate subtree of T ; it will be of order 0 or (k − 1).
Notice that we can apply the subscript operator repeatedly, so (Ti)j is of order 0 or (k − 2).

Lemma 4.4.10 Ti is a ∆1,b
1 definable function in V0 + enum.

Proof

Suppose T is of order k and b is an order k delimiter. Find T (b), then let F enumerate
it. Ti is now essentially that part of T in between F (i) and F (i + 1). Technically,
we let T ∗ be the section of T intersecting [F (i) + blen(k), F (i + 1) − 1]. Ti is then
T ∗ − (F (i) + blen(k)).

�

Note that V0 + enum in fact proves that isTree(Ti).

Another common operation on trees will be concatenation, putting 2 string trees together
into one string tree. Given string trees T and S, of lengths t and s respectively, both of order k,
by the concatenation T � S we mean the order k tree C of length t + s in which Ci is Si for i < s
and Ti−s for s ≤ i < t + s. So we are thinking of T as a sequence of its t immediate subtrees and S
as a sequence of its s immediate subtrees. Often we will want to concatenate while viewing one or

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 67

both of the trees as a single object. Given a string tree T of order k, we let 〈T 〉 be the string tree
of order k + 1 and length 1, where 〈T 〉0 is T . This notation is general enough that it will be used
on objects in a number of contexts.

One of the essential properties we will want to hold of the various operations on trees will be
that they operate correctly when an extra element is appended to a tree. Many such notions will
follow, though for now we just note that counting works right in this respect.

Lemma 4.4.11 V0 + enum proves that for string trees S and T of order k and b a basic symbol
of order < k, symbolCount(T � S, b) = symbolCount(T, b) + symbolCount(S, b).

A common use of such trees will be to code a sequence of numbers. The numbers in such
a sequence could be coded in binary, but unary notation is more natural; we discuss why after
formalizing the ideas. It will be useful to have a coding which allows for positive and negative
integers. A positive integer will be coded by a string of 1’s, with an arbitrary number of leading
0’s on the left. A negative integer is coded by a single 0 at the far right, followed on the left by a
string of 1’s which give its magnitude; it too may have leading 0’s. For example +3 could be coded
by 111, 0111, etc; −3 could be coded by 1110, 01110, etc. By a unary integer, we mean a binary
string of that sort, where we use 0 and 1 for 0 and 1; we let isUnaryInt(N) be a Σ1,b

0 formula
holding of stings N that are unary integers.

Integers can also be coded by numbers, as opposed to sets. We take the pair 〈0, n〉 to be
the positive integer n, and 〈1, n〉 to be the negative integer −n. In I∆0 we can prove the usual
properties about these integers. There is a natural correspondence between integers as strings and
integers as numbers. Given an integer 〈s, n〉 (where s = 0 or 1, is the sign), let un(〈s, n〉) := the
unary integer of sign s with exactly n 1’s (and no leading zeroes). Let num(N) := the integer
represented by N . The function num is Σ1,b

0 definable in V0 and un is Σ1,b
0 bit definable in V0.

Note that these definitions do not count the number of 1’s but rely on the unary structure of the
strings, thus avoiding the use of enum. They provably do what they are supposed to.

Lemma 4.4.12

1. V0 + enum proves isUnaryInt(N) ∧ 〈s, n〉 = num(N) ⇒ symbolCount(N, 1) = n.

2. V0 + enum proves N = un(〈s, n〉) ⇒ n = symbolCount(N, 1).

They are inverse to each other.

Lemma 4.4.13

1. V0 proves num(un(x)) = x.

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 68

2. V0 + enum proves that for a unary integer N ,

symbolCount(N, 1) = symbolCount(un(num(N)), 1).

If we coded numbers in binary, notice that converting from a number to its binary representation
as a set is no problem, but to go from an arbitrary binary set to a number is not possible, since
the number could be exponentially large. Thus, the unary representation really is the natural way
to code the numbers as sets.

Simple Trees

We now discuss simple trees, because we will want to be able to work with trees and sequences
freely, without needing the axiom ∆1,b

1 −CA. The difference in representation will not matter when
we move to stronger theories. Thus working exclusively with these simple structures does not
change the issues for the stronger theories (i.e. V0 + enum + ∆1,b

1 −CA), but provides objects we
can work with in the weaker theories.

Simple trees will be defined with reference to a special kind of tree we call a structure tree,
so that given one structure tree s, we will have a number of simple trees of type s.

Definition 4.4.14 A structure tree is a labeled tree with the following properties:

• All its nodes are labeled by positive integers except for the leaves which are labeled by an
interval (a, b), where a < b are integers. As a notational convention, the labeling ±a means
the interval (−a,+a), and a single integer a means the non-negative or non-positive part of
(−a,+a), according to the sign of a.

• Given a non-leaf node labeled by the number n, it may have exactly 1 or n children.

Example 4.4.15 An example of a structure tree is the following tree s: 3

2

-3 2

7

Definition 4.4.16 (Simple Trees) For a structure tree s, we recursively define what we mean by a
simple tree of type s.

1. If s is a single node labeled by an interval (a, b), then a simple tree of type s is a single node
labeled by an integer in (a, b).

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 69

2. Otherwise a simple tree of type s is a tree t whose root rt has c children, where c is the label
of rs, the root of s. Furthermore:

(a) If rs has exactly one child then each immediate subtree of t is a simple tree of type s0.

(b) If rs has c children (the only other possibility for a structure tree), then each immediate
subtree ti is a simple tree of type si

Example 4.4.17 Using the structure trees from the previous example (we repeat it here), we give
an example of a simple tree t of type s:

s := 3

2

-3 2

7

t :=

0 6 0 -2 1 1 -1 3 2

For our choice of t in the above example, the indicated structure is forced on us, though we are
free to choose the leaf labels within the proper constraints.

Given a simple tree t of type s, it will be useful to think of designating nodes of t by addresses
in s.

Definition 4.4.18 An address in a structure tree s is a pair of sequences a = 〈a0, . . . , ak〉 and
a′ = 〈a′0, . . . , a′k, a′k+1〉 such that:

• a′ is a path in s and a is a (possibly empty) sequence of natural numbers.

• ai is less than the label at node a′i.

• If node a′i (for i ≤ k) has more than one child, then node a′i+1 = child(a′i, ai).

We say a� s, without explicit reference to a′ since it can be determined from a. If the address ends
at a leaf we say that it is a full address, denoting this: a � s.

An address a�s, where t is a simple tree of type s, designates a node in t by the following procedure:
Start at the root node of t, then move to child a0 of the root, and then child a1 of that node, and so
on till a ends. Keeping with the same example as above, 〈2, 0, 1〉� s refers to the one node labeled
6 in simple tree t, while 〈〉 � s refers to the root of t. We can use this addressing to refer to any
subtree of t. For an address a � s, we write ta to refer to the subtree of t whose root is the node of
t at address a. Though an address is meant to refer to a simple tree, it will be useful to also use

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 70

them with structure trees. For a structure tree s and a � s, we let sa be the last node in sequence
a′. For example, for address 〈2, 0, 1〉, and s as above, sa is the node labeled 7.

We now begin discussing how we will encode simple trees as string trees. We define a relation
isSimpleTree(s, T), where s is a number argument intended to be a structure tree, and T is a
string argument which will encode the simple tree. Just as we can code sequences in I∆0, we can
code trees by numbers in I∆0. I∆0 proves basic operations on trees and can check that a tree is a
structure tree. The relation isSimpleTree will require that s be a number which actually codes
a structure tree; suppose it has height h. It will also require that isTree(T) and order(T) = h.
Furthermore, the tree encoded, t(T) (recall definition 4.4.4), must be a simple tree of type s.
One may think to stop here, but in fact we want to add one more condition in order to obtain
a systematic length structure. Consider any a = 〈a0, . . . , ak〉 � s and note that we can use the
previously defined subscript operator to define Ta := (. . . ((Ta0)a1) . . .)ak

, which is exactly the part
of T corresponding to subtree t(T)a. For a full address a � s, the node sa is a a leaf which gives
us an interval (u, v), so (t(T))a is a number x in the interval (u, v), and Ta is a unary integer
encoding of x. The final requirement in the definition of isSimpleTree, is that Ta must have a
length independent of x, meaning that it will depend only on (u, v) and code x with leading zeroes
as necessary. The absolute value of x (denoted abs(x)), will be less than m, where m is the the
larger of abs(u) and abs(v). Thus to code x we need at most m basic symbols from among {0, 1}
(this includes room for the extra zero in the case of a negative integer); so a length 2m binary string
will work. So we require Ta to be a binary string of length exactly 2m (i.e. a string of exactly m
symbols from among {0, 1}).

That finishes the definition of isSimpleTree; now notice some properties of it. If we fix a
structure tree s, a number of different string trees T can satisfy isSimpleTree(s, T). However for
all such T and all a � s, Ta is a binary string of a fixed length, not depending on the T in question.
In fact we will define a new tree we call a length tree l(s) corresponding to structure tree s, which
will have the same nodes as s, with a different labeling. Since l(s) will have the same nodes as s,
given an address a� s we can just define l(s)a to be node sa in tree l(s). l(s) will be labeled so that
the number of bits used to code Ta will be given by the label of node l(s)a. The idea is that we
know how long the bit string coding the leaves should be; we then label the rest of l(s) recursively
from the leaves up. In the recursive definition, a node l(s) will be labeled by summing up the
lengths required for the appropriate subtrees and delimiters (for delimiters recall the definition of
the function blen(·), discussed after definition 4.4.1). We define the labeling of l(s) as follows (where
h is its height):

• If a leaf node is labeled by (u, v) in s, then label this node 2m in l(s), where m is the larger
of abs(u) and abs(v).

• For a non-leaf node n at level m, which has one child c, label n in l(s) by ab+(a+1)(blen(h−
m)), where a is the label of n in s and b is the label of c in l(s).

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 71

• For a non-leaf node n at level m which has children c1, . . . , ca, label n in l(s) by the sum
c′1 + . . . + c′a + (blen(h − m))(a + 1), where c′i is the label of ci in l(s).

Keeping with the same example of s above, l(s) is the following: 256

72

6 42

14

We can work with structure trees and length trees in I∆0, but from a structure tree s we cannot
necessarily assert the existence of l(s) in I∆0. To see what will be needed we do a calculation.
Suppose s is a number coding a structure tree of height h with n nodes labeled by numbers < x,
so s is of size roughly xn. l(s) will also have n nodes, but its labels will be < xh, since a node is
labeled by at most the product of a path in s. Thus to code l(s) we need a number of size about
(xh)n or roughly sh. So if we know that s exists, we may not know that l(s) exists. However as a
convention, whenever we have a structure tree s we always assume we have the associated length
tree l(s). Also, suppose that r is the label at the root of l(s). We always assume that we have the
number rh whenever we have the structure tree s. The point of rh is that it will allow us to carry
out certain calculations in I∆0 (used below in the “start” function). When we pass in a structure
tree s as an argument to a function or relation we so not mention l(s) or rh, but by convention we
take these to be implicit arguments; we refer to l(s) and rh as s’s associated objects. Note that
if h is standard, the preceding worries about the existence of l(s) and rh disappear. This will in
fact be the case for our applications. The point of all this development is to allow the structure
trees to be dealt with uniformly.

Given a structure tree s and an address a�s, we want to be able to find Ta without the overhead
of a ∆1,b

1 definition (as was the case for a general string tree). To do this, suppose T is a simple
tree of type s and define start(s, a) to be the bit in T where Ta begins (recall that this does not
depend on the actual T in question).

Lemma 4.4.19 start(s, a) is a ∆0 definable function in I∆0.

Proof

Recall l(s) and rh are implicit arguments, where r is the label of the root of l(s) and
h is the height of s. Suppose a = 〈a0, . . . , ak〉 � s. We can describe the function by
describing an iterative procedure starting with i = 0, ending with i = k.

1. Let i := 0, let n := root(s), let u := 0, let m := h.
2. If n has 1 child, then u := u + (ai)v + (ai + 1)blen(m), where v = the label of n’s

child in l(s).

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 72

3. Otherwise n has > ai children. Let u := u + c0 + . . . + cai−1 + (ai + 1)blen(m),
where ci is the label at the ith child of n in l(s).

4. If i = k we let start(s, a) := u, and we are done.
Otherwise, we let i := i + 1 and let m := m − 1. We update node n as follows: If
node n has just one child, then let the new n be this child, otherwise, let the new
n be child ai of n.
Then goto (2).

Note that this procedure can be described by induction up to k, with u remaining ≤ r.
Since we have rh (k ≤ h) as an implicit argument this is no problem. We can define the
sequence of partial sums indicated in the above procedure.

�

Lemma 4.4.20 isSimpleTree(s, T) is Σ1,b
0 definable.

Proof

Check that s is a structure tree and check its associated objects; let h be the height of s.
Check that isTree(T). For every address a = 〈a0, . . . , ak〉 � s (k ≥ 0), goto start(s, a) in
T and check that there is a delimiter immediately to the right and its order is (h − k).
Suppose the next order (h − k) delimiter to the left begins at position b. Check that
b − start(s, a) is equal to the label at a′k+1 in l(s).

�

We can very easily index into simple trees using a Σ1,b
0 bit definition, without requiring that

we have a counting function as was the case for the general string trees. We have defined what
we mean by Ta for a simple string tree T . We will now define this in a way that allows the a to
be non-standard and coincides with applying the subscript operator a standard number of times.
We use the same subscript notation that was used for general string trees with the understanding
that it will always be clear from context which definition we have in mind. Ta and any operations
involving simple trees are always given their structure tree and its associated objects as implicit
arguments.

Lemma 4.4.21 Ta is Σ1,b
0 bit definable in V0.

Proof

Suppose s is the structure tree for T and l(s) its corresponding length tree. Let u be
the label of node l(s)a. We just say that an element x is in Ta iff x + start(s, a) is in T
and x < u.

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 73

�

Thus Ta can be freely used in V0 comprehension axioms. Given a tree T , we let T<k be T with only
its k rightmost children. For simple string trees we can give a Σ1,b

0 bit definition of this operation.

We now want to describe a nice way to work with simple trees. We can typically give an easy
description of a structure tree s along with its length tree, by some formula. Suppose we have
another formula which tells us what the value of a leaf node should be for any full address in s. We
would then like to know that there is a simple tree that corresponds to this description, essentially
a kind of comprehension axiom for simple trees.

Definition 4.4.22 Let T be a bounded theory containing V0. Suppose φ(�x, 〈s, l(s), d〉) defines a
function in T (with the arguments �x and the tuple 〈s, l(s), d〉 as output) such that T proves s is a
structure tree, l(s) is its length tree, and d = rh, where r is the label of the root of l(s) and h is the
height of l(s). Let ψ(a, y; �x) be a formula with the parameters �x the same as the input variables of
φ. We say that φ and ψ define a simple tree in T if T proves: ∀a � s ∃!y ∈ u ψ(a, y), where u
is the label of sa (recall that this label is an interval of integers).

We can now describe a kind of comprehension axiom for simple trees. Note that in the following,
a special case of particular interest will be if Φ is Σ1,b

0 , so that V0 + Φ−CA is just V0.

Lemma 4.4.23 (Tree Comprehension) Let Φ be a class of bounded formula. Suppose φ(�x, 〈s, l(s), d〉)
and ψ(a, y; �x) define a simple tree in V0 +Φ−CA, and φ and ψ are in Φ. Then there is a Φ formula
ψb(i; �x) and a term t(�x) (in a conservative extension) such that for T = {i < t | ψb(i)} (which
exists in Φ−CA) V0 + Φ−CA proves:

isSimpleTree(s, T) ∧ ∀a � s (ψ(a, y) ⇔ num(Ta) = y).

Proof

We let t be the value of the root of l(s), which we can obtain as a term when we
conservatively add a function for φ. t gives us a bound on the coding of T . For ψb(i),
based on l(s), we find the longest address a� s such that bit i should appear within the
part coding Ta (easily done using l(s) and the start function). If a is not full then i is
in the middle of a delimiter and based on the start function and the length of a we can
decide if bit i is in the part of the delimiter that is a 0 or a 1. Otherwise, i is part of
a leaf node and we consider the y such that ψ(a, y) and set bit i so that we indeed get
the unary integer representation of y. ψb is indeed in Φ since it needs to refer to ψ to
fill in these leaf values.

�

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 74

Note that we can apply this theorem to just go from ψ to the existence of such a T . The fact
that we obtain its existence in a particular way via the definition ψb will be of use when we want bit
definitions. Recall that a bit definition itself does not require that anything can be proved about it
in a formal theory. However, the usefulness of bit definitions that we obtain by the above theorem
is that we can prove (in the appropriate theory) that they correspond to some defining formula. We
will not distinguish between bit definitions in the language and those in a conservative extension.
In fact for our applications with standard height structure trees we can typically just give the term
bound in the language.

Note an important convention about simple trees: Whenever we use simple trees we will
always assume that we have their corresponding structure tree, so in particular, when we speak of a
simple tree as an argument to a relation, its structure tree is an implicit argument. This convention
is vital for giving Σ1,b

0 definitions, but generally irrelevant to the case of giving a ∆1,b
1 definition (in

the latter case we can freely use the ∆1,b
1 subscripting and length operations, though it does not

hurt to have the extraneous structure tree as an argument).

4.5 Unary Arithmetic

In the last section we introduced unary integers as sets that are unary representations of numbers.
We first observe that all the arithmetic on integers holds for unary integers, basically following
from the fact that we have the inverse functions un and num. For example we can define the
multiplication of unary integers by mult(A, B) := un(num(A) ∗ num(B)). The other operations can
be defined analogously. Then given any formula ψ in the language of I∆0, we can define its unary
version ψu by replacing integers by unary integers and the symbols of ψ by their corresponding
unary operation; for example, multiplication ∗ is replaced by mult and ∀n φ(n) is replaced by
∀N (isUnaryInt(N) ⇒ φ(N)). So we have:

Lemma 4.5.1 If I∆0 proves ψ, then V0 proves ψu.

Thus in the work that follows, we will at times work with unary integers just as if they are integers,
applying +, ∗, =, etc. to them, when we really mean a corresponding operation on the unary
integers which are in fact sets. When we write, for example, that X = Y , for unary integers X and
Y , we mean num(X) = num(Y), though in fact the sets X and Y may not be the same. For the
rest of this section we will be careful about this notation, but we will be more loose in later work.

The previous lemma is important, but the the real reason for introducing the unary integers
is to put them into trees, going beyond I∆0. By a vector we mean a sequence of unary integers,
coded as a simple tree.

Definition 4.5.2 Let isVector(V, n, a) be: isSimpleTree(n (±a), V).

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 75

So isVector(V, n, a) says that V is a length n vector whose entries are integers between −a and
a. If a is replaced by −a or +a we mean just the non-positive or non-negative part of (−a,+a),
respectively. Two primary operations we will want to do to a vector (S1, . . . , Sk) is take its sum
S1+. . .+Sk, and its product S1S2 . . . Sk. For products we will require that certain numbers exist, so
that in fact it could be done with numbers coding sequences. However, there will be no restriction
for summation and it seems necessary to use something like a counting axiom to define it. So the
ultimate point of the vectors arises for summing them. Given a vector S, we let sum(S) be its
sum, as an integer (not a unary integer).

Lemma 4.5.3 sum(S) is ∆1,b
1 definable in V0 + enum.

Proof

By Σ1,b
0 definitions we can collect together the positive integers and the negative integers,

to which we can apply symbolCount on the 1 ’s and then take the difference.

�

Now we want to show that the definition sum provably satisfies certain basic properties. Sum-
ming a sequence agrees with usual number summation.

Lemma 4.5.4 V0 + enum proves that for unary integers A and B, sum(〈A〉 � 〈B〉) = num(A) +
num(B).

Proof

We consider the case of A and B positive (others are similar).

sum(〈A〉 � 〈B〉) = symbolCount(〈A〉 � 〈B〉, 1) , by definition of sum
= symbolCount(A, 1) + symbolCount(B, 1) , by lemma 4.4.11
= num(A) + num(B) , by lemma 4.4.12

�

Also, summation works correctly when we append a unary integer to a vector.

Lemma 4.5.5 V0 + enum proves that for a vector S and a unary integer N ,

sum(S � 〈N〉) = sum(〈un(sum(S))〉 � 〈N〉).

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 76

Proof

Again just consider the case in which we have positive unary integers.

sum(S � 〈N〉) = symbolCount(S, 1) + symbolCount(N, 1)
= symbolCount(un(symbolCount(S, 1)), 1) + symbolCount(N, 1)
= symbolCount(un(sum(S)), 1) + symbolCount(N, 1)
= sum(〈un(sum(S))〉 � 〈N〉)

The equalities are justified in a similar manner to the previous proof.

�

Now we consider what may seem a technical property of summing, but is actually conceptually
significant, since this property is the reason that a number of proofs use PHP. If we have two
vectors (of non-negative numbers) U and V such that every non-zero Ui has a unique Vj such that
Ui ≤ Vj , then Um−1 + . . . + U0 ≤ Vk−1 + . . . + V0.

Lemma 4.5.6 V0 + PHP + enum proves that if isVector(U, m, +n) and isVector(V, k, +n), and

∃F : m → k ((∀i < j < m (Ui �= 0 ∧ Uj �= 0 ⇒ F (i) �= F (j))) ∧ (∀i < m Ui ≤ VF (i)))

then sum(U) ≤ sum(V).

Proof

Let a := sum(U) and b := sum(V), exhibited by enumerating functions H and G,
respectively. H injects a into the 1 ’s of U . G−1 injects the 1 ’s of V into b. We will
define an injection I from the 1 ’s of U into the 1 ’s of V . Composing injections we
have G−1 ◦ I ◦ H : a ↪→ b, thus by PHP, a ≤ b. Now we define I. Given a 1 of U , we
find the i such that 1 is in Ui and suppose it is the rth 1 in Ui. We map it to the rth

1 of VF (i), which exists because Ui ≤ VF (i).

�

This lemma will be used a number of times to show that different arrangements of the same
numbers sum to the same total (two applications of this lemma). When applying this lemma we
will frequently speak informally about finding injections (or bijections) between different ways of
summing.

Now we want to deal with multiplying a sequence of unary integers. Suppose we have a sequence
of m unary integers, each < n. Supposing we want to take the product, we will be in trouble from the
start, unless we know that nm exists; since we know we cannot define the exponentiation function,

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 77

we cannot expect to define such a product without assuming the existence of a sufficiently large
number. How large a number we need will depend on whether we want to do a modular product
or a regular product.

Suppose we have a sequence a := am−1, . . . , a0 such that ai < n. To define the product
am−1 ∗ . . . ∗ a0, we can define a sequence of partial products s := sm−1, . . . , s0, such that s0 = a0

and si+1 = ai+1 ∗si, for i < m−1. The last number in s, sm−1 gives the answer. Since the numbers
in this sequence can approach size nm and we have m of them, s can be coded by a number of size
about nm2

. That would be fine in S1
2, but in V0 (built on top of I∆0), we would have to assert the

existence of nm2
if we define things this way (it is conceivable that just asserting that nm suffices).

We will actually only need modular products. Given the sequence a and the number n we want
to define am−1 ∗ . . . ∗ a0 (mod n). We could do it exactly as above, just applying (mod n) at the
end, again using the existence of nm2

. A more efficient approach is to redefine the sequence s by
si+1 = ai+1 ∗si (mod n), so the numbers in the sequence never get larger than n, so we only need to
assert the existence of nm. It is of course conceivable that V0 could dispense with that assumption
(the sequence would be input as a vector, not a number). Thus we will only take products of
sequences when we know that the proper number exists and know that we have the proper bounds
on our sequence. Given a vector S of m unary integers each < n, we let product(S, m, n) be its
product (mod n), a number; nm will be an implicit argument.

Lemma 4.5.7 product(S, m, n) is a Σ1,b
0 definable function in V0.

Proof

Since we have nm, we can find a sequence of numbers coded by a single number s, such
that s corresponds to S; by correspond we mean that V0 proves ∀i < m num(Si) = si.
We then define product(S, m, n) to be the product (mod n) of the numbers in sequence
s. Since s can be coded by a number < nm it can be defined inductively in I∆0.

�

D’Aquino and Macintyre [17] raise related number theoretic issues. We let modular exponen-
tiation be the function f(x, y, n) = xy (mod n). While exponentiation cannot be defined in S2,
modular exponentiation can (by repeated squaring (mod n)). It is an open question as to whether
or not I∆0 can define modular exponentiation (notice that the repeated squaring approach uses
sequences of length polynomial in the length of y, which is fine in S2, but not in I∆0). Thus to
define the above product without the assumption that nm exists would solve this open question.

When finding the product of a vector S, if the parameters m and n are apparent from context
and nm exists, we will not mention them, simply writing product(S). Given the definition of product
and the correspondence between integers and unary integers, we obtain the expected properties of

CHAPTER 4. SECOND ORDER BOUNDED ARITHMETIC 78

product. We have similar properties for product that we have for summing. Since products are just
defined by corresponding I∆0 operations, V0 suffices.

Lemma 4.5.8 V0 proves that for unary integers A and B we have product(〈A〉 � 〈B〉) = num(A)∗
num(B).

Lemma 4.5.9 V0 proves that for a vector S and a unary integer N , we have:

product(S � 〈N〉) = product(〈un(product(S))〉 � 〈N〉).

Chapter 5

Set Systems in Bounded Arithmetic

We have at least two motivations for this chapter on “set system theorems.” Some of these theorems
are used in the next chapter to give constructive Ramsey lower bounds. Furthermore, the set system
theorems provide an interesting context for exploring the proof-theoretic differences between linear
algebra methods and counting arguments. We will find that there is a trade-off between proof
strength and theorem strength. With various linear algebra principles, we will be able to prove a
number of the theorems with no loss in the strength of the theorem. Without these principles we
will end up with weaker theorems.

A typical set system theorem is:

Theorem 5.0.10 (Oddtown theorem [8]) Suppose H is a collection of subsets of [n] in which every
set in H is of odd size, and for any two distinct A and B in H, ‖A∩B‖ is even. Then the number
of sets in H is at most n.

Given a set G, a collection H of non-empty subsets (pairwise distinct) of G, is called a set
system; the set G is called the ground set. We will place two kinds of restrictions on set systems:
limiting the allowed sizes for the sets, and limiting the allowed sizes for the intersections. Depending
on the restrictions, the set system theorems will upper bound the size of H (i.e. the number of
subsets of G that it contains).

Definition 5.0.11 For a natural number n, and subsets K, L ⊆ [n + 1], we will say that a set
system H is of type (K, L, n) if it has a size n ground set and:

• For any set A in H, ‖A‖ is in K.

• For any two distinct sets A and B in H, ‖A ∩ B‖ is in L.

79

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 80

In the context of this definition, we use the convention that K means the complement of K in
[n + 1], and K (mod p) means the set of all numbers congruent (mod p) to some number in K;
the conventions are the same for L. For example, the Oddtown theorem states that any type
({1} (mod 2), {0} (mod 2), n) set system has at most n sets (equivalently, we could have called it
a type ({1} (mod 2), {1} (mod 2), n) set system).

In section 5.1 we will consider some set system theorems in the context of V0 + PHP and some
stronger theories which avoid any linear algebra principles. In this context, we prove a special case
of the Oddtown theorem, which we will apply to a constructive Ramsey lower bound. We will then
consider the “Fisher Inequality.”

Theorem 5.0.12 (The Non-Uniform Fisher Inequality [36]) For any natural number λ, a type
([n + 1], {λ}, n) set system has at most n sets.

We follow [5] in naming the above theorem, since it generalizes a result of Fisher, though Majumdar
[36] proved the theorem as stated. The theorem is referred to as “Non-Uniform” because the sets
in the set system can be of any size (i.e. the K is [n + 1] = {0, 1, . . . , n}).

Replacing the upper bound of n by
(

n
λ+1

)
, this theorem will formalize in two different theories

depending on whether or not λ is standard. However, without losing the good bound, we can
formalize a weaker theorem called the “Uniform-Fisher Inequality,” which says that for numbers k
and λ, a type ({k}, {λ}, n) set system has at most n sets. This is referred to as “uniform” because
every set must be the same size k, whereas in the Non-Uniform Fisher Inequality, the sets can be
any size. We will formalize this for the case in which k and λ are standard numbers, using PHP.
We then show that this claim, and other Fisher type inequalities are in fact equivalent, over V0, to
the PHP; this is an example of a “reversal.”

In section 5.2 we will be able to prove stronger theorems by adding linear algebra principles to
our theories. We will prove the full Non-Uniform Fisher Inequality in such a context. We will also
consider what [5] refers to as the “Non-Uniform Modular Ray-Chaudhuri-Wilson theorem” (RCW
theorem), named this because it modifies some work of Ray-Chaudhuri-Wilson. In chapter 6 we
will apply it to prove the constructive Ramsey lower bound of Frankl and Wilson [25].

Theorem 5.0.13 (RCW theorem [19]) Suppose L ⊆ [n + 1] and p is a prime. Any type

(L (mod p), L (mod p), n) set system has at most
(

n
‖L‖
)

+
(

n
‖L‖−1

)
+ . . . +

(
n
0

)
sets.

To work in bounded arithmetic we will use string trees to code a set system. This coding can
be done in at least two natural ways, coding each set in the set system as an “incidence vector” or
as a sequence of numbers. For the first approach consider a set system consisting of m subsets of
the ground set [n]. We code each set as a length n vector with entries 0 or 1; a 1 at entry i < n
indicates that i is in the set and a 0 indicates that i is not in the set. The entire set system is given

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 81

by m such incidence vectors, which we can think of as an m × n matrix with 0 and 1 entries. In
general we can have an m× n matrix (i.e. m rows and n columns) with entries in (−a, a) for some
integer a.

Definition 5.0.14 Let isMatrix(M, m × n, a) be: isSimpleTree(m n (±a), M).

If we put +a or −a in place of a we mean the non-negative or non-positive part of (−a,+a),
respectively. The intersection of 2 sets as well as the size of a set (called size) can be easily defined.

Definition 5.0.15 (Incidence Systems)

• Let isIncidenceSystem(H, m, n) be:

isMatrix(H, m ×n, +2) ∧ ∀i < m ∃x < n (Hi)x = 1
∧ ∀i < j < m ∃x < n ((Hi)x �= (Hj)x).

• Let setSizes(H, m, n, K) be: ∀i < m ∃k ∈ K size(Hi) = k.

• Let intersections(H, m, n, L) be: ∀i < j < m ∃λ ∈ L size(Hi ∩ Hj) = λ.

We can now formalize the notion of a type (K, L, n) set system with the formula

isIncidenceType(H, m, n, K, L):

isIncidenceSystem(H, m, n) ∧ setSizes(H, m, n, K) ∧ intersections(H, m, n, L).

Another natural representation of a set system gives each set of the set system as a vector
of non-repeating numbers from the ground set [n]. The set system is then the collection of such
vectors. Notice that these vectors can be of varying lengths unlike the incidence vectors.

Definition 5.0.16 Let isSetSystem(H, m, n) be:

isTree(H) ∧ order = 2 ∧ len(H) = m
∧ ∀i < m ∃s < n (isVector(Hi, s, n) ∧ ∀u < v < s (Hi)u �= (Hi)v)
∧ ∀ i < j < m

(∃k < len(Hi) ∀l < len(Hj) (Hi)k �= (Hj)l) ∨
(∃k < len(Hj) ∀l < len(Hi) (Hj)k �= (Hi)l).

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 82

Notice that the empty sets are implicitly excluded from these set systems since we do not allow for
empty vectors. We can use the same notation for intersection and set size though the subscripting
actually refers to different formulae since in the later formula H is not necessarily a simple tree.
We can now give an alternative formalization of a type (K, L, n) set system with the formula
isSetType(H, m, n, K, L):

isSetSystem(H, m, n) ∧ setSizes(H, m, n, K) ∧ intersections(H, m, n, L).

Now to say that a set system of type (K, L, n) must be of size bounded by b we write:

∀H, m (isSetType(H, m, n, K, L) ⇒ m ≤ b),

sometimes leaving H and m free. Such a statement could also be made for the incidence systems.
We have the following equivalence.

Proposition 5.0.17 V0 + enum + ∆1,b
1 −CA proves:

∀H, m (isIncidenceType(H, m, n, K, L) ⇒ m ≤ b) ⇔ ∀G, m (isSetType(G, m, n, K, L) ⇒ m ≤ b).

Proof

(⇒) Suppose G and m satisfy isSetType(G, m, n, K, L). It suffices to find an H such
that isIncidenceType(H, m, n, K, L). We define H from the tree G, giving a ∆1,b

1 (over
V0 + enum) simple tree description. It has this complexity because we need to use the
∆1,b

1 subscripting into the general string tree G.

(⇐) Suppose H and m satisfy isIncidenceType(H, m, n, K, L). We define G such that
isSetType(G, m, n, K, L). We can ∆1,b

1 define a vector C of length m, such that Ci is the
number of elements in Hi. The structure of G is then defined to be of length m, with
each Gi being a vector of length Ci. We can then define the values in these vectors by
subscripting into H.

�

Thus, working below V0 + enum + ∆1,b
1 −CA, as far as we know, different ways of representing the

set systems are genuinely different. We choose to work with incidence systems since they allow
operations like indexing (in comprehension axioms) even in the weaker systems, so they serve as a
better case for analyzing the relative strength of the set system theorems.

5.1 Avoiding Linear Algebra

When working in just V0 + PHP a basic tool will be sunflowers.

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 83

Definition 5.1.1 Suppose H is a set system on ground set G. A sunflower is a subset S ⊆ H
of size at least 2, such that there is a non-empty C ⊆ G with the property that for any two distinct
sets A and B in S we must have A ∩ B = C. The set C is called the core of the sunflower. For
any set A in S, we say that the set A − C is the petal of A (in sunflower S).

By an isolated set in a set system, we mean a set that does not intersect any other set of the set
system.

Now we formalize a special case of the Oddtown theorem originally proved by Nagy [37]. Nagy
considers a set system on [n] containing sets of size 3, where any two distinct sets intersect at 0 or 2
elements; the number of sets is then at most n. As discussed in [5], Nagy’s result uses linear algebra
(I am not sure if Nagy’s original proof in [37] is different). The known proofs of its generalization,
the Oddtown theorem, use linear algebra. We provide an argument for the special case that avoids
linear algebra.

Theorem 5.1.2 V0 + PHP proves isIncidenceType(H, m, n, {3}, {0, 2}) ⇒ m ≤ n.

The informal combinatorial proof can be seen as a process of removing sets (along with their
elements) from the set system, in such a way that we always remove at least as many elements
as sets. First we remove any isolated sets or sets contained in just a single sunflower. Then we
can partition the remaining elements of the ground set into a number of size 4 subsets so that any
remaining set of the set system is fully contained in one of these size 4 subsets (by a structural
argument depending on the particular parameters of the set system; to be discussed). Since there
are at most

(
4
3

)
= 4 sets per 4 points, we are done. The formal proof uses the PHP to capture these

ideas.

Proof

Let H be our set system of size m, on ground set [n] with the indicated properties.
We outline the approach first. We will define sets S, N ⊆ [m] and corresponding sets
S∗, N∗ ⊆ [n], such that S ∩N = ∅, S∗ ∩N∗ = ∅, and S ∪N = [m]. We will then define
two injections: IS : S ↪→ S∗ and IN : N ↪→ N∗. From these injections, we can define an
injection I : m ↪→ n by:

Given i < m, I finds whether i is in S or N and uses IS or IN to map i into
its corresponding ∗−set.

Once this is accomplished, the injectiveProperty implies that m ≤ n.

We now define the sets and the injections.

• S := the set of indices i < m such that set Hi is an isolated set or is contained in
a single sunflower.

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 84

• N := the set of indices i < m such that set i intersects another set, but is not
contained in a single sunflower.

S exists since it can be Σ1,b
0 defined; we can give a natural definition referring to the

existence of a core with a bounded number quantifier since a core only has size 2. N is
just S’s complement in [m]. S∗ ⊆ [n] is defined to be the elements x < n in the ground
set such that x ∈ Hi for some i ∈ S. N∗ is defined similarly from N . S∗ and N∗ are
both Σ1,b

0 defined. They are disjoint since x ∈ S∗ implies x �∈ N∗:

Suppose x ∈ S∗, so x ∈ Hi for some i ∈ S. If no other set contains x, then
x �∈ N∗, otherwise suppose x ∈ Hi ∩ Hj for i �= j. Let Hi = {x, y, z} and
Hj = {x, y, w}. Any other set Hk containing x cannot contain z, since then
i �∈ S, and so x, y ∈ Hk (since intersections must be 0 or 2, not 1). Thus x is
only contained in sets which are part of a single sunflower with core {x, y},
i.e. x �∈ N∗.

To define IS consider any i ∈ S, and the associated set Hi. If Hi is isolated, IS maps i
to the smallest element of Hi. Otherwise Hi is contained in a single sunflower and the
single element x in the petal of Hi is not in any other set of the set system. IS maps i
to this x. By construction, IS is injective.

Now we define IN . Given i ∈ N , Hi = {a, b, c} is not in a single sunflower, meaning
we have j, k (all of i, j, k are distinct) such that Hj and Hk intersect Hi, but not at
the same 2 points. Suppose that Hi ∩ Hj = {a, b}, and Hi ∩ Hk = {b, c}. So Hj ∩ Hk

include b and some fourth point, say d �∈ Hi. There is possibly a fourth set {a, c, d}, but
otherwise no other sets of the set system contain one of the 4 elements a, b, c, or d (we
can run through the cases, considering what happens if a set contains any one of these
elements, using the fact that once two sets intersect, they must intersect at precisely
two elements). We simply order these 3 or 4 sets lexicographically, sending them in that
order to the 4 points, so that it is injective.

�

The only known proof of the Oddtown theorem uses linear algebra. The above special case of this
theorem avoids linear algebra.

Question 5.1.3 What stronger special cases of the Oddtown theorem can be proved without linear
algebra? Does the proof of theorem 5.1.2 generalize?

We now consider the various Fisher Inequalities. For the Non-Uniform Fisher Inequality there
is a bound of n on the number of sets in the set system. A simple argument gives a weakened
bound of

(
n

λ+1

)
for standard λ. This bound is obtained by noting that for every size λ+1 set, there

is at most one set in the set system containing it.

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 85

Proposition 5.1.4 For any standard λ, V0 + PHP proves that:

isIncidenceType(H, m, n, [n + 1], {λ}) ⇒ m ≤
(

n

λ + 1

)
.

Proof

First we rule out the case in which one of the sets C in H contains only λ many elements.
In this case H is just a sunflower with core C. We can define an injection I : m ↪→ n,
implying m ≤ n. I is defined for i < m, by considering Hi: If Hi is C then map i to
the smallest element in C; otherwise Hi’s petal does not intersect any other sets of the
set system so we map i to the smallest element in the petal.

Otherwise all the sets have at least λ + 1 elements; we inject m ↪→ (n
λ+1

)
. Given i < m

we just consider the λ + 1 smallest numbers in set Hi, and code them into a number.
Since two different sets intersect at exactly λ places this is injective, so m ≤ (n

λ+1

)
.

Notice that all these operations are easy because λ is standard.

�

We discuss how to deal with the case of λ non-standard at the end, since it gets technical and
involves a stronger theory.

We can improve this to the optimal bound of n for the Uniform Fisher Inequality (with standard
parameters).

Theorem 5.1.5 For any standard natural numbers k and λ, V0 + PHP proves:

isIncidenceType(H, m, n, {k}, {λ}) ⇒ m ≤ n.

Proof

Note that counting sets of size k and λ can be done without enum since these parameters
are standard. Suppose we have an appropriate H. We want to find a maximal sunflower
in H; that is a collection of indices S in [m] such that {Hi | i ∈ S} is a sunflower and
it would no longer be a sunflower if we added any other set of H to S. We cannot find
a sunflower in the natural way, extending by sets until we can extend no further, since
natural ways to formalize that reasoning involve Σ1,b

1 −IND. Instead, fix any set Hi of
H and any set of λ many points in Hi. Then Σ1,b

0 define the set of indices that contain
these λ many points. Let S be the resulting maximal sunflower. We now consider 2
cases.

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 86

For the first case, suppose S = [m], so it includes all the sets of the set system. We can
inject I : S ↪→ n, thus showing m ≤ n. Given i < m, if Hi is exactly the λ elements of
the core, then just define I to map this i to the smallest element in the core. Otherwise
i corresponds to a set Hi which contains these λ core elements and at least one other
element in its petal; let I map i to the smallest element in the petal. This map is
injective since petals do not overlap.

For the second case, suppose otherwise, so there is a set Hj not associated with the
sunflower. Thus Hj does not contain all of the core of S, and so for every set in S, Hj

must also intersect its petal (in order to get the required λ many intersections). Since
the petals are disjoint and Hj contains k elements, there can be at most k sets in S.
Let E ⊆ [n] be the elements of S, that is E := {x < n | x ∈ Hi for some i ∈ S}. E
has at most k2 elements in it. Now we consider the sets Hi such that i �∈ S; such sets
must contain some points of E, but may contain some outside points also. Consider
any two distinct such sets A and B. As far as their intersection with E, there are 2k2

possibilities for each, but in fact we cannot have A ∩ E = B ∩ E:

Both A and B must contain at least λ + 1 many elements of E, since they
have to intersect every set of S in λ many places but cannot do so in the most
efficient way by intersecting the elements of the core. Since A and B can only
intersect at λ many places, A ∩ E �= B ∩ E.

Thus we have at most 2k2
many sets not in S. Now rest of the proof is the key place we

use the standardness of k (in the earlier part of the proof we only used the standardness
to avoid enum, but here we use it to get the proper bound). The total number of sets
is then bound by k + 2k2 ≤ n, for sufficiently large n. For smaller n we can just do the
standard proof in a brute force manner, since the parameters are standard.

�

Now we prove a reversal.

Theorem 5.1.6 For any standard λ ≥ 1,

V0 + ∀H, m (isIncidenceType(H, m, n, {λ + 1}, {λ}) ⇒ m ≤ n) proves PHP.

Proof

Suppose for contradiction that PHP does not hold, so we have F , an injection from n+1
to n. We amplify the F to an injection from n + 1 + λ to n:

Define injection G1 : (n + 1 + 1) → n + 1 by G1(x) := F (x) for x < n + 1,
and G1(n + 1) := n. Define injection F1 : (n + 1 + 1) → n by F ◦ G1. Then

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 87

we obtain injection F2 : (n + 1 + 2) → n in a similar fashion. We can repeat
this standardly many times to obtain injection Fλ : (n + 1 + λ) → n.

We can now construct a set system H violating our set system axiom. The set system
H will have n + 1 + λ sets on ground set [n + λ]. For i < n + 1 + λ, and x < n + λ we
define

(Hi)x :=
{

1, if x = Fλ(i) + λ or x < λ
0, otherwise

Every set Hi has the λ elements {0, 1, . . . , λ−1} in addition to one more unique element.
Thus any 2 distinct sets intersect at λ elements and every set contains λ + 1 many
elements (we can enumerate these elements without use of enum). H is an appropriate
set system, but the number of sets, n + 1 + λ, is larger than the ground set, with n + λ
elements, so we have contradicted the set system axiom.

�

Using a stronger theory, we now prove a stronger version of the statement in proposition 5.1.4,
no longer requiring λ to be standard.

Theorem 5.1.7 V0 + enum + ∆1,b
1 −CA proves that if

(
n

λ+1

)
exists and λ < n/2 then

isIncidenceType(H, m, n, [n + 1], {λ}) ⇒ m ≤
(

n

λ + 1

)
.

We basically want to follow the proof of proposition 5.1.4. In that proof we assigned a size λ + 1
subset S ⊆ [n], to a number less than

(
n

λ+1

)
. This can be done by a standard number of operations

for λ standard, but when λ is non-standard, we will use the setNumber function of definition 3.1.3.
Recall that for S ⊆ [n] of size k, setNumber(S; n) assigned S to a number <

(
n
k

)
, according to its

lexicographic ordering. We will actually make a few modifications to setNumber, keeping the same
name. A minor change is that setNumber will take a set as input rather than a number coding
a set. The more significant change is that we will also input the parameter k, passing in

(
n
k

)
as

an implicit argument and requiring that k ≤ n/2. We could define this function in V1, mimicking
our previous S1

2 definition, however we want to work in a weaker theory. The requirement that
k ≤ n/2 allows for the applications of lemma 2.4.5 which shows that

(
n
j

)
also exists for j < k (if

we are in a context where we already know that these choose values exist, we can dispense with
the assumption that k ≤ n/2, as will be the case for the RCW theorem). We can work in a weaker
theory by giving a slightly modified definition that works more in parallel. To motivate the reader,
this technical development will also be used in the proof of the RCW theorem and its application
to the Frankl and Wilson Ramsey lower bound.

The redefinition of setNumber here follows basically the same idea as before. Given a set S, we
think of starting a process at the least significant right side. If we see a zero at position i of S, we

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 88

define a number which counts the number of size k subsets that look like S for bits to the right of
i, but have a 1 at position i.

Lemma 5.1.8 setNumber is ∆1,b
1 definable in V0 + enum + ∆1,b

1 −CA.

Proof

Suppose we are given numbers n and k such that
(
n
k

)
exists and k ≤ n/2, along with

S ⊆ [n]. Define a corresponding length n vector S′ such that

S′
i :=

⎧⎪⎪⎨⎪⎪⎩
(

n − i − 1
k − 1 − size(S<i)

)
if Si = 0 and size(S<i) < k

0 otherwise

Note that since k ≤ n/2, lemma 2.4.5 guarantees the existence of the various choose
functions. Then we let setNumber(S; n, k) := sum(S′).

�

Now a key point is that we can prove in the same theory that setNumber is injective on sets of
the appropriate size.

Lemma 5.1.9 V0 + enum+∆1,b
1 −CA proves that setNumber is injective (i.e. for any n and k and

any distinct size k sets A, B ⊆ [n], setNumber(A; n, k) �= setNumber(B; n, k)).

Proof

Suppose we have A and B as indicated above, such that A and B are the same restricted
to numbers < i, but i ∈ A and i �∈ B. Let A′ and B′ be the corresponding vectors defined
in the above proof. Let m := size(A<i) = size(B<i), and s := A′

i−1 + . . . + A′
0 = B′

i−1 +
. . .+B′

0. So setNumber(A) = A′
n−1+. . .+A′

i+s and setNumber(B) = B′
n−1+. . .+B′

i+s.
It suffices to show that A′

n−1 + . . . + A′
i+1 < B′

i =
(

n−1−i
k−1−m

)
; the last equality is by

definition and note that we can ignore A′
i = 0. The values of the n − i − 1 numbers

A′
n−1, . . . , A

′
i+1 are at least 0 at the remaining k − (m + 1) places that A has a 1, so at

most n − i − 1 − (k − (m + 1)) = n − i − k + m of the numbers from A′
n−1, . . . , A

′
i+1

are non-zero. The case in which the sum is the largest is if the n − i − k + m entries
A′

i+(n−i−k+m), . . . , A
′
i+1 are non-zero. To know this in the system, we take our sum and

inject it into this sum, using lemma 4.5.6. The last sum is(
n − i − (n − i − k + m + 1)

k − 2 − m

)
+ . . . +

(
n − i − 2
k − 2 − m

)
,

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 89

which is less than
(

n−i−1
k−1−m

)
as desired. This last point is true because of the following

general point.

Claim 5.1.10 (
b − 1
b − 1

)
+ . . . +

(
a − 1
b − 1

)
=
(

a

b

)
We prove this by induction on a, though a quick way to see its truth is to see that both
sides of the equation count the number of ways to choose a size b subset from [a]; the
left hand side does this by fist choosing the largest element and then choosing b − 1
smaller elements. Our desired inequality follows immediately by applying this claim for
a = n − i − 1 and b = k − 1 − m.

�

Since setNumber is injective and onto we can use this function or its inverse. Now, as mentioned
earlier, to prove theorem 5.1.7, we just follow the proof of proposition 5.1.4, using setNumber, which
uses a move to a stronger theory.

It is natural now to consider two general ways these results could be improved upon. Firstly, we
could prove better bounds, perhaps strengthening the axioms. Secondly, we could find proofs with
weaker axioms, perhaps accompanied by a worsening of the bound. The second line of thought is
limited by the above reversal, theorem 5.1.6; in fact notice that an immediate consequence of the
reversal is that the set system statement of theorem 5.1.5 (for k = λ + 1) is equivalent to PHP over
V0, so cannot be proved (for all parameters k and λ) in just V0. It seems feasible to extend the
reversal.

Question 5.1.11 To what extent can the reversal of theorem 5.1.6 be extended?

We mention two possibly promising lines of thought. De Bruijn and Erdős [18] proved a special
case of the Non-Uniform Fisher Inequality.

Theorem 5.1.12 [18] A type ([n + 1], {1}, n) set system has at most n sets.

Their proof avoids linear algebra, but a difficulty with formalizing it is a key part in which they
take the sum of a sequence of rationals, which presents a difficulty beyond just summing a sequence
of integers (we discuss this in more detail in the next section following definition 5.2.6). However
perhaps their argument could be modified in a way that it could be formalized.

It would also be nice to improve proposition 5.1.4 or theorem 5.1.7, since they only obtain the
bound of

(
n

λ+1

)
, while we in fact know that the much better bound of n (with no λ dependence)

works. Consider an approach. Let bλ be a bound on the size of a type ([n + 1], {λ}, n) set system.
An easy argument shows that bλ ≤ nbλ−1:

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 90

Given a set system H of type ([n + 1], {λ}, n), for each element x ∈ [n], we can define
Hx to be those sets of H which contain x. Each Hx is a type ([n], {λ − 1}, n − 1) set
system, so there are at most nbλ−1 sets in H.

Given this fact we can start with b1 = n2 and conclude by an inductive argument (possibly outside
the formal theory, so λ would need to be standard) that bλ ≤ nλ+1. This does not improve
proposition 5.1.4, although we would obtain an improvement with a sufficiently improved bound
such as bλ ≤ √

nbλ−1.

5.2 Using Linear Algebra

Now we consider bounds obtained from linear algebraic arguments. A debt is owed to the well (and
only partially) written book by Babai and Frankl, “Linear Algebra Methods In Combinatorics” [5],
which collects together these results. The basic idea of this approach is to map the sets in the set
system H to vectors in some well chosen vector space. Then we show that these vectors are linearly
independent, which implies that the number of vectors, and consequently, the number of sets in
H, is bounded by the dimension of the vector space. To formalize these arguments we will want
to be able to work with vectors, taking linear combinations and showing linear independence, thus
we will often work in V0 + enum + ∆1,b

1 −CA. However, it still appears that we cannot prove the
following linear algebra principle, which we call the dimension principle:

A set of linearly independent vectors in a vector space of dimension d, can be of size at
most d.

Thus, we will also add axioms that formalize such a linear algebra principle. This principle is
basically inspired by the “hard matrix identities” of Soltys and Cook [43]. We will develop this
material formally in section 5.2.1. Using that material, section 5.2.2 will formalize the full Non-
Uniform Fisher Inequality. Section 5.2.3 will formalize the RCW theorem, using the material of
section 5.2.1 and a formalization of polynomials.

5.2.1 Formalizing Linear Algebra

Soltys and Cook [43] developed a formal theory for feasible matrix operations which can be inter-
preted in S1

2. Their theory has as basic objects the matrices, the field elements, and the natural
numbers. Their main motivation was to analyze the complexity of various matrix theorems. Since
our aim is to use linear algebra in application to combinatorics, working directly in a usual theory
of bounded arithmetic seems more natural. The linear algebra we develop will correspond roughly
to Soltys and Cook’s theory LA.

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 91

We will begin by showing how to work with vectors and matrices over the unary integers. They
will then be applied in two cases: 1) The case in which the intended field is the rationals, and 2)
The case in which the intended field is Fp, the integers modulo some prime p.

The basic operation on two length m vectors U and V will be the dot product:

U · V =
∑
i<m

(Ui)(Vi).

Lemma 5.2.1 (U · V) is ∆1,b
1 definable in V0 + enum.

Proof

Let m := len(U). Let u and v be the magnitudes of the largest magnitude integers
in vectors U and V, respectively. Then we give a Σ1,b

0 simple tree description of a
length m vector W , with structure tree m ± (uv + 1), letting Wi := (Ui)(Vi). Then
U · V := sum(W).

�

A key operation on matrices is of course matrix multiplication. Given an a × b matrix M and
a (b × c) matrix N , we define the a × c matrix product M ∗ N in the usual way. To facilitate this
definition, we let col(N, j) be the jth column of N . The length b vector col(N, j) can be given by
a Σ1,b

0 simple tree definition. Notice that entry (i, j) of matrix M is given by (Mi)j .

Lemma 5.2.2 V0 + enum, ∆1,b
1 defines the relation M ∗N = W and proves that M ∗N = W and

M ∗ N = W ′ imply W = W ′.

Proof

We check that M , N , and W are matrices of legal dimensions. Supposing W is a × c,
we check that ∀i < a∀j < c (Wi)j = Mi · col(N, j). We can use either set quantifier to
refer to col(N, j).

�

When we write an expression of the form M ∗ N = W , we do not mean to assert the existence of
M ∗ N , though we can assert the existence in a stronger theory.

Lemma 5.2.3 Matrix multiplication is ∆1,b
1 definable in V0 + enum + ∆1,b

1 −CA.

Proof

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 92

Suppose M is a×b and N is b×c. Let m be the absolute value of the largest magnitude
number in M or N . Let r := m2b, a bound on the magnitude of numbers in the matrix
product M ∗N . Using the structure tree a c r, we give a ∆1,b

1 simple tree definition
of W = M ∗ N by (Wi)j := Mi · col(N, j).

�

Lemma 5.2.4 (Associativity of Matrix Multiplication) V0 + enum + ∆1,b
1 −CA proves that for ma-

trices A, B, and C, A ∗ (B ∗ C) = (A ∗ B) ∗ C.

Proof

Suppose L = A ∗ (B ∗C) and R = (A ∗B) ∗C. To show L = R, first we can check that
the matrices have the correct dimensions. Then we need to check that for any allowed
(i, j), L(i, j) = R(i, j). We can define vectors VL and VR, so that L(i, j) = sum(VL)
and R(i, j) = sum(VR). We find these vectors by just following the definition of matrix
multiplication and dot product, expanding it all out into one vector, using ∆1,b

1 −CA
to assert their existence. They will be vectors of the same length containing the same
numbers arranged in two different ways. To show that the two vectors sum to the
same number we can define a bijection between the two vectors, equality following by
lemma 4.5.6, which uses PHP.

�

Now we want to be able to express that a set of vectors is linearly independent. To do this
we will view an m × n matrix M as a set of m vectors, each of length n, thus the m vectors are
Mm−1, . . . , M0. To say that M is linearly independent, we say that the choice Cm−1 = . . . = C0 = 0
is the only way to make the linear combination Cm−1Mm−1 + . . . + C0M0 equal the zero vector (or
one might say that M has full row rank). Notice that we are discussing such notions for integers,
while it is typical to use a field as the elements of the matrices and vectors. Later we will do all the
arithmetic modulo a prime p, so that we will be working over the field Fp. However, for now, when
not doing modular arithmetic, we have in mind the field of rationals, as will be discussed shortly.

To facilitate the formal description note that given a vector C, 〈C〉 is in fact a matrix with one
row and number of columns equal to the length of C. Thus for an m × n matrix M and a length
m vector C, 〈C〉 ∗ M is essentially the linear combination Cm−1Mm−1 + . . . + C0M0. We let 0̂ be
the zero vector, with its length being implicit from context.

Definition 5.2.5 Let linIndep(M) be:

∀C ((isVector(C) ∧ len(C) = len(M) ∧ 〈C〉 ∗ M = 〈0̂〉) ⇒ C = 0̂).

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 93

To say linIndep(M), means that matrix M is linearly independent. Notice that there is an implicit
universal quantifier over the bound on the size of entries in vector C, so we are ultimately ranging
over all integer vectors C. Also notice that by 〈0̂〉 we mean the 1 × b zero matrix, where M has
dimensions a × b.

And now we give a formalization of the dimension principle by formula Dim, saying that if an
m × n matrix is linearly independent then m ≤ n.

Definition 5.2.6 Let Dim(M,m,n) be:

isMatrix(M, m × n) ∧ linIndep(M) ⇒ m ≤ n.

As mentioned, though this principle is stated over the integers, we have in mind the rationals. The
above principle is true since the linear independence of a matrix as defined here is equivalent to
the usual notion in which the matrix of integers is viewed as a matrix of rationals. The reason for
this is that if a matrix is linearly independent over the integers, then it is linearly independent over
the rationals, since we can multiply everything though by the denominators to obtain statements
involving only integers. The reason we do not work over the rationals is due to the difficulty
with summing a sequence of rational numbers (which would be used by the dot product). A similar
difficulty was pointed out in the last section following theorem 5.1.12. While summing a sequence of
integers is within the scope of enum, for rationals this would require finding common denominators
and so essentially contain the power of finding a product of a sequence of natural numbers; doing
this explicitly is beyond the scope of bounded arithmetic since the function grows too fast. Products
would be allowed under the strict conditions that an appropriately large number existed, conditions
we do not have here; products are discussed at the end of section 4.5 in the previous chapter.

Question 5.2.7 Is there some way for bounded arithmetic to deal with proofs in which one of the
steps involves taking the sum of a sequence of rationals?

We now consider modular versions of these notions. For a dot product we can simply talk about
U · V (mod p). For a matrix product, by M ∗ N = W (mod p), we simply mean for the (mod p)
operation to be applied to all the entries of the resulting W . We can define linear independence for
this context. Let modLinIndep(M, p) be:

∀C ((isVector(C) ∧ len(C) = len(M) ∧ 〈C〉 ∗ M = 〈0̂〉 (mod p)) ⇒ C = 0̂ (mod p)).

Then we can define modular versions of the dimension principle.

Definition 5.2.8

• Let modDim(p) be:

∀M, m, n (isMatrix(M, m × n, p) ∧ modLinIndep(M, p) ⇒ m ≤ n).

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 94

• Let modDim be: ∀p (prime(p) ⇒ modDim(p)).

Without effecting the discussion, we could impose requirements that vectors and matrices have
entries x such that 0 ≤ x < p, but we would still need to do the operations modulo p, so that
approach does not appear to buy us anything in terms of presentation.

As mentioned in the beginning of this section we will use these dimension principles by adding
them to the theory V0 + enum + ∆1,b

1 −CA. It turns out that we can prove the modular versions
in V1, while Dim is not even provable in bounded arithmetic (we discuss this more later). The
crucial difference is that we can find multiplicative inverses for the elements of Fp in V1 (in fact
I∆0 suffices), but not for the integers (that is integers do not have multiplicative integer inverses);
we note later on where this difference becomes crucial. The following theorem basically appears in
Kaye’s book [30] as a theorem in PA, though the proof goes through in I∆0.

Theorem 5.2.9 [30, theorem 5.2] I∆0 proves that for a prime p, ∀ 0 < a < p ∃b < p ab =
1 (mod p).

We now sketch the informal proof of the dimension principle, a basic linear algebra proof.
Suppose U = {um−1, . . . , u0} are m linearly independent vectors in some vector space with basis
B = {bn−1, . . . , b0}. To show m ≤ n, we assume for sake of contradiction that m > n. We now
describe a process:

1. Let B0 := B. Let i := 0.

2. If i = n we are done.

Otherwise consider Bi = {vn−1, . . . , v0} (it is a basis). Write ui as a linear combination of
vectors from Bi; suppose ui = an−1vn−1 + . . . + a0v0. For some j < n, vj ∈ B and aj �= 0,
otherwise U would have a linear dependence.

3. Let Bi+1 := Bi − {vj} + {ui}. We can write vj as a linear combination of vectors from Bi+1

using the fact that we have an inverse to field element aj . Thus Bi+1 is a basis. Set i := i+1
and goto step 2.

The procedure produces the basis Bn = {un−1, . . . , u0} ⊆ U , thus un can be written as a linear
combination of vectors from U , contradicting the linear independence of U . The following proof
will formalize this process.

Theorem 5.2.10 V1 proves modDim.

Proof

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 95

Let p be a prime. Let M be a linearly independent m× n matrix over Fp, and suppose
for contradiction that m > n. Using Σ1,b

1 −IND do induction on r up to n, on the
following formula, which says that there is a set of n vectors B that generates the m
vectors of M , where the first r vectors of B are in M :

∃B isMatrix(B, n × n)
∧ ∀i < m ∃C (isVector(C, n, p) ∧ 〈C〉 ∗ B = Mi (mod p))
∧ ∀i < r Bi = Mi

Notice that all the sets in the above formula can be bound so it is of complexity Σ1,b
1 .

For the base case we can just choose the standard basis. For the inductive step suppose
there is a matrix B which works for r; we simulate a step in the previously described
process to arrive at matrix B′ which works for r + 1. We have a vector C such that
〈C〉 ∗ B = Mr (mod p). By the linear independence of M there is an i, r ≤ i < n, such
that Ci �= 0 (otherwise, since we have an inverse to 1 in Fp, we would be able to move
the Mr to the other side of the equation defining a vector of coefficients on M which
violates the linear independence of M). We can find an inverse to Ci by lemma 5.2.9,
and thus can move Bi to the right side of the equation, switching the role of Bi and Mr,
thus maintaining the generating property. Bi and Br can then be switched to arrive at
B′ which works for r + 1.

�

The lack of appropriate inverses precludes applying the above proof to Dim. In fact, bounded
arithmetic cannot prove Dim, an immediate result of the following point (recall EXP from defini-
tion 2.1.9).

Lemma 5.2.11 V0 + enum proves Dim ⇔ EXP.

Proof

EXP easily proves Dim since we can code everything as a number.

For the other direction, suppose we want to show xn exists, given that we know Dim.
We can define M to be the following (n + 1) × n matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 −x

−x
·

·
1 −x

−x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 96

such that M(i, n− 1− i) := 1 and M(i+1, n− 1− i) := −x for 0 ≤ i ≤ n− 1; the other
entries are zero. Since n + 1 > n, by Dim we know ¬linIndep(M), which means that
there exists a length n + 1 non-zero vector C = 〈Cn, . . . , C0〉 such that 〈C〉 ∗ M = 〈0̂〉.
If we write out the corresponding equations we obtain:

C1 = xC0

C2 = xC1

...
Cn = xCn−1

We know some Ci �= 0, which propogates through the other Cj , so in fact all the Ci �= 0
(by Σ1,b

0 −IND). Then Cn
C0

is xn.

�

Notice that part of the proof of this lemma works for the modular principles obtaining the following
(recall modular exponentiation from the end of chapter 4).

Lemma 5.2.12 V0 + enum + modDim defines modular exponentiation for any prime modulus.

The proof of this lemma is basically the same as the proof of lemma 5.2.11, except that we use the
modular principles and all the operations are (mod p) for some prime p. It does not seem that the
converse is the case. Namely, it does not appear that having modular exponentiation is enough
to code the objects in the proof of modDim. The same proofs could also be modified to define a
product of numbers by replacing the n x’s by the numbers x0, . . . , xn−1.

For the reader who finds the dimension principles artificial, at least for modDim she can view
the argument as occurring in V1. Ultimately the naturalness of the dimension principles would
have to be shown by a wide context of use, as is the case for the counting principles. Already Soltys
and Cook [43] use such principles, and this work provides further use, thus in a sense increasing
the evidence for the naturalness of such principles.

5.2.2 The Non-Uniform Fisher Inequality

The formal proof of the Non-Uniform Fisher Inequality follows the proof in [5], though we deviate
in presentation due to the non-typical linear algebra principle Dim. By the above point that Dim is
equivalent to EXP, this is not surprising (in the presence of EXP we can do pretty much anything,
yet we present the proof in a form which could possibly be modified to avoid EXP).

Theorem 5.2.13 V0 + enum + Dim + ∆1,b
1 −CA proves:

isIncidenceType(H, [n + 1], {λ}, m, n) ⇒ m ≤ n.

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 97

Proof

Let H be an appropriate incidence system. As in earlier cases using sunflowers, we
can use PHP to cover the case in which one of the sets has only λ many elements, so
assume all sets have at least λ+1 elements. We now show linIndep(H, m×n), which by
Dim yields the result of m ≤ n. Let C be any length m vector of unary integers, and
suppose 〈C〉 ∗ H = 〈0̂〉; our goal is to show C = 0̂. The matrix transpose Ht is easily
defined (recall the transpose is defined by converting an m × n matrix into an n × m
matrix defining entry (i, j) in the transpose to be be (j, i) in the original). So using
associativity we have:

〈C〉 ∗ (H ∗ Ht) = (〈C〉 ∗ H) ∗ Ht = 0̂ ∗ Ht = 0̂.

Notice that M := H ∗Ht is an m×m matrix in which entry (i, j) is ‖Hi ∩Hj‖ , so for
i �= j < m, M(i, j) = λ, and M(i, i) = λ + ai, for some ai > 0. Thus 〈C〉 ∗ (H ∗Ht) = 0̂
implies that we have the following system of equations:

(sum 0) Cm−1λ + . . . + C0λ + C0a0 = 0
...

...
(sum m − 1) Cm−1λ + . . . + C0λ + Cm−1am−1 = 0

We have just written down rearrangements of the m dot products. The calculation
Ci ∗ M(i, i) = Ci ∗ (λ + ai) = Ciλ + Ciai is one step of the rearrangement. Then we
move the Ciai part to one end of the sum (this movement keeps the sum the same by
lemma 4.5.6 since we can define a bijection between these 2 ways of summing). Now
assume for contradiction that some Ci �= 0. Let r := Cm−1λ + . . . + C0λ, be the sum
of the first m terms in each of the above sums. If Ci > 0, since ai > 0, by sum i, we
would have to have r < 0. Since all the sums have the same r, each Cj > 0 by sum j,
for 0 ≤ j < m. But then the sums in the above system cannot equal zero. The case for
Ci < 0 is similar. So in fact we must have that C = 0̂, finishing the proof.

�

Question 5.2.14 Can the Non-Uniform Fisher Inequality (the statement in the theorem 5.2.13)
be proved in bounded arithmetic?

5.2.3 The RCW theorem

We now formalize the RCW theorem. It uses polynomials, so we will begin with a diversion into
polynomials. Though we only use them for this theorem, they could have wide application beyond
just this use.

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 98

Polynomials

We will first be concerned with defining the polynomials essentially as certain kinds of sequences,
and then we will define an evaluation operation on polynomials. Our polynomials will be defined
over the field Fp (for some prime p) and use some set of variables {xn−1, . . . , x0}. Though we could
define the polynomial objects over the field of rationals, we would have problems with evaluation
since we do not know how to sum a sequence of rationals (this difficulty is discussed after defini-
tion 5.2.6); since we can avoid the use of such polynomials we will not worry about them. By a
monomial we mean a “product expression” of the form:

xn−1
dn−1 . . . x1

d1x0
d0 ,

where the di ≥ 0 are integers; if all the di = 0, we consider this expression to be simply 1. We use
the term “expression” because we are not really taking products and sums of numbers, but forming
expressions with the symbols xn−1, . . . , x0; when we evaluate a polynomial with some variable
assignment we will actually take products and sums of numbers. By a monomial term we mean
an expression of the form cxn−1

dn−1 . . . xd0
0 , where c ∈ Fp is called a coefficient; we call some xi

di

a term in the corresponding monomial. By a polynomial we mean a sum of monomial terms;
note that monomials may be repeated and monomial terms may have zero coefficients. The degree
of a variable in a monomial is the exponent of that variable. The degree of a monomial (or
monomial term) is the sum of the degrees of its variables (i.e. dn−1 + . . . + d0), and the degree of
a polynomial is the degree of a monomial with maximum degree.

Now we discuss our coding of polynomials by simple trees. A polynomial over Fp will es-
sentially be a pair of sequences, a coefficient sequence and a monomial sequence. The
coefficient sequence is just a vector of length m with elements in [0, p), which we write slightly
informally as 〈Cm−1, . . . , C0〉. A corresponding monomial sequence is a sequence of m monomials
〈Mm−1, . . . , M0〉, where each monomial Mi is just a length n vector with elements in [0, d) for some
number d which will be a bound on the degree of a variable; so (Mi)j , for j < n, tells us what the
degree of xj is in the ith monomial. Given two such sequences, the associated polynomial is:

Cm−1Mm−1 + . . . + C0M0.

Let monomialSeq(M, m, n, d) be: isSimpleTree(m n d, M). Now we can define what we mean by
a polynomial (we use Fp as a suggestive notation for indicating how the parameter p is to be used).

Definition 5.2.15 Let isPoly(Q, Fp, m, n, d) be: isSimpleTree(t, Q), where t is the structure tree:

2�
m n d

�m p
.

Given a polynomial Q, by deg(Q) we mean its degree.

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 99

Lemma 5.2.16 deg is a ∆1,b
1 definable function in V0 + enum + ∆1,b

1 −CA.

Proof

Suppose our input is Q such that isPoly(Q, Fp, m, n, d). We define D such that isVector(D, m, nd)
by Di := sum((Q0)i), which is ∆1,b

1 because of the sum function. Di, for i < m, gives
the degree of monomial i, a number ≤ n(d − 1) < nd. deg is now just the maximum
unary integer in vector D.

�

To evaluate a polynomial Q (over field Fp and n variables), we will be given a variable assignment
A, which is just a length n vector with entries in Fp. eval(Q, A) is the element of Fp that results
from evaluating Q with variable xi assigned to Ai. To define eval we will carry out the evaluation
without working modulo p, only applying the mod p operation at a few select points. Thus, though
the end result is only a number < p, the evaluation will involve intermediate values of size about pb,
where b is the degree of polynomial Q. So the evaluation will require that we know pb exists, thus
eval will have pb as an implicit argument. This will be fine for our applications where we typically
work with low degree polynomials. It is of course tempting to look for a definition of evaluation that
does not use the existence of pb. It seems that such a definition would rely on answering the open
question discussed after lemma 4.5.7, as to whether or not modular exponentiation can be defined
in I∆0. We will give a formal definition of evaluation for monomials calling this function eval. Once
we have that, we define evaluation for polynomials in terms of it, using the same notation eval
(though there will never be confusion about what function we have in mind). For a a polynomial
P (with m monomials) and assignment A we define:

eval(P, A) :=
∑
i<m

(P1)ieval((P0)i, A) (mod p).

This definition really involves defining a vector and then summing it, though we write it in this
form to facilitate the readability of a number of arguments.

Lemma 5.2.17 eval (for monomials) is a ∆1,b
1 definable function in V0 + enum + ∆1,b

1 −CA.

Proof

Suppose the input consists of a monomial M , such that isVector(M, n, d), and an assign-
ment vector A such that isVector(A, n, p). Suppose b := deg(M) and pb is an implicit
argument; checking the degree uses the theory indicated in the lemma, V0 + enum +
∆1,b

1 −CA. We will define eval(M, A; pb). We will first evaluate M at each of its terms,

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 100

by defining a vector E, such that isVector(E, n, p). For i < n, let Ei := AMi
i (mod p).

Taking the power is justified by the fact that Mi ≤ b (so the power is no bigger than
pb before applying the (mod p) operation), which we obtain by an easy application of
PHP, injecting the 1’s of Mi into the 1’s of M .

Now we would like to take the product of E, but it is of length n, so if b < n, pn may
not exist. However, we have at most b non-one terms, so our approach will be to define
a vector R which will be E with it’s 1’s removed; we can then take the product of R.
First we define E′ from E, by making any non-one unary integer of E into a single 1
and zeroing out the rest. Let F enumerate the c elements of E′, that is F enumerates
where the non 1 entries of E appear. Notice that c ≤ min(n, b) ≤ b, so pc exists. Now
we can define the vector R such that isVector(R, c, p); for j < c we let Rj := the entry of
E that begins at bit F (j). Now we can define eval(M, A) to be product(R, c, p), since
pc exists. Recall that product is done (mod p).

�

Note that within our definition of eval (for monomials), operations are not always done (mod p).
However now that we have this definition we will not be explicitly talking about the inner workings
of evaluation, thus whenever we use eval in arithmetic operations we are always working (mod p).
From here on out we use the following convention: All operations involving eval are performed
(mod p), though this will not be mentioned explicitly.

A key point about our definition of evaluation will be that it will respect various operations. A
simple fact of this sort is the following fact.

Lemma 5.2.18 V0 + enum + ∆1,b
1 −CA proves that for a monomial M such that isVector(M, n, d),

a number x < d, a number a < p, and an assignment A such that isVector(A, n, p):

eval(〈x〉 � M, 〈a〉 � A) = axeval(M, A).

For other facts showing that evaluation respects operations (like adding and multiplying them)
we will want to work with sequences of polynomials. For a sequence of polynomials we will want
them to be over the same variables and field Fp. But furthermore, we will in fact only need two
kinds of such sequences for our work: Sequences in which each polynomial in the sequence is of the
same type (a simple polynomial sequence), and sequences of length 2 in which the polynomials
can be of different types (though the variables and field are the same).

Definition 5.2.19 Let isSimplePolySeq(S, r, Fp, m, n, d) be: isSimpleTree(r t, S), where t is the
structure tree from the definition of isPoly.

Notice that the simple polynomial sequence is a string tree in which each of the immediate r
children to the root are polynomials of type t. If we just refer to a polynomial sequence we

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 101

mean a simple polynomial sequence or a pair of polynomials (over the same variables and field).
We do not deal with more complicated polynomial sequences because some aspects use a stronger
theory, their presentation is more cumbersome, and we have no need to use them. From here on
out, “polynomials” and “polynomial sequences” will always refer to our codings. We will often just
refer to some, but not all, of the parameters, being colloquial in referring to the parameters (e.g.
the polynomial having n variables or m monomials, or being over Fp). Supposing a polynomial or
polynomial sequence is defined over Fp, with n variables, we say an assignment A is appropriate
for it if isVector(A, n, p). When we refer to polynomials and/or polynomial sequences together,
we generally expect them to be over the same variables and field, in which case we say that they
correspond.

We will define a function polySum which maps a sequence of polynomials to a single poly-
nomial, its sum, without collecting together monomial terms with the same monomial. Precisely,
for a polynomial sequence S, polySum(S) is the polynomial Q whose monomial sequence, Q0,
is the concatenation (Sr−1)0 � . . . � (S1)0 � (S0)0, and whose coefficient sequence, Q1, is the
concatenation

(Sr−1)1 � . . . � (S1)0 � (S0)1. For a simple polynomial sequence S with structure tree:

r 2�
m n d

�m p
,

polySum(Q) will have the following structure tree :

2�
rm n d

�rm p
,

and in this case it can be defined by a Σ1,b
0 simple tree description. We can give an analogous Σ1,b

0

simple tree description for a polynomial sum of two polynomials, not necessarily with the same
structure. Thus we have proved the following lemma.

Lemma 5.2.20 polySum is Σ1,b
0 bit definable.

Now we note that extending a polynomial sequence with a single polynomial works right with
respect to polynomial summation. The following lemma which we write more intuitively as:

polySum(〈Q〉 � S) = Q + polySum(S),

is a consequence of polynomial summation defined by concatenation.

Lemma 5.2.21 For S a polynomial sequence and a corresponding polynomial Q, V0 proves that

polySum(〈Q〉 � S) = polySum(〈Q〉 � 〈polySum(S)〉).

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 102

In the work on polynomials, it will improve readability to use the abuse of notation preceding
the lemma to refer to adding (or multiplying by) a single polynomial. Notice that polynomial
summation is not commutative as defined. The order of the terms matters, which will be important
to keep in mind especially for polynomial products where we multiply the polynomials out in a
particular way.

A key property is to connect polynomial summation with number summation via the evaluation
function, showing that evaluation respects summation.

Lemma 5.2.22 V0 + enum + ∆1,b
1 −CA proves that for corresponding polynomials P and Q, and

an appropriate assignment A,

eval(P, A) + eval(Q, A) = eval(P + Q, A).

Proof

Since polynomial summation P + Q just concatenates the monomial lists, the right
hand side is a sum which the left hand side just breaks into two pieces (allowed by
lemma 4.5.4).

�

Now we want to extend this to a simple sequence of polynomials Pr−1, . . . , P0. We want to show
that for any appropriate variable assignment A we have

eval(Pr−1 + . . . + P0, A) = eval(Pr−1, A) + . . . + eval(P0, A).

We will work in V0+enum+∆1,b
1 −CA where we can freely use the eval function in the comprehension

axioms. Given a polynomial sequence S of length m and an appropriate assignment A, let S(A) be
the length m vector defined (for i < m) by

(S(A))i := eval(Si, A).

This operation is valid in V0 + enum+∆1,b
1 −CA (the existence of the vector uses ∆1,b

1 −CA). Recall
the definition of “T<k” immediately following lemma 4.4.21.

Lemma 5.2.23 (Sum respects Evaluation) We work in V0 + enum + ∆1,b
1 −CA. Suppose that S is

a simple polynomial sequence, Q = polySum(S), and A is an appropriate assignment. Then we can
prove

eval(Q, A) = sum(S(A)).

Proof

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 103

We now have a fixed S, S(A), and A, which will be parameters in our induction. Suppose
S is of length r. It then suffices to show by ∆1,b

1 induction on k up to r that:

eval(polySum(S<k), A) = sum((S(A))<k).

For the inductive step, note that:

eval(polySum(S<k+1), A) = eval(Sk + polySum(S<k), A)
= (S(A))k + sum((S(A))<k)
= sum((S(A))<k+1).

The first equality uses lemma 5.2.21. The second equality uses the inductive hypothesis
and lemma 5.2.22. The last equality follows from lemma 4.5.5.

�

We will now define a product of polynomials. Suppose we have a polynomial sequence S =
〈Sr−1, . . . , S0〉, where polynomial Si is M

(i)
m−1 + . . . + M

(i)
0 , each M

(i)
j being a monomial term. So

the product of S should be the following:

(M (r−1)
m−1 + . . . + M

(r−1)
0) . . . (M (0)

m−1 + . . . + M
(0)
0),

We will multiply this product out into a single polynomial Q which looks like:

M
(r−1)
m−1 . . . M

(1)
m−1M

(0)
m−1 + . . . + M

(r−1)
0 . . . M

(1)
0 M

(0)
1 + M

(r−1)
0 . . . M

(1)
0 M

(0)
0 .

Note that we have a particular lexicographical order in mind, which will be important for showing
that products respect evaluation. We denote this operation by polyProd(S) = Q.

Notice that the number of monomials in Q is mr, so for products we will assume that mr exists.
The intuition is that the number of polynomials in the sequence (i.e. r) must be small, though the
length of each such polynomial (i.e. m) need not be too small. Since Q also involves products of
length r from Fp (for the coefficients) we will require that pr exists too; mr and pr will both be
implicit arguments to polyProd.

Lemma 5.2.24 polyProd is a Σ1,b
0 bit definable function.

Proof

Consider the case of S a simple polynomial sequence; for a pair of polynomials it is

analogous. Suppose S has structure t := r 2�
m n d

�m p
. We define polyProd(S) = Q

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 104

by giving a Σ1,b
0 simple tree description of Q with structure tree s := 2�

mr n dr

�mr p
.

Suppose a = (a0, a1, a2)� s, where a1 < mr, viewed as a base m number, is taken to be
a sequence c = (cr−1, . . . , c0) where each ci < m; a2 will not be present if a0 = 1. We
now define the value of Qa.

If a0 = 1, then we need to define the coefficient of the monomial term corresponding to
a, which is:

∏
i<r(S〈i,1,ci〉). For the latter product we give a simple tree description of

the sequence and apply product to it with the implicit size argument of pr; this can be
done in V0.

If a0 = 0, then a2 < n and we need to define the exponent of variable xa2 , for the
monomial term corresponding to a1, which is:

∑
i<r(S(i,0,ci,a2)), since it is a short

summation (pr exists) we can get by without enum.

�

Now we show that the polynomial product definition makes sense when we extend a polynomial
sequence by a single polynomial.

Lemma 5.2.25 V0 proves that for polynomial sequence S and a corresponding polynomial Q

polyProd(〈Q〉 � S) = Q ∗ polyProd(S).

Proof

Consider the case of S such that isSimplePolySeq(S, r, Fp, m, n, d) and Q such that
isPoly(Q, Fp, m, n, d). Let A := polyProd(〈Q〉 � S), and B := Q∗polyProd(S). 〈Q〉 � S

is a simple tree of type r + 1 2�
m n d

�m p
. A is a polynomial of type

t := 2�
mr+1 n (r + 1)d

�
mr+1 p

,

and B is a polynomial of the same type, though better thought of as:

2�
mmr n (d + dr)

�mmr p
.

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 105

Now we just note that for any a = 〈a0, a1, a2〉 � t, Aa = Ba. The key fact is that for
a1 < mr+1 = mmr, viewed as 〈cr, cr−1, . . . , c0〉, ci < m, or 〈er, 〈er−1, . . . , e0〉〉, ei < m,
we get the same sequence (i.e. ci = ei for i < r+1). Thus the sequence product used for
the coefficients, and the sum used for the exponent sum are the same (use lemma 4.5.9
for the product and a similar lemma for the sum; note that we do not need the full
blown lemma 4.5.5 for the sum).

�

A helpful lemma for showing that evaluation works right is a general lemma about distributivity,
for which we make the following definition.

Definition 5.2.26 For vectors S and T of lengths n and k respectively, by S ∗ T we mean the
vector of length nk defined by (for j < n, and i < k)

(S ∗ T)〈j,i〉 := Sj ∗ Ti.

Lemma 5.2.27 V0 + enum + ∆1,b
1 −CA proves that for vectors S and T ,

sum(S) ∗ sum(T) = sum(S ∗ T).

Proof

We can proceed by induction on k on the following ∆1,b
1 formula:

sum(S<k) ∗ sum(T) = sum(S<k ∗ T).

This reduces to just showing that for S being a single number the claim holds. For S
being a single number, we can then do a similar induction on T , reducing the entire
problem to basic arithmetic properties.

�

In showing that polynomial products respect evaluation, a key step in the induction uses the
following special case for the product of 2 polynomials (similar to lemma 5.2.22 for sums).

Lemma 5.2.28 V0 + enum + ∆1,b
1 −CA proves that for corresponding polynomials P and Q, and

an appropriate assignment A:

eval(P, A) ∗ eval(Q, A) = eval(P ∗ Q, A).

Proof

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 106

Suppose isPoly(P, Fp, m, n, d) and isPoly(Q, Fp, k, n, e). We do a calculation, where over
a double sum the first index (in our case, j) is more significant.

eval(P, A) ∗ eval(Q, A) =

⎛⎝∑
j<m

(P1)jeval((P0)j , A)

⎞⎠(∑
i<k

(Q1)ieval((Q0)i, A)

)
(5.1)

=
∑

j<m,i<k

((P1)jeval((P0)j , A))((Q1)ieval((Q0)i, A)) (5.2)

=
∑

j<m,i<k

P〈1,j〉Q〈1,i〉eval((P0)j , A)eval((Q0)i, A) (5.3)

=
∑

j<m,i<k

(P ∗ Q)〈1,(j,i)〉eval((P ∗ Q)〈0,〈j,i〉〉, A) (5.4)

= eval(P ∗ Q, A) (5.5)

Line 5.2 works because of lemma 5.2.27. For line 5.4 note that (P ∗ Q)〈0,〈j,i〉〉 = P〈0,j〉 ∗
Q〈0,i〉, so proving the following claim suffices (note that this claim is basically the lemma,
but for monomials).

Claim 5.2.29 For monomials M and N such that isVector(M, n, d) and isVector(N, n, e),
we have:

eval(M, A) ∗ eval(N, A) = eval(M ∗ N, A).

To prove the claim, we show by induction on r up to n that:

eval((M ∗ N)<r, A) = eval(M<r, A) ∗ eval(N<r, A).

For the inductive step note the calculation:

eval((M ∗ N)<r+1, A) = A(M∗N)r
r eval((M ∗ N)<r, A)

= AMr
r ANr

r eval(M<r, A)eval(N<r, A)
= eval(M<r+1, A)eval(N<r+1, A)

The second equality uses the inductive hypothesis. The first and last equality, use
lemma 5.2.18.

�

Now in showing that evaluation respects products, note that we have a significant added re-
striction on the size of the parameters unlike in sums, requiring that both pr and mr exist. The

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 107

proof will follow the natural inductive proof. To show that a product of r polynomials evaluates
to the same value as the multiplied out polynomial, we essentially proceed by induction on r. The
formal proof will proceed by induction up to r on the one fixed polynomial sequence, depending on
the fact that the multiplied out polynomial is done in a certain order. The following lemma has a
proof similar in form to that of lemma 5.2.23, though it uses the properties of products.

Lemma 5.2.30 (Product respects Evaluation) We work in V0 + enum + ∆1,b
1 −CA. Suppose that

S is a polynomial sequence of length r, Q = polyProd(S), and A is an appropriate assignment,
all over the field Fp. Suppose pr and pb exist, where b is the degree of Q (the degree of the Si are
smaller). Then we can prove

eval(Q, A) = product(S(A)).

Proof

We now have a fixed S, S(A), and A, which will be parameters in our induction. It then
suffices to show by ∆1,b

1 −IND on k upto r that:

eval(polyProd(S<k), A) = product(S(A)
<k).

For the inductive step, note that:

eval(polyProd(S<k+1), A) = eval(Sk ∗ polyProd(S<k), A)
= (S(A))k ∗ product((S(A))<k)
= product((S(A))<k+1)

The first equality follows from lemma 5.2.25. The second equality uses the inductive
hypothesis and lemma 5.2.28. The last follows from lemma 4.5.9.

�

We can talk about polynomials that look different as being equal if they have the same values
for all variable assignments.

Definition 5.2.31 For polynomials P and Q, both over Fp and n variables, by (P ≡ Q) we mean:

∀A (isVector(A, n, p) ⇒ eval(P, A) = eval(Q, A).

In order to obtain the desired bounds we will be interested in a certain kind of polynomial
called multi-linear polynomials, which means that the largest degree of any variable is 1. To
refer to such polynomials we simply let isMLin(Q, Fp, m, n) state that isPoly(Q, Fp, m, n, 1). It often
suffices to just evaluate a polynomial at the field elements 0 and 1. In such a case x2

i = xi, so we

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 108

can replace xi to any power with simply xi as far as such evaluation is concerned. This process
yields a multi-linear polynomial and so we call it multi-linearizing. Given a polynomial P , we
let MLize(P) be the result of applying this process to P (i.e. replacing xe

i by xi); note that no
collection or rearrangement of the monomial terms occurs. Simply replacing nonzero exponents by
1 is easy, so we can Σ1,b

0 bit define MLize. Note that the multi-linearized polynomial preserves
evaluation for 0/1 values, and it is easy to show this (though we require the stronger theory in
order to have eval as a function).

Lemma 5.2.32 We work in V0 + enum + ∆1,b
1 −CA. Suppose P is a polynomial over Fp and n

variables. Suppose that isVector(A, n, 2). Then eval(P, A) = eval(MLize(P), A).

The goal of multi-linearizing is to arrive at a polynomial with fewer monomial terms. However
as defined we have the same number of monomial terms. The savings will come by consolidating
monomial terms that have the same monomial. For example, the polynomial 2x1x3+x2x3+3x1x3+
5x2x3 could be consolidated into the polynomial 5x1x3 + 6x2x3.

We will now discuss how to consolidate monomial terms in general, though we will only use
it in application to a multi-linearized polynomial. Suppose we have a polynomial P and we want
to consolidate its like monomial terms. One immediate difficulty is that two different polynomials
with the same structure tree may become polynomials with very different structure trees when all
the monomial terms are consolidated; it’s unclear how to account for this with simple trees. To
get around this we will define the simple tree structure of the consolidated polynomial in advance,
using a monomial sequence. Suppose we have a polynomial P such that isPoly(P, Fp, m, n, d), and
a monomial sequence M such that monSeq(M, k, n, e) with no repeated monomials, so they have
the same number of variables, but otherwise can be different (typically k < m). Also, suppose
that every monomial appearing in P appears in M . We define consolidate(P, M) to be the
unique polynomial with monomial sequence M that is equal (under evaluation) to P . To define
consolidate(P, M), we define its coefficients by freely using the sum function on the appropriate
coefficients of P , so we obtain the following lemma.

Lemma 5.2.33 consolidate is ∆1,b
1 definable in V0 + enum + ∆1,b

1 −CA.

Proof

Suppose isPoly(P, Fp, m, n, d) and isMonSeq(M, k, n, e) and ∀i < m ∃j < k (P0)i = Mj

and ∀i < j < k Mi �= Mj . We define Q := consolidate(P, M) such that isPoly(Q, Fp, k, n, e).
Q0 := M . The main part is to define (Q1)i for i < k. For each i, we consider monomial
Mi and let F enumerate all the b positions j < m such that Mi = (P0)j . Then define
(Q1)i :=

∑
j<b(P1)Fi(j), the sum of the appropriate coefficients from polynomial P .

�

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 109

And of course we want to know that we can prove a polynomial is equal to one of its consolidated
forms. Given that Q := consolidate(P, M), we want to show that P ≡ Q. To evaluate Q we basically
evaluate P under the rearrangement given by M . Since we can describe a bijection between these
two sums, they will be equal by lemma 4.5.6.

Lemma 5.2.34 V0 + enum + ∆1,b
1 −CA proves that if P is a polynomial and M is an appropriate

monomial sequence, then P ≡ consolidate(P, M).

Proof

Let P, M , and Q be as in the previous lemma. Let A be such that isVector(A, n, p).
Now we show that eval(P, A) = eval(Q, A).

eval(Q, A) =
∑
i<k

(Q1)ieval((Q0)i, A)

=
∑
i<k

(Q1)ieval(Mi, A)

The single coefficient (Q1)i is a sum of coefficients from P1 (say (Q1)i = (P1)b1 + . . . +
(P1)bi). We essentially want to expand out the last sum to express this. We will define
a vector R so that the last sum equals sum(R). Let b be the maximum bi, for i < k.
This can be defined by defining vector B such that Bi := number of monomials in P0

that equal Mi; we then set b equal to the maximum number in B. We can now define
R to be a vector of length kb, where Rx for x = 〈x1, x0〉, x1 < k, x0 < b, is defined to
be coefficient x0 in (Q1)x1 ; it is zero if there is no such coefficient. Now consider

eval(P, A) =
∑
j<m

(P1)jeval((P0)j , A).

By lemma 4.5.6, it suffices to define a bijection I from the above sum (a sum on a
length m vector) to R (a length kb vector). For I, given j < m, find i < k such that
(P0)j = Mi, and let F (as in previous lemma) count occurrences of Mi in P0. Suppose
(P0)j is occurrence y < b. I maps to 〈i, y〉 in R.

�

We now tie up the work on polynomials with linear algebra. The set of polynomials over
Fp with n variables, with degree ≤ d, is a vector space with the usual polynomial addition and
multiplication by scalars from Fp. A basis is the set of all monomials with degree ≤ d. We will
actually be concerned with a similar vector space: The same set of polynomials, except that we
only consider multilinear polynomials. Again, the set of all multilinear polynomials with degree
≤ d is a basis. Thus this multi-linear polynomial space has dimension

(
n
d

)
+
(

n
d−1

)
+ . . . +

(
n
0

)
.

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 110

We want to be able to express that a set of polynomials is linearly independent and then connect
this to the notion we have already discussed, the linear independence of a matrix. We now introduce
some terminology to discuss this.

The zero polynomial on n variables is the polynomial consisting of the single monomial, the
constant 0; we call this the zeroPoly. We can clearly Σ1,b

0 define such a polynomial and prove in V0

that it evaluates to zero for all variable assignments.

We will want to state that a set of polynomials is linearly independent. To facilitate this we
define a dot product operation on polynomials. Suppose S := 〈Sm−1, . . . , S0〉 is a polynomial
sequence and C := 〈Cm−1, . . . , C0〉 is a vector, both of length m and over Fp. Let C · S be the
polynomial Cm−1 ∗Sm−1 + . . .+C0 ∗S0; whether we mean vector or polynomial dot product will be
clear from context. Technically we define a polynomial sequence S′ to be the polynomial sequence
S in which (S′)i has its coefficients multiplied by Ci. We then do sumPoly(S′). C · S is defined by
a Σ1,b

0 simple tree definition in V0, so has a Σ1,b
0 bit definition.

Definition 5.2.35 Let linIndepPoly(S) be:

isSimplePolySeq(S, r, Fp, m, n, d) ∧ ∀C ((isVector(C, n, p) ∧ C · S ≡ zeroPoly) ⇒ C = 0̂ (mod p)).

We could now formulate a principle similar to the dimension principle, except for polynomials.
However we can essentially show how to reduce such a principle to the dimension principle already
given. Given a sequence of polynomials S, we say it is canonical if there is a single monomial
sequence 〈Mm−1, . . . , M0〉 such that every polynomial in S is expressed as a linear combination
cm−1Mm−1 + . . . + c0M0.

Definition 5.2.36 Let isCanonical(S) be: ∃M ∀i < len(S) (Si)0 = M .

In this case we can work with a sequence of coefficients (cm−1, . . . , c0) as if it is a polynomial by keep-
ing the fixed, ordered sequence of monomials in the background. We can consider S to be a sequence
of coefficient sequences, in other words a matrix. In general, if isSimplePolySeq(S, r, Fp, m, n, d) we
can associate a coefficient matrix to S, called CMatrix(S) . It is the r × m matrix in which
row i is the length m coefficient sequence of polynomial Si. CMatrix is Σ1,b

0 bit definable. If a
canonical polynomial sequence S happens to be linearly independent then so will this matrix. The
basic intuition is that for a canonical polynomial sequence, evaluation reduces to matrix operations.

Lemma 5.2.37 V0 + enum + ∆1,b
1 −CA proves:

isSimplePolySeq(S) ∧ isCanonical(S) ∧ linIndepPoly(S) ⇒ linIndep(CMatrix(S)).

Proof

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 111

Suppose S is of length r with each Si having m monomials. Let M be the monomial
sequence associated with S. Let B := CMatrix(S), an r × m matrix. Suppose C is
such that isVector(C, r, p) and 〈C〉 ∗ B = 0̂. It suffices to show that C · S ≡ zeroPoly,
meaning that for any variable assignment A, we should obtain eval(C · S, A) = 0. Let
M ′ be the length m vector obtained by applying eval to the monomial sequence M with
assignment A. Let E be the r × m matrix where entry (i, j) is B(i, j) ∗ (M ′)j mod p.
Thus the sum of row i, sum(Ei) = eval(Si, A). Let M∗ be the m × m diagonal matrix
in which M∗(i, i) = M ′

i , with zeroes for off-diagonal entries.

eval(C · S, A) = sum(〈C〉 ∗ E)
= sum(〈C〉 ∗ (B ∗ M∗))
= sum((〈C〉 ∗ B) ∗ M∗)
= sum(0̂ ∗ M∗)
= sum(0̂)
= 0

�

A typical application of this will be to model something by a canonical polynomial sequence of
length r, with m monomials. With modDim, to show r ≤ m, we just need to show the polynomial
sequence is linearly independent. Thus we will want to obtain canonical polynomial sequences.
For our application we in fact naturally begin with such a sequence, and then perform standard
operations like polyProd which preserve canonicity.

The proof of RCW

The original proof of the RCW theorem due to [19] used higher incidence matrices. We formalize
a simplified proof due to [3], based on polynomial vector spaces. We need to assume at least

(
n

‖L‖
)

exists to state it, but we assume a little more, that n‖L‖ exists (recall by lemma 2.4.4 this implies
that
(

n
‖L‖
)

exists).

Theorem 5.2.38 (RCW theorem formalized) V0 + enum + modDim + ∆1,b
1 −CA proves that if p is

a prime, and both n‖L‖ and p‖L‖ exist, then:

isIncidenceType(H, m, n, (L mod p), (L mod p)) ⇒ m ≤
(

n

‖L‖
)

+
(

n

‖L‖ − 1

)
+ . . . +

(
n

0

)
.

Note that if L has standard size then we already know n‖L‖ exists. The use of non-standard size
will be used by the Frankl and Wilson bound in the next chapter. In the typical case p ≤ n so

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 112

existence of p‖L‖ is guaranteed, but for some applications we don’t want to worry about whether
or not p ≤ n, so we explicitly require the existence of p‖L‖. By the sum

(
n

‖L‖
)
+
(

n
‖L‖−1

)
+ . . . +

(
n
0

)
we mean to define a length ‖L‖ + 1 vector of numbers and then sum it (we can not do this with
numbers coding sequences since knowing n‖L‖ exists only allows sequences with elements whose
size are about n).

First we sketch the informal proof. Suppose H = {H0, . . . , Hm−1} is our set system on ground
set [n]. For i �= j < m ‖Hi ∩ Hj‖ ∈ L (mod p) and for any i < m ‖Hi‖ �∈ L (mod p). For each
Hi ⊆ [n] we define a polynomial Pi on variables �x = x0, . . . , xn−1. Let Pi be:∏

a∈L

(�x · Hi − a),

where in �x · Hi we view Hi as a length n binary string and take the dot product (example:
〈x3, x2, x1, x0〉 · 〈0, 1, 1, 0〉 is x2 + x1). We now multiply out each Pi to get P̂i, a sum of monomial
terms. We then make a genuine modification to the P̂i by multi-linearizing them, arriving at P̃i.
While the Pi and P̂i are equal for all the variable assignments from Fp to the variables x0, . . . , xn−1,
the P̃i are only guaranteed to be equal for 0, 1 ∈ Fp. However this is enough to obtain the linear
independence of the P̃i. Now since the degree of the P̃i is at most ‖L‖, they are contained in a
space of polynomials with basis of size

(
n

‖L‖
)

+
(

n
‖L‖−1

)
+ . . . +

(
n
0

)
, thus obtaining the bound.

Now we give the formal proofs. Let s abbreviate
(

n
‖L‖
)
+
(

n
‖L‖−1

)
+ . . .+

(
n
0

)
. Fix an appropriate

set system H. For each set Hi, for i < m, we want a polynomial that looks like Pi. We will define
a simple tree P , so that Pi will be a polynomial sequence whose product will correspond to Pi. Let

t := m ‖L‖ 2�
n + 1 n 1

�n + 1 p

Let F enumerate the 1’s of L ⊆ [n+1]. Pi will correspond to
∏

a∈L(�x ·Hi−a) and (Pi)r corresponds
to (�x ·Hi −F (r)). All our polynomials will be based on the single length n + 1 monomial sequence
〈1, xn−1, . . . , x0〉. Thus polynomial (Pi)r consists of n + 1 monomials where monomial k < n is the
single variable xk and monomial n is just the constant 1. The monomial sequence is independent
of which polynomial and polynomial sequence we are in. So P〈i,r,0〉 refers to the length n + 1
monomial sequence, where the kth monomial P〈i,r,0,k〉 is of the form x

dn−1

n−1 . . . xd0
0 , where at most

one of dn−1, . . . , d0 may equal 1, the rest being zero, so we have the bound of 1 on the exponent of
a variable. Using F as a parameter, we can give a Σ1,b

0 simple tree description of P , as follows:

P〈m,r,1,k〉 :=

⎧⎨⎩
−F (r) if k = n
1 if k < n and H〈m,e〉 = 1
0 otherwise

P〈m,r,0,k,e〉 :=
{

1 if k = e
0 otherwise

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 113

We now want to multiply out each of these m polynomial sequences Pi, for i < m, to obtain the
polynomials P̂i; thus from P , the sequence of polynomial sequences, we will define P̂ , a polynomial
sequence. We define structure tree s :=

m 2�
(n + 1)‖L‖ n ‖L‖

�
(n + 1)‖L‖ p

We define P̂ to be the Σ1,b
0 simple tree described by

(P̂)i := polyProd(Pi).

All our polynomials will eventually relate back to evaluating on P , so given a variable assign-
ment A (that is isVector(A, n, p)), by E(A) we mean the length m vector such that (E(A))i :=
product((Pi)(A)). Since products respect evaluation (lemma 5.2.30), eval(P̂i, A) = (E(A))i. This is
allowed because n‖L‖ and pb exist, where b is the degree of P̂i (note that b ≤ ‖L‖ so the existence
of pb follows from the existence of p‖L‖). Since for j < m, Hj is a 0/1 vector (so isVector(Hj , n, p)
holds), we can evaluate the polynomials at assignment Hj . Consider eval(P̂i, Hj). If i �= j, then it
will evaluate to 0; if i = j it will evaluate to a non-zero number.

If i �= j then ‖Hi ∩ Hj‖ ∈ L (mod p); let a ∈ L be a number such that ‖Hi ∩ Hj‖ =
a (mod p). Thus an element in the sequence P

(Hj)
i corresponds to evaluating (Hj ·

Hi − a) = (‖Hj ∩ Hi‖ − a) = 0 (mod p). A product with a zero entry is zero, so
eval(P̂i, Hj) = product(P (Hj)

i) = 0.

If i = j then every element of P
(Hj)
i corresponds to an expression (Hi · Hi − a),

where ‖Hi‖ = Hi · Hi �= a (mod p), so we have a product of non-zero numbers, thus
eval(P̂i, Hj) = product(P (Hj)

i) �= 0.

We now multi-linearize, letting (P̃)i := MLize(P̂i). As it stands P̃ has a monomial sequence of
length (n + 1)‖L‖, the same as P̂ . To get a bound improvement we will consolidate P̃ relative to
the monomial sequence M . By M we mean the sequence of

(
n

‖L‖
)
+ . . .+

(
n
0

)
multilinear monomials

with ≤ ‖L‖ variables (of power 1) per a monomial. A key point is that this monomial sequence
M can be defined by use of the function setNumber which we showed we could work with in this
context. We then consolidate P̃ with respect to M , letting Di := consolidate(P̃i, M). Using lemmas
5.2.34 and 5.2.32 we have that for any binary vector Hj ,

eval(Di, Hj) = eval(P̃i, Hj) = eval(P̂i, Hj) = E(Hj).

CHAPTER 5. SET SYSTEMS IN BOUNDED ARITHMETIC 114

Now we want to apply modDim to D. D is a canonical polynomial sequence. Now we show
linIndepPoly(D). Consider any C such that isVector(C, m, p) and suppose C ·D ≡ zeroPoly. For any
i < m,

0 = eval(C · D, Hi) = C · E(Hi) = aCi,

where a �= 0, thus C is the zero vector 0̂. Since D is a canonical, linearly independent polynomial
sequence, the m × s matrix CMatrix(D) is linearly independent so by modDim, m ≤ s =

(
n

‖L‖
)

+(
n

‖L‖−1

)
+ . . . +

(
n
0

)
), finishing the proof.

Then we get the corollary to the RCW theorem, also used in the Frankl and Wilson bound. A
key assumption below is the existence of a prime larger than an arbitrary number. While provable
in S2, this question is open for I∆0 and so also for V0. In our application later we will have such a
prime.

Corollary 5.2.39 V0 + enum + modDim + ∆1,b
1 −CA proves that if n‖L‖ exists and there exists a

prime p larger than k �∈ L, such that p‖L‖ exists then:

isIncidenceType(H, m, n, {k}, L) ⇒ m ≤
(

n

‖L‖
)

+
(

n

‖L‖ − 1

)
+ . . . +

(
n

0

)
.

Proof

Since p > k, where k is the size of a set in the set system, L is the same as L (mod p),
so intersections are in L (mod p). Since k �∈ L, no set size is in L (mod p). Now we
apply the above theorem.

�

Chapter 6

Ramsey Theory in Bounded
Arithmetic

We touched on Ramsey theory in chapter 3, formalizing the probabilistic method to show that
S1

2 + rWPHP(Σb
1) proves a formalization of R2(k) > 2k/2. While that proof was non-constructive,

we will formalize some constructive Ramsey lower bounds in section 6.3. In section 6.4 we will
translate the result from the first order context into the second order context so that they can all
be compared. In section 6.1 we will discuss Ramsey upper bounds, improving the bounds given
by Pudlák. In section 6.2 we consider some reversals, showing that some Ramsey upper bound
statements imply the principles used to prove them.

6.1 Ramsey Upper Bounds

Pudlák [40] showed that bounded arithmetic can prove a formalization of the upper bound of
Rr(k) ≤ rrk. First we improve this bound to Rr(k) ≤ (1 + ε) (rk−r)!

((k−1)!)r ≈ rrk (1+ε)

rr−1/2(k−1)(r−1)/2
√

2π
r−1 .

The last approximate equality uses Stirling’s formula, a form of which can be proven in S1
2 by the

work of [29, appendix]. Note that for the special case of r = 2, we get R2(k) ≤ (1+ ε)
(
2k−2
k−1

)
, which

is about the best known even for this special case. However, for the special case of k = 3, this
bound yields only Rr(3) ≤ (1 + ε) (2r)!

2r . We provide a special argument catered to this case that
improves this further to Rr(3) ≤ 3(1 + ε)(r!), which is about the best known.

Throughout this section we will formalize the statements of the form Ramsey(H, n → (k)r),
where H is a three place relation symbol (recall definition 3.1.1). Thus we will work in the theories
relativized to H.

115

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 116

6.1.1 General Improvement

Now we consider the general case, showing the following.

Theorem 6.1.1 There is a Σb
2(H) formula ψ(H) such that S2

2(H) + fWPHP(ψ(H)) proves

Ramsey(H, (1 + ε)
(rk − r)!

((k − 1)!)r
→ (k)r).

First we note how this theorem leads to a corollary.

Corollary 6.1.2 T4
2(H) proves Ramsey(H, (1 + ε) (rk−r)!

((k−1)!)r → (k)r).

Proof

By theorem 6.1.1, it suffices to show that T4
2(H) proves fWPHP(ψ(H)) for ψ being Σb

2(H).
We know that T2

2(R) proves fWPHP(R), so for ψ(H) replacing R in the Σb
2(R) induction

axioms, we can push negations in and pull out quantifiers to see that it suffices to have
Σb

4(H) induction.

�

We now prove theorem 6.1.1, following Pudlák’s argument (we also follow the presentation in
Kraj́ıček [33], theorem 12.1.3).

Assuming the Ramsey principle is false allows us to define an injection from the the set of
vertices to a smaller set of sequences. Such an injection will violate the fWPHP, giving us our
desired contradiction. Our set of vertices is [(1 + ε) (rk−r)!

((k−1)!)r], which we will map to the set of
sequences with elements from [r] and no more than k − 2 of any number (let’s call such sequences
“good”). To this point the argument will be the same as Pudlák’s. We shall then diverge by
mapping the good sequences to (rk−r)!

((k−1)!)r , so the composition of these two maps is an injection from

(1 + ε) (rk−r)!
((k−1)!)r to (rk−r)!

((k−1)!)r , violating fPHP
(1+ε)n
n . We formalize the notion of good sequences as

follows.

Definition 6.1.3 For small a0, . . . , ar−1 and r, let Gooda0,...,ar−1(x) be a ∆b
1 (in S1

2) formula ex-
pressing that x is a sequence with elements from [r] having at most ai i’s.

Since the parameters are small, the counting can be carried out by asserting the existence of
small sets, so Σb

1 suffices. Since we can also express the predicate by a provably (in S1
2) equivalent

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 117

Πb
1 formula, the predicate’s complexity is ∆b

1. For convenience we will use the informal notation
Gooda0,...,ar−1 to mean the set of all strings x such that Gooda0,...,ar−1(x). When we refer to functions
as having the set Gooda0,...,ar−1 as its range, we really mean that any value y the function takes on
makes Gooda0,...,ar−1(y) hold. A similar point holds for the domain of a function.

First, working in S2
2(H), we shall repeat Pudlák’s argument, describing the first map, from the

set of vertices, (1 + ε) (rk−r)!
((k−1)!)r , to the set of good sequences, Goodk−2,...,k−2, under the assumption

that H is an r-coloring of the edges with no size k monochromatic set. To aid the process we define
a Πb

1(H) relation E with 2 sequences as arguments. The first is a sequence of vertices; the second
is a sequence of colors (i.e. numbers from [r]).

E(〈x0, . . . , xh〉, 〈δ0, . . . , δh−1〉) holds if

x0 = 0 ∧
x0 < x1 < . . . < xh ∧
∀i < j ≤ h H(xi, xj , δi) ∧
∀i < h∀y < xi+1 ∧ y > xi ∃j ≤ i ¬H(xj , y, δj)

In words, E says that we start with x0 = 0 and let x1 be the smallest numbered vertex such that
edge {x0, x1} is colored δ0; x2 is the next smallest such that edge {x1, x2} is colored δ1 and edge
{x0, x2} is colored δ0, and so on. Given x < (1+ε) (rk−r)!

((k−1)!)r we define F (x) to be the unique sequence

δ such that for some 〈x0, . . . , xh〉 we have E(〈x0, . . . , xh〉, δ), where xh = x. We can show, using
Σb

2(H)−LIND, that F is a well-defined, injective function; we only need length induction because
the pertinent parameter in the inductive proofs is the length of the sequences, and such lengths
are small. To show its range is indeed Goodk−2,...,k−2 consider what would happen if δ had any
color repeated k − 1 times, at say δi1 = . . . = δik−1

, for i1 < . . . < ik−1 < h. Then the edges of
{xi1 , . . . , xik−1

, xh} would all be colored δi1 , thus yielding a size k monochromatic set, violating our
assumption. For the formula ψ(H, x, δ) called for in the theorem, we take the Σb

2(H) definition of
F (x) = δ, namely ∃〈x0, . . . , xh〉 xh = x ∧ E(〈x0, . . . , xh〉, δ).

Now we define the map f , from Goodk−2,...,k−2 to (rk−r)!
((k−1)!)r . We will refer to general small pa-

rameters as this facilitates the inductive arguments, and then in the end we will substitute k−2 for
these parameters. For small parameters, let G(a0, . . . , ar−1) = (a0+...+ar−1+r)!

(a0+1)!...(ar−1+1)! − 1, an approxima-
tion of the size of Gooda0,...,ar−1 ; the particular expression allows for the calculations to work out
easily. An inductive proof shows that G(a0, . . . , ar−1) is an integer, which facilitates the argument
since the fWPHP deals with functions on integers. If any ai = −1 we define G(a0, . . . , ar−1) = 0.
We can see that for ai ≥ 0, G satisfies the following recursive bound.

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 118

G(a0, . . . , ar−1) ≥ 1 + G(a0 − 1, a1, . . . , ar−1)
+G(a0, a1 − 1, a2, . . . , ar−1)
+ . . .

+G(a0, . . . , ar−2, ar−1 − 1)

To avoid confusion, note that for what follows, at most one parameter among any particular
list a0, . . . , ar−1 may have the number 1 subtracted from it. We define the function fa0,...,ar−1 (a
function from Gooda0,...,ar−1 to [G(a0, . . . , ar−1)]) with the following recursive formulas (Notation:
though in a first order context we reuse “ � ” for concatenation and 〈〉 for the empty sequence).

Definition 6.1.4

• fa0,...,ar−1(〈〉) = 0

• fa0,...,ar−1(x � i) = 1 + fa0,...,ai−1,...,ar−1(x)
+ G(a0 − 1, a1, . . . , ar−1)
+ . . .
+ G(a0, . . . , ai−1 − 1, . . . , ar−1)

Note that the definition of fa0,...,ar−1 is Σb
1 since we only require a recursion with a0 + . . .+ar−1

steps (a small number), which can be carried out using a short sequence that can be coded by a
number.

Claim 6.1.5 For a0, . . . , ar−1 ≤ k − 2, and any sequence x such that x ∈ Gooda0,...,ar−1, we have
fa0,...,ar−1(x) < G(a0, . . . , ar−1).

Proof

This proof is by induction on the length of the sequence x. To carry this out we use
sqbd(s, l) to indicate a function whose value is larger than any number x, where x codes
a sequence of length ≤ l whose elements are values ≤ s (developed in [9]). Let φ(d) be
the following Πb

1 formula.

∀x < sqbd(r, (k−2)r)∀a < sqbd(k−2, r) len(x) = d∧Gooda(x)∧y = fa(x) ⇒ y < G(a)

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 119

Working in S1
2 we can use Πb

1−LIND on φ. We indicate how the inductive step works.
Consider some allowed x and a where len(x) = d and the last element in the sequence
x is i; so x = x′ � i.

fa0,...,ar−1(x) = 1 + fa0,...,ai−1,...,ar−1(x
′) + G(a0 − 1, a1, . . . , ar−1) +

. . . + G(a0, . . . , ai−1 − 1, . . . , ar−1)
< 1 + G(a0 − 1, a1, . . . , ar−1) +

. . . + G(a0, . . . , ai − 1, . . . , ar−1)
≤ G(a0, . . . , ar−1)

The inductive hypothesis justifies the first inequality since len(x′) = d− 1. The second
inequality follows from the recurrence on G. Induction yields ∀d φ(|d|). We can find d
such that |d| = a0 + . . . + ar−1, since all the parameters are small, so we are done.

�

Claim 6.1.6 For any x, y ∈ Gooda0,...,ar−1, such that x �= y, fa0,...,ar−1(x) �= fa0,...,ar−1(y).

Proof

We proceed by induction on the sequence lengths of x or y, using a Πb
1 formula similar

to the one in the last proof. We point out how the inductive step works. Suppose
x = x′ � i and y = y′ � j. If i = j then once we use the definition of f , we can apply
the inductive hypothesis. If i �= j, assume i < j, and then we can calculate.

fa0,...,ar−1(x
′ � i) = 1 + fa0,...,ai−1,...,ar−1(x

′) + G(a0 − 1, a1, . . . , ar−1) +
. . . + G(a0, . . . , ai−1 − 1, . . . , ar−1)

< 1 + G(a0 − 1, a1, . . . , ar−1) +
. . . + G(a0, . . . , ai − 1, . . . , ar−1)

≤ fa0,...,ar−1(y
′ � j)

The first inequality follows from claim 6.1.5 and last from the definition of f .

�

Now we turn back to the particular case of a0 = . . . = ar−1 = k − 2. The function fk−2,...,k−2 is
injective by claim 6.1.6. From claim 6.1.5 we see that it has the desired the range of (rk−r)!

((k−1)!)r . And
so we have finished approximately counting the set of good sequences.

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 120

6.1.2 Special Case: k = 3

We now consider the special case of k = 3. It is already covered in the above case by counting the
set Good1,...,1, sequences with elements from [r], having no repeated elements. We will now count
this set more efficiently, bounding its size by 3(r!), which yields the following theorem.

Theorem 6.1.7 There is a Σb
2(H) formula ψ(H) such that S2

2(H) + fWPHP(ψ(H)) proves

Ramsey(H, 3(1 + ε)(r!) → (3)r).

The following corollary is proved in a similar way to corollary 6.1.2.

Corollary 6.1.8 T4
2(H) proves Ramsey(H, 3(1 + ε)(r!) → (3)r).

To prove theorem 6.1.7, we proceed as in the proof of theorem 6.1.1, working in S2
2(H) to map

3(1 + ε)(r!) to Good1,...,1. Now we carry out the counting, describing a mapping ρ from Good1,...,1

to 3(r!). The rest of the argument can be carried out in S1
2(H). We will use (r)m to denote the

product r(r − 1) . . . (r − m + 1).

Let ρ(〈a1, . . . , ak〉) = (r)0 + (r)1 + . . . + (r)k−1 + gr(〈a1, . . . , ak〉); we will define gs momentarily.
We assume that a1 > a2 > . . . > ak since if not we can define a map in S1

2 that rearranges it as
such. Now we define gs recursively as follows.

• gs(〈〉) = 0

• gs(〈a1, . . . , ak〉) = (a1)(s − 1)(k−1) + gs−1(〈a2, . . . , ak〉)

The definition of ρ is Σb
1 since the recursion is defined on short sequences. To show ρ is injective

with proper range it suffices to prove the following two claims about g. Both proofs use induction
on the sequence length, similar to the last subsection, but in this case Πb

1−LIND suffices since we
need not refer to the Σb

1 formula Good (as was done for the formula φ(d) in claim 6.1.5).

Claim 6.1.9 gs(〈a1, . . . , ak〉) < (s)k, for ai ≤ s − i.

Proof

Proceed by induction on k, the length of the sequence.

gs(〈a1, . . . , ak〉) = (a1)(s − 1)k−1 + gs−1(〈a2, . . . , ak〉)
< (a1)(s − 1)k−1 + (s − 1)k−1

= (a1 + 1)(s − 1)k−1

≤ s(s − 1)k−1

= (s)k

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 121

�

Claim 6.1.10 For any small k and s, gs is injective on length k sequences 〈a1, . . . , ak〉 such that
ai ≤ s − i.

Proof

We use induction on k.

For 〈a1, . . . , ak〉 �= 〈b1, . . . , bk〉, we will show that gs(〈a1, . . . , ak〉) �= gs(〈b1, . . . , bk〉). If
a1 = b1, then we have:

gs(〈a1, . . . , ak〉) = (a1)(s − 1)k−1 + gs−1(〈a2, . . . , ak〉) and
gs(〈b1, . . . , bk〉) = (b1)(s − 1)k−1 + gs−1(〈b2, . . . , bk〉).

By the inductive hypothesis gs−1(〈a2, . . . , ak〉) �= gs−1(〈b2, . . . , bk〉), finishing this case.

Now consider the case of a1 �= b1; assume a1 < b1 and we show gs(〈a1, . . . , ak〉) <
gs(〈b1, . . . , bk〉).

gs(〈a1, . . . , ak〉) = (a1)(s − 1)k−1 + gs−1(〈a2, . . . , ak〉)
< (a1)(s − 1)k−1 + (s − 1)k−1

= (a1 + 1)(s − 1)k−1

≤ (b1)(s − 1)k−1

≤ (b1)(s − 1)k−1 + gs−1(〈b2, . . . , bk〉)
= gs(〈b1, . . . , bk〉)

�

Now to check that the range is correct we use the following bound (note that we use 3, rather
than e since it allows for a simple inductive proof in bounded arithmetic).

Lemma 6.1.11 S1
2 proves that for small r, (1/0! + 1/1! + . . . + 1/r!) < 3.

Proof

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 122

We show by induction on r show that (1/0! + 1/1! + . . . + 1/r!) < 3 − 2/(r + 1)! For
the inductive step, assuming the above, consider (1/0! + 1/1! + . . . + 1/r! + 1/(r + 1)!).
Using the inductive hypothesis, we bound the sum by 3 − 2/(r + 1)! + 1/(r + 1)! =
3 − 1/(r + 1)! ≤ 3 − 2/(r + 2)!

This argument goes through in S1
2 since the induction is on a Σb

1 formula expressing the
existence of a sum along with a bound.

�

So the range is [3(r!)] since

ρ(〈a1, . . . , ar〉) < (r)0 + . . . + (r)r

= r!(1/0! + 1/1! + . . . 1/r!)
< 3(r!).

The last inequality follows from lemma 6.1.11 finishing the proof.

In all the cases, the Ramsey principles can be proved in T4
2(H). Chiari and Kraj́ıček [10] show

that a Ramsey principle cannot be proved in S2
2(H); the same kind of argument can be applied to

all our Ramsey principles. Thus it is an open question as to where exactly the Ramsey principles
fit in the hierarchy S1

2(H) ⊆ T 1
2 (H) ⊆ S2

2(H) ⊆ T 2
2 (H) ⊆ . . . ⊆ S2(H). This will be further discussed

at the end of the next section.

6.2 The Ramsey Reversals

We will consider two reversals spending the bulk of the section on the first one. In the first reversal
we show how the Ramsey principle (for k = 3) implies the fWPHP. We sketch the idea behind
the proof now. Suppose for contradiction that fPHP2n

n does not hold; in fact we can replace 2n by
a larger quantity, q(n) (to be defined). So we have an injective function from q(n) to n. Assume
that n = 2r for some r. We constructively exhibit an r-coloring of the graph on n vertices with no
size 3 monochromatic set. Using our injective function we pull this coloring back to an isomorphic
r-coloring for the graph on q(n) vertices. Since the function is injective, this new coloring also has
no size 3 monochromatic set. We in fact have that q(n) > r3r, so since (r3r → (3)r) holds, we know
there is a size 3 monochromatic set. We have arrived at a desired contradiction.

To prove our reversal we will formalize the constructive lower bound of Rr(3) > 2r. The proof,
as pointed out in [26, p.145] goes through easily by induction on r. For the inductive step we start
with two (r−1) colored graphs, each with 2r−1 vertices and no monochromatic sets of size 3. They
are joined by edges of a new color, giving us the appropriate graph on 2r vertices. The construction
we give, based on this argument, essentially takes as its vertices the binary strings of length r, and

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 123

colors edges according to the first bit (from the right) at which two strings differ (recall that ui

refers to the ith bit in the binary representation of u).

Definition 6.2.1 Let Low(x, y, k) be the Σb
0 formula:

(∀i < max(|x|, |y|) (i < k ⇒ xi = yi)) ∧ xk �= yk.

Now we can prove that Low really is a lower bound coloring.

Lemma 6.2.2 S1
2 proves ¬Ramsey(Low, 2r → (3)r).

Proof

Fix some small r. S1
2 proves for all X = {u, v, w} ⊆ [2r], ¬monochromatic(Low, X, 2r, r).

Consider any color d < r, and we show that X is not colored just by d. If ud = vd then
edge {u, v} is not colored by d, so assume ud �= vd. Then wd has to equal one of ud or
vd, so not all the edges can be colored d.

We prove coloring(Low, 2r, r) by length induction up to r, noting that for x < y < 2r,
the first bit where they differ will be at a unique position d < r.

�

Definition 6.2.3 For notational convenience let q(x) := r3 log 2x.

Theorem 6.2.4 Let i ≥ 1. For any formula φ(R) of complexity Σb
i(R), there is a formula ψ(R) of

complexity Σb
i(R) such that

S1
2(R) + ∀r Ramsey(ψ(R), r3r → (3)r) proves ∀n fPHP

q(n)
n (φ(R)).

Proof

Let ψ(x1, x2, k) be the Σb
i(R) formula:

∃y1, y2 < 2r (φ(R, x1, y1) ∧ φ(R, x2, y2) ∧ Low(y1, y2, k)).

To show fPHP
q(n)
n (φ(R)) fix some n and find the r such that 2r−1 ≤ n < 2r; note that r

is small.

Assume ¬fPHP
q(n)
n (φ(R)), so φ(R) is a total injective function from q(n) to n. Showing

¬Ramsey(ψ, r3r → (3)r) finishes the proof, so it suffices to show the following 2 claims.

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 124

Claim 6.2.5 S1
2(R) proves coloring(ψ, r3r, r).

Claim 6.2.6 S1
2(R) proves ∀x1 < x2 < x3 < r3r ¬monochromatic(ψ, {x1, x2, x3}, r3r, r).

To prove the first claim, consider any edge given by x1, x2 < r3r. Note that x1 < r3r =
q(2r−1) ≤ q(n), therefore, x1 is mapped by φ(R) to a number y1 < n < 2r. Similarly, x2

is mapped to some y2 < 2r. By lemma 6.2.2, Low assigns a color to the edge (y1, y2),
so (x1, x2) is also assigned a color.

To prove the second claim, for j = 1, 2, 3, let yj < 2r be such that φ(R, xj , yj). The set
{y1, y2, y3} is not monochromatic by lemma 6.2.2, therefore neither is {x1, x2, x3}, since
the latter set is colored in the same manner as the former.

�

Now, theorem 6.2.4 together with theorem 2.3.4 immediately yields the following theorem, the
reversal.

Theorem 6.2.7 (Reversal to weak pigeonhole principle) Let i ≥ 1, and φ(R) be a formula
of complexity Σb

i(R). Then there is a formula ψ(R) of complexity Σb
i(R) such that

S1
2(R) + Ramsey(ψ(R), r3r → (3)r) proves fWPHP(φ(R)).

Note a special case of particular interest if we take φ(R) to be simply R; then the above theorem
tells us that there is a Σb

1(R) formula with the appropriate proof going through in S1
2(R). From this

fact we can obtain the following independence result.

Corollary 6.2.8 There is a Σb
1(R) formula ψ(R) such that S2

2(R) does not prove

Ramsey(ψ(R), r3r → (3)r).

Proof

We take the ψ from theorem 6.2.7, for i = 1, so that if S2
2(R) did prove the Ramsey

statement, it would also prove fWPHP(R) (in fact R can be replaced by Σb
1(R)). How-

ever as mentioned earlier (see remarks following theorem 2.3.3), this is known to be
unprovable in S2

2(R).

�

However, the argument of Chiari and Kraj́ıček [10] can be applied to give a proof of the following
stronger result.

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 125

Theorem 6.2.9 (essentially [10]) S2
2(H) does not prove Ramsey(H, r3r → (3)r).

The reversal of theorem 6.2.7 can be mildly improved upon, using basically the same argument
and the same lower bound. As long as k (the size of the monochromatic set we are looking for)
is a constant larger than 2 (it was 3 above), or even uniform in the statement, but polynomially
bounded in r, the lower bound used for k = 3 is good enough to get the reversal. However other
reversals of this kind seem difficult to obtain. The difficulty is apparent by considering two key
ingredients for obtaining a reversal in this manner: 1) The lower bound is constructive and 2) the
upper bound is not too much larger than the lower bound (for example, in the above argument we
had 2r < Rr(3) ≤ r3r, and the bounds were related by the term q(x) in the sense that r3r ≤ q(2r)).
If we consider the typical case of R2(k), we have an upper bound of 22k, but the best known
constructive lower bound is about R2(k) ≥ e(log2 k)/(log log k) (see [25]). The bounds are too far
apart to obtain a reversal by these methods.

We now consider a different kind of reversal (suggested by Stephen Simpson), obtained from a
different Ramsey principle. Up to this point we have considered Ramsey principles in which the
upper bound is explicitly given. Now we consider the case in which the appropriate number is only
asserted to exist, namely ∀r∃nRamsey(H, n → (3)r). This can easily be proven with the axiom EXP.
The reversal is something like a converse, where the Ramsey principle is replaced by a schema (we
put Σb

0 in place of the relation symbol H to indicate that the principle holds for all Σb
0 formulae).

Theorem 6.2.10 (Reversal to EXP) S1
2 + ∀r∃n Ramsey(Σb

0, n → (3)r) proves EXP.

Proof

We actually only use the Ramsey principle for the formula Low (a Σb
0 formula). Given r

there is an n such that Ramsey(Low, n → (3)r). To show EXP it suffices to show r < |n|.
It is a general fact that for b ≥ a, Ramsey(H, n → (k)b) implies Ramsey(H, n → (k)a).
So if r ≥ |n|, we would arrive at Ramsey(Low, n → (3)|n|), but we in fact have that
¬Ramsey(Low, n → (3)|n|) (basically by the argument of lemma 6.2.2). Thus r < |n| as
desired.

�

Though this result is not unexpected, note the significance of the constructive lower bound. It
would seem difficult to prove related results with different Ramsey principles in which the construc-
tive lower bounds are not good enough.

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 126

6.3 Constructive Lower Bounds

We now discuss constructive Ramsey lower bounds. We will begin by discussing our notation for
Ramsey theory in the second order context. Then we will formalize increasingly better bounds.
We will consider the well-known constructive Ramsey lower bound due to Frankl and Wilson [25]
which uses linear algebra and can be formalized using the dimension principle. However first we
will consider some weaker bounds which can be formalized without the dimension principle.

To formalize this we essentially use the adjacency matrix representation of a graph. Given an
edge coloring (with r colors) of a complete graph with vertex set [n], we can represent this as an
n × n matrix (rows and columns are labeled by [n] in increasing order) in which entry (i, j) is the
color (i.e. a number from [r]) of the edge connecting vertices i and j; we ignore what happens on
the diagonal entries (i, i). Notice that the matrix is symmetric. Now we can give the definition of
the Ramsey arrow notation for second order logic, putting a “2” in the various notation to indicate
second order logic (since we use the same names as used in the first order context).

Definition 6.3.1

• Let coloring2(G, n, r) be:

isMatrix(G, n × n, r) ∧ ∀i < j < n (Gi)j = (Gj)i.

• Let monochromatic2(H, X, n, r) be: ∃d < r ∀u �= v ∈ X ((Gu)v) = d.

• Let Ramsey2(G, n → (k)r) be

coloring2(G, n, r) ⇒ ∃X ⊆ [n] (size(X) = k ∧ monochromatic2(G, X, n, r)).

We consider the simple constructive lower bound of R2(k) > (k − 1)2. To prove it we describe
a 2-coloring, G, on (k − 1)2 vertices with no size k monochromatic set. Group the vertices into
(k−1) groups, each of size (k−1). Make the colors of edges within a group red, and those between
groups blue. A red monochromatic set must be contained in a single group, so has size ≤ (k − 1).
A blue monochromatic set can have at most one vertex per a group, so has size ≤ (k − 1). We can
formalize this as follows.

Proposition 6.3.2 V0 + PHP proves ∃G ¬Ramsey2(G, (k − 1)2 → (k)2).

Proof

We can give a Σ1,b
0 description of matrix G according to the above description as follows.

We can take the vertices u < (k − 1)2 to be pairs 〈a, b〉 with a, b < k − 1, so group i
(i < k−1) is the set of pairs with a first entry i; we define G as described above so that

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 127

it is a coloring. Now suppose for contradiction that we have X ⊆ [n], and F such that
CF(F, k → X). If X is monochromatic red (i.e. contains pairs all with the same first
element), then we can inject X into the values of its second entry, giving us an injection
k ↪→ (k− 1), contradicting PHP. If X were monochromatic blue, every pair would have
a different first element, so we could again inject k ↪→ (k − 1).

�

We will now beat this bound, working in the same theory, though the proof is more complicated.
Nagy [37] discovered a better constructive Ramsey lower bound, showing that R2(k) >

(
k−1
3

)
. To

prove this we describe a graph G with
(
k−1
3

)
vertices, each vertex being a size 3 subset of [k − 1].

For 2 vertices u, v ⊆ [k − 1], if ‖u ∩ v‖ = 1 then color the edge between them red; otherwise
the intersection is 0 or 2, and we color the edge blue. A monochromatic red set corresponds to
a type ({3}, {1}, k − 1) set system and so has at most k − 1 sets by the Fisher Inequality (in
fact we can apply theorem 5.1.5 to this case). A monochromatic blue set corresponds to a type
({3}, {0, 2}, k − 1) set system, so by the Oddtown theorem it has at most k − 1 sets (in fact we
can apply the special case of theorem 5.1.2). Thus no size k set is monochromatic. We can easily
define this graph in V0 and then the two results we cited use V0 +PHP, thus we have the following
theorem.

Theorem 6.3.3 V0 + PHP proves ∃G ¬Ramsey2(G,
(
k−1
3

)→ (k)2).

Recall that the only known proofs of the Fisher Inequality and the Oddtown theorem use linear
algebra. The alternative proofs (i.e. avoiding linear algebra) we obtained for special cases is what
allows us to formalize the above theorem using only V0 + PHP.

Now we move on to Frankl and Wilson’s constructive lower bound of R2(k) ≥ e((1−ε) ln2 k)/(4 ln ln k);
we will modify the bound, using “2” instead of “e” and log2 instead of ln (i.e. loge). The main ideas
are contained in the coming lemma 6.3.6, from which theorem 6.3.7 will follow by a calculation.
A key step in this calculation is Bertrand’s postulate, which says that for any natural number n,
there is a prime number p such that n < p ≤ 2p. Paris, Wilkie, and Woods [39] showed that for
some standard c, S2 can prove that there is a prime between n and nc, thus proving the infinitude
of the primes. In I∆0 the infinitude of the primes is an open question. However D’Aquino showed
the following special case of Bertrand’s postulate, which suffices for our purposes.

Theorem 6.3.4 (Bertrand’s Postulate [14]) I∆0 proves that if 2x exists then

(∃p x < p ≤ 2x) ∧ prime(p).

The following lemma gives a bound we will use.

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 128

Lemma 6.3.5 V0 + enum + ∆1,b
1 −CA proves that if

(
n
k

)
exists and k ≤ (n/2), then(

n

k

)
+
(

n

k − 1

)
+ . . . +

(
n

0

)
≤ 2
(

n

k

)
.

The lemma can be proved by showing the stronger claim of(
n

k

)
+
(

n

k − 1

)
+ . . . +

(
n

0

)
≤ (1 +

k

n − 2k + 1
)
(

n

k

)
,

using induction on k.

Lemma 6.3.6 We work in the theory V0 + enum + modDim + ∆1,b
1 −CA. Let p be a prime, and

suppose
(p3

p2−1

)
exists. Then we can prove that:

∃G ¬Ramsey(G,

(
p3

p2 − 1

)
→ (2
(

p3

p − 1

)
)2)

First we discuss the informal proof. We construct the graph G with
(p3

p2−1

)
vertices, by letting its

vertex set be the collection of size p2 − 1 size subsets of [p3]. For two distinct vertices u, v ⊆ [p3],
we color the edge between them red if ‖u ∩ v‖ �= p − 1 (mod p) (i.e. it is equal (mod p) to one of
0, 1, . . . , p−2). We color the edge blue otherwise (that is, in the case that ‖u∩v‖ = p−1 (mod p)).

Suppose X is a set of vertices of G which is monochromatic red. Then X is in fact a type
(L (mod p), L (mod p), p3) set system, where L := {0, 1, . . . , p − 2} (notice that the sets are all of
size p2 − 1 = p − 1 (mod p), so the sizes of the sets really are in L (mod p)). Thus, by the RCW
theorem,

‖X‖ ≤
(

p3

p − 1

)
+
(

p3

p − 2

)
+ . . . +

(
p3

0

)
≤ 2
(

p3

p − 1

)
.

The last inequality follows from lemma 6.3.5. Suppose X is monochromatic blue. Then X is a type
({p2 − 1}, J, p3) set system, where J := {p − 1, 2p − 1, . . . , (p − 1)p − 1}. By corollary 5.2.39 and
lemma 6.3.5, ‖X‖ ≤ 2

(
p3

p−1

)
.

Now we give the formal proof. We have already set things up so that it will follow the informal
proof closely, though we point out some issues particular to working in this weak theory.

Proof

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 129

Let p be some prime for which
(p3

p2−1

)
exists. We let the number of vertices n :=

(p3

p2−1

)
.

We can think of a vertex x < n as a subset of [p3] of size (p2 − 1) via the inverse of
the setNumber function (recall lemma 5.1.8), which we call setNumber−1. Thus we can
∆1,b

1 define the n×n 2-coloring G according to the above informal description. Now we
prove that ¬Ramsey(G,

(p3

p2−1

)→ (2
(

p3

p−1

)
)2).

Let X ⊆ [n], such that X is monochromatic in G and let its size be m. We can view each
element of X as a subset of [p3] of size p2−1, thus from it we can define a corresponding
H such that isIncidenceType(H, m, p3, {p2 − 1}, L), where L will depend on whether or
not X is monochromatic red or blue. Note that by saying that H corresponds to X, we
mean that setNumber−1(Xi) = Hi.

Now we break the argument into cases on whether the color of X is red or blue, applying
a different linear algebra bound in each case. For both cases the formalized version needs
n‖L‖ = (p3)p−1 to exist. It does because of lemma 2.4.3 which yields:(

p3

p2 − 1

)
≥
(

p3 − p2

p2 − 1

)p2−1

≥ (p − 1)p2−1 ≥ (p3)p−1,

for sufficiently large p.

For the red case, we apply the formalized RCW theorem as in the above proof to obtain
the bound (we of course also have the other size condition that pp−1 exists). For the
blue case, we use the corollary to the RCW theorem following the informal proof. Note
that for the formalized corollary we need to know that there exists a prime q larger
than p2 −1. Since 2p2

exists, by Bertrand’s Postulate we can find such a prime q ≤ 2p2.
Since (2p2)p−1 exists, so does q‖L‖ ≤ (2p2)p−1, so we can apply the corollary with the
prime q.

�

Now we prove the Frankl and Wilson theorem, which is essentially a corollary of lemma 6.3.6
and theorem 6.3.4. Notice that here we will actually need the full power of Bertrand’s Postulate.
The last proof used it, but in fact it would have been enough if there were a standard c such that
for any number n there were a prime p such that n < p ≤ nc; in the following proof, just c = 2
would put us in a bind.

Theorem 6.3.7 (Formalized Frankl and Wilson) V0 + enum + modDim + ∆1,b
1 −CA proves that if

n := 2

(
log2 k

28 log log k

)
exists then ∃G ¬Ramsey(G, n → (k)2).

Proof

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 130

Let p be the largest prime such that 2
(

p3

p−1

)
< k. By Bertrand’s Postulate (theo-

rem 6.3.4) there is a prime q such that p < q ≤ 2p, thus k < 2
(
(2p)3

2p−1

)
. Now we want

to show that
(p3

p2−1

)
exists; it suffices by lemma 2.4.4 to show that p3p2

exists. For a
number of our calculations, the inequality will be true for sufficiently large p (that is,
for p > c for some standard c); the smaller cases can be checked by brute force, so the
theorem will be true for all k. By a calculation

k > 2
(

p3

p − 1

)
≥
(

p3 − (p − 1)
p − 1

)p−1

≥ (p2 − 1)p−1.

Thus log k > (p − 1) log(p2 − 1) and log log k > log(p − 1). By a calculation,

k < 2
(

(2p)3

2p − 1

)
≤ ((2p)3)2p = 64pp6p.

Thus log k < 7p log p and log log k < 2 log p.

2

(
log2 k

28 log log k

)
> 2

(
(p − 1)2 log2(p2 − 1)

28(2 log p)

)

> 2
(1/29)(p − 1)2 log(p2 − 1)

≥ p(1/29)(p − 1)2

The last number is big enough to obtain a number larger than p3p2
, by a few arithmetic

operations. Thus we have achieved our goal of showing that
(p3

p2−1

)
exists and can apply

lemma 6.3.6 to obtain

∃G ¬Ramsey2(G,

(
p3

p2 − 1

)
→ (2
(

p3

p − 1

)
)2).

The coloring G has no size 2
(

p3

p−1

)
monochromatic set and so no size k monochromatic

set. To finish the proof we just need to show that we have enough vertices, that is

(
p3

p2 − 1

)
≥ 2

(
log2 k

28 log log k

)
,

or equivalently log
(p3

p2−1

) ≥ (log2 k)/(28 log log k). Our bounds yield the following:

log k

8 log log k
≤ 7p log p

8 log(p − 1)
≤ p,

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 131

which we apply in the following calculation:

log
(

p3

p2 − 1

)
≥ log

(
p3 − p2 + 1

p2 − 1

)p2−1

≥ log(p − 1)p2−1

= (p2 − 1) log(p − 1)
≥ (p2 log p)/2

≥
(

(1/2)
(

log k

8 log log k

)2

log
(

log k

8 log log k

))

≥
(

log2 k

27(log log k)2

)
(1/2) log log k

≥ log2 k

28 log log k

�

6.4 Comparing Ramsey Lower Bounds

We will now note how the Ramsey results compare, bringing one of the first order Ramsey lower
bounds into the second order context. Recall that we have a translation from the first order context
into the second order context. So in fact Ramsey(G, n → (k)r) for G < 2(n

2), translates roughly to
Ramsey2(G, n → (k)r). In fact a number G < 2(n

2) in the first order context will be translated to a
set with bound

(
n
2

)
. However we will be working with theories that are robust enough to know this

is equivalent to G represented as an adjacency matrix in Ramsey2. We will translate theorem 3.1.2,
which says that S1

2 + rWPHP(Σb
1) proves

∃G < pow(2,

(
2k/2

2

)
) ¬Ramsey(G, 2k/2 → (k)2).

S1
2 translates to V1. The Ramsey statement translates to: ∃G ¬Ramsey2(G, 2k/2 → (k)2), where

2k/2 is assumed to exist. For rWPHP(R), where R is a two place relation symbol, recall that this
was a statement about mapping the numbers x < 2n to the numbers y < n. This translates to a
principle which maps sets X < n + 1 to sets X < n, which we now define.

Definition 6.4.1 Let R be a relation symbol with 2 set arguments. Let setWPHP(R) be

∀X < n + 1 ∃Y < n R(X, Y) ⇒ ∃A �= B < n + 1 ∃Y < n R(A, Y) ∧ R(B, Y).

CHAPTER 6. RAMSEY THEORY IN BOUNDED ARITHMETIC 132

Since Σb
1 formulae translate to Σ1,b

1 formula, we obtain the following corollary to theorem 3.1.2.

Corollary 6.4.2 V1 + setWPHP(Σ1,b
1) proves ∃G ¬Ramsey2(G, 2k/2 → (k)2).

We can now collect together the series of increasingly stronger Ramsey lower bounds, writing
them in a more intuitive manner

1. (Proposition 6.3.2) V0 + PHP proves R2(k) > (k − 1)2.

2. (Theorem 6.3.3) V0 + PHP proves R2(k) >
(
k−1
3

)
.

3. (Theorem 6.3.7) V0 + enum + modDim + ∆1,b
1 −CA proves R2(k) > 2

(
log2 k

28 log log k

)
.

4. (Theorem 3.1.2 and Corollary 6.4.2) V1 + setWPHP(Σ1,b
1) proves R2(k) > 2k/2.

This shows us very precisely how the increasingly stronger Ramsey claims, with their various proofs,
differ from a proof-theoretic point of view.

Chapter 7

Conclusion

As the title of the thesis indicates, we have formalized various aspects of combinatorics in various
theories of bounded arithmetic. Two particular methods we looked at were the probabilistic meth-
ods and linear algebra methods. The work culminated in applying both of these methods to Ramsey
theory. As discussed in the introduction, this work (and that of others in Bounded Arithmetic)
can be seen as a beginning for the Reverse Mathematics of finite combinatorics. Such an approach
to formalization takes some weak theory as its base theory, adding axioms and proving reversals
over this base theory. The base theory should be strong enough to express the basic notions of
the area, yet weak enough that it does not blur the distinctions between various theorems of finite
combinatorics.

This work suggests taking V0 as a base theory for finite combinatorics. Using the simple tree
objects we have enough expressive power to state many claims. However, we found (in chapter 5)
that it was weak enough to allow for distinctions based on what axioms we added to the system.
In the standard Reverse Mathematics, only a few extensions of the base theory are needed to
capture much of ordinary mathematics. Similarly, we only extend V0 by a few natural axioms,
which suffice to capture much of the finite combinatorics and related tools. Notice that V1 (or S1

2),
the other natural choice, is too strong for many applications. It would be fine for examining non-
constructive proofs which use more than just polynomial time reasoning (e.g. as in the work on the
probabilistic methods of chapter 3), but to compare the whole range of theorems from constructive
to non-constructive, something weaker like V0 makes more sense.

Motivated by the issues of Reverse Mathematics, it would be very interesting to prove more
reversals. A particularly interesting domain for this would be the probabilistic proofs of chapter 3.
Recall that most of these theorems claimed that S1

2 + WPHP proved some theorem, say ψ. To
prove a reversal over S1

2 (an appropriate base theory for this context) would mean that we could
show S1

2 + ψ proves WPHP, thus, essentially showing the theorem has no constructive proof. Such

133

CHAPTER 7. CONCLUSION 134

a proof would provide a relative hardness result for ψ, but fall short of an absolute independence
result within the hierarchy of S2 (since we currently do not have an independence result for WPHP
when a formulae class is substituted for the relation symbol). However, it should be noted that
such issues could still be very difficult, since showing such a reversal would essentially rule out
the possibility of finding a simple construction corresponding to the theorem (and often there are
simple but tricky constructions corresponding to non-constructive proofs).

Another way to extend the results would be to prove more theorems of the same type within
bounded arithmetic. There are many more applications of probability theory and linear algebra
methods to combinatorics. Since a number of the proofs have a similar structure, it would be
interesting to obtain some more general results which give conditions under which certain kinds of
theorems can be proved. For example, since proofs that use the ordinary probabilistic method look
very similar, perhaps there is a general theorem that applies to a whole class of theorems proved
in this manner.

As a related issue, it would be nice to make the process of formalization more transparent.
There are two general ways this could be done. One approach is to stick with the same theory (say
V0 and its extensions), but soup up the “bootstrapping.” By this we mean developing more fully
structures like simple trees. Another approach would be to work in an extension to type theory,
where the structure of the types could allow for a more transparent discussion of the mathematical
objects. Such a type theory has been developed for bounded arithmetic by Cook and Urquhart [13];
the system they develop corresponds to an intuitionistic version of S1

2. It is not currently clear to
me how advantageous this change in context is for bounded arithmetic, though I think it would be
interesting to at least consider it more seriously. The usefulness of such a transition may be more
apparent in comparison to Reverse Mathematics which uses subsystems of second order arithmetic,
rather than a higher order logical theory. People have reasons for sticking with the second order
framework for that case, but it is not apparent that the same reasons apply to bounded arithmetic.

Appendix A

Pigeonhole Principle Proof

Recall that theorem 4.3.9 stated that

V0 + enum + ∆1,b
1 −CA proves PHP.

Now we prove this, following Woods’ proof [47]. Suppose that ¬PHP, so there exists an injection
F : n + 1 ↪→ n for some F and n. The idea is to define the following sequence of n functions:

F = G0 : [0, n] ↪→ [0, n − 1]
G1 : [1, n] ↪→ [0, n − 2]

...
Gn−1 : [n − 1, n] ↪→ [0, 0]

We will describe this sequence of functions by a single set G. We will then show by induction on
i ≤ n − 1 (with G as a parameter) that the Gi are injective and have the indicated range. The
injection Gn−1 is a contradiction. G will be a ∆1,b

1 simple tree with structure tree n (n + 1) n,
thus G〈i,x〉 < n will be “Gi(x);” we will write it more informally. Technically we will define
Gi(x) = 0 for x < i, though we really think of the function as having domain [i, n]. We define
Gi(x) as follows:

• Let B(i,[a,b]) be the length (b − a + 1) binary vector defined by (for k < b − a + 1):

Bk :=

{
1 if ∃j < i F (j) = k + a

0 otherwise
,

i.e. B(i,[a,b]) essentially gives the values in the range of F that are in [a, b] and resulted from
an input of < i, so ‖B(i,[a,b])‖ = ‖{j < i | F (j) ∈ [a, b]}‖.

135

APPENDIX A. PIGEONHOLE PRINCIPLE PROOF 136

• Counting, we set Gi(x) :=

{
F (x) − ‖B(i,[0,F (x)])‖ if x ≥ i

0 otherwise

A key property (proved at the end) is the “monotonicity property:”

Gi(u) < Gi(v) ⇒ F (u) < F (v).

Using this fact, we can prove the following (we call it (∗)):

Gi+1(x) =

{
Gi(x) if Gi(x) < Gi(i)
Gi(x) − 1 if Gi(x) > Gi(i)

When we in fact apply (∗), we will know x > i and Gi is injective, so we need not consider the case
of Gi(x) = Gi(i). To prove (∗):

1. Gi(x) < Gi(i) ⇒ F (x) < F (i) ⇒ Gi+1(x) = Gi(x).

2. Gi(i) < Gi(x) ⇒ F (i) < F (x) ⇒ Gi+1(x) = Gi(x) − 1.

In both cases the first implication follows by monotonicity and the second by the definition of Gi

and Gi+1:

Gi(x) = F (x)−‖B(i,[0,F (x)])‖ and Gi+1(x) = F (x)−‖B(i+1,[0,F (x)])‖. The only difference
between the “B” sets is that the latter one considers j = i and the former does not. If
F (x) < F (i), then this has no effect and we get the same B sets, so Gi+1(x) = Gi(x).
If F (i) < F (x) then the latter B set gets an extra 1, so Gi+1(x) = Gi(x) − 1.

Now we show by induction on i that Gi is injective on [i, n]. Suppose x �= y ≥ i + 1 and we want
to show Gi+1(x) �= Gi+1(y). By inductive hypothesis Gi(x) �= Gi(y) so assume Gi(x) < Gi(y).
The latter inequality along with (∗) will be used in the following 3 cases which cover the possible
relationship of Gi(i) to Gi(x) and Gi(y); in each case we show Gi+1(x) < Gi+1(y).

1. If Gi(y) < Gi(i) then Gi+1(y) = Gi(y) > Gi(x) = Gi+1(x).

2. If Gi(i) < Gi(x) then Gi+1(x) = Gi(x) − 1 < Gi(y) − 1 = Gi+1(y).

3. If Gi(x) < Gi(i) < Gi(y) then Gi+1(x) = Gi(x) < Gi(y) − 1 = Gi+1(y).

Since Gi is injective on [i, n] and x, y > i, we need not consider the case of Gi(x) = Gi(i) or
Gi(y) = Gi(i).

Now we show the range of Gi is [0, n− i− 1] by induction on i. Consider Gi+1(x) for x ≥ i + 1,
assuming Gi is injective and has range [0, n− i−1]. Consider two cases (Gi(x) = Gi(i) not possible,
as before).

APPENDIX A. PIGEONHOLE PRINCIPLE PROOF 137

1. If Gi(x) < Gi(i) then Gi+1(x) = Gi(x) ≤ Gi(i) − 1 ≤ n − i − 1 − 1 = n − (i + 1) − 1.

2. If Gi(x) > Gi(i) then Gi+1(x) = Gi(x) − 1 ≤ n − (i + 1) − 1.

Finally, we prove monotonicity:

We show the contrapositive. Assuming F (u) ≥ F (v) we show Gi(u) ≥ Gi(v). Let d =
F (u)−F (v) ≥ 0. Since Gi(u) = F (u)−‖B(i,[0,F (u)])‖ and Gi(v) = F (v)−‖B(i,[0,F (v)])‖,
to show Gi(u) ≥ Gi(v) it suffices to show ‖B(i,[0,F (u)])‖ ≤ ‖B(i,[0,F (v)])‖ + d.

‖B(i,[0,F (u)])‖ = ‖B(i,[F (v)+1,F (u)]) � B(i,[0,F (v)])‖
= ‖B(i,[F (v)+1,F (u)])‖ + ‖B(i,[0,F (v)])‖
≤ d + ‖B(i,[0,F (v)])‖.

That finishes the proof.

In Woods’ original context, the pigeonhole principle and counting axioms were schema. Never-
theless we were able to basically formalize that proof making minor adjustments for this context.
It could be interesting to derive general connections between schema versions of statements and
versions involving only numbers and sets.

Appendix B

Questions

In this appendix we simply gather together all the questions that were posed during the course of
this thesis.

1. (Question 3.1.10, Kraj́ıček) Does some theory of bounded arithmetic prove the “Tournament
Principle”:

tournament(R, n) ⇒ ∃D ⊆ [n] (dominating(R, D, n) ∧ size(D) = log n)?

2. (Question 3.1.20) Can the ordinary probabilistic method be formalized in a theory weaker
than S1

2 + rWPHP(Σb
1)? For example, does S1

2 + fWPHP(Σb
1) suffice?

3. (Question 3.2.8) Is S1
2 + fWPHP(Σb

1) conservative over S1
2 under certain conditions related to

linearity of expectations?

4. (Question 4.3.10) What is the relationship between enum and PHP over V0?

5. (Question 5.1.3) What stronger special cases of the Oddtown theorem can be proved without
linear algebra? Does the proof of theorem 5.1.2 generalize?

6. (Question 5.1.11) To what extent can the reversal of theorem 5.1.6 be extended?

7. (Question 5.2.7) Is there some way for bounded arithmetic to deal with proofs in which one
of the steps involves taking the sum of a sequence of rationals?

8. (Question 5.2.14) Can the Non-Uniform Fisher Inequality (the statement in the theorem 5.2.13)
be proved in bounded arithmetic?

138

Bibliography

[1] M. Ajtai. The complexity of the pigeonhole principle. In Proceedings of the IEEE 29th Annual
Symposium on Foundations of Computer Science, pages 346 – 355, 1988.

[2] N. Alon. A parallel algorithmic version of the local lemma. Random Structures and Algorithms,
2(4):367–378, 1991.

[3] N. Alon, L. Babai, and H. Suzuki. Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson
type intersection theorems. Journal of Combin. Th. A, 58:165–180, 1991.

[4] N. Alon, J. Spencer, and P. Erdős. The Probabilistic Method. John Wiley and Sons, New York,
1992.

[5] L. Babai and P. Frankl. Linear algebra methods in combinatorics (with applications to geom-
etry and computer science), preliminary version 2. 1992.

[6] P. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, P. Pudlák, and A. Woods. Exponential
lower bounds for the pigeonhole principle. In Proceedings of the 24th Annual ACM Symposium
on Theory of Computing, pages 200 – 221. ACM Press, 1992.

[7] J. Beck. An algorithmic approach to the Lovász local lemma. Random Structures and Algo-
rithms, 2(4):343–365, 1991.

[8] E. Berlekamp. On subsets with intersections of even cardinality. Canadian Math. Bull., 12:363–
366, 1969.

[9] Samual Buss. Bounded Arithmetic. Bibliopolis, Italy, 1986.

[10] M. Chiari and J. Kraj́ıček. Lifting independence results in bounded arithmetic. Archive for
Mathematical Logic, 38(2):123–138, 1999.

[11] S. Cook. Feasibly constructive proofs and the propositional calculus. In Proceedings of the 7th
Annual ACM Symposium on Theory of Computing. ACM Press, 1975.

139

BIBLIOGRAPHY 140

[12] S. Cook. Csc 2429s notes. course notes (on web site), 2002.

[13] S. Cook and A. Urquhart. Functional interpretations of feasibly constructive arithmetic. Annals
os Pure and Applied Logic, 63:103–200, 1993.

[14] P. D’Aquino. Local behavior of the Chebyshev theorem in models of I∆0. Journal of Symbolic
Logic, 57:12–27, 1992.

[15] P. D’Aquino. Pell equations and exponentiation in fragments of arithmetic. Annals of Pure
and Applied Logic, 77:1–34, 1996.

[16] P. D’Aquino. Solving pell equations locally in models of I∆0. Journal of Symbolic Logic,
63:402–410, 1998.

[17] P. D’Aquino and A. Macintyre. Non-standard finite fields over I∆0 + Ω1. Israel Journal of
Mathematics, 117:311–333, 2000.

[18] N. de Bruijn and P. Erdős. On a combinatorial problem. Indagationes Math., 10:421–423,
1948.

[19] M. Deza, P. Frankl, and N. Singhi. On functions of strenth t. Combinatorica, 3:331–339, 1983.

[20] C. Dimitracopoulos. Matijasevic’s theorem and fragments of arithmetic. PhD thesis, University
of Manchester, 1980.

[21] P. Erdős. Some remarks on the theory of graphs. Bulletin of the American Mathematics
Society, 53:292–294, 1947.

[22] P. Erdős. On a combinatorial problem I. Nordisk Mat. Tidskrift, pages 5–10, 1963.

[23] P. Erdős. On a problem in graph theory. Mathematical Gazette, 1963.

[24] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related
questions. In A. Hajnal et al., editor, Infinite and Finite Sets, pages 609–628. North-Holland,
1975.

[25] P. Frankl and R.M. Wilson. Intersection theorems with geometric consequences. Combinator-
ica, 1(4):357–368, 1981.

[26] R. Graham, B. Rothschild, and J. Spencer. Ramsey Theory. John Wiley and Sons, New Yok,
2nd edition, 1990.

[27] P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Perspectives in Mathe-
matical Logic. Springer-Verlag, Berlin, 1998.

BIBLIOGRAPHY 141

[28] J. H̊astad. Computational Limitations of Small-Depth Circuits. ACM Doctoral Dissertation
Series. MIT Press, Cambridge, Mass., 1987.

[29] E. Jerabek. Dual weak pigeonhole principle, boolean complexity, and derandomization. sub-
mitted, 2003.

[30] R. Kaye. Models of Peano Arithmetic, volume 15 of Oxford Logic Guides. Clarendon Press,
New York, 1991.

[31] J. Kraj́ıček. No counter-example interpretation and interactive computation. In Y.N.
Moschovakis, editor, Logic From Computer Science, volume 21, pages 287–293. Springer-
Verlag, 1989.

[32] J. Kraj́ıček. Exponentiation and second order bounded arithmetic. Annals of Pure and Applied
Logic, 48:261–276, 1990.

[33] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge
University Press, New York, 1995.

[34] J. Kraj́ıček. On the weak pigeonhole principle. Fundamenta Mathematicae, 170(1-3):123–140,
2001.

[35] A. Maciel, T. Pitassi, and A. Woods. A new proof of the weak pigeonhole principle. submitted,
2000.

[36] K. Majumdar. On some theorems in combinatorics relating to incomplete block designs. Ann.
Math. Stat., 24:377–389, 1953.

[37] Z. Nagy. A certain constructive estimate of the Ramsey number (Hungarian). Matematikai
Lapok, 23:301–302, 1972.

[38] R. Parikh. Existence and feasibility in arithmetic. Journal of Symbolic Logic, 36:494–508,
1971.

[39] J. Paris, A. Wilkie, and A. Woods. Provability of the pigeonhole principle and the existence
of infinitely many primes. The Journal of Symbolic Logic, 53(4):1235–1244, 1988.

[40] P. Pudlák. Ramsey’s theorem in bounded arithmetic. In E. Borger, editor, Lecture Notes in
Computer Science, volume 533, pages 308–312. Springer-Verlag, 1991.

[41] A. Razborov. An equivalence between second order bounded domain bounded arithmetic
and first order bounded arithmetic. In P. Clote and J. Kraj́ıček, editors, Proof Theory and
Computational Complexity, pages 247–277. Oxford University Press, 1993.

[42] S. Simpson. Subsystems of Second Order Arithmetic. Springer-Verlag, New York, 1999.

BIBLIOGRAPHY 142

[43] M. Soltys and S. Cook. The proof complexity of linear algebra. submitted, 2003.

[44] G. Takeuti. Si
3 and Vi

2(BD). Archive for Mathematical Logic, 29:149–169, 1990.

[45] G. Takeuti. RSUV isomorphism. In P. Clote and J. Kraj́ıček, editors, Proof Theory and
Computational Complexity, pages 364–386. Oxford University Press, 1993.

[46] N. Thapen. A model-theoretic characterization of the weak pigeonhole principle. Annals of
Pure and Applied Logic, 118:175–195, 2002.

[47] A. Woods. Some problems in logic and number theory and their connections. PhD thesis,
University of Manchester, 1981.

[48] D. Zambella. Notes on polynomially bounded arithmetic. Journal of Symbolic Logic, 61(3):942–
966, 1996.

