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Summary. A constructive realizablity interpretation for classical arithmetic is presented,
enabling one to extract witnessing terms from proofs of �1 sentences. The interpretation
is shown to coincide with modified realizability, under a novel translation of classical logic
to intuitionistic logic, followed by the Friedman-Dragalin translation. On the other hand,
a natural set of reductions for classical arithmetic is shown to be compatible with the
normalization of the realizing term, implying that certain strategies for eliminating cuts
and extracting a witness from the proof of a �1 sentence are insensitive to the order in
which reductions are applied.

1 Introduction

Even though, as is well known, the classical and intuitionistic versions of first-
order arithmetic prove the same�2 sentences, the two theories are very different
in nature. In particular, the intuitionistic version has a constructive interpretation
which seems to be lacking in its classical counterpart.

Heyting arithmetic, which is based on intuitionistic logic, is perhaps best
represented in a system of natural deduction. In this framework, proofs can be
associated with (or construed as) realizing terms, which come equipped with a
natural set of reductions. These reductions are strongly normalizing, which is to
say that any procedure that applies them repeatedly will eventually reach a proof
that cannot be reduced any further; and they satisfy the Church-Rosser property,
which implies that any two such procedures yield the same normal proof. Given
a normal proof of a �1 sentence, one can easily read off a numerical witness to
the existential quantifier.

In contrast, Peano arithmetic is naturally represented in a classical sequent
calculus, to which one can apply cut-elimination to extract numerical witnesses.
Cut-elimination procedures tend to seem less canonical than intuitionistic nor-
malization, and the particular witness extracted from a given proof may de-
pend on the technical details of the implementation. Alternatively, one can use
a double-negation interpretation followed by the Friedman-Dragalin translation
to translate the proof to one in HA, though, of course, the resulting witness will
depend on the details of the translation.

In this paper I will try to show that, from a constructive point of view, classical
logic is not as bad as it may seem. After some preliminaries in Section 2, I
present a realizability interpretation for classical arithmetic in Section 3; by this
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I mean that I provide a procedure for assigning a computational term to each
sequent in the proof of a �1 formula, in such a way that the term assigned to
the final sequent yields a witness to the existential quantifier. In Section 4, I
show that this realizability interpretation amounts to nothing more thanKreisel’s
familiar modified realizability, under a novel translation of classical arithmetic to
intuitionistic arithmetic, together with the Friedman-Dragalin translation.

In Section 5, I present set of reductions that one can use to transform any
PA-proof of a �1 sentence to a cut-free one. I will show that these reductions are
compatible with the normalization of the classical realizing term, which implies
that the final result is insensitive to the order in which the reductions are applied.
Furthermore, the process of reading off a numerical witness corresponds, in
a sense, to the Friedman-Dragalin translation. With a suitable restriction, the
reductions are also strongly normalizing.

In Section 6, I show that these reductions can be used to give Peano arithmetic
a finitary ordinal analysis. The argument is a variation of Gentzen’s original cut-
elimination procedure [11, 25], recast here in a Tait-style setting and with some
additional simplifications. In Section 7, I use a technique due to Mints [16]
to extract reduction sequences of this form from an infinitary cut-elimination
procedure as well. As a corollary of the foregoing analysis, both methods of
extracting numerical witness from proofs of �1 sentences yield the same result as
the normalization of the classical realizing term. Section 8 closes with some final
remarks.

A brief discussion of the literature might help put the results reported here in
context. In [17], Mints shows that a number of methods of extracting constructive
information from proofs in intuitionistic arithmetic yield the same result. Much
of this paper can be seen as an extension of these results to classical arithmetic,
with the surprising twist that the Friedman-Dragalin translation is implicit in
certain cut-elimination arguments for the sequent calculus.

In [4, 5], Buchholz presents a finitary reduction procedure for classical arith-
metic, obtained using notations for infinitary derivations and Mints’ continuous
cut-elimination operators. In particular, in [5] one finds another method of ex-
tracting finitary reduction sequences from infinitary cut-elimination arguments,
and an analysis of the relationship between these reductions and the ones used in
Gentzen’s original procedure.

Murthy [19] and Parigot [21] show that versions of the double-negation trans-
lation together with the Friedman-Dragalin translation correspond to a certain
computational semantics for various systems of classical deduction. Though the
work here was carried out without knowledge of these two papers, some of the
parallels are striking.

The translation described in Section 4 shows that one can interpret classical
sequent calculi in intuitionistic systems of natural deduction, in such a way that
proofs of sequents in the former correspond to proofs of a contradiction from
suitable hypotheses in the latter. This interpretationmay be seen as a contribution
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to study of the relationship between sequent calculi and natural deduction in
general, which is also addressed in [10, 23, 30].

Finally, the referee has pointed out that another realizability interpretation
for arithmetic, somewhat different in form and purpose, is given in [20].

I am grateful to Wilfried Buchholz for the observations noted at the end
of Section 6, to Samuel Buss for providing me with the macros that typset the
derivations in this paper, and to the anonymous referee for an extremely thorough
and helpful review.

2 Preliminaries

The primitive recursive functionals were introduced by Gödel in [13], but were
already to some extent implicit in earlier work by Hilbert and Weyl. For a more
detailed discussion than the one which follows, see [2, 15, 27, 26].

I will take the finite types to consist of the smallest set containing a symbol
N, and closed under an operation which takes types � and � to a new type � → �.
In the intended (“full”) interpretation,N denotes the set of natural numbers, and
� → � denotes the set of all functions from � to �. A set of terms, PR� , is defined
inductively as follows:

1. For each type �, there is a stock of variables x, y, z, . . . of type �.
2. 0 is a term of type N.
3. S (successor) is a term of type N → N.
4. if s is a term of type � → � and t is a term of type �, then s(t) is a term of

type �.
5. if s is a term of type � and x is a variable of type �, then �x s is a term of

type � → �.
6. If s is a term of type �, and t is a term of type N → (� → �), then Rst is a

term of type N → �.

Intuitively, s(t) denotes the result of applying s to t, �x s denotes the function
which takes any value of x to s , and Rst denotes the function defined from s and
t by primitive recursion, with

Rst(0) = s

Rst(x′) = t(x,Rst(x)).

In this last equation, I have adopted the convention of writing x′ instead of S(x)
and t(r, s) instead of (t(r))(s). Using these schemata one can define any primitive
recursive function, as well as functions, like Ackermann’s, that are not primitive
recursive. Below when I refer to a primitive recursive relation R, this should be
taken as an implicit reference to its characteristic function �R.

It will be convenient below to augment the finite types with products � × �,
associated pairing operations 〈·, ·〉, and projections (·)0 and (·)1. Product types
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can eliminated in the usual way by currying and replacing terms t with sequences
of terms ti .

It will also be convenient to have disjoint union types � + �, an element of
which is either an element of � or an element of �, tagged to indicate which is
the case. That is, for each such type we have insertion operations, inl and inr,
which convert elements of type � and � respectively to an element of type � + �;
predicates isleft(a) and isright(a), which indicate whether a is tagged to be of
type � or �; and functions left(a) and right(a), which interpret a as an element
of type � and �, respectively. Using primitive recursion we can define functions

cases(a, f, g) =
{
f(a) if isleft(a)
g(a) otherwise

where f is of type � → � for some �, and g is of type � → �. References to
such sum types can be eliminated by taking � + � to be N × � × �, defining
inl(a) = 〈0, a, 0�〉, defining inr(a) = 〈1, 0�, a〉, where 0� and 0� are constant zero
functionals of type �, � respectively, and so on.

Finally, to simplify exposition in many of the inductive definitions and proofs
below, it will be convenient to have a trivial type Null with a single element nil.
Ultimately none of the quantifier-free formulae or terms I define will depend on
nil or any variable of type Null, so if we interpret Null × � and Null → � as
�, � → Null as Null, and ∀x ∈ Null ϕ as ϕ, references to nil and Null can be
eliminated as well.

The realizability interpretation of the next section is designed for classical
arithmetic formulated in a Tait-style calculus. In this system formulae are built
up from atomic formulae A and their negations Ā using the connectives ∧, ∨,
∀, and ∃. If ϕ is such a formula, ¬ϕ denotes the formula obtained by putting
the negation of ϕ in negation-normal form, i.e. replacing every ∧, ∀, and A in ϕ
respectively with ∨, ∃, and Ā, and conversely. Other connectives are introduced
via their classical definitions.

Sequents � consist of sets of formulae {ϕ1, . . . , ϕk} and are intended to
denote the assertion that at least one of the formulae ϕi is true. As usual, I will
use �,ϕ to denote � ∪ {ϕ}, and if ϕ(y) has been introduced as a formula with
a distinguished variable y, ϕ(t) denotes the result of substituting t for y (after
renaming bound variables of ϕ to prevent clashes).

The calculus below is essentially the one found in [24]. In connectionwith these
rules I will refer to the formulae in � as the side formulae of the inference, and
the other formulae in the hypotheses and conclusions as the main premises and
principal formulae respectively. As in [4, 5], a rule of the form “From . . . �i . . .
conclude �” should be read “From subsets of . . . �i . . . conclude � ,” which
is to say, implicit weakenings of the hypotheses are allowed at each stage. For
technical reasons, I need to assume that in the Exists rule below the main premise
ϕ(t) is always present. The main premises of a cut rule are also called the cut
formulae.
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1. Propositional rules
a) Atomic excluded middle: �,A, Ā
b) And: From �,ϕ and �,� conclude �,ϕ ∧ �
c) Or: From either �,ϕ or �,� conclude �,ϕ ∨ �
d) Cut: From �,ϕ and �,¬ϕ conclude �

2. Quantifier rules
a) For all: From �,ϕ(y) conclude �, ∀x ϕ(x), provided that y is not free in

any formula of � or ∀x ϕ(x)
b) Exists: If ϕ(y) is any formula, from �,ϕ(t) conclude �, ∃x ϕ(x)

3. Equality rules

The equality rules consist of quantifier-free sequents asserting the reflexivity, sym-
metry, and transitivity of equality, and the fact that equality acts as a congruence
relation relative to all the functions and relations in the language.

In the language of arithmetic, the only atomic formulae are of the form
t1 = t2. One obtains the rules for classical (Peano) arithmetic, PA, by adding the
following:

1. Quantifier-free defining equations
2. Induction: From �,ϕ(0) and �,¬ϕ(y), ϕ(y′) conclude �, ∀x ϕ(x), as long

as y is not free in any formula of � or ∀x ϕ(x)
Note that the induction axiom,

�,ϕ(0) ∧ (∀x (ϕ(x) → ϕ(x′)) → ∀x ϕ(x),
follows easily from the rule above. As to the “quantifier-free defining equations,”
we could limit ourselves toweakenings of the sequents {x′ �= 0}, {x �= y, x′ = y′},
and the recursive definitions of addition and multiplication; but it is convenient
to include the definitions of arbitrary primitive recursive functions and relations
as well.

A variation of the above calculus is obtained if one uses sequents that are
sequences of formulae rather than sets, and makes structural rules (weaken-
ing, exchange, and contraction) explicit. The realizability interpretation in the
next section works equally well in this setting. One can simulate the rules of
Gentzen’s two-sided sequent calculus in this system if one identifies each formula
with its negation-normal form, and replaces sequents of the form ϕ1, . . . , ϕk ⇒
�1, . . . , �l with the corresponding sequent ¬ϕ1, . . . ,¬ϕk, �1, . . . , �l .

3 Realizability for classical arithmetic

Assuming one can prove a formula ϕ in PA, using a cut one can also prove the
empty sequent from the hypothesis ¬ϕ. In particular, from a proof of ∃x A(x)
for a primitive recursive relation A, we obtain a proof of the empty sequent from
the hypothesis ∀x Ā(x). Our goal is to extract from such a proof a term t in
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PR� having type N which satisfies A. In general I will allowA to have parameters
(free variables) other than x, in which case t is a function of these parameters. By
renaming them if necessary, we can assume that none of these parameters occur
in the main premise of a For all rule.

Let us then fix A and consider the proof system PA augmented by the hy-
pothesis ∀x Ā(x). Having added this hypothesis, each sequent � appearing in a
proof can no longer be interpreted as the assertion that some formula in� is true;
instead, we can read it as the assertion that if every formula in � is false then the
hypothesis is false, and hence ∃x A(x) is true. Our strategy will be to analyze the
proof of � for information that will enable us to compute an element satisfying
A from constructive witnesses to the “falsity” of every formula in � .

To every formula ϕ the clauses below inductively associate a type, Typeϕ , and
a predicate, Realizesϕ(f), for PR

�-terms f of this type whose free variables are
among those of ϕ. Forf of type Typeϕ → N the predicate Refutesϕ(f) is defined
simultaneously, via the equivalence

Refutesϕ(f) ≡ ∀g (Realizesϕ(g) → A(f(g))).

In words, f maps any g realizing ϕ to an element satisfying A. Note that if ϕ has
free variables then the predicate Realizesϕ(f) depends on them, in which case
the clauses below should be read as asserting that the corresponding equivalences
hold for every assignment of natural numbers to these variables.

• Typeϕ = Null, if ϕ is an atomic formula or its negation

Realizesϕ(f) ≡ ϕ

• Typeϕ∨� = Typeϕ + Type�
Realizes(ϕ∨�)(f) ≡ (isleft(f) ∧Realizesϕ(left(f)))∨
(isright(f) ∧Realizes�(right(f)))

• Typeϕ∧� = Type¬ϕ∨¬� → N

Realizesϕ∧�(f) ≡ Refutes¬ϕ∨¬�(f)

• Type∃x ϕ(x) = N × Typeφ(x)
Realizes∃x ϕ(x)(f) ≡ Realizesϕ(f0)(f1)

• Type∀x ϕ(x) = Type∃x ¬ϕ(x) → N

Realizes∀x ϕ(x)(f) ≡ Refutes∃x ¬ϕ(x)(f)

It is easy to verify the following

Lemma 1. If ϕ(x) is any formula and t is any term in the language of PA, then
Typeϕ(x) is equal to Typeϕ(t). Furthermore, if F (x) is any PR

�-term of this type,
then F (x) realizes ϕ(x) if and only if F (t) realizes ϕ(t).
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If ϕ is a formula, it will be convenient to use αϕ to denote a variable of type
Typeϕ . Below, to every proof d of a sequent � = {ϕ1, . . . , ϕk}, I will associate a
term Fd of PR

� , with the following properties:

1. the free variables of Fd are among {α¬ϕ1 , . . . , α¬ϕk} and the free number
variables of � and ∃x A(x); and

2. on the assumption that each α¬ϕi realizes ¬ϕi , A(Fd ) holds.
In short, Fd takes elements realizing the negations of formulae in � to a witness
for ∃x A(x). In particular, if � is the empty sequent then Fd depends only on
the free variables of ∃x A(x), and for each assignment to these variables, A(Fd )
holds.

Before defining the assignment, we need a few lemmata. In Section 5 we will
see that the first two are analogous to ∧- and ∀-inversion lemmata which are
typically found in cut-elimination arguments.

Lemma 2. Suppose a term f realizes ϕ ∧ �. Then

�α¬ϕ f(inl(α¬ϕ))

refutes ¬ϕ, and

�α¬� f(inr(α¬�))

refutes ¬�.
Proof. If f realizes ϕ ∧ �, then it refutes ¬ϕ ∨ ¬�. Assuming α¬ϕ realizes ¬ϕ,
inl(α¬ϕ) realizes¬ϕ∨¬�, andhenceA(f(inl(α¬ϕ))) is true. So �α¬ϕ f(inl(α¬ϕ))
refutes ¬ϕ.

The argument for �α¬� f(inr(α¬�)) is similar. �

In much the same way we can prove

Lemma 3. Suppose a term f realizes ∀x ϕ(x). Then for any t,

�α¬ϕ(t) f(〈t, α¬ϕ(t)〉)

refutes ϕ(t).

Lemma 4. Let ϕ be any formula. If f and g are terms such that f refutes ¬ϕ and
g refutes ϕ, then there is a term Cutϕ(f, g) satisfying A.

Proof. If ϕ is atomic or the negation of an atomic formula, “c refutes ϕ” means
“if ϕ, then A(c).” In that case, use primitive recursion to define

Cutϕ(f, g) =
{
g if ϕ
f if ¬ϕ.
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Iff refutes ¬(ϕ∧�) then it realizes ϕ∧�, and iff refutes ¬∀x ϕ then it realizes
∀x ϕ. So define

Cutϕ∧�(f, g) = g(f)

Cutϕ∨�(f, g) = f(g)

Cut∀x ϕ(f, g) = g(f)

Cut∃x ϕ(f, g) = f(g). �

The assignment of terms Fd to proofs d is done inductively, according to the
last rule of d . In each of the cases below, verifying that Fd satisfies properties 1
and 2 above is straightforward. If � is the set {�1, . . . , �k}, I will use α¬� to
denote a sequence of variables α¬�1 , . . . , α¬�k . In that case, requirement 2 above
is equivalent to the assertion that whenever d is a proof of a sequent �,ϕ and
α¬� realizes the negations of the elements of � , then �α¬ϕ Fd refutes ¬ϕ.
Quantifier free axioms: Suppose d consists of a single sequent {ϕ1, . . . , ϕk},

corresponding to an equality axiom, an instance of the atomic law of the excluded
middle, or a quantifier-free axiom of arithmetic. Then at least one of the formulae
ϕi is true, and hence it is impossible to realize all the ¬ϕi ’s simultaneously. As a
result, we can simply take

F = 0.

Or: Suppose d is a proof of �,ϕ ∨ � obtained by applying the Or rule to
a proof d ′ of �,ϕ. Let F ′ the term inductively assigned to d ′. Assuming α¬�
realizes the negations of the elements of � and α¬ϕ∧¬� realizes¬ϕ∧¬�, we have
that �α¬ϕ F ′ refutes ¬ϕ and �αϕ α¬ϕ∧¬�(inl(αϕ)) refutes ϕ. Define

F = Cutϕ(�α¬ϕ F ′, �αϕ α¬ϕ∧¬�(inl(αϕ))).

Tohandle the casewhere d ′ is instead a proof of�,�, replaceϕ by� and inl by inr.
And: Suppose d results by applying the And rule to proofs d0 of �,ϕ and d1

of �,�. Let F0 and F1 be the terms assigned inductively to d0 and d1 respectively.
Whenever α¬� realizes the negations of the elements of � , then �α¬ϕ F0 refutes
¬ϕ and �α¬� F1 refutes ¬�. Define

F = cases(α¬ϕ∨¬�, �α¬ϕ F0, �α¬� F1).

Exists: Suppose d consists of an application of the Exists rule to a proof d ′

of �,ϕ(t). If t has any free variables that do not occur in the conclusion, replace
the corresponding free variables of F ′ with 0. Then, as in the Or rule, set

F = Cutϕ(t)(�α¬ϕ(t) F
′, �αϕ(t) α∀x ¬ϕ(x)(〈t, αϕ(t)〉)).

For all: If d is obtained by applying the For all rule to a proof d ′ of �,ϕ(y),
then F ′ may have y free and whenever α¬� realizes the negations of the formulae
in � , then �α¬ϕ(y) F ′ refutes ¬ϕ(y). Define
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F = (�y, α¬ϕ(y) F
′)((α∃x ϕ(x))0, (α∃x ϕ(y))1).

Cut: Given a proof d0 of �,ϕ and a proof d1 of �,¬ϕ, let F0 and F1 be the
corresponding terms. If there are any free variables in ϕ that are not free in � ,
replace these variables by 0 in F0 and F1. Define

F = Cutϕ(�α¬ϕ F0, �αϕ F1)

Induction: Suppose d0 and d1 are proofs of �,ϕ(0) and �,¬ϕ(y), ϕ(y′) re-
spectively, and let F0 and F1 be the corresponding terms. Use primitive recursion
to define a function h such that

h(0) = �α¬ϕ(0) F0
h(y′) = �α¬ϕ(y′) Cutϕ(y)(h(y), �αϕ(y) F1).

Note that by Lemma 1 α¬ϕ(y) and α¬ϕ(0) have the same type, so this definition is
reasonable. Assuming α¬� realizes the negations of the formulae in � , one can
show by induction that for every natural number n, h(n) refutes ¬ϕ(n). Define

F = h((α∃x ¬ϕ(x))0, (α∃x ¬ϕ(x))1).

Recall that by the conventions introduced in Section 2, this is an abbreviation for
(h((α∃x ¬ϕ(x))0))((α∃x ¬ϕ(x))1).

This takes care of the axioms and rules of PA. Now, given a proof of
{∃x ϕ(x)}, cutting with the following hypothesis gives us the desired proof of the
empty sequent.
Hypothesis: To the sequent {∀x Ā(x)} assign the term

F = α∃x A(x).

By definition an element realizing ∃x A(x) is just a natural number satisfying A,
so if α∃x A(x) realizes ∃x A(x), A(F ) holds.

Putting this all together yields

Theorem 1. Suppose PA proves a formula ∃x A(x). Then there is a PR�-term t of
type N, with the same parameters, such that A(t) holds.

I will use the phrase “provable function” as an abbreviation for “provably total
recursive function,” which I take to be defined in the usual way.

Corollary 1. Every provable function of PA is given by a type 1 primitive recursive
functional.

Proof. If PA proves ∀y ∃x A(y, x) then it also proves ∃x A(y, x). Let t be a term
such that A(y, t) holds, and let f = �y t. �
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4 The M-translation

In this section I will describe a variation of the Gödel-Gentzen double-negation
translation that is implicit in the realizability interpretation we have just seen. In
contrast to classical logic, I will take the basic intuitionistic connectives to consist
of the symbols ∀, ∃, ∧, ∨, →, and ⊥; ∼ϕ is defined to be ϕ → ⊥. I will take
intuitionistic logic to be given by a system of natural deduction, as in [29], and
take the sequent � ⇒ ϕ to mean that ϕ follows from the hypotheses in � . For
Heyting arithmetic one adds the quantifier-free defining equations for the basic
functions, and an induction rule. In general the law of the excludedmiddleϕ∨∼ϕ
is not assumed to hold, although one can use induction in HA to prove that it
holds for atomic formulae.

The double-negation translation maps classical formulae ϕ to intuitionistic
formulae ϕN , and is defined inductively as follows: (� ∨ &)N is ∼(∼�N ∧ ∼&N )
(or, which is equivalent over intuitionistic logic, ∼∼(�N ∨ &N )); (∃x �)N is
∼∀x ∼�N (or, equivalently, ∼∼∃x �N ); �N is ∼∼� for atomic formulae �;
and the translation commutes with the connectives ∧ and ∀. Let us consider an
alternative translation, which I will call the M-translation, given inductively by
the following clauses:

AM = A for atomic formulae A

ĀM = ∼A
(ϕ ∨ �)M = ϕM ∨ �M

(ϕ ∧ �)M = ∼(¬ϕ ∨ ¬�)M
(∃x ϕ)M = ∃x ϕM
(∀x ϕ)M = ∼(∃x ¬ϕ)M.

TheM -translation is not quite equivalent to theN -translation, but one can show
by induction that the following relationship holds:

Proposition 1. For any formula ϕ in the language of Tait’s sequent calculus, one
can prove

∼ϕM ↔ ∼ϕN .
in intuitionistic logic; in fact, in minimal logic.

By minimal logic I mean the fragment of intuitionistic logic which omits the rule
“ex falso sequitur quod libet,” i.e. “from ⊥ anything follows.” One can think
of the M-translation as a version of the double-negation translation which is
parsimonious with negations, doling them out only when they are absolutely
necessary. In fact, Proposition 1 would still hold if we had defined (ϕ ∧ �)M to
be ϕM ∧ �M , in which case the translation would be trivial on formulae without
universal quantifiers.

As a corollary to Proposition 1 we have
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Theorem 2. Suppose {ϕ1, . . . , ϕk} is provable classically, then
(¬ϕ1)M, . . . , (¬ϕk)M ⇒ ⊥

is provable over minimal logic.

In fact, a direct translation of proofs is implicit in the realizability interpretation
of the previous section. For example, writing (¬�)M to denote theM-translations
of the negations of the formulae in � , the cut rule,

�,ϕ �,¬ϕ
�

translates to

(¬�)M, (¬ϕ)M ⇒ ⊥
(¬�)M ⇒ ∼(¬ϕ)M

(¬�)M,ϕM ⇒ ⊥
(¬�)M ⇒ ∼ϕM

(¬�)M ⇒ ⊥
This relies on the symmetry of theM-translation, which ensures that either (¬ϕ)M
is the negation of ϕM , or vice-versa. The ∧ rule,

�,ϕ �,�

�, ϕ ∧ �
translates to

(¬�)M, (¬ϕ)M ⇒ ⊥ (¬�)M, (¬�)M ⇒ ⊥
(¬�)M, (¬ϕ)M ∨ (¬�)M ⇒ ⊥

and the ∨ rule,

�,ϕ

�, ϕ ∨ �
translates to

(¬�)M, (¬ϕ)M ⇒ ⊥
(¬�)M ⇒ ∼(¬ϕ)M ∼(ϕM ∨ �M ) ⇒ ∼ϕM

(¬�)M,∼(ϕM ∨ �M ) ⇒ ⊥
where in the last derivation one uses a “canonical” proof of∼(ϕM∨�M ) ⇒ ∼ϕM .
The quantifier rules are treated similarly. The translation works equally well for
PA and HA, so we have

Theorem 3. If {ϕ1, . . . , ϕk} is provable in PA, then

(¬ϕ1)M, . . . , (¬ϕk)M ⇒ ⊥
is provable in arithmetic over minimal logic.
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In fact, since in arithmetic every atomic formula has an atomic “complement,”
here we can define ĀM to be Ā.

We can now employ a trick, due to Friedman [9] and Dragalin independently.
Given a proof in minimal logic, if one replaces ⊥ by an arbitrary formula, then
every rule in the original proof remains valid. (If the original proof is in intu-
itionistic logic, one must first replace atomic formulae & by & ∨⊥.) Now, starting
with a proof of ∃x A(x) in classical arithmetic, Theorem 3 yields a proof of ⊥
from ∃x A(x) → ⊥. Replacing ⊥ by ∃x A(x) yields a proof of ∃x A(x) from
∃x A(x) → ∃x A(x), and hence a proof of ∃x A(x) outright. This yields
Theorem 4. If PA proves ∃x A(x), then so does HA.

Finally, one can apply Kreisel’s modified form of Kleene’s realizability (see,
for example, [28]) to the proof in HA. Roughly speaking, one declares that an
atomic formula is realized if and only if it’s true; a realizer for ϕ ∧ � is a realizer
for ϕ paired with a realizer for �; a realizer for ϕ ∨ � is either a realizer for ϕ or
a realizer for �, with a tag to indicate which is the case; a realizer for ϕ → � is a
function(al)mapping any realizer forϕ to a realizer for�; a realizer for ∀x ϕ(x) is
a function mapping any a ∈ N to a realizer for ϕ(a); and a realizer for ∃x ϕ(x) is
an element a ∈ N paired with a realizer for ϕ(a). The result is that from the proof
of ∃x A(x) in HA one obtains a witnessing term, providing an alternative proof
of Theorem 1. Or rather, the same proof in disguise: the reader can now check
that the classical realizability interpretation given in the last section is nothing
more than the modified realizability interpretation coupled with the translation
of the classical sequent calculus to natural deduction given by Theorem 3, once
we replace ⊥ by ∃x A(x). Note that cutting with the hypothesis ∀x Ā(x) on the
classical side corresponds to utilizing the canonical proof of ∃x A(x) → ∃x A(x)
on the intuitionistic side. In sum, we have the following

Theorem 5. Given a proof of ∃x A(x) in PA, the witnessing term extracted using
the classical realizability of Section 3 is the same as the witnessing term obtained by
translating the classical proof to an intuitionistic one using theM -translation, ap-
plying the Friedman-Dragalin translation, and then applying modified realizability.

At this point it seems worthwhile to mention another interpretation, that is a
little closer to the N -interpretation:

AL = ∼∼A for atomic formulae A

ĀL = ∼A
(ϕ ∧ �)L = ϕL ∧ �L

(ϕ ∨ �)L = ∼(¬ϕ ∧ ¬�)L
(∀x ϕ)L = ∀x ϕL
(∃x ϕ)L = ∼(∀x ¬ϕ)L.

For this translation we have the following
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Proposition 2. For any formula ϕ in negation-normal form, one can prove

ϕL ↔ ϕN .

in intuitionistic logic.

Had we used the L-translation in the last section, we would have been able to
translate every proof of {ϕ1, . . . , ϕk} in PA to a proof of ⊥ from assumptions
∼ϕL1 , . . .∼ϕLk inHA; but dealing with the extra negation symbol would have been
unwieldy.

5 Reductions for Classical Arithmetic

In this section I will present a set of reductions for proofs in a slight extension
of the system PA defined above. We will see that these reductions are compatible
with the normalization of the term extracted by realizability, in the following
sense: if one reduces a proof d to d ′, then Fd and Fd ′ convert to the same term.
In the next two sections I will show that these reductions can be used to eliminate
cuts from proofs of �1 sentences in PA and extract a witness for the conclusion.

To begin, let us augment the proof system PA in the following two ways:

1. Close the set of axioms under substitution of terms for free variables, and
cut.

2. Add the following “inversion” rules:
a) Atomic inversion: Ifϕ is a true closed atomic formula, from�, ϕ̄ conclude

� .
b) And inversion: From �,ϕ ∧ � conclude either �,ϕ or �,�
c) For all inversion: From �, ∀x ϕ(x) conclude ϕ(n) for any numeral n.

If the reader is concerned with the loss of transparency due to clause 1, he or she
can insist that these axioms be labeled with a derivation from the original ones.
Since weakenings are allowed, an axiom may contain complex side formulae; I
will take the principal formulae in an axiom to be those that are either atomic or
negation atomic. Though it is a slight abuse of notation I will henceforth use PA
to refer to the system of Section 2 with these modified axioms, and I will use PA+

to refer to the system with the additional inversion rules.
The realizability interpretation of Section 3 can easily be extended to handle

the new rules. If d is one of the new axioms, we can still take Fd = 0. If d is
obtained by an application of the Atomic inversion rule to another proof d ′, we
can just takeFd = Fd ′ . If d is obtained from d ′ by an application ofAnd inversion,
as in the proof of Lemma 2 we can take Fd to be either (�α¬ϕ∨¬� Fd ′)(inl(α¬ϕ))
or (�α¬ϕ∨¬� Fd ′)(inr(α¬ϕ)) as necessary. Finally, if d is obtained by applying
For all inversion to d ′, we can take Fd to be (�α∃x ¬ϕ(x)Fd ′ )(〈n, α¬ϕ(n)〉).

Terms in PR� come equipped with a natural reducibility relation, under
which (�x t)(s) reduces to t[s/x], Rst(0) reduces to s , and Rst(u′) reduces to
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t(u,Rst(u)). I will write s � t if t can be obtained by iteratively applying such
reductions to subterms of s , and t� s if t and s reduce to a common term, up
to a renaming of bound variables. A term is said to be in normal form if it cannot
be reduced any further. More precise definitions can be found in [15].

It is well known that the reductions just described are strongly normalizing (i.e.
there are no infinite sequences of one-step reductions, so that arbitrary reduction
procedures are guaranteed to terminate) and confluent (i.e. the relation� is an
equivalence relation). Taken together these imply that every term t reduces to a
unique term in normal form. It is easy to check that if t is a closed term of type
N then the normal form of t must be a numeral, for which I will write nt . Note
that if C is a primitive recursive relation and t1, t2, . . . , tk are closed terms, then
�C (t1, t2, . . . , tk) reduces to either 0 or 1.

Under the conventions described in Section 2, we have the following reduc-
tions:

1. a) CutC (a, b)� a if C is a false closed atomic formula
b) CutC (a, b)� b if C is a true closed atomic formula

2. a) cases(inl(a), f, g)� f(a)
b) cases(inr(a), f, g)� g(a)

3. a) (〈a, b〉)0 � a
b) (〈a, b〉)1 � b

If d is a PA-proof of a sequent � with free variable x, let d [t/x] denote the
proof of � [t/x] obtained by inductively replacing x by t in d (barring instances
of x that are not “related” to those in the final sequent). Similarly, if t is a closed
term of type N, let d [t ❀ nt ] denote the result of replacing t by nt . One can verify
that d [t/x] and d [t � nt ] are again proofs in PA, and we have the following

Lemma 5. Fd [t/x] = Fd [t/x] and Fd � Fd [t❀n].

I will now define a set of transformations with which a proof d in PA+ can
be converted to another proof d ′ having the same conclusion. I will say that d
reduces to d ′ in one step, written d �1 d

′, if d ′ can be obtained by applying one
of these transformations to a subproof of d ; and d reduces to d ′, written d � d ′,
if d ′ can be obtained from d by a series of one-step reductions. Finally, say that
d is in normal form if no further one-step reduction is possible.

In illustrating the transformations below, I have chosen instances in which the
hypotheses in the proof on the left are as “large” as possible. But only the rules
are important, which is to say that the same transformations are allowed when
the hypotheses in the proofs on the left are subsets of the ones shown.

The reductions on proofs d are organized according to the last rule of d , as
follows:

1. Principal cuts:Cuts in which the cut formula that is atomic, of the formϕ∨�,
or of the form ∃x ϕ(x), is principal in the previous inference.
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a) Axiom: ifϕ closed and atomic and the principal formula of the preceding
inference, then that inference must be an axiom.

�,ϕ

d0
�, ϕ̄

�

reduces to � or
d0
�, ϕ̄

�

If ϕ is false then {ϕ̄} is an axiom, and so � is also an axiom. If ϕ is true
we can apply atomic inversion to d0.

b) Or:

d0
�,ϕ ∨ �,ϕ
�, ϕ ∨ �

d1
�,¬ϕ ∧ ¬�

�

reduces to
d0

�,ϕ ∨ �,ϕ
d1

�,¬ϕ ∧ ¬�
�,ϕ

d1
�,¬ϕ ∧ ¬�
�,¬ϕ

�

First, cut d0 against d1; then invert d1 and cut again on a smaller formula.
The case where the Or rule is applied on the right is similar.

c) Exists: if t is a closed term,

d0

�, ∃x ϕ(x), ϕ(t)
�, ∃x ϕ(x)

d1

�,¬∀x ϕ(x)
�

reduces to
d0[t � nt ]

�, ∃x ϕ(x), ϕ(nt)
d1

�, ∀x ϕ(x)
�,ϕ(nt)

d1

�, ∀x ϕ(x)
�,ϕ(nt)

�

This is similar to the last reduction. Here one converts t to a numeral nt ,
and uses nt in the For all inversion on the right.

2. Nonprincipal cuts: cuts in which the cut formula that is atomic, of the form
ϕ ∨ �, or of the form ∃x ϕ, is not principal in the preceeding inference.
a) If the preceding rule is And, Or, Exists, For all, or an axiom, pass the cut

“through” this rule. For example,

. . .

di

�i , ∃x ϕ(x) . . .

�, ∃x ϕ(x)
d̂

�, ∀x ¬ϕ(x)
�
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reduces to

. . .

di

�i , ∃x ϕ(x)
d̂

�, ∀x ¬ϕ(x)
�,�i . . .

�

Note that if �, ∃x ϕ(x) is an axiom then so is � , and hence �,�i as well.
b) If the preceding rule is again a cut rule, pass the lower cut through the

one above. For example,

d0
�, ∃x ϕ, &

d1
�, ∃x ϕ,¬&

�, ∃x ϕ
d2

�, ∀x ¬ϕ
�

reduces to
d0

�, ∃x ϕ, &
d2

�, ∀x ¬ϕ
�, &

d1
�, ∃x ϕ,¬&

d2
�, ∀x ¬ϕ

�,¬&
�

3. Elimination of unnecessary free variables: If the last inference of d is either
Cut or Exists, and there is a free variable in one of the hypotheses that is not
free in the conclusion, replace that free variable with 0. For example,

d0

�, ∃x ϕ(x), ϕ(t(y))
�, ∃x ϕ(x)

reduces to
d0[0/y]

�, ∃x ϕ(x), ϕ(t(0))
�, ∃x ϕ(x)

4. Principal inversions:These are inversions whose main formula is the principal
formula of the preceding inference.
a) Atomic inversion:

�, ϕ̄

�
reduces to �

If ϕ̄ is principal in the previous inference, then that inference must be an
axiom. If ϕ is a true atomic formula, then {ϕ̄} is an axiom, and hence so
is � .

b) And inversion:

d0
�,ϕ ∧ �,ϕ

d1
�,ϕ ∧ �,�

�, ϕ ∧ �
�,ϕ

reduces to
d0

�,ϕ ∧ �,ϕ
�, ϕ

In words, one simply implies the inversion to the subproof d0. The case
where the inversion is on the right formula � is similar.
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c) For all inversion, where the principal formula is the conclusion of a For
all rule:

d0

�, ∀x ϕ(x), ϕ(y)
�, ∀x ϕ(x)
�,ϕ(n)

reduces to
d0[n/y]

�, ∀x ϕ(x), ϕ(n)
�,ϕ(n)

In this case, one applies the inversion to d0[n/y].
d) For all inversion, where the principal formula is the conclusion of the

induction rule:
d0

�, ∀x ϕ(x), ϕ(0)
d1

�, ∀x ϕ(x),¬ϕ(y), ϕ(y′)
�, ∀x ϕ(x)
�,ϕ(n)

reduces to
d0

�,∀x ϕ(x), ϕ(0)
d1[0/y]

�,∀x ϕ(x),¬ϕ(0), ϕ(1)
�,∀x ϕ(x), ϕ(1)

d1[1/y]

�,∀x ϕ(x),¬ϕ(1), ϕ(2)
�,∀x ϕ(x), ϕ(2)

...
�,∀x ϕ(x), ϕ(n)

�, ϕ(n)

In words, one applies n cuts to d0, d1[0/y], . . . , d1[n − 1/y], and then
inverts the result.

5. Nonprincipal inversions: if the last rule is an inversion applied to a formula
that is not principal in the preceding inference, carry out the inversion on the
hypotheses of the preceding rule instead. For example,

. . .

di

�i , ∀x ϕ(x) . . .

�, ∀x ϕ(x)
�,ϕ(n)

reduces to

. . .

di

�i , ∀x ϕ(x)
�i , ϕ(n) . . .

�, ϕ(n)

The reductions for the other inversion rules are similar.
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Lemma 7 below shows that a proof of a �1 sentence is normal (irreducible) if
and only if it is cut-free (and this remains true even if reductions of the form 2b
are disallowed). In the next two sections I will present both finitary and infinitary
cut-elimination procedures that use these reductions to transform such proofs to
ones in normal form. This shows that these reductions are weakly normalizing
when applied to proofs of �1 sentences. Note that in the presence of rule 2b they
are not strongly normalizing, since this rule makes it possible to pass two cuts
through each other ad infinitum; but Theorem 10 shows that without 2b, the
resulting set of reductions is, in fact, strongly normalizing.

Leaving the issue of normalizability aside for the moment, I will now show
that the reductions above are compatible with the reduction of the realizing term
extracted in Section 3.

Lemma 6. If a proof d is reduced to another proof d ′ according to any of the
transformations listed above, then Fd � Fd ′ .

Proof. The proof requires checking each reduction. In each case, I will use d to
denote the proof on the left, d ′ to denote the proof on the right, and d0, d1, etc.
as in the diagrams above. Similarly, I will write F instead of Fd , F ′ instead of Fd ′ ,
and so on.

When it comes to the principal cuts, the atomic case 1a is easy. Consider case
1b, in which the cut is on a formula of the form ϕ ∨�. In this case, F is given by

(
�α¬ϕ∧¬� Cutϕ

(
�α¬ϕ F0, �αϕ α¬ϕ∧¬�(inl(αϕ))

))
(�αϕ∨� F1).

F ′ is given by

Cutϕ
(
�α¬ϕ

(
(�α¬ϕ∧¬� F0)(�αϕ∨� F1)

)
, �αϕ

(
(�αϕ∨� F1)(inl(α¬ϕ))

))
.

Both terms reduce to

Cutϕ
(
�α¬ϕ F0[(�αϕ∨� F1)/α¬ϕ∧¬� ], �αϕ

(
(�αϕ∨� F1)(inl(αϕ))

))
.

Case 1c is handled similarly.
To handle the nonprincipal cuts, note that in the example shown for 2a, F is

of the form (
�α∀x ¬ϕ(x) t(. . . Fi . . . )

)
(�α∃x ϕ(x) F̂ )

where t is a term and the only free occurrences of α∀x ¬ϕ(x) occurring in t are
those that occur in the terms Fi . F ′ is then given by

t
(
. . .

(
�α∀x ¬ϕ(x) Fi

)
(�α∃x ϕ(x) F̂ ) . . .

)
.

Both terms reduce to
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t(. . . Fi [�α∃x ϕ(x) F̂ /α∀x ¬ϕ(x)] . . . ).

Case 2b is similar.
Since we substituted 0 for extraneous free variables in the defining clauses of

Section 3, the application of a reduction according to 3 leaves the realizing term
unchanged.

Checking that the claim holds of Atomic inversion, 4a, is easy. To handle the
instance of And inversion shown in 4b, note that F is given by

(
�α¬ϕ∨¬� cases(α¬ϕ∧¬�, �α¬ϕ F0, �α¬� F1)

)
(inl(α¬ϕ)),

and that in this expression α¬ϕ occurs both free and bound; to reduce this term,
one must temporarily replace �α¬ϕ F0 by �-¬ϕ F0[-¬ϕ/α¬ϕ]. F ′ is given by

(
�α¬ϕ∨¬� F0

)
(inl(α¬ϕ)).

Both F and F ′ reduce to the term

F0[inl(α¬ϕ)/α¬ϕ∨¬�].

For all inversion following a For all rule as in 4c is handled similarly. Finally, in
case 4d, where For all inversion follows Induction, F is given by

(
�α∃x ¬ϕ(x) h((α∃x ¬ϕ(x))0, (α∃x ¬ϕ(x))1)

)
(〈n, α¬ϕ(n)〉)

where h is the function defined in the Induction clause of Section 3. Note that in
general α∃x ¬ϕ(x) will be free in F0 and F1, and αϕ(y) and y will be free in F1. After
renaming some of the variables for clarity, F ′ is given by

(
�α∃x ¬ϕ(x) Cutϕ(n−1)

(
�α¬ϕ(n−1) Cutϕ(n−2)

(
. . .

�α¬ϕ(1) Cutϕ(0)(�α¬ϕ(0) F0, �αϕ(0) F1[0/y, αϕ(0)/αϕ(y)]) . . .
)
,

�αϕ(n−1) F1[n − 1/y, αϕ(n−1)/αϕ(y)]
))

(〈n, α¬ϕ(n)〉).

Both terms reduce to

Cutϕ(n−1)

(
�α¬ϕ(n−1) Cutϕ(n−2)

(
. . .

�α¬ϕ(1) Cutϕ(0)(�α¬ϕ(0) F0[〈n, α¬ϕ(n)〉/α∃x ¬ϕ(x)],

�αϕ(0) F1[0/y, αϕ(0)/αϕ(y)〈n, α¬ϕ(n)〉/α∃x ¬ϕ(x)]) . . .
)
,

�αϕ(n−1) F1[n − 1/y, αϕ(n−1)/αϕ(y), 〈n, α¬ϕ(n)〉/α∃x ¬ϕ(x)]
)
.

The nonprincipal inversions in case 5 are handled in a manner similar to the
one we used to deal with the nonprincipal cuts. �
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Corollary 2. If d � d ′, then Fd � Fd ′ .

Before we proceed let me introduce some terminology.

Definition 1. 1. In any cut, the cut formula that is either atomic, of the formϕ∨�,
or of the form ∃x ϕ is called the active premise of the cut. The corresponding
sequent is called the active sequent.

2. A cut is movable if it is subject to a reduction of the form 2a. In other words,
a cut is movable if it is nonprincipal, and the active sequent is an axiom or the
conclusion of an And, Or, Exists, or For all inference.

3. A formula is � if it contains no universal quantifiers. A sequent is � (resp.
closed ) if every formula in it is � (resp. closed ).

Consider a cut whose conclusion is a closed sequent.Using the terminology above
we can observe that if this cut is neither principal nor movable, then the active
sequent is the conclusion of either an inversion, an induction inference, or another
cut. If the conclusion of the original cut happens to be �, then the active sequent
is � and the second possibility is eliminated.

The next lemma shows that normal proofs of closed � sequents are cut-free
(even if one omits reductions of the form 2b).

Lemma 7. 1. If d is a PA+-proof with an instance of an inversion rule, then a
reduction of type 4 or 5 applies to d . Hence any normal PA+ proof is a PA-
proof.

2. If d is a PA-proof of a closed � sequent whose last inference is a Cut, then a
reduction of type 1, 2a, or 3 applies to d .

3. If d is a normal PA-proof of a closed � sequent, then d is cut-free and every
sequent is � and closed.

Proof. In each case, the proof proceeds by induction on d . One obtains the first
clause by noting that a reduction of type 4 or 5 can be applied to any inversion
rule, unless the preceding rule is again an inversion.

To handle the second clause, suppose that no reduction of type 1, 2a, or 3
applies to the last cut; in other words this cut is neither principal nor movable,
and there are no unnecessary free variables. Then the active sequent of this cut is
again a closed � sequent, and the hypotheses imply that this sequent can only be
the conclusion of another cut.

To obtain the final clause, note that by (2) the last inference of d cannot be
a cut, and there are no unnecessary free variables. It follows that the immediate
subproofs of d are again normal proofs of closed � sequents. �

Corollary 3. Let d be a proof of a sentence ∃x A(x) in normal form. Then d is of
the form
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A(t1), A(t2), . . . , A(tk−1), A(tk), ∃x A(x)
A(t1), A(t2), . . . , A(tk−1), ∃x A(x)

...
A(t1), A(t2), ∃x A(x)

A(t1), ∃x A(x)
∃x A(x)

for some k ≥ 1. That is, d consists of an axiom {A(t1), A(t2), . . . , A(tk)} in
which each term ti is closed, with or without the formula ∃x A(x); followed by k
applications of the Exists rule.

Lemma 8. Let d̂ be obtained by combining the proof above with a cut on the
hypothesis ∀x Ā(x). Then Fd̂ reduces to n̂, where

n̂ =




nt1 if A(nt1)
nt2 if Ā(nt1 ) and A(nt2)
nt3 if Ā(nt1 ), Ā(nt2), and A(nt3 )
...
ntk otherwise

Proof. Note that if d is a proof of whose last inference is an application of the
Exists rule to a proof d ′ of �,A(t), then Fd is given by

CutĀ(t)(Fd ′ , α∀x Ā(x)(t)).

This reduces to α∀x Ā(x)(t) if A(t) holds, and Fd ′ otherwise. Cutting with the
hypothesis involves replacing α∀x Ā(x) by the identity function. The result follows
easily by induction on k. �

From Corollary 2 we obtain

Theorem 6. Let d be a proof of a �1 sentence ∃x A(x) in PA. Let n1 be the value
obtained by extracting a realizing term as in Section 3 and normalizing it. Let n2
be any value obtained by normalizing the proof using the reductions above and then
extracting a witness as in Lemma 8. Then n1 = n2.

6 Finitary cut elimination

Following Gentzen’s approach [11, 25], one obtains an ordinal analysis of PA by
assigning ordinals to proofs, and then defining a procedure which transforms any
proof containing at least one cut to another proof with a smaller ordinal. Iterating
this procedure is then guaranteed to yield a cut-free proof. In this section I will
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define such an assignment of ordinals, together with an iterative procedure that
relies on the reductions defined in the previous section. The ordinal assignment
and reduction procedure are essentially an adaptation of Gentzen’s (but see the
discussion in Section 8).

The ordinal ε0 is defined to be the limit of �0, �1, �2, . . . , where �0 = 1 and
�n+1 = ��n . As usual, 2α denotes ordinal exponentiation to the base 2, and 2αn
denotes the iterated exponential defined by 2α0 = α and 2αn+1 = 22

α
n . Any ordinal

α can be written uniquely in the form
∑

i<k 2
αi , where αk > αk−1 > . . . > α0. If

α is of this form and, similarly, - is equal to
∑

i<l 2
-i , then the symmetric sum of

α and - , denoted α#- , is given by
∑

i<k+l 2
1i , where the sequence 〈1i〉 lists the

elements of 〈αi〉 and 〈-i〉 in decreasing order.
The essential property of the symmetric sum is that it is monotone in both

arguments, and the essential property of base 2 exponentiation is that whenever
α1 and α2 are less than α, 2α1#2α2 is less than 2α . In fact, since α1, α2 < α implies
2α1l−1, 2

α2
l−1 < 2αl−1, we have that 2

α1
l #2

α2
l < 2αl for every l greater than or equal to

one.
Define the rank of a formula to be the number of logical connectives it con-

tains; that is, rank(B) = rank(B̄) = 0, rank(∃x ϕ) = rank(∀x ϕ) = rank(ϕ)+1,
and rank(ϕ ∨ �) = rank(ϕ ∧ �) = rank(ϕ) + rank(�) + 1. The rank of a Cut
inference is defined to be the rank of its cut formulae, and the rank of an Induction
inference is the rank of the induction formula ϕ(y).

If we imagine each derivation D to be given by a tree growing upwards from
the conclusion to the axioms, the height of a node � in D, denoted height(�,D),
is defined to be the supremum of the ranks of all the cut and induction inferences
encountered as one travels along the path from � down to the root of D. (This
terminology is due to Gentzen, and should not be confused with the height of the
proof tree.)

I will now assign an ordinal ord(D) to each PA-proof D, by inductively
assigning a value ord(�,D) to each node � of D and then taking ord(D) to be
the value assigned to the root. Using D� to denote the subproof of D rooted at
�, the assignment is defined as follows:

1. If D� is a proof consisting of a single axiom, then ord(�,D) = 1.
2. IfD� is obtained from subproofsD�i using an inference of the form And,Or,
For all, or Exists, then ord(�,D) = sup({ord(�i , D)}) + 1.

3. If D� is obtained by applying a Cut rule to subproofs D� and D�, let l =
height(�,D) and let m = height(�,D) = height(�,D). Then

ord(�,D) = 2ord(�,D)#ord(�,D)
m .−l

where “ .−” denotes truncated subtraction.
4. IfD� is obtained by applying an Induction rule to subproofsD� andD�, then

ord(�,D) = 2ord(�,D)#ord(�,D)·�
m .−l

where l and m are as above.
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One can extend this to PA+ proofs by simply ignoring the inversion rules:

5. If D� is obtained by applying an Inversion inference to D� , set ord(�,D)
= ord(�,D).

In the end, ord(�,D) depends only on the subproofD� rooted at � and the height
of � in D. In other words, one can define another function o(d, l) such that for
any proof d and node �,

ord(�,D) = o(D�, height(�,D)).

In particular, ord(D) = o(D, 0). The function o(d, l) is defined for every l simul-
taneously, by the following clauses:

1. If d is an axiom, o(d, l) = 1.
2. If d is obtained from subproofs di using an rule of the form And, Or, For all,

or Exists, o(d, l) = sup({o(di , l)}) + 1.
3. If d is obtained by applying a Cut of rank m to subproofs d0 and d1, then

o(d, l) = 2o(d0,max(m,l))#o(d1,max(m,l))m .−l .

4. If d is obtained by applying an Induction of rank m to subproofs d0 and d1,
then

o(d, l) = 2o(d0,max(m,l))#ord(d1,max(m,l))·�m .−l .

5. If d is obtained by applying an Inversion to d0, o(d, l) = o(d0, l).

The reduction procedure for PA-proofs can now be described in rough terms,
as follows:

1. Keep applying reductions of the form 2a, until there are no more movable
cuts.

2. Keep applying reductions of the form 3, until there are no unnecessary free
variables.

3. Apply a reduction of the form 1 to a suitable principal cut, and then apply
certain reductions of the form 2b to guarantee that the ordinal of the resulting
proof decreases.

4. If the previous step introduced an Inversion inference, apply reductions of the
form 4 and 5 to remove it.

The following lemmata spell out the details. The first shows that the ordinal of a
proof D decreases if we apply an appropriate reduction to a subproofD� .

Lemma 9. Let D be any proof in PA+ and let � be a node of D. Let D′ be a
proof obtained by replacing D� with another proof, D′

� , of the same sequent. If
ord(�,D′) = ord(�,D) then ord(D′) = ord(D), and if ord(�,D′) < ord(�,D)
then ord(D′) < ord(D).
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Proof. By induction on the length of the path from � to the root of D. �

Thenext three lemmata allowus to carryout the first two steps of the procedure
described above, eliminating movable cuts and unnecessary free variables.

Lemma 10. Let d be a PA-proof in which there are no movable cuts except at the
last inference. Then there is a PA-proof d ′ of the same sequent, such that d ′ has no
movable cuts and for every l , o(d ′, l) ≤ ord(d, l).

Proof. By induction on the height of the proof tree. If the active sequent of the
cut is the conclusion of subproofs di , and the non-active sequent of the cut is
the conclusion of subproof d̂ , apply reduction 2a to pass the cut through this
inference, and then inductively apply the lemma to any subproof in which the cut
is still movable. Then we have

o(d ′, l) ≤ sup({o(di , l)#o(d̂ , l)}) + 1

= sup({o(di , l) + 1})#o(d̂ , l)
= o(d, l). �

Lemma 11. Let d be anyPA-proof. Then there is aPA-proof d ′ of the same sequent,
such that d ′ has no movable cuts and for every l , o(d, l) ≤ o(d ′, l).

Proof. By induction on d ; keep applying Lemma 10. �

Say that a proof d ′ “has no unnecessary free variables” if reduction 3 cannot
be applied to d ′.

Lemma 12. Let d be anyPA-proof. Then there is aPA-proof d ′ of the same sequent,
such that d ′ has no unnecessary free variables and for every l , o(d, l) ≤ ord(d ′, l).
Furthermore, if d has no movable cuts, then neither does d ′.

Proof. Inductively apply reduction 3 to the last inference of d , if necessary, and
then the immediate subproofs. �

Suppose that D is a PA proof of a sentence ∃x A(x), and that D has no
movable cuts or unnecessary free variables. IfD is cut-free,we are done.Otherwise,
if the last inference ofD is not a cut, then it can only be an instance of the Exists
rule. In the latter case, if the preceeding inference is also not a cut, then it is again
an instance of the Exists rule, and so on. In other words, for some j, D ends
with j applications of the Exists rule preceded by a cut. Now, if this cut is not
principal, then its active sequent is again the conclusion of a cut; and again this
argument can be iterated. In short, D must have the following form:
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...
�, &1, . . . , &l , 6

...
�, &1, . . . , &l ,¬6

�, &1, . . . , &l

...
�, &1, . . . , &l−1,¬&l

�, &1, . . . , &l−1

...
�, &1

...
�,¬&1

�
...

∃x A(x)

In this derivation every sequent is closed, � is of the form

{A(t1), . . . , A(tj), ∃x A(x)}

(or, possibly, of this form but without the formula ∃x A(x)), the cut on 6 is
principal, and each &i is closed and either atomic, of the form α ∨ - , or of the
form ∃x α.
Lemma 13. Let D be a PA-proof of the above form. Then there is a PA+ proof D′

of the same sequent, such that ord(D′) is less than ord(D).

Proof. If 6 is atomic or negation atomic, apply a reduction of the form 1a. It is
not difficult to show that the resulting ordinal decreases.

Suppose 6 is of the form ϕ ∨ � or ϕ ∧ �. Without loss of generality, we can
assume the former, since otherwise we can consider ¬6 instead.

Note that �, &1, . . . , &l , 6 and �, &1, . . . , &l ,¬6 have the same height; call this
height n. Note also that the height of � is 0, and the heights of the sequents
�, &1, . . . , &i are nondecreasing in i . Choose k such that �, &1, . . . , &k is the first
sequent below �, &1, . . . , &l , 6 whose height is strictly less than n; if this sequent
is � , take k to be 0.

Writing � ′ for �, &1, . . . , &k , we have the following proof d as a subproof of
D:

dl+1

� ′,&k+1,... ,&l ,ϕ∨�,ϕ
� ′,&k+1,... ,&l ,ϕ∨�

dl

� ′,&k+1,... ,&l ,¬ϕ∧¬�
� ′,&k+1,... ,&l

dl−1

� ′,&k+1,... ,&l−1,¬&l
� ′,&k+1,... ,&l−1

...
� ′,&k+1

dk

� ′,¬&k+1
� ′
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In this diagram the height of � ′ in D is some value m that is strictly less than n,
and the height of every other sequent shown is n.

Let e0 be the proof of � ′, ϕ obtained by omitting the top Or inference, and
cutting dl+1 with dl , . . . , dk , as follows:

dl+1

� ′,&k+1,... ,&l ,ϕ∨�,ϕ
dl

� ′,&k+1,... ,&l ,¬ϕ∧¬�
� ′,&k+1,... ,&l ,ϕ

dl−1

� ′,&k+1,... ,&l−1,¬&l
� ′,&k+1,... ,&l−1,ϕ

...
� ′,&k+1,ϕ

dk

� ′,¬&k+1
� ′,ϕ

Let e1 be the proof of � ′,¬ϕ obtained by inverting dl , and then cutting it with
dl−1, . . . , dk , as follows:

dl

� ′,&k+1,... ,&l ,¬ϕ∧¬�
� ′,&k+1,... ,&l ,¬ϕ

dl−1

� ′,&k+1,... ,&l−1,¬&l
� ′,&k+1,... ,&l−1,¬ϕ

...
� ′,&k+1,¬ϕ

dk

� ′,¬&k+1
� ′,¬ϕ

Finally let d ′ be the proof obtained by cutting e0 with e1:

e0

� ′, ϕ
e1

� ′,¬ϕ
� ′

Note that d ′ is exactly the proof obtained from d by applying reduction 1b to the
principal cut on ϕ ∨ &, and then applying reduction 2b l times to bring each of
the cuts on &l , . . . , &k+1 through the resulting cut on ϕ.

Let D′ be the proof that results from replacing d by d ′ in D. Since the height
of � ′ ism in bothD andD′, I only need to show that o(d ′, m) is strictly less than
o(d,m).

Since the height of every sequent in d other than the bottom one is n, we have

o(d,m) = 2
(
∑l+2

i=k
o(di ,n))+1

n−m

where � denotes a summation using the symmetric sum. Notice that the “+1”
comes from the application of the Or rule. Let p be the height of � ′, ϕ in D′.
Since the rank of ϕ is strictly less than n, we have m ≤ p < n. Calculating the
ordinal assigned to d ′, we find that
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o(d ′, m) = 2
2

∑l+2

i=k
o(di ,n)

n−p
#2

∑l+1

i=0
o(di ,n)

n−p

p−m .

Since n − p greater than or equal to 1 we have

2
∑l+2

i=k
o(di ,n)

n−p #2
∑l+1

i=0
o(di ,n)

n−p < 2
(
∑l+2

i=k
o(di ,n))+1

n−m

The desired inequality comes from applying 2·p−m to both sides.
This completes the case in which 6 is of the form ϕ ∨� or ϕ ∧�. The case in

which 6 is of the form ∃x ϕ or ∀x ϕ is handled similarly. �

Finally, we have

Lemma 14. Let d be aPA+-proof with no inversion rules except at the last inference.
Then there is a PA-proof d ′ of the same sequent, such that for every l , o(d ′, l) ≤
o(d, l).

Proof. An easy induction on d ; keep applying reduction 4 and 5. �

We now have the desired cut-elimination procedure: given a proof D that is
not cut-free, apply Lemma 11 to eliminate movable cuts, apply Lemma 12 to
remove unnecessary free variables, apply Lemma 13 to reduce one principal cut
and lower the ordinal rank, and, finally, apply Lemma 14 to remove the inversion
that the previous step has introduced.

With a reasonable arithmetization of proofs and ordinal notations, steps 1–4
above are clearly primitive recursive. This yields the usual results of an ordinal
analysis:

Theorem 7. The proof-theoretic ordinal ofPA is bounded by ε0, in all of the following
senses:

1. Every provable function of PA is <ε0-recursive.
2. Primitive recursive arithmetic, together with the assertion that every descending
sequence of notations below ε0 terminates, proves the 1-consistency of PA.

3. Let PA(f ) denote the theory obtained by adding a new function symbol to PA
and allowing it to appear in induction inferences. Suppose ≺ is any primitive
recursive relation that PA(f ) proves to be a well-ordering, in the sense that it
proves ∃m (f(m′) �≺ f(m)). Then the order type of ≺, in the standard model,
is less than ε0.

Proof. The first two are standard; details and definitions can be found in, say,
[4, 22]. To obtain the third clause, suppose that PA proves that ≺ is well-ordered
in the above sense. From the procedure above we can obtain a <ε0-recursive
functional F such that for every function f,

f(F (f)′) �≺ f(F (f)).



84 Jeremy Avigad

If the order-type of ≺ is greater than ε0, then there is an isomorphism g of
notations below ε0 with an initial segment of ≺. We can use this to obtain a <ε0
recursive functional F̂ (g, f) such that for every f,

f(F̂ (g, f)′) ≮ f(F̂ (g, f)),

where “<” refers to the ordering on ε0-notations. Using the normal-form the-
orems of [6], this can be used to obtain a universal function for ε0-computable
functions relativized to g. But now an easy diagonalization yields a contradiction.
�

Of course, corresponding “lower bounds” can be obtained by developing a
theory of ordinals below ε0 within PA.

As a corollary to Theorem 6 we obtain

Theorem 8. Let d be a proof of a �1 sentence ∃x A(x) in PA. Let n1 be the value
obtained by extracting a realizing term as in Section 3 and normalizing it. Let n2
be the witness obtained from the finitary cut-elimination procedure described above.
Then n1 = n2.

Wilfried Buchholz has pointed out to me that one can extract additional
information from the proof above. First, using modifications similar to the ones
described in [25, pp. 116–117], one can obtain sharp ordinal bounds on the
strength of the fragments of arithmetic I�k . More specifically, one has to alter
the induction rule so that it reads “from �,ϕ(0) and �,¬ϕ(x), ϕ(x′) conclude
�,ϕ(t) for arbitrary terms t.” Then one has to augment For all inversion to
accomodate arbitrary terms t, and modify the reduction rules accordingly. Given
a proof d in I�k , one carries out a finitary “partial” cut elimination, so that
in any cut one of the cut formulae is the principal conclusion of an instance of
the induction rule. The one uses the ordinal assignment above, but redefining the
rank of a formula to be number of logical connectives in the formula minus one.
The treatment of cuts that previously had rank one has to be suitably modified;
for example, given an inference

d0

�, ∃x B(x), B(t)
�, ∃x B(x)

d1

�, ∀x B̄(x)
�

in whichB(t) is closed and atomic, one cuts d0 against d1 and then applies atomic
inversion, ifB(t) is false; or one applies two inversions on d1, ifB(t) is true.When
all is said and done, we have

Theorem 9. The proof-theoretic ordinal of I�k is �k+1.

A second observation is that with a more liberal assignment of ordinals one
can obtain a stronger normalization theorem. Let ϕ0, ϕ1, ϕ2, . . . denote the first
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� functions in the Veblen hierarchy (see [22]), so that ϕ0(α) = �α and ϕn+1
enumerates the fixed points of ϕn. Modify the assignment of ordinals above by
replacing 3 and 4, as follows:

3. If D� is obtained by applying a Cut of rank m to D� and D�, then

ord(�,D) = ϕm(ord(�,D)#ord(�,D)).

4. If D� is obtained by applying an Induction rule of rank m to subproofs D�

and D�, then

ord(�,D) = ϕm(ord(�,D)#ord(�,D) · �).

Now if one applies an arbitrary reduction from Section 5 that is not of the form
2b, the ordinal assigned to the proof decreases. In the case of a principal For all
inversion of the form 4d, if o(d0) = α, o(d1) = - , and ϕ has rank m, the initial
proof has ordinal ϕm(α#- · �), and the final proof has ordinal

ϕm(-#ϕm(-# . . . ϕm(-#α))),

where there are n appearances of ϕm. Using the fact that in general ϕm(1)#:
≤ ϕm(1#:), the last term is bounded by

ϕnm(-# . . .#-#α) ≤ ϕm(-# . . . -#α + 1)

< ϕm(α#- · �),

as required. As a result, we have

Theorem 10. Without 2b, the set of reductions in Section 5 is strongly normalizing.

I suspect that this theorem remains true if one allows reductions of the form 2b,
with the restriction that the lower cut must have a strictly higher rank than the
one above.

7 Infinitary cut elimination

Schütte’s introduction of infinitary logic to the field of ordinal analysis marked a
significant step in the development of the subject: recast in the infinitary setting,
cut-elimination arguments often become clearer and more natural. In this section
I will use a technique due to Mints [16] to analyze one such argument, and,
in particular, to extract sequences of finitary reductions from an infinitary cut-
elimination procedure. By Theorem 6, this implies that witnesses extracted from
proofs of �1 sentences using the infinitary methods also agree with the ones
extracted by classical realizability.

Let us convert PA to an infinitary proof system PA∞ as follows:
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1. Replace the For all and Induction rules by the single infinitary � rule:
From �,ϕ(n) for each numeral n, conclude �, ∀x ϕ(x).

Here all sequents are assumed to consist of closed formulae only.
2. Restrict the other axioms and rules so that the hypotheses and conclusion are

required to be closed sequents as well.

The infinitary cut-elimination procedure that I am about to describe is by now
standard, and I will only sketch the details. The presentation differs from that of
[24] in the form of the � rule, and in the fact that all sequents of our PA∞ are
closed; it differs from that of [4] in that here we have no need for the “repetition”
rule. The presentation differs from the ones in both sources just mentioned in
that here the inversion and reduction lemmata are phrased in terms of removing
a final inversion or cut rule; but this difference is inessential.

I will use PA+
∞ to denote PA∞ with the additional inversion rules; but, as in

the finitary cut-elimination procedure, instances of these rules will be removed as
soon as they appear. Also as in the finitary case, with each of the lemmata below
the corresponding proof provides an implicit (infinitary) procedure for obtaining
d ′ from d .

Note that in this section the word “height” refers to the height of the proof
tree, and not the function height(�,D) of Section 6.

Lemma 15 (Embedding). If d is a proof of a closed sequent in PA, there is a proof
d ′ of the same sequent in PA∞.

Proof. The proof is by a straightforward induction on d . Instances of the For
all rule applied to a proof d0 are replaced by an � inference applied to proofs
corresponding to d0[n/y]. Instances of the Induction rule applied to proofs d0 and
d1 are replaced by an� rule applied to proofs corresponding to substitutions and
cuts on d0 and d1, as in reduction 4d of Section 6. �

Lemma 16 (Evaluation). If d is a proof of a sequent �(t) in PA∞, then there is a
proof d ′ of �(nt) in PA∞, whose height is less than or equal to that of d .

Lemma 17 (Inversion). Suppose d is a proof in PA+
∞ whose last inference is an

inversion, and there are no other inversions in d . Then there is a proof d ′ of the same
sequent in PA∞.

Proof. By induction on the height of d . If the last inversion is not principal, one
moves the inversion to the immediate subproofs andapplies the lemma inductively.
If the last inversion is applied to an axiom or an instance of the And rule, one
applies a reduction of the form 4a or 4b, and applies the lemma inductively. If the
last inversion is applied to the conclusion of an � rule, one moves the inversion
to the appropriate hypothesis and again applies the lemma inductively. �

Lemma 18 (Reduction). Suppose d is a proof in PA∞ whose last inference is a cut
of rank n, and suppose every other cut in d has rank less than n. Then there is a
proof d ′ in PA∞ in which every cut has rank less than n.
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Proof. By induction on the sum of the heights of the subproofs rooted at d . If
the cut is nonprincipal, apply a reduction of the form 2 (or the analogue for the
� rule). If the cut is principal, apply a reduction of the form 1. Then apply the
reduction lemma inductively, as well as the inversion lemma if necessary. �

Define the cut rank of a proof to be one more than the supremum of the ranks
of its cut inferences.

Lemma 19 (Elimination). For any n ≥ 0, if d is a proof of cut rank n + 1 in PA∞,
then there is a proof d ′ of cut rank n.

Proof. By induction on the height of d . If the last inference is a cut of rank
n, apply the lemma inductively to its immediate subproofs, and then apply the
reduction lemma. �

Theorem 11. Let d be a proof of a closed sequent in PA. Then there is a cut-free
proof d ′ of the same sequent in PA∞.

Proof. Use the embedding lemma to translate d into a proof in PA∞, let n be the
cut rank of the resulting proof, and then apply the elimination lemma n times. �

In fact, the height of d ′ can be shown to be less than ε0. This fact provides an
alternate route to an ordinal analysis of PA, but will not be needed below.

Now suppose that in the statement of Theorem 11, d is a proof of a �1

sentence. Then the resulting d ′ is of the form described by Lemma 7, which is to
say, in this case d ′ is finite; so the net result of the detour through the infinite is
the reduction of d to a cut-free PA-proof d ′. Our goal now is to keep track of
enough information during this detour so that, in the end, we also have a finite
reduction sequence from d to d ′.

To that end, if d is a proof in PA+
∞, define an enrichment of d to be an

assignment of a sequence of PA+ proofs

start(d�)�1 . . .�1 end(d�)

to every subproof d� of d , satisfying the following conditions for each �:

1. start(d�) and end(d�) are proofs of the same sequent as d� .
2. If the last inference of d� is an instance of anything other than the � rule,

and is applied to subproofs . . . d�i . . . , then end(d�) consists of the same rule
applied to . . . start(d�i ) . . . .

3. If the last inference of d� is an instance of the � rule applied to subproofs
d�0 , d�1 , d�2 , . . . , then either
a) the last inference of end(d�) is the For all rule applied to a proof e[y],

and for each i , start(d�i ) = e[i/y]; or
b) the last inference of end(d�) is the Induction rule applied to proofs

e0 and e1[y], and for each i , start(d�i ) is the result of cutting e0 with
e1[0/y], . . . , e1[i − 1/y].
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An enriched proof is simply one that is equipped with an enrichment.
Suppose d is an enriched cut-free proof of a closed�1 sentence. By the remarks

above d is a finitary PA proof, which is to say that, in particular, it contains no
instances of the � rule. The enrichment provides a recipe for reducing start(d ) to
d , as follows: first, reduce start(d ) to end(d ); then reduce each of the immediate
subproofs start(d�i ) of end(d ) to the corresponding proofs end(d�i ); then reduce
the subproofs of those, and so on. In other words, the following lemma provides
the reduction sequence we are looking for.

Lemma 20. The procedures implicit in the proofs of Lemmata 15–19 can be modi-
fied, so that the following hold:

1. In the embedding lemma, d ′ is an enriched proof, and start(d ′) = d .
2. In the evaluation, inversion, reduction, and elimination lemmata, if d is an
enriched proof, then so is d ′ and start(d ′) = start(d ).

Proof. Straightforward. Enrichments can be extracted from any “one-step” re-
duction of an enriched proof in PA∞, and enrichments obtained by applying the
lemmata (inductively) to subproofs can be cobbled together to yield an enrich-
ment for the entire result. �

This yields

Theorem 12. Let d be a proof of a �1 sentence ∃x A(x) in PA. Let n1 be the value
obtained by extracting a realizing term as in Section 3 and normalizing it. Let n2 be
the witness obtained from the infinitary cut-elimination procedure described above.
Then n1 = n2.

8 Final comments

One should note that the M -translation, as a variation of the double-negation
translation, is not efficient on fragments of arithmetic. Although it is known that
I�1 and its intuitionistic version I�i

1 have the same provably total recursive
functions, induction on a�1 sentence translates to induction on the negation of a
�1 sentence, andapplying theFriedman-Dragalin translation yields an instance of
induction that is even more complex. Thierry Coquand has recently discovered a
method of interpreting I�1 that avoids this difficulty; it is discussed and extended
to additional theories in both [8] and [1].

One should also keep in mind that Theorems 8 and 12, which assert that
finitary cut elimination, infinitary cut elimination, and classical realizability pro-
duce the same result, depend on both the particular translation of PA to HA and
the particular cut-elimination procedures I have chosen. In contrast, infinitary
cut-elimination arguments in [22] and [5] do not use an inversion lemma; instead,
cuts are moved upwards until both cut formulae are principal in the preceding
inferences, and a “symmetric” reduction is applied. For example, when the cut
formula is of the form ∀x ϕ(x),



Realizability for Classical Arithmetic 89

d0

�, ∀x ϕ(x), ϕ(y)
�, ∀x ϕ(x)

d1

�, ∃x ¬ϕ(x),¬ϕ(t)
�, ∃x ¬ϕ(x)

�

reduces to

d0

�,∀x ϕ(x),ϕ(y)

�,∀x ϕ(x)

d1

�,∃x ¬ϕ(x),¬ϕ(t)
�,¬ϕ(t)

d0[t/y]

�,∀x ϕ(x),ϕ(t)

d1

�,∃x ¬ϕ(x),¬ϕ(t)
�,∃x ¬ϕ(x)

�,ϕ(t)

�

These reductions, which are closer in form to the ones used by Gentzen, are
not compatible with the normalization of the realizing term. Can one find an
interesting form of realizability that has this property? It would also be nice to
have a better sense of how sensitive Theorems 8 and 12 are to variations in the
cut-elimination procedure. To take a simple example: cutting a proof of �,ϕ with
a “canonical” proof of ¬ϕ, ϕ can change the witnessing term.
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