An Effective Proof that Open Sets are Ramsey

Jeremy Avigad

January 22, 1996

Abstract

Solovay has shown that if \mathcal{O} is an open subset of $P(\omega)$ with code S and no infinite set avoids \mathcal{O} , then there is an infinite set hyperarithmetic in S that lands in \mathcal{O} . We provide a direct proof of this theorem that is easily formalizable in ATR_0 .

1 Introduction

A plausible generalization of Ramsey's theorem asserts that for every twocoloring of the infinite subsets of ω there is an infinite homogeneous set, that is, an infinite subset of ω every infinite subset of which has been assigned the same color. Unfortunately, under the axiom of choice, this generalization is false: by transfinite recursion along a well-ordering of the reals one can cook up a coloring with no infinite homogeneous set. On the other hand, the nonconstructive nature of this counterexample suggests that perhaps the theorem might hold true for colorings that are "well-behaved" or "easily definable."

To that end, we define a **partition** to be a subset of the power set of ω , with the understanding that the infinite subsets falling inside the partition are colored, say, red, and those outside the partition are colored blue. If \mathcal{P} is a partition and X is an infinite subset of ω , then X **lands in** \mathcal{P} if every infinite subset of X is in \mathcal{P} , and X **avoids** \mathcal{P} if no infinite subset of X is in \mathcal{P} . A partition \mathcal{P} is **Ramsey** if there is an infinite set X that either lands in \mathcal{P} or avoids \mathcal{P} . The theorems we are interested in are of the form "every well-behaved partition is Ramsey." A number of authors have shown independently that if \mathcal{P} is open in the usual topology then it is Ramsey (see [4]), and the conclusion has been extended to Borel sets by Galvin and Prikry [4] and analytic sets by Silver [8, 2].

Solovay [11] has strengthened the result for open sets as follows: if \mathcal{O} is an open set with code S and no infinite set avoids \mathcal{O} , then there is an infinite set hyperarithmetic in S which lands in \mathcal{O} . Mansfield [7] has provided a shorter proof of this theorem that was used in [3] to show that the subsystem of second-order arithmetic ATR_0 proves (and is in fact over a weak base theory equivalent

to) Solovay's result. The formalization of Mansfield's proof in ATR_0 is, however, somewhat difficult.

Below we present a remarkably direct proof of Solovay's theorem, obtained by "effectivizing" an argument that uses a nonprincipal ultrafilter on ω . Our proof is easily formalizable in ATR_0 . For more elaborate uses of ultrafilter methods in proving Ramsey-theoretic statements see [6, 5, 1], and for more information on ATR_0 and other subsystems of second-order arithmetic see, for example, [3, 9, 10].

I'd like to thank Andreas Blass for showing me the ultrafilter proof in Section 2 and suggesting the use of Lemma 3.2, and Stephen Simpson for helpful comments on a draft of this paper. The effective proof of Solovay's theorem appears in Section 3.

2 The noneffective version

From now on we identify finite and infinite subsets of ω with the sequences that enumerate their elements in increasing order. Let T be the tree of finite increasing sequences from ω , and let the variables α , β , σ , τ denote elements of T. The notation $\sigma \subseteq \tau$ means that (the set associated with) σ is a subset of (the set associated with) τ and not necessarily that σ is an initial segment of τ .

A basis for the usual topology on $P(\omega)$ is given by sets of the form

$$\mathcal{B}_{\sigma} = \{ X \mid X \text{ extends } \sigma \},\$$

and a set of sequences S can be taken to code the open set

$$\mathcal{O} = \bigcup_{\sigma \in S} \mathcal{B}_{\sigma}.$$

Though the assignment of codes to open sets is not unique, it is well known that a set \mathcal{O} is Σ_1^0 definable from a parameter A if and only if \mathcal{O} is open and has a code recursive in A.

Theorem 2.1 Open sets are Ramsey.

Proof. Let \mathcal{O} be an open subset of $P(\omega)$ with code S. Without loss of generality we can assume that S is closed under extensions, since otherwise the set

 $S' = \{ \sigma \mid \text{some initial segment of } \sigma \text{ is in } S \}$

also codes \mathcal{O} and has this property. Fix \mathcal{U} , a nonprincipal ultrafilter on ω .

By transfinite recursion on the ordinals we label certain elements σ of Tgood and associate an element U_{σ} of \mathcal{U} . At stage 0, we label a sequence σ good if σ is in S, and set $U_{\sigma} = \omega$. At stage μ we label σ good if σ has not already

been so labelled and the set of elements n such that σn is good is in \mathcal{U} . In this case we set

$$U_{\sigma} = \{n \mid \sigma n \text{ was labelled good before stage } \mu\}.$$

Since T is countable, this process stabilizes at some stage before ω_1 . At this point label the remaining elements σ of T bad and set

$$U_{\sigma} = \{n \mid \sigma \hat{n} \text{ is bad}\}.$$

Note that if σ is bad then U_{σ} is in \mathcal{U} , since otherwise its complement would be in \mathcal{U} and we would have labelled σ good.

We claim that if the empty sequence is bad, there is a set which avoids \mathcal{O} , and if empty sequence is good, there is a set which lands in \mathcal{O} .

Suppose the empty sequence is bad. We construct an increasing sequence x_0, x_1, x_2, \ldots every subsequence of which is bad. Take x_0 to be any element of $U_{\langle \rangle}$. Once x_0, x_1, \ldots, x_n have been chosen, note that the set

$$\bigcap_{\sigma \subseteq \langle x_0, x_1, \dots, x_n \rangle} U_{\sigma}$$

is in \mathcal{U} , and so we can take x_{n+1} to be any element of this set that is greater than x_n .

Let $X = \langle x_0, x_1, x_2, \ldots \rangle$. This set X avoids \mathcal{O} : if some $Y \subseteq X$ were an element of \mathcal{O} , we'd have a sequence $\langle y_0, y_1, \ldots, y_n \rangle \subseteq X$ in S. But this sequence would have been labelled good at stage 0, contradicting the fact that every subsequence of X is bad.

So now suppose the empty sequence is good. Exactly as before, construct an increasing sequence x_0, x_1, x_2, \ldots every subsequence of which is good. Let $X = \langle x_0, x_1, x_2, \ldots \rangle$. We claim that X lands in \mathcal{O} . Let $Y = \langle y_0, y_1, y_2, \ldots \rangle$ be any infinite subset of X, and for each n let μ_n be the stage at which $\langle y_0, y_1, \ldots, y_n \rangle$ was labelled good. Then if $\mu_n \neq 0$ we have that $\mu_{n+1} < \mu_n$, since y_{n+1} is in $U_{\langle y_0, y_1, \ldots, y_n \rangle}$ and $\langle y_0, y_1, \ldots, y_n \rangle$ was labelled good by virtue of this set. Since any descending sequence of ordinals must eventually hit 0, we will have $\mu_m = 0$ for some m, in which case $\langle y_0, y_1, \ldots, y_m \rangle \in S$ and hence $Y \in \mathcal{O}$.

3 The effective version

Making the foregoing argument more effective involves two observations:

- 1. We don't need the entire ultrafilter \mathcal{U} ; it is enough to keep track of countably many sets that we've committed to being in the ultrafilter.
- 2. We don't need the entire tree T. On the assumption that no set avoids \mathcal{O} , we can restrict our attention to a well-founded subtree T', and then label the nodes "from the bottom up."

Theorem 3.1 Let \mathcal{O} be an open subset of $P(\omega)$ with code S, and suppose no infinite X avoids \mathcal{O} . Then there is an infinite X hyperarithmetic in S, such that X lands in \mathcal{O} .

Proof. Fix \mathcal{O} and S as in the hypothesis of the theorem, and suppose no infinite X avoids \mathcal{O} . Let

 $T' = \{ \sigma \mid \text{no subsequence of } \sigma \text{ is in } S \}$

and note that T' is a tree that is closed under subsequences. We claim T' is well-founded: Since no infinite X avoids \mathcal{O} , every infinite X has a finite subsequence σ in S. But no such X can be a path through T'.

We start by labelling sequences outside of T' either good or bad. If σ is outside of T', let τ be the smallest initial segment of σ that is outside of T'. If τ is in S we label σ good, and otherwise we label σ bad.

Recall the Brouwer-Kleene ordering on T', in which $\sigma \prec \tau$ iff σ extends τ or σ is less than τ in the lexicographical ordering. Since T' is well-founded, \prec is a well-ordering. Our construction proceeds by transfinite recursion along \prec , where at stage α we label the node α good or bad and at the same time define a set U_{α} , so that the following hold:

- 1. Each U_{α} is infinite.
- 2. If $\alpha \succ \beta$ then $U_{\alpha} \subseteq_f U_{\beta}$, i.e. $U_{\alpha} \setminus U_{\beta}$ is finite.
- 3. If α is good then for all $n \in U_{\alpha}$, αn is good.
- 4. If α is bad then for all $n \in U_{\alpha}$, αn is bad.

We will need to use the following

Lemma 3.2 Suppose for each $\beta \prec \alpha$ we've chosen U_{β} so that clauses (1) and (2) hold. Then there is an infinite set Z such that for every $\beta \prec \alpha$ we have $Z \subseteq_f U_{\beta}$.

Proof. If α is the least element in the ordering we can take $Z = \omega$, and if α is the successor of β we can take $Z = U_{\beta}$. In the case where α is a limit, we take a diagonal intersection: since there are only countably many $\beta \prec \alpha$ we can find a countable sequence β_i cofinal in α . Take u_0 to be the least element in U_{β_0} , and take u_{i+1} to be the least element in

$$\bigcap_{j\leq i} (U_{\beta_j}\setminus\{u_j\}).$$

It is straightforward to verify that $Z = \{u_0, u_1, u_2 \dots\}$ has the desired property.

We now describe the construction. Suppose we've constructed U_{β} for all $\beta \prec \alpha$ and labelled each node $\beta \prec \alpha$ good or bad, so that clauses (1)-(4) hold.

At stage α , first use the lemma to pick an infinite Z so that for all $\beta \prec \alpha$, $Z \subseteq_f U_\beta$. Then consider

$$W = \{ n \in Z \mid \sigma \hat{n} \text{ is good} \}.$$

If W is infinite, label α good and take $U_{\alpha} = W$. Otherwise label α bad and take $U_{\alpha} = Z \setminus W$. The process continues until the empty sequence (i.e. the root of T) has been labelled and $U_{\langle \rangle}$ has been defined.

Now define $U_{\sigma} = \omega$ for all σ outside of T', and note that clauses (3) and (4) still hold for such σ .

We claim that the empty sequence is good. To prove the claim, suppose the empty sequence were bad. We build an increasing sequence of elements x_0, x_1, x_2, \ldots , every subsequence of which is bad. Let x_0 be any element of $U_{\langle \rangle}$ and once x_0, x_1, \ldots, x_n have been chosen, let

$$U = \bigcap_{\sigma \subseteq \langle x_0, \dots, x_n \rangle} U_{\sigma}.$$

Since $U_{\langle\rangle} \subseteq_f U_{\sigma}$ for each of these (finitely many) σ , we have $U_{\langle\rangle} \subseteq_f U$, and hence U is infinite. Take x_{n+1} to be any (e.g. the least) element of U that is greater than x_n .

Let $X = \{x_0, x_1, x_2, \ldots\}$. Since we're assuming that no infinite set avoids \mathcal{O} , some subsequence σ of X is in S. Take σ minimal, so that no proper subsequence of σ is in S. Then σ is outside of T' and every initial segment of σ is in T'. But we initially labelled such σ good, contradiction. This proves our claim that the empty sequence is good.

Now use the same construction to obtain an increasing sequence x_0, x_1, x_2, \ldots every subsequence of which is good. Let $X = \{x_0, x_1, x_2, \ldots\}$. We claim that X lands in O. Let Y be any infinite subset of X. Since T' is well-founded, there is a smallest initial segment σ of Y that is outside of T. By our construction of X we know that σ is good, and hence σ is in S. So Y is in O, proving our claim.

Since the ordering \prec is recursive in S, and for each σ in T' the set U_{σ} is arithmetically definable from S and the sequence $\langle U_{\tau} \rangle_{\tau \prec \sigma}$, it is easy to verify that X is hyperarithmetic in S.

Corollary 3.3 ATR_0 proves Theorem 3.1 (and hence the fact that open sets are Ramsey).

Proof. Formalizing the above argument in ATR_0 is straightforward (see [3, 9, 10]).

References

 Blass, Andreas, "Selective ultrafilters and homogeneity," Annals of Pure and Applied Logic, vol. 38 (1988), 215-255.

- [2] Ellentuck, Erik, "A new proof that analytic sets are Ramsey," Journal of Symbolic Logic, vol. 39 (1974), 163-165.
- [3] Friedman, Harvey, Kenneth McAloon, and Stephen Simpson, "A finite combinatorial principle which is equivalent to the 1-consistency of predicative analysis," in *Patras Logic Symposium*, G. Metakides ed., North-Holland, 1982.
- [4] Galvin, Fred and Karel Prikry, "Borel sets and Ramsey's Theorem," Journal of Symbolic Logic, vol. 38 (1973), 193-198.
- [5] Louveau, A., "Une methode topologique pour l'etude de la propriete de Ramsey," Israel Journal of Mathematics, vol. 23 (1976), 97-116.
- [6] Mathias, A., "Happy families," Annals of Mathematical Logic, vol. 12 (1977), 59-111.
- [7] Mansfield, Richard, "A footnote to a theorem of Solovay on recursive encodability," in Macintyre et al. eds., *Logic Colloqium '77*, North-Holland (1978), 195-198.
- [8] Silver, Jack, "Every analytic set is Ramsey," Journal of Symbolic Logic, vol. 35, no. 1 (1970), 60-64.
- [9] Simpson, Stephen, "Friedman's research on subsystems of second-order arithmetic," in Harrington et al. eds., *Harvey Friedman's Research on the Foundations of Mathematics*, North Holland (1985).
- [10] Simpson, Stephen, Subsystems of Second Order Arithmetic, preprint.
- [11] Solovay, Robert, "Hyperarithmetically encodable sets," Transactions of the AMS, vol. 239 (1978), 99-122.