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Abstract

Solovay has shown that if O is an open subset of P (ω) with code S
and no infinite set avoids O, then there is an infinite set hyperarithmetic
in S that lands in O. We provide a direct proof of this theorem that is
easily formalizable in ATR0.

1 Introduction

A plausible generalization of Ramsey’s theorem asserts that for every two-
coloring of the infinite subsets of ω there is an infinite homogeneous set, that is,
an infinite subset of ω every infinite subset of which has been assigned the same
color. Unfortunately, under the axiom of choice, this generalization is false: by
transfinite recursion along a well-ordering of the reals one can cook up a color-
ing with no infinite homogeneous set. On the other hand, the nonconstructive
nature of this counterexample suggests that perhaps the theorem might hold
true for colorings that are “well-behaved” or “easily definable.”

To that end, we define a partition to be a subset of the power set of ω,
with the understanding that the infinite subsets falling inside the partition are
colored, say, red, and those outside the partition are colored blue. If P is a
partition and X is an infinite subset of ω, then X lands in P if every infinite
subset of X is in P , and X avoids P if no infinite subset of X is in P . A
partition P is Ramsey if there is an infinite set X that either lands in P or
avoids P . The theorems we are interested in are of the form “every well-behaved
partition is Ramsey.” A number of authors have shown independently that if
P is open in the usual topology then it is Ramsey (see [4]), and the conclusion
has been extended to Borel sets by Galvin and Prikry [4] and analytic sets by
Silver [8, 2].

Solovay [11] has strengthened the result for open sets as follows: if O is an
open set with code S and no infinite set avoids O, then there is an infinite set
hyperarithmetic in S which lands in O. Mansfield [7] has provided a shorter
proof of this theorem that was used in [3] to show that the subsystem of second-
order arithmetic ATR0 proves (and is in fact over a weak base theory equivalent
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to) Solovay’s result. The formalization of Mansfield’s proof in ATR0 is, however,
somewhat difficult.

Below we present a remarkably direct proof of Solovay’s theorem, obtained
by “effectivizing” an argument that uses a nonprincipal ultrafilter on ω. Our
proof is easily formalizable in ATR0. For more elaborate uses of ultrafilter
methods in proving Ramsey-theoretic statements see [6, 5, 1], and for more
information on ATR0 and other subsystems of second-order arithmetic see, for
example, [3, 9, 10].

I’d like to thank Andreas Blass for showing me the ultrafilter proof in Sec-
tion 2 and suggesting the use of Lemma 3.2, and Stephen Simpson for helpful
comments on a draft of this paper. The effective proof of Solovay’s theorem
appears in Section 3.

2 The noneffective version

From now on we identify finite and infinite subsets of ω with the sequences
that enumerate their elements in increasing order. Let T be the tree of finite
increasing sequences from ω, and let the variables α, β, σ, τ denote elements
of T . The notation σ ⊆ τ means that (the set associated with) σ is a subset of
(the set associated with) τ and not necessarily that σ is an initial segment of τ .

A basis for the usual topology on P (ω) is given by sets of the form

Bσ = {X | X extends σ},

and a set of sequences S can be taken to code the open set

O =
⋃

σ∈S

Bσ.

Though the assignment of codes to open sets is not unique, it is well known that
a set O is Σ0

1 definable from a parameter A if and only if O is open and has a
code recursive in A.

Theorem 2.1 Open sets are Ramsey.

Proof. Let O be an open subset of P (ω) with code S. Without loss of generality
we can assume that S is closed under extensions, since otherwise the set

S′ = {σ | some initial segment of σ is in S}

also codes O and has this property. Fix U , a nonprincipal ultrafilter on ω.
By transfinite recursion on the ordinals we label certain elements σ of T

good and associate an element Uσ of U . At stage 0, we label a sequence σ good
if σ is in S, and set Uσ = ω. At stage µ we label σ good if σ has not already
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been so labelled and the set of elements n such that σ n̂ is good is in U . In this
case we set

Uσ = {n | σ n̂ was labelled good before stage µ}.
Since T is countable, this process stabilizes at some stage before ω1. At this

point label the remaining elements σ of T bad and set

Uσ = {n | σ n̂ is bad}.
Note that if σ is bad then Uσ is in U , since otherwise its complement would be
in U and we would have labelled σ good.

We claim that if the empty sequence is bad, there is a set which avoids O,
and if empty sequence is good, there is a set which lands in O.

Suppose the empty sequence is bad. We construct an increasing sequence
x0, x1, x2, . . . every subsequence of which is bad. Take x0 to be any element of
U〈〉. Once x0, x1, . . . , xn have been chosen, note that the set

⋂

σ⊆〈x0,x1,...,xn〉
Uσ

is in U , and so we can take xn+1 to be any element of this set that is greater
than xn.

Let X = 〈x0, x1, x2, . . .〉. This set X avoids O: if some Y ⊆ X were an
element of O, we’d have a sequence 〈y0, y1, . . . , yn〉 ⊆ X in S. But this sequence
would have been labelled good at stage 0, contradicting the fact that every
subsequence of X is bad.

So now suppose the empty sequence is good. Exactly as before, construct an
increasing sequence x0, x1, x2, . . . every subsequence of which is good. Let X =
〈x0, x1, x2, . . .〉. We claim that X lands in O. Let Y = 〈y0, y1, y2, . . .〉 be any
infinite subset of X , and for each n let µn be the stage at which 〈y0, y1, . . . , yn〉
was labelled good. Then if µn �= 0 we have that µn+1 < µn, since yn+1 is in
U〈y0,y1,...,yn〉 and 〈y0, y1, . . . , yn〉 was labelled good by virtue of this set. Since
any descending sequence of ordinals must eventually hit 0, we will have µm = 0
for some m, in which case 〈y0, y1, . . . , ym〉 ∈ S and hence Y ∈ O. �

3 The effective version

Making the foregoing argument more effective involves two observations:

1. We don’t need the entire ultrafilter U ; it is enough to keep track of count-
ably many sets that we’ve committed to being in the ultrafilter.

2. We don’t need the entire tree T . On the assumption that no set avoids O,
we can restrict our attention to a well-founded subtree T ′, and then label
the nodes “from the bottom up.”
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Theorem 3.1 Let O be an open subset of P (ω) with code S, and suppose no
infinite X avoids O. Then there is an infinite X hyperarithmetic in S, such
that X lands in O.

Proof. Fix O and S as in the hypothesis of the theorem, and suppose no infinite
X avoids O. Let

T ′ = {σ | no subsequence of σ is in S}
and note that T ′ is a tree that is closed under subsequences. We claim T ′ is well-
founded: Since no infinite X avoids O, every infinite X has a finite subsequence
σ in S. But no such X can be a path through T ′.

We start by labelling sequences outside of T ′ either good or bad. If σ is
outside of T ′, let τ be the smallest initial segment of σ that is outside of T ′. If
τ is in S we label σ good, and otherwise we label σ bad.

Recall the Brouwer-Kleene ordering on T ′, in which σ ≺ τ iff σ extends τ
or σ is less than τ in the lexicographical ordering. Since T ′ is well-founded, ≺
is a well-ordering. Our construction proceeds by transfinite recursion along ≺,
where at stage α we label the node α good or bad and at the same time define
a set Uα, so that the following hold:

1. Each Uα is infinite.

2. If α � β then Uα ⊆f Uβ, i.e. Uα \ Uβ is finite.

3. If α is good then for all n ∈ Uα, α̂ n is good.

4. If α is bad then for all n ∈ Uα, α̂ n is bad.

We will need to use the following

Lemma 3.2 Suppose for each β ≺ α we’ve chosen Uβ so that clauses (1) and
(2) hold. Then there is an infinite set Z such that for every β ≺ α we have
Z ⊆f Uβ.

Proof. If α is the least element in the ordering we can take Z = ω, and if α is
the successor of β we can take Z = Uβ . In the case where α is a limit, we take
a diagonal intersection: since there are only countably many β ≺ α we can find
a countable sequence βi cofinal in α. Take u0 to be the least element in Uβ0 ,
and take ui+1 to be the least element in

⋂

j≤i

(Uβj \ {uj}).

It is straightforward to verify that Z = {u0, u1, u2 . . .} has the desired property.
�

We now describe the construction. Suppose we’ve constructed Uβ for all
β ≺ α and labelled each node β ≺ α good or bad, so that clauses (1)-(4) hold.

4



At stage α, first use the lemma to pick an infinite Z so that for all β ≺ α,
Z ⊆f Uβ . Then consider

W = {n ∈ Z | σ n̂ is good}.
If W is infinite, label α good and take Uα = W . Otherwise label α bad and
take Uα = Z \W . The process continues until the empty sequence (i.e. the root
of T ) has been labelled and U〈〉 has been defined.

Now define Uσ = ω for all σ outside of T ′, and note that clauses (3) and (4)
still hold for such σ.

We claim that the empty sequence is good. To prove the claim, suppose
the empty sequence were bad. We build an increasing sequence of elements
x0, x1, x2, . . ., every subsequence of which is bad. Let x0 be any element of U〈〉
and once x0, x1, . . . , xn have been chosen, let

U =
⋂

σ⊆〈x0,...,xn〉
Uσ.

Since U〈〉 ⊆f Uσ for each of these (finitely many) σ, we have U〈〉 ⊆f U , and
hence U is infinite. Take xn+1 to be any (e.g. the least) element of U that is
greater than xn.

Let X = {x0, x1, x2, . . .}. Since we’re assuming that no infinite set avoids O,
some subsequence σ of X is in S. Take σ minimal, so that no proper subsequence
of σ is in S. Then σ is outside of T ′ and every initial segment of σ is in T ′. But
we initially labelled such σ good, contradiction. This proves our claim that the
empty sequence is good.

Now use the same construction to obtain an increasing sequence x0, x1, x2, . . .
every subsequence of which is good. Let X = {x0, x1, x2, . . .}. We claim that X
lands in O. Let Y be any infinite subset of X . Since T ′ is well-founded, there is
a smallest initial segment σ of Y that is outside of T . By our construction of X
we know that σ is good, and hence σ is in S. So Y is in O, proving our claim.

Since the ordering ≺ is recursive in S, and for each σ in T ′ the set Uσ is
arithmetically definable from S and the sequence 〈Uτ 〉τ≺σ, it is easy to verify
that X is hyperarithmetic in S. �

Corollary 3.3 ATR0 proves Theorem 3.1 (and hence the fact that open sets
are Ramsey).

Proof. Formalizing the above argument in ATR0 is straightforward (see [3, 9,
10]). �
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