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Abstract. A general method of interpreting weak higher-type theories of nonstan-

dard arithmetic in their standard counterparts is presented. In particular, this provides

natural nonstandard conservative extensions of primitive recursive arithmetic, elemen-

tary recursive arithmetic, and polynomial-time computable arithmetic. A means of

formalizing basic real analysis in such theories is sketched.

§1. Introduction. Nonstandard analysis, as developed by Abraham Robin-
son, provides an elegant paradigm for the application of metamathematical
ideas in mathematics. The idea is simple: use model-theoretic methods to
build rich extensions of a mathematical structure, like second-order arithmetic
or a universe of sets; reason about what is true in these enriched structures;
and then transfer the results back to the ordinary mathematical universe.
Robinson showed that this allows one, for example, to provide a coherent and
consistent development of calculus based on the use of infinitesimals.

From a foundational point of view, it is natural to try to axiomatize such
nonstandard structures. By formalizing the model-theoretic arguments, one
can, in general, embed standard mathematical theories is conservative, non-
standard extensions. This was done e.g. by Kreisel, for second-order arithmetic
[29]; Friedman, for first-order Peano arithmetic (unpublished); Nelson, for set
theory [31]; and Moerdijk and Palmgren for intuitionistic first-order Heyting
arithmetic [30] (see also [7]).

In recent years there has also been an interest in formalizing parts of math-
ematics in weak theories, at the level of primitive recursive arithmetic (PRA),
or below. The underlying motivations vary. One may be drawn by the general
philosophical goal of minimizing ontological commitments, or, less ethereally,
by the sport of seeing how little one can get away with. Alternatively, one may
be interested in extracting additional mathematical information from standard
mathematical developments (e.g. [24, 25, 27, 28]), or narrowing the theoretical
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gap between abstract mathematics and concrete computation. In any event,
a number of appropriate formal frameworks have been developed, including
subsystems of first- and second-order arithmetic (e.g. [10, 35, 17, 18]), theories
of finite types (e.g. [26, 28]), and versions of Feferman’s theories of explicit
mathematics (e.g. [39]), to name just a few.

The present work lies at the intersection of the two traditions just described,
proposing the use of higher-type theories of nonstandard arithmetic as yet an-
other framework for formalizing mathematics in weak theories. This combina-
tion seems promising, on a number of fronts. Work by Chuaqui, Sommer, and
Suppes [14, 37, 38] suggests that a good deal of ordinary analysis can be car-
ried out in a theory of nonstandard analyis that is strictly weaker than PRA,
and Tanaka [40] shows that nonstandard analysis can be developed in the
theory WKL0 , which is conservative over PRA. Nelson [32] develops measure-
theoretic probability using nonstandard arithmetic, though the presentation
is informal and no axiomatic system is presented. Nonstandard methods have
also been used in proof complexity and circuit complexity [1, 45, 46]; the the-
ories presented here may provide a natural framework for the metamathemat-
ical analysis of such arguments. Aspects of constructive nonstandard analysis,
described in [33], may carry over to weak theories as well.

In Section 2, I present a nonstandard higher-type extension of primitive
recursive arithmetic, state the sense in which it is conservative over PRA,
and provide a short model-theoretic proof. Section 3 provides another proof,
via an explicit interpretation of the nonstandard higher-type theory in its
standard counterpart. Both the model-theoretic proof and the interpretation
are quite general, and apply to a wide range of weak theories of arithmetic;
Section 4 explores variations, extensions, and applications of the central ideas.
In Section 5, I discuss ways in which one can develop parts of real analysis in
nonstandard theories like the ones considered here.

This paper constitutes a rough and exploratory proposal. In Section 6, I
discuss directions for future research.

§2. A nonstandard extension of primitive recursive arithmetic. In
this section I will describe a finite-type version of PRA and a nonstandard
extension thereof. For a fuller treatment of theories of finite type, see, for
example, [6, 15, 16, 26, 28, 41, 42, 43, 44]. The theory called PRAω below is
essentially a restriction of Gödel’s theory T with “predicative” recursors only,
and with type 0 equality taken as basic.1

The set of primitive recursive functions is the smallest set of functions of var-
ious arities from the natural numbers to the natural numbers, containing the
constant zero, projections, and the successor function, and closed under com-
position and primitive recursion. The language of PRA has a symbol for each

1This theory is denoted bT0 in [6], and is the predicative restriction of the theory denoted
T0 in [43].
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primitive recursive function, and the axioms of PRA consist of quantifier-free
defining equations for these functions and a schema of induction for quantifier-
free formulae.

Identifying relations with their characteristic functions, one can use prim-
itive recursion to define the relation x < y; or, equivalently, one can add a
relation symbol to the language of PRA with appropriate defining equations.
The schema of induction is equivalent to

∀x (ϕ(0) ∧ ∀y < x (ϕ(y) → ϕ(y + 1)) → ϕ(x))

where ϕ is quantifier-free, possibly with parameters other than the one shown.
Since the primitive recursive relations are closed under boolean operations and
bounded quantification, the formula above is equivalent, in PRA, to a universal
one. This fact can be used to show that PRA has a universal set of axioms.
By Herbrand’s theorem, it does not matter whether one takes the underlying
logic to be first-order logic, or just the quantifier-free fragment: if the first-
order version of PRA proves ∀x ∃y ϕ(x, y) for ϕ quantifier-free, then there is
a function symbol f and a propositional proof of ϕ(x, f(x)) from substitution
instances of the universal axioms and axioms of equality.

The finite types are generated inductively as follows: N is a finite type (de-
noting the natural numbers, in the intended interpretation); and if σ and τ
are types, so are σ× τ and σ → τ (denoting the cross product of σ and τ and
the set of functions from σ to τ , respectively, in the full set-theoretic inter-
pretation). I will take the simply-typed lambda calculus to have variables of
all finite types, and constants denoting pairing functions, 〈x, y〉, and projec-
tions, (z)0 and (z)1, at all types. The set of lambda terms is further closed
under lambda abstraction, denoted λx t, and application, denoted t(s). I will
identify terms that differ up to a renaming of their free variables. If t and s
are terms and x is a variable of the appropriate type, then t[s/x] denotes the
result of substituting s for x in t, renaming bound variables if necessary. If I
introduce a term as t[x], then t[s] abbreviates t[s/x]. I will write t(s1, . . . , sk)
for ((t(s1))(s2)) . . . (sk), and σ, τ → ρ instead of σ → (τ → ρ). N is sometimes
called type 0, and a function of type N, . . . , N → N is said to be of type 1.

One obtains a higher-type extension of primitive recursive arithmetic as
follows. Start with a many sorted version of first-order predicate logic with a
sort for each finite type, and an equality relation = at type N only. The terms
are the terms of the simply-typed lambda calculus with the extra constants
described below. The theory includes equality axioms corresponding to β-
reduction; since we only have type N equality, these have to be expressed as
schemata:

• r[(λx. t)(s)] = r[t[s/x]]
• r[(〈x, y〉)0] = r[x]
• r[(〈x, y〉)1] = r[y]
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where in each case r[z] is a term of type N, with z is a variable of the appro-
priate type. Add a constant 0 of type N and a constant S of type N → N,
with axioms

• ¬S(x) = 0
• S(x) = S(y) → x = y

Then add a constant symbol R of type N, (N,N → N), N → N. The idea is
that R(a, f) is the function defined by primitive recursion from a and f ; hence
we have the defining axioms

• R(a, f, 0) = a
• R(a, f, S(x)) = f(x,R(a, f, x))

For each type σ add a constant Condσ : N, σ, σ → σ with defining axioms

• r[Cond(0, x, y)] = r[x]
• r[Cond(S(z), x, y)] = r[y]

for type N terms r[z] with z of type σ. Finally, add a schema of quantifier-free
induction, similar to the one for PRA. Call the resulting theory PRAω.

Using the recursor, R, one can define all the primitive recursive functions.
If we identify function symbols of PRA with their definitions in PRAω, PRA
is included in PRAω. Conversely, we have the following:

Theorem 2.1. PRAω is a conservative extension of PRA.

A proof is sketched in [6, Section 5.1]; a similar proof, in the context of
polynomial-time computable arithmetic, is found in [15].

I will now describe a nonstandard version of PRAω, which I will denote
NPRAω. First, add a new predicate symbol st(x) to the language, with argu-
ment ranging over the natural numbers, and a new constant ω of type N. The
predicate st is intended to denote the “standard” natural numbers, while ω is
intended to denote a nonstandard natural number. Quantifiers ranging over
the standard numbers are obtained by defining ∀stx ϕ to be ∀x (st(x) → ϕ)
and ∃stx ϕ to be ∃x (st(x) ∧ ϕ). A formula ϕ is said to be internal if it does
not involve st , and external otherwise.

To obtain NPRAω, add the following axioms to PRAω:

• ¬st(ω)
• st(x) ∧ y < x → st(y)
• st(x1)∧ . . .∧ st(xk) → st(f(x1, . . . , xk)), for each type 1 term f with no

free variables and no occurence of ω

In particular, the last axiom schema implies that the standard part of the
universe is closed under the primitive recursive functions. In addition, add the
following schema of ∀-transfer without parameters:

• ∀st~x ψ(~x) → ∀~x ψ(~x)

where ψ is a quantifier-free internal formula that does not involve ω, in which
the only free variables are the type N variables shown.
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Theorem 2.2. Suppose NPRAω proves ∀stx ∃y ϕ(x, y), where ϕ is quantifier-
free in the language of PRA with the free variables shown. Then PRAω proves
∀x ∃y ϕ(x, y), and hence PRA proves it as well.

Since ∀stx ∃y ϕ(x, y) is implied by both ∀x ∃y ϕ(x, y) and ∀stx ∃sty ϕ(x, y),
we have:

Corollary 2.3. NPRAω is a Π2 conservative extension of PRA. Also, if ϕ
is quantifier-free in the language of PRA and NPRAω proves ∀stx ∃sty ϕ(x, y),
then PRA proves ∀x ∃y ϕ(x, y).

The second part of the corollary indicates a general pattern of reasoning
in nonstandard arithmetic, whereby one uses nonstandard numbers to prove
theorems about the standard ones.

Let NPRA be PRA together with the restriction of the axioms above to the
smaller language. Since NPRA is included in NPRAω, we have the following:

Corollary 2.4. NPRA is conservative over PRA, in the sense of Theo-
rem 2.2.

Corollary 2.4 has an easy model-theoretic proof, as follows. Suppose PRA
does not prove ∀x ∃y ϕ(x, y). Let L be the language of PRA, and let c, d, and
ω be new constants. Let T be the set of sentences containing all the following:
• The axioms of PRA
• ∀y ¬ϕ(c, y)
• d > c
• ∃~y ψ(~y) → ∃~y < d ψ(~y), for each quantifier-free formula ψ of L with only

the free variables shown
• ω > t, for each closed term t of L + d

Every finite subset of T is consistent, since in any model of PRA satisfying
{∃x ∀y ¬ϕ(x, y)} we can choose an interpretation of c satisfying ∀y ¬ϕ(c, y),
an interpretation of d greater than finitely many witnesses for formulae of L
of the form ∃~y ψ(~y), and an interpretation of ω greater than the denotation
of finitely many terms t involving only d. By compactness, let M be a model
of T . Let S be the set of elements of the universe of M bounded by a closed
term involving only the constant d, i.e.

S = {a ∈ |M| | for some closed term t of L + d, a < tM }.
The reader can check that M becomes a model of NPRA satisfying st(c) and
∀y ¬ϕ(c, y) when one uses S to interpret the predicate st .

A straightforward modification of this argument provides a proof of Theo-
rem 2.2. And, in fact, the argument is much more general, since it relies on
very few of the specific features of PRA. In the next section, I will present an-
other proof of Theorem 2.2, by giving an interpretation of NPRAω in PRAω.
Such an interpretation is interesting in its own right, since it yields an ex-
plicit translation, with a polynomial bound on the increase in proof length.
In addition, it tells us that Theorem 2.2 can be proved in weak fragments of
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arithmetic. We will see in Section 4 that the interpretation is almost as general
as the model-theoretic argument, and so both are widely applicable.

In comparison with other nonstandard theories, the nonstandard axioms
above are fairly weak. I will discuss strengthenings briefly in Sections 4 and 6.
But Section 5 suggests that the axioms above are already sufficient to formalize
an interesting portion of real analysis.

§3. The interpretation. The interpretation of NPRAω in PRAω uses a
forcing argument, described entirely in the language of PRAω. For similar
forcing arguments, see [2, 3, 5, 7, 9].

Let L denote the (typed) language of PRAω, and Lst denote the language
of NPRAω, i.e. L together with an extra constant, ω, and a new predicate,
st(x). Our first step is to translate terms of Lst to terms of L. Choose a type
N variable, ω, in the language of L, corresponding to the constant, ω, of Lst .
Also, assign to each variable x of type σ in Lst a variable x̃ of type N → σ in
L. Finally, if t[x1, . . . , xk] is a term of L with the free variables shown, let t̂
denote the term t[x̃1(ω), . . . , x̃k(ω)] of L, where the constant ω of Lst is also
replaced by the corresponding variable of L.

The idea is that we are taking elements of the universe of Lst to be named
by terms of L that depend on a “generic” element, ω. It is not hard to check
that the axioms of β-reduction are preserved by the translation.

Conditions of the forcing relation are ternary relations, considered as ele-
ments of type N, N,N → N. Intuitively, a condition p is supposed to represent
the assertion ∀stu ∀v p(u, v, ω), where ω is the generic nonstandard element.
If p and q are conditions, define p ¹ q to be the formula ∀u, v, ω (p(u, v, ω) →
q(u, v, ω)), read “p is stronger than (or equivalent to) q.” Note that if p and q
are conditions, then their conjunction, p ∧ q, satisfies p ∧ q ¹ p and p ∧ q ¹ q.
Sometimes, if p is a condition and A is another ternary relation, I will write
p ∧ ∀stu ∀v A(u, v, ω) instead of p ∧ A. This is nothing more than a use-
ful convention that will keep us mindful of the informal interpretation of the
conditions.

We are now ready to define a relation p ° ϕ between conditions p and
formulae ϕ of Lst . It will be convenient to take the logical connectives to be
∀,∧,→,⊥. With this choice of connectives, ¬ϕ abbreviates ϕ → ⊥, ∃x ϕ
abbreviates ¬∀x ¬ϕ, and ϕ ∨ ψ abbreviates ¬(¬ϕ ∧ ¬ψ). The forcing relation
is defined inductively, as follows:

1. p ° ⊥ ≡ ∃z ∀ω ¬∀u < z ∀v p(u, v, ω).
2. p ° t1 = t2 ≡ ∃z ∀ω (∀u < z ∀v p(u, v, ω) → t̂1 = t̂2).
3. p ° t1 < t2 ≡ ∃z ∀ω (∀u < z ∀v p(u, v, ω) → t̂1 < t̂2).
4. p ° st(t) ≡ ∃z ∀ω (∀u < z ∀v p(u, v, ω) → t̂ < z).
5. p ° ϕ → ψ ≡ ∀q ¹ p (q ° ϕ → q ° ψ).
6. p ° ϕ ∧ ψ ≡ (p ° ϕ) ∧ (p ° ψ).
7. p ° ∀x ϕ ≡ ∀x̃ (p ° ϕ)
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If ϕ is a formula in the language Lst with free variables x1, . . . , xk, then p ° ϕ
is a formula in the language L with free variables ω, x̃1, . . . , x̃k, as well as p.
Notice that we are allowing that some conditions force ⊥. In the definition of
p ° ϕ → ψ, the quantifier ∀q ¹ p ranges over conditions. It is not difficult to
show that p ° ϕ → ψ is equivalent to ∀q (q ° ϕ → p ∧ q ° ψ); I will use both
formulations of p ° ϕ → ψ below. Define ° ϕ to be ∀p (p ° ϕ), read “ϕ is
forced.”

The following informal considerations may help explain the motivation be-
hind the definition of forcing at the atomic clauses. Think of a condition p as
representing an infinite set of sentences,

{∀v p(0, v, ω),∀v p(1, v, ω), ∀v p(2, v, ω), . . . }.
If we call this set Sp then clause 2, for example, asserts that p forces t1 = t2 if
and only if t̂1 = t̂2 is a consequence of a finite subset of Sp.

The proofs of the next five lemmata are routine and standard. (See, for
example, [3, 9] for a little more detail.)

Lemma 3.1. Suppose t and s are terms of Lst , r[z] is a type N term of
PRAω, and z has the same type as t. Then PRAω proves

r[t̂[λω ŝ/x̃]] = r[t̂[s/x]].

Proof. By induction on t. Informally, in the base case where t is x, we
have

t̂[λω ŝ/x̃] = x̃(ω)[λω ŝ/x̃] = (λω ŝ)(ω) = ŝ = t̂[s/x].

The other cases are easy. a
Lemma 3.2 (substitution). For each formula ϕ and term s in the language

of Lst , PRAω proves p ° ϕ[s/x] ↔ (p ° ϕ)[λω ŝ/x̃].

Proof. By induction on ϕ. Lemma 3.1 takes care of the base cases. a
Lemma 3.3 (monotonicity). For each formula ϕ of Lst , PRAω proves p °

ϕ ∧ q ¹ p → q ° ϕ.

Proof. Induction on ϕ. a
Lemma 3.4. For each formula ϕ in the language of Lst , PRAω proves °

(⊥ → ϕ).

Proof. Induction on ϕ. a
Lemma 3.5. For each formula ϕ in the language of Lst , if ϕ is provable in

intuitionistic logic, then PRAω proves ° ϕ.

Proof. Induction on proofs. a
Since we are interpreting the connectives ∨ and ∃ in terms of their double-

negation translations, in order to extend Lemma 3.5 to classical logic we only
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need to show that, under the forcing relation, each atomic formula is equiv-
alent to its double-negation. For that purpose, it will be helpful to have the
alternative characterizations of p ° st(t) provided by the following lemma.

To make sense of clause 2 below, some additional considerations are needed.
If ϕ is a quantifier-free formula of L involving u, v, and ω, then, fixing the
other free variables, ϕ is provably equivalent to a ternary relation p(u, v, ω).
In clause 2, the condition “∀stu (t̂ 6< u)” should be interpreted as the ternary
relation corresponding to t̂ 6< u, which depends on u and ω, but not v. I will
use similar conventions below without mentioning them explicitly.

Lemma 3.6. PRAω proves that the following are pairwise equivalent:
1. p ° st(t).
2. p ∧ ∀stu (t̂ 6< u) ° ⊥.
3. ∃y ((p ° t < x)[λω y/x̃]).

Also, ∀stu (t̂ 6< u) ° ¬st(t).

Regarding clause 3, remember that in p ° t < x the free variable x is
replaced by x̃(ω). So 3 asserts that t is standard (at p) if and only if it has a
bound that does not depend on ω.

Proof. The equivalences follow almost immediately from the definition
of p ° st(t), which is also easily seen to be equivalent to ∃z, y ∀ω (∀u <

z ∀v p(u, v, ω) → t̂ < y). For the last claim, note that ∀stu (t 6< u) ° ¬st(t) is
equivalent to the statement “for every p, 1 implies 2.” a

Lemma 3.7. For each formula ϕ of Lst , PRAω proves ° ¬¬ϕ → ϕ.

Proof. We will only verify this in the case that ϕ is atomic. The general
case follows by induction on formulae (working directly with the forcing defi-
nitions, or using intuitionistically valid inferences, which we already know are
sound for forcing).

To handle the case where ϕ is of the form t1 = t2, we first have to observe
that PRAω proves t̂1 6= t̂2 ° ¬(t1 = t2). To see this, remember that t̂1 6= t̂2 °
¬(t1 = t2) is equivalent to the assertion that whenever a condition p forces
t1 = t2, p ∧ t̂1 6= t̂2 forces ⊥; but verifying this is just a matter of unwinding
definitions.

To see that PRAω proves ° ¬¬(t1 = t2) → t1 = t2, argue (in PRAω) as
follows: suppose p ° ¬¬(t1 = t2). Then p ∧ t̂1 6= t̂2 ° ⊥. Checking the
definitions again, it is not hard to verify that this is equivalent to p ° t1 = t2,
as required.

The same argument shows that PRAω proves ° ¬¬t1 < t2 → t1 < t2.
Finally, for the case that ϕ is st(t), argue in PRAω, and suppose p ° ¬¬st(t).

Then, by Lemma 3.6, p ∧ ∀stu (t̂ 6< u) ° ⊥. By Lemma 3.6 again, p ° st(t),
as required. a

Lemma 3.8. For each formula ϕ in the language of Lst , if ϕ is provable
classically, then PRAω proves ° ϕ.
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Proof. Follows from Lemmata 3.5 and 3.7. a
We are now ready to consider the axioms of NPRAω. We will soon see that

all of the axioms other than ¬st(ω) are forced. But first, we will need the
following lemma. If ϕ is any quantifier-free internal formula in the language
of Lst , let ϕ̂ denote the translation of ϕ to the language of L, derived from
the corresponding translation of terms. More explicitly, if ϕ(x1, . . . , xk) has
the free variables shown, then ϕ̂ is the formula ϕ(x̃1(ω), . . . , x̃k(ω)), with the
understanding that if the constant, ω, occurs in ϕ, it is replaced by the variable,
ω, in ϕ̂.

Lemma 3.9. For each quantifier-free internal formula ϕ of Lst , PRAω proves
1. ϕ̂ ° ϕ.
2. p ° ϕ is equivalent to ∃z ∀ω (∀u < z ∀v p(u, v, ω) → ϕ̂).

Proof. The two claims are proved simultaneously by induction on ϕ. If
ϕ is atomic, then 2 holds by definition and 1 is handled as in the proof of
Lemma 3.7. Since the case where ϕ is of the form θ ∧ η is straightforward, we
only need to consider the case where ϕ is of the form θ → η.

For 1, we need to show θ̂ → η̂ ° θ → η. So suppose p ° θ; we need to show
p ∧ (θ̂ → η̂) ° η. By the induction hypothesis, it suffices to show

∃z ∀ω (∀u < z ∀v p(u, v, ω) ∧ (θ̂ → η̂) → η̂),(1)

since θ̂ → η̂ does not depend on u or v. From the assumption p ° θ and the
inductive hypothesis we have

∃z ∀ω (∀u < z ∀v p(u, v, ω) → θ̂),

from which (1) follows.
For the forward direction of 2, Suppose p ° (θ → η). By the inductive

hypothesis, we know θ̂ ° θ, and so p∧ θ̂ ° η. From the definition, it is easy to
show that this implies

∃z ∀ω (∀u < z ∀v p(u, v, ω) → (θ̂ → η̂)).

For the other direction, suppose the last displayed formula holds, q ¹ p, and
q ° θ. By the inductive hypothesis we have

∃z ∀ω (∀u < z ∀v q(u, v, ω) → θ̂)

and hence

∃z ∀ω (∀u < z ∀v q(u, v, ω) → η̂).

By the inductive hypothesis, this is equivalent to q ° η. a
Lemma 3.10. If ϕ is an axiom of PRAω, then PRAω proves ° ϕ.

Proof. All the axioms of PRAω are universal, which is to say, they are
of the form ∀x1, . . . , xk ϕ(x1, . . . , xk), where ϕ is quantifier-free and internal.
By Lemma 3.9, ° ∀~x ϕ is equivalent to ∀x̃1, . . . , x̃k ∀ω ϕ(x̃1(ω), . . . , x̃k(ω)).
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The axioms corresponding to β-reduction are easy to verify, and otherwise, the
translation of each axiom follows immediately from the untranslated version.

a
Lemma 3.11. For each constant term f of type Nk → N of Lst not involving

ω, PRAω proves ° ∀x1, . . . , xk (st(x1) ∧ . . . ∧ st(xk) → f(x1, . . . , xk)).

Proof. The key point is that if f is as in the hypothesis, it does not
depend on ω. Argue in PRAω. Suppose p ° (st(x1) ∧ . . . ∧ st(xk)), i.e.
∃z ∀ω (∀u < z ∀v p(u, v, ω) → (x̃1(ω) < z ∧ . . . ∧ x̃k(ω) < z)). Let-
ting z′ = max~v<z f̂(v1, . . . , vk), we have ∃z, z′ ∀ω (∀u < z ∀v p(u, v, ω) →
f̂(x̃1(ω), . . . , x̃k(ω)) < z′, which implies p ° st(f(x1, . . . , xk)). a

Lemma 3.12. PRAω proves ° ∀x, y (st(x) ∧ y < x → st(y)).

Proof. Argue in PRAω. Suppose p ° st(x) and p ° y < x. Then
∃z ∀ω (∀u < z ∀v p(u, v, ω) → x̃(ω) < z) and ∃z ∀ω (∀u < z ∀v p(u, v, ω) →
ỹ(ω) < x̃(ω)). Picking z to be the maximum of any two witnesses to these
statements, we have ∃z ∀ω (∀u < z ∀v p(u, v, ω) → ỹ(ω) < z), which is
p ° st(y). a

We have dealt with all the axioms except for ∀-transfer and ¬st(ω). The
next lemma deals with the former.

Lemma 3.13. If ϕ(~x) is any quantifier-free formula of L with only the type
N variables shown, PRAω proves ° ∀st~x ϕ(~x) → ∀~x ϕ(~x).

Proof. For notational simplicity, let us assume that ~x is a single variable.
Argue in PRAω. Suppose p ° ∀stx ϕ(x). By Lemma 3.6, we have ∀w ((p °
ϕ(x))[λω w/x̃]). Since ϕ̂(x)[λω w/x̃] is equivalent to ϕ(w), by Lemma 3.9 we
have

∀w ∃z ∀ω (∀u < z ∀v p(u, v, ω) → ϕ(w)).

Since ϕ does not depend on ω or z, this is equivalent to

∃z ∀ω (∀u < z ∀v p(u, v, ω) → ∀w ϕ(w)),

which in turn implies

∀x̃ ∃z ∀ω (∀u < z ∀v p(u, v, ω) → ϕ(x̃(ω))).

But the last formula is equivalent to p ° ∀x ϕ(x), which is what we want. a
Lemma 3.14. Suppose ϕ is any formula of Lst , and NPRAω proves ϕ. Then

PRAω proves ∀stu (ω 6< u) ° ϕ.

Proof. By Lemma 3.6, we have ∀stu (ω 6< u) ° ¬st(ω), and we have shown
that all the other axioms of NPRAω are forced. a

We are now only one lemma away from the proof of the main theorem.
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Lemma 3.15. Suppose ϕ(y, x1, . . . , xk) is a quantifier-free internal formula
of Lst with the free variables shown, and y is of type N. Then PRAω proves
∀v ϕ(v, x̃1(ω), . . . x̃k(ω)) ° ∀y ϕ(y, x1, . . . , xk).

Proof. Unwinding the definition and using Lemma 3.9, we see that we
need to show that PRAω proves

∀ỹ ∃z ∀ω (∀v ϕ(v, x̃1(ω), . . . , x̃k(ω)) → ϕ(ỹ(ω), x̃1(ω), . . . , x̃k(ω))).

But this is immediate. a

Proof of Theorem 2.2. Suppose NPRAω proves ∀stx ∃y ϕ(x, y) with ϕ
quantifier-free in the language of L, and argue in PRAω. By Lemma 3.14, we
have

∀stu (ω 6< u) ° ∀stx ∃y ϕ(x, y).

Let w be arbitrary. Since (p ° st(x))[λω w/x̃], we have

(∀stu (ω 6< u) ° ∃y ϕ(x, y))[λω w/x̃].

Keep in mind that ∃y ϕ(x, y) abbreviates ¬∀y ¬ϕ(x, y). By the previous
lemma, ∀v ¬ϕ(x̃(ω), v) ° ∀y ¬ϕ(x, y), so we have

(∀stu (ω 6< u) ∧ ∀v ¬ϕ(x̃(ω), v) ° ⊥)[λω w/x̃],

which expands to

∃z ∀ω (∀u < z ∀v (ω 6< u ∧ ∀v ¬ϕ(w, v)) → ⊥).

This is classically equivalent to

∃z ∀ω (∃u < z (ω < u) ∨ ∃v ϕ(w, v)).

Given a z witnessing this statement, choose ω = z. Then we have ∀u < z (ω 6<
u), and hence ∃v ϕ(w, v). Since w was arbitrary, we have ∀w ∃v ϕ(w, v), as
desired. a

§4. Weak theories of nonstandard arithmetic. In this section, I will
discuss variations of Theorem 2.2, and some applications. To start with, there
are a number of features of Theorem 2.2 and its proofs that are worth noting.

The first has to do with the treatment of equality. The theories PRAω and
NPRAω were presented with only equality at type N as a basic relation. Of
course, one can define equality at higher types extensionally; for example, if f
and g are of type N → N one can take f = g to be ∀x (f(x) = g(x)). Doing
so does not guarantee that the usual equality axioms, f = g → ϕ(f) = ϕ(g),
follow. But, using a method due to Luckhardt, one can interpret a fully
extensional version of NPRAω in our intensional version, by relativizing all
quantifiers and variables to the “hereditarily extensional objects.” This inter-
pretation preserves Π2 formulae (as well as ∀st∃st formulae, etc.). So Theo-
rem 2.2 extends to extensional versions of NPRAω as well. For a discussion
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of some of the issues related to various treatments of equality, see [6, Section
3.1], [43, Section 3.1], and [15, Section 7].

Second, most of the higher types were not used by the intepretation in an
essential way. It suffices to have a theory in which the types are closed under
the operation σ 7→ (N → σ), so, for example, the interpretation works just as
well for second-order versions of NPRA and PRA, associating k-ary function
variables of the first theory to (k + 1)-ary function variables of the second.

Finally, very little reference was made to the specifics of PRAω itself. In the
interpretation, only the following features came into play:

1. PRAω proves that < is transitive and anti-reflexive, and satisfies the
sentence ∀x, y ∃z (x < z ∧ y < z).

2. PRAω has a universal set of axioms.
3. If ϕ(x, y, z) is a quantifier-free formula, possibly with free variables shown,

PRAω proves

∃R ∀x, y, z (ϕ(x, y, z) ↔ R(x, y, z)),

where R ranges over a suitable representation of ternary relations.
4. PRAω proves that the ternary relations are closed under conjunction.
5. If f is a closed type 1 term, then PRAω proves ∀z ∃w ∀~x < z (f(~x) < w).

(This was used in the proof of Lemma 3.11).
In fact, most of the proofs in the previous section required only the intuition-
istic fragment of PRAω. The proof of Lemma 3.13, which showed that the
∀-transfer schema without parameters is forced, used classical logic. But if one
is willing to give up transfer, then only the final proof of Theorem 2.2 requires
an inference that is not strictly intuitionistic, in the form of Markov’s princi-
ple for quantifier-free formulae; and a slight rewriting of the forcing relation,
along the lines of [3], can be used to render the argument entirely intuitionistic.
On the other hand, if one has no qualms about the use of classical logic, the
presentation of the forcing relation can be simplified; see Appendix B below.

In sum, both the model-theoretic argument sketched at the end of Section 2
and the syntactic interpretation of Section 3 generalize considerably. For ex-
ample, let PV be Cook’s theory of polynomial-time computable functions, and
let PV ω be a corresponding higher-type generalization (i.e. the theory called
PV ω in [15], but with induction restricted to quantifier-free formulae; see also
[6, Section 5.2]). Let NPV ω be the nonstandard version obtained by adding
the nonstandard axioms of Section 2. Then we have

Theorem 4.1. NPV ω is conservative over PV ω and PV , in the sense of
Theorem 2.2.

Similarly, let ERA denote elementary recursive arithmetic, obtained by
adding +, ×, and xy to PRA but restricting the recursions to those that can
be bounded by a term (see e.g. [4, 37, 38]). ERA is a conservative extension of
the theory alternatively known as EFA, for “elementary function arithmetic”,
or I∆0(exp) (see [21]). Let ERAω be the natural higher-type version of ERA



WEAK THEORIES OF NONSTANDARD ARITHMETIC 13

(similar to the theory G3A
ω of [26, Section 2.2], but without the additional

universal sentences in clause 9), and let NERAω be the nonstandard version
of ERAω. Then we have

Theorem 4.2. NERAω is conservative over ERAω and ERA, in the sense
of Theorem 2.2.

Similar versions of Theorem 2.2 hold, for example, for the theory denoted
T + (µ) in [6], and for the theories GnAω of [26].

The nonstandard axioms can have interesting consequences for the standard
numbers. Recall that a formula is bounded, or ∆0, if all its quantifiers are
bounded, and Σ1 if it is of the form ∃~x ϕ, where ϕ is bounded. Consider the
collection principle, BΣ1:

∀x < z ∃y ϕ(x, y) → ∃w ∀x < z ∃y < w ϕ(x, y)

where ϕ is Σ1. Let BΣst
1 denote the relativization of BΣ1 to the standard

numbers, where z is assumed to be standard. The following proposition still
holds even if ϕ has additional parameters that are not necessarily standard.

Proposition 4.3. NERAω and NPRAω prove BΣst
1 .

Proof. By pairing existential quantifiers, we may assume ϕ is ∆0. Argue
in NERAω or NPRAω. Suppose z is standard and ∀x < z ∃sty ϕ(x, y). Then
for any nonstandard number w, we have ∀x < z ∃y < w ϕ(x, y). Since, in
NERAω and NPRAω, every bounded formula is equivalent to a quantifier-free
(even atomic) one, by induction there is a least w such that this last formula
is satisfied. Since the nonstandard numbers are closed under predecessor, this
least w is standard. a

Another interesting fact is that we can interpret the theory WKL∗0 of Simp-
son and Smith [35, 36]. This theory is equivalent to a second-order version
of ERA with set variables, together with a recursive comprehension axiom,
(RCA), and a weak version of König’s lemma, (WKL), which asserts that
every infinite tree on {0, 1} has an infinite path. For details, see [35, 36].

Theorem 4.4. WKL∗0 is conservative over ERA for Π2 formulae.

Proof. One can interpret WKL∗0 in NERA, interpreting the first-order
universe as the standard numbers of NERA, and interpreting the second-order
universe as the standard parts of nonstandard finite sets of NERA. Here we
are using the fact that in NERA, one can code finite sets as natural numbers;
note that if M is a model of NERA and S is a set coded in M, then the
intersection of S with the standard numbers of M may be unbounded.

Lemma IV.4.4 of [35] shows that (WKL) and (RCA) follow from a single
schema of Σ1 separation:

∀x ¬(∃y ϕ(x, y) ∧ ∃z ψ(x, z)) →
∃S ∀x ((∃y ϕ(x, y) → x ∈ S) ∧ (∃z ψ(x, z) → x 6∈ S)),
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where ϕ is ∆0. To see that this holds in the interpretation, argue in NERA.
Suppose for every standard x we have ¬(∃sty ϕ(x, y)∧∃stz ψ(x, z)). Let S be
the finite set

S = {x < ω | ∃y < ω (ϕ(x, y) ∧ ∀z < y ¬ψ(x, z))}.
It is not hard check that for each standard x, we have

(∃sty ϕ(x, y) → x ∈ S) ∧ (∃stz ψ(x, z) → x 6∈ S),

as required. a
The results of [36] are more general; for example, the first-order consequences

of WKL∗0 are exactly those of ERA + BΣ1 .
In Section 6, we will see that, at least for the case of ERAω, the transfer

principles and induction in the system are close to optimal. When it comes
to PRA, however, it seems worth mentioning another conservation result that
can be obtained by the entirely different methods. Let (IΣst

1 ) denote the
relativization of the schema of Σ1 induction to the standard numbers. (Here
too it does not hurt if we allow nonstandard parameters.) Let NPRA′ consist
of NPRA without the ∀-transfer axiom, together with (IΣst

1 ). Then we have
the following:

Theorem 4.5. If NPRA′ proves ∀stx ∃sty ϕ(x, y) with ϕ quantifier-free in
the language of PRA, then PRA proves ∀x ∃y ϕ(x, y).

Proof. The corresponding theorem for an intuitionistic version of NPRA′ is
proved in [7, Theorem 4.4]. By [7, Lemma 5.1], this intuitionstic theory proves
that Markov’s principle for primitive recursive relations holds on the standard
numbers. Our NPRA′ can therefore be interpreted in the intuitionistic version,
using a double-negation translation. a

Section 6 raises the question as to whether or not there is a common refine-
ment of Theorems 2.2 and 4.5. Nonetheless, Theorem 4.5 is strong enough to
yield the following celebrated result of Friedman. Here WKL0 is essentially
WKL∗0 together with the schema of Σ1 induction.

Theorem 4.6. WKL0 is conservative over PRA for Π2 sentences.

Proof. As in the proof of Theorem 4.4, WKL0 is interpreted in NPRA′. a
A further connection between Weak König’s lemma and nonstandard anal-

ysis is discussed in [40].
One advantage to using an interpretation instead of a model-theoretic ar-

gument is that it becomes clear that the theorems can proved in weak the-
ories. For example, let S1

2 denote Buss’ theory of feasible arithmetic (see
[10, 13, 15, 18]). Let ERA∗ denote the extension of ERA with a function
symbol for iterated exponentiation (a conservative extension of the theory
sometimes denoted EFA∗, I∆0 (superexp), or IΣ0 + superexp; see [21]).
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Theorem 4.7. S1
2 proves that NERAω is conservative over ERAω, in the

sense of Theorem 2.2. ERA∗ proves that NERAω is conservative over ERA,
in the sense of Theorem 2.2, and hence that NERAω is consistent.

Proof. S1
2 is strong enough to develop basic syntax, which is all that is

needed to prove that the interpretation is sound. ERA∗ is strong enough
to prove the cut-elimination and normalization theorems, which is enough to
prove that ERAω is conservative over the quantifier-free version of ERA; and
it is strong enough to define a truth predicate for quantifier-free formulae of
ERA, which is enough to prove that ERA is consistent. a

The formal system ERNA of [37, 38] can be interpreted in NERA, taking
the variables of the former theory to range over the rational numbers of the
latter, as in Section 5 below. Therefore, Theorem 4.7 refines the results of
[14, 37, 38].

Finally, let me mention, in passing, that these methods can be extended to
stronger theories as well. With full Peano arithmetic, PA, one can take the
nonstandard version, NPA, to include the transfer schema,

st(x1) ∧ . . . ∧ st(xn) → (ϕ ↔ ϕst),

where ϕ is any formula in the language of PA with free variables x1, . . . , xn;
and the principle of standard induction,

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)) → ∀stx ϕ(x),

for arbitrary formulae ϕ. By formalizing in PA the usual construction of a
nonstandard elementary extension of the natural numbers via compactness
(more precisely, the construction of Σk elementary extensions, for arbitrarily
large k), one can show that NPA is a conservative extension of PA. Another
proof, using definable ultrapowers, is presented in [34]. But since the transfer
principle above is equivalent to the assertion that the standard numbers are
closed under suitable Skolem functions, with some additional work the forcing
interpretation in Section 3 can be used to obtain yet another proof of this
conservation result.

§5. Nonstandard analysis in weak theories. In this section I will sketch
a way of developing parts of analysis in nonstandard theories of arithmetic
like the ones discussed above. All of the definitions and theorems which fol-
low should be thought of as taking place in NERAω. It is likely that similar
methods can be used to carry out parts of analysis in NPV ω, but the situation
there is more delicate; see the discussion in Section 6.

I will use the notation N∗ to denote the nonstandard natural numbers, and
interpret the type N of our nonstandard theories as ranging over N∗. Hence, a
quantifier of the form ∀x ∈ N∗ denotes nothing more than quantification over
the type N objects of the universe. On the other hand, I will let N denote
the standard numbers, so x ∈ N means st(x), and a quantifier ∀x ∈ N ϕ is
understood as ∀x (st(x) → ϕ).
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The nonstandard integers, Z∗, are defined to be ordered pairs 〈a, b〉 of non-
standard natural numbers, and the nonstandard rationals are defined to be
ordered pairs 〈a, b〉 of nonstandard integers, with b 6= 0. The usual relations
and arithmetic operations on integers and rationals, including =Z∗ , =Q∗ , <Z∗ ,
<Q∗ , +Z∗ , +Q∗ , . . . are defined in the usual way, and all are represented by
type 1 terms in the language of NERAω. Note that equality is a defined re-
lation on Z∗ and Q∗. An integer 〈a, b〉 is standard, written 〈a, b〉 ∈ Z, if it is
equal to an integer 〈c, d〉, with c, d ∈ N; or equivalently if |a − b| is standard.
Similarly, the standard rationals Q are those that are standard fractions when
reduced to lowest terms. Note that the relations x ∈ Z and x ∈ Q are external,
i.e. they are defined by formulae that involve the predicate st . As above, we
can interpret quantification over Z∗, Z, Q∗, and Q in the usual way; where
notationally convenient I may write, for example, ∀qQ instead of ∀q ∈ Q. I
will omit subscripts on operations like + and × when they are implicit in the
context.

If q is an element of Q∗, bqc denotes the result of rounding q down to the
nearest integer and dqe denotes the result of rounding up. A nonstandard
rational q is bounded if dqe is standard and infinite otherwise. A nonstandard
rational q is infinitesimal if q = 0 or 1/q is infinite. Nonstandard rationals q
and r are infinitely close, written q ∼ r, if q−r is infinitesimal. The properties
of being bounded and of being an infinitesimal, and the relation of being
infinitely close, are all external.

The standard real numbers, R, are defined to be the bounded nonstandard
rationals. If r and s are reals, r =R s means r ∼ s. A function f from R to R
is simply a function f from Q∗ to Q∗ preserving equality on the reals, that is,
satisfying

∀r, s ∈ R (r =R s → f(r) =R f(s)).

One has to be careful in defining the ordering: r <R s means r <Q∗ s ∧ r 6∼ s;
r ≤R s is equivalent to r <Q∗ s ∨ r ∼ s. If I have introduced r and s as real
numbers, r < s should be read as r <R s; I will use r <Q∗ s when I want to
specify the order relation on nonstandard rationals. Note that unlike =Q∗ and
<Q∗ , which are internal and, in fact, atomic relations, =R and <R are external.

The usual field operations on Q∗ lift to make R an ordered field. Under this
lifting, division by 0 can have unusual properties; for example, if p is 1/ω and
q is 2/ω, then, as real numbers, p = q = 0, but p/q = 1/2.

Let us pause for a moment to compare this to common developments of
nonstandard analysis (as in, say, [20]). In such developments, one typically
defines the nonstandard reals, R∗, in which one can embed the standard ones;
and any standard function f from R to R has a nonstandard extension f∗

from R∗ to R∗. In our setup, nonstandard reals would have to be developed
as type 1 objects, e.g. as Cauchy sequences of nonstandard rationals; general
functions from R∗ → R∗ would then be type 2. Here I propose to ignore the
nonstandard reals entirely. We will see below that though this approach has
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some quirks, it suffices for the development of parts of real analysis, and it has
the advantage that real numbers are represented by type 0 objects.

The following lemma says that one can bound the size of the numerator and
denominator in the nonstandard representation of a real number.

Lemma 5.1. Let x be an element of R. Then there are a ∈ Z∗ and b ∈ N∗
such that |a| < ω, b < ω, and x =R a/b.

Proof. If x =Q∗ 0, take a = 0, b = 1. Otherwise, we can assume x >Q∗ 0;
if x <Q∗ 0, apply the argument to −x.

Since x ∈ R, x is bounded by a standard natural number c = dxe > 0. So if
we let b = b(ω − 1)/cc, b is nonstandard as well. We want to find a such that

a

b
≤Q∗ x <Q∗

a + 1
b

so let a = bbxc. Then b < ω and a ≤Q∗ bx ≤ b(ω − 1)/ccc ≤ ω − 1 < ω. Since
x− a/b <Q∗ 1/b, we have x =R a/b, as needed. a

The proof shows moreover that suitable values of a and b can be computed
from x by a type 1 term of ERAω. The advantage bestowed by Lemma 5.1 is
that certain quantifiers over the real numbers become equivalent to bounded
ones. For example, suppose ϕ(x) is a formula which respects equality of reals.
Then ∀xR ϕ(x) is equivalent to ∀aN∗ < ω, bN

∗
< ω (b 6= 0 ∧ st(da/be) →

ϕ(±a/b)). This last formula is external, since it involves st . But if ϕ is
internal and one wants to quantify over a bounded range of real numbers, one
can replace st(da/be) by an explicit bound, in which case the result is an
internal formula. So, for example, if R(x, y) is a relation (i.e. a type 1 term)
in NERAω that respects equality on the real numbers and r and s are reals,
then ∀x ∈ [r, s] R(x, y) is also equivalent to a relation in NERAω.

A function f from R to R is continuous if it satisfies the usual ε-δ definition
of continuity:

∀xR ∀εR > 0 ∃δR > 0 ∀yR (|x− y| < δ → |f(x)− f(y)| < ε).

In NERAω we have the following surprising fact:

Proposition 5.2. Every function f ∈ R→ R is continuous.

Proof. Suppose we are given f ∈ R → R, x ∈ R, and ε ∈ R with ε >R 0.
It suffices to find a δ ∈ R such that

∀hR (|h| < δ → |f(x + h)− f(x)| < ε).(2)

Since f respects equality on R, we know that for each nonstandard natural
number m,

∀aZ∗ ∈ (−ω, ω) ∀b < ω (|a/b| <Q∗ 1/m → |f(x + a/b)− f(x)| <Q∗ ε/2).(3)

If (3) holds for all m ≥ 1 let m = 0, and otherwise, by induction, let m be the
greatest number less than ω such that (3) fails. Let δ = 1/(m + 1). Since m
is standard, δ >R 0.
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I claim that this δ satisfies (2). Suppose |h| <R δ. By Lemma 5.1, h =R a/b
for some a ∈ Z∗ and b ∈ N∗ with |a|, b < ω. Then |a/b| <Q∗ 1/(m + 1), and
so |f(x + a/b) − f(x)| <Q∗ ε/2. Since f is a function on R and h =R a/b, we
have |f(x + h)− f(x)| ≤R ε/2 <R ε. a

The proof above used induction on a bounded formula, and so does not go
through in NPV ω. But in NPV ω one can prove the converse, namely, that
every function f ∈ Q∗ → Q∗ satisfying the continuity condition is in fact a
function f ∈ R→ R.

At first glance, Proposition 5.2 seems blatantly false. After all, what about
the function f ∈ Q∗ → Q∗ defined by

f(x) =
{

0 if x ≤Q∗ 0
1 otherwise,

which is represented by a term of NERAω? The problem is that this is not
a function from R to R: for example, 1/ω =R 0 but f(1/ω) 6=R f(0). On the
other hand, the function g ∈ Q∗ → Q∗ defined by

g(x) =
{

0 if x ≤R 0
1 otherwise

is not represented by a term of NERAω, since x ≤R 0 is external.
Thus, we have a development of analysis which, like Brouwer’s, has the

property that every well-defined function from R to R is continuous. This
feature may help illuminate the Brouwerian world-view. What is going on is
that in our framework, function variables f, g, . . . range over internal functions;
and, in essence, Proposition 5.2 tells us that any function from R→ R defined
from an internal function from Q∗ → Q∗ is continuous. If one is loathe to
give up functions like g above, one can extend our theories with function
variables ranging over external functions, which are not allowed to appear in
the induction axioms. Thus, in a sense, Proposition 5.2 is not incompatible
with classical mathematics; it only underscores the fact that, in the theory at
hand, we have chosen to ignore the additional functions. For many purposes
this restriction poses no great loss; for example, the function f above is well-
defined on any interval of R that does not contain 0.

The examples that follow provide evidence that our framework allows a
smooth development of elementary calculus.

Theorem 5.3. If f ∈ [0, 1] → R, then f is uniformly continuous.

Proof. The proof is similar to that of Proposition 5.2 above. a
Theorem 5.4 (Intermediate value theorem). Suppose f ∈ [0, 1] → R, f(0) =

−1, and f(1) = 1. Then there is an x ∈ [0, 1] such that f(x) = 0.

Proof. Considering f as a function on Q∗, let

j = max{i < ω | f(i/ω) <Q∗ 0}
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and let x = j/ω. Since j/ω ∼ (j + 1)/ω, we have

f((j + 1)/ω) =R f(j/ω) ≤R 0 ≤R f((j + 1)/ω)

and so f(x) =R 0. a
Theorem 5.5 (Extreme value theorem). If f ∈ [0, 1] → R, then f attains

a maximum value.

Proof. Again considering f as a function on Q∗, let

y = max
0≤i≤ω

f(i/ω),

let x = j/ω satisfy f(x) =Q∗ y. That y is a maximum is guaranteed by the
fact that for any x′ ∈ [0, 1], there is an i such that x′ ∼ i/ω. a

Turning to differentiation, if f ∈ R→ R and x, y ∈ R, say f ′(x) = y if

∀εR > 0 ∃δR > 0 ∀hR
(

0 6=R |h| < δ →
∣∣∣∣
f(x + h)− f(x)

h
− y

∣∣∣∣ < ε

)
.

This is not the strongest condition one can imagine, since it says nothing about
the behavior of f at nonzero infinitesimals. For example, it is possible that
f ′(0) = 0 while, as a function from Q∗ to Q∗, f(x) oscillates between −x and
x on an infinitesimal neighborhood of 0. Say that f ′(x) is strongly equal to y
if the formula above holds with 6=R replaced by 6=Q.

Proposition 5.6. Let f ∈ R→ R, x, y ∈ R. Then the following are equiv-
alent:

1. f ′(x) is strongly equal to y.
2. For every infinitesimal h 6=Q∗ 0, f(x+h)−f(x)

h ∼ y.

If f ′(x) is strongly equal to y, then f ′(x) = y.

Proof. The last claim is obvious. For the implication 1 → 2, suppose f ′(x)
is strongly equal to y and let h be a nonzero infinitesimal element of Q∗. Then
for every δR > 0, |h| <R δ. So for every standard n, |(f(x+h)−f(x))/h−y| <
1/n. This implies that (f(x + h)− f(x))/h− y is infinitesimal.

The proof that 2 → 1 is very similar to that of Proposition 5.2. a
Corollary 5.7. Suppose k is standard, and f(x) = xk. Then for every x,

f ′(x) = kxk−1.

Proof. Suppose h is infinitesimal. Calculating, we have

(x + h)k − xk

h
= kxk−1 + h

[
k∑

i=2

(
k

i

)
xk−ihi−2

]
.

Using the facts that k and dxe are standard, it is not hard to show that the
expression in brackets is standard, and so its product with h is infinitesimal. a



20 JEREMY AVIGAD

One can continue, for example, by defining functions like ex, sin x, and
cos x using nonstandard finite segments of their Taylor series expansions, and
then deriving their basic properties. For another example, there is an easy
proof of the Cauchy-Peano theorem on the existence of solutions to differential
equations, as described in [40]. There does not seem to be any bar to developing
integral calculus in NERAω in a similar manner.

§6. Notes and questions. This paper is a modest contribution to the
study of weak theories of nonstandard arithmetic, and there are a number of
questions and issues that need to be further explored. The questions discussed
in this section fall into two groups: the first has to do with the metamathe-
matical properties of the formal theories under consideration, and the second
has to do with their utility with respect to the formal analysis of mathematics.

As far as the theories go, one would like to know the extent to which they are
optimal, and whether or not they can be strengthened with additional prin-
ciples of induction, transfer, and so on, while maintaining Π2 conservativity.
For example, we might want to strengthen the ∀-transfer axiom of Section 2
by allowing standard parameters: ∀st~y (∀st~x ϕ(~x, ~y) → ∀~x ϕ(~x, ~y)), where ϕ
is an internal ∆0 formula that does not involve ω. The following shows that
we cannot even add this mild strengthening to NERAω without violating Π2

conservativity:

Proposition 6.1. Over NERAω, ∀-transfer with parameters implies Σ1 in-
duction relative to the standard numbers, i.e. the schema

∀st~y (ψ(0, ~y) ∧ ∀stu (ψ(u, ~y) → ψ(u + 1, ~y)) → ∀stu ψ(u, ~y)),

for ψ(u, ~y) of the form ∃stx ϕ(u, x, ~y), where ϕ is a ∆0 formula in the langauge
of ERAω.

Proof. ∀-transfer with parameters implies that if ϕ(u, x, ~y) is as above
and u and ~y are assumed to be standard, then ∃stx ϕ(u, x, ~y) is equivalent to
∃x < ω ϕ(u, x, ~y). By induction for bounded formulae in NERAω, if ∃x <
ω ϕ(u, x, ~y) fails for some u, there is a least such u; and is least u has to be
nonstandard. a

This leaves open the question as to whether one can improve the conservation
result for NPRAω, using either the methods presented here or in [7]. How much
transfer can one add? Can one add the unrelativized version of Σ1 induction
for formulae in the original language? In trying to strengthen the conservation
result, one might make use of the fact that one can add Σ1 induction, and even
Π2 collection, to PRAω without destroying Π2 conservativity. Formalized or
internalized versions of the various model-theoretic constructions presented in
[21, 22, 5] may also be useful in this regard.

Similarly, one can extend PV with Σb
1 induction, yielding, essentially, Buss’

theory S1
2 (for various formulations, see [10, 13, 15, 18]). And one can extend

S1
2 with either a weak form of collection for arbitrary bounded formulae (see
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[11], or [19] for a simpler model-theoretic proof) or a stronger form of collection
for Σb

2 formulae (see [13]). Can either of these results or the associated model-
theoretic constructions be used to strengthen the theory NPV ω? In particular,
can one obtain a strengthening of NPV ω that is strong enough to interpret the
second-order theories of [18], which include a form of weak König’s lemma?

The interpretation of Section 3 provides efficient translations between second-
order and higher-order systems; and the Dialectica interpretation [6, 15, 25, 43]
can be used to interpret the higher type theories in their quantifier-free coun-
terparts. But the interpretation does not work at the first-order level. By
internalizing cut-elimination arguments, it seems that one should be able to
interpret NPRA and NERA efficiently in PRA and ERA. Is there an efficient
means of interpreting NPV in PV ? Or can one find specific counterexamples
to show that this is not the case?

Is there a better way to treat equality in the theories presented here?
Are there interesting nonstandard versions of Feferman’s theories of explicit

mathematics?
There are more general questions, having to do with the formalization of

mathematics in theories like the ones presented here. For example, what is
required to formalize various parts of analysis? See [14, 17, 24, 25, 27, 28, 33,
35, 37, 38] for various approaches to answering this question. Do nonstandard
theories provide a useful approach?

Can nonstandard theories like the ones presented here provide a perspicuous
means of extracting polynomial bounds from proofs of theorems in analysis,
as done by Kohlenbach [24, 25, 26, 27, 28]?

At the level of feasible computation, one would like to be able to formalize
the study of feasible real analysis, as described in [23]. Fernandes and Ferreira
[17] provides an initial step in this direction. Can nonstandard theories be
used for this purpose as well?

What kind of theory of nonstandard arithmetic is sufficient to carry out the
development of measure-theoretic probability, along the lines of Nelson [32]?

What is required for carrying out the nonstandard combinatorial arguments
in proof complexity and circuit complexity in [1, 45, 46]?

Finally, some general methodological reflection is in order. As noted in the
introduction, the motivations for formalizing mathematics in weak theories
range from philosophical, to mathematical, to potential applications in com-
puter science; and a variety of formal frameworks have been explored. To what
extent to the various goals overlap, and are there general considerations that
can help us evaluate the various frameworks? Under such an analysis, how do
the nonstandard theories described here stack up?

Appendix A. The following example shows that one needs to be careful
in stating conservation results for nonstandard theories. In particular:
• In the absence of transfer principles, the strength of the standard and

nonstandard parts of the theory may differ.
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• Conservativity may not always be established in a weak theory.
• Conservativity does not guarantee the existence of an even remotely fea-

sible translation.
Let T be a weak theory of arithmetic, say ERA. Let T ′ be the extension

of T in a language with a new predicate symbol st , with axioms asserting the
existence of a nonstandard number, plus all the axioms of Peano arithmetic
relativized to st .

Proposition 6.2. T ′ is a conservative extension of T .

Proof. Any nonstandard model of T can be expanded to a nonstandard
model of T ′, by interpreting st as the standard numbers. a

Indeed, the proof shows that Proposition 6.2 holds even if one adds arbitrary
true arithmetic statements, relativized to st , to T ′.

Proposition 6.3. There is no <ε0-recursive translation of proofs from T ′

to T .

Proof (sketch). If d is a proof, let |d| denote the length of d, according to
the number of symbols. Let {Fα | α < ε0} denote the fast-growing hierarchy
of functions up to ε0, so every <ε0-recursive function is eventually dominated
by some such Fα. For each α < ε0, Peano arithmetic proves the formalized Π2

assertion ∀x ∃y (Fα(x) = y). So, for each natural number n, there is a short
proof of ∃y (Fα(n̄) = y) in PA. Since the axioms of PA hold relativized to st
in T ′, for each natural number n there is a short proof of ∃sty (Fα(n̄) = y) in
T ′, and hence a short proof of ∃y (Fα(n̄) = y).

On the other hand, any proof of ∃y (Fα(n̄) = y) in T has to be long. For,
given any proof d of ∃y (Fα(n̄) = y), by Herbrand’s theorem one can extract
a term t of ERA such that Fα(n̄) = t holds, where the length of t, and hence
its value, can be bounded by a fixed primitive recursive function of |d|. So, for
α large, |d| has to be relatively close to Fα(n).

Put more precisely: given α, one can find a primitive recursive function f ,
such that for each n there is a proof of ∃y (Fα(n̄) = y) in T ′ of length at most
f(n). At the same time, there is a fixed primitive recursive function g such
that if d is any proof of ∃y (Fα(n̄) = y) in T , then g(|d|) ≥ Fα(n). So, infinitely
often, the translation maps a proof of length m to a proof of length at least
g−1(Fα(f−1(m))). But given any <ε0-recursive function h, one can choose
α large enough so that for any primitive recursive f and g, h is eventually
dominated by this last function. a

Appendix B. If one is not concerned with an ultimate reduction to classical
logic, the forcing relation can be simplified somewhat. To start with, we can
restrict our attention to conditions that do not force falsity, i.e. define the
relation Cond(p) to hold if and only if p 6° ⊥. This modification requires
some changes to the proofs in Section 3. For example, now conditions p and
q may be incomparable, which is to say, p ∧ q may not be a condition; the
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forcing clause for implication, p ° ϕ → ψ, becomes equivalent to the assertion
∀q (q ° ϕ ∧ Cond(p ∧ q) → p ∧ q ° ψ). Also, clause 1 of Lemma 3.9 must
be modified to read “for each quantifier-free internal formula ϕ of Lst , PRAω

proves Cond(ϕ̂) → (ϕ̂ ° ϕ).”
The advantage to modifying the notion of a condition in this way that forcing

for negation, disjunction, and existential quantification can be expressed more
easily:

• p ° ¬ϕ if and only if ∀q ¹ p (q 6° ϕ)
• p ° ϕ ∨ ψ if and only if ∀q ¹ p ∃r ¹ q (r ° ϕ or r ° ψ)
• p ° ∃x ϕ if and only if ∀q ¹ p ∃r ¹ q ∃x̃ (r ° ϕ)

Here all the quantifiers are taken to be implicitly relativized to conditions, that
is, predicates satisfying Cond . The definion of forcing for a doubly-negated
formula becomes equivalent to the usual notion of generic validity:

• p ° ¬¬ϕ if and only if ∀q ¹ p ∃r ¹ q (r ° ϕ)

Lemma 3.7 then asserts that if ϕ is generically valid below p, it is forced by p.
The reader can check that using the equivalences above one can finish off the
proof of Theorem 2.2 without the help of Lemma 3.15.

Further inspection of the proofs in Section 3 shows that when it comes to
using the conditions ∀stu ∀v p(u, v, ω), the universal quantifer over v is no
longer needed, and the universal quantifier over standard u is only used in the
context ∀stu (t̂ 6< u), expressing that t denotes a nonstandard element. We
can more frugally take conditions to be represented pairs of the form 〈α, f〉,
where α is a predicate on N (represented by its characteristic function) and
f is a function from N to N. Define such a pair 〈α, f〉 to be a condition if it
satisfies

∀z ∃ω (α(ω) ∧ f(ω) ≥ z)

expressing that the predicate α holds of values of ω making f arbitrarily large.
The relation 〈β, g〉 ¹ 〈α, f〉 is defined by

〈β, g〉 ¹ 〈α, f〉 ≡ ∀ω (β(ω) → α(ω) ∧ g(ω) ≤ f(ω)),

and if 〈α, f〉 and 〈β, g〉 are compatible conditions, then their greatest lower
bound is given by 〈α ∧ β,min(f, g)〉. The forcing clauses for atomic formulae
are now as follows:

• p ° t1 = t2 ≡ ∃z ∀ω (α(ω) ∧ f(ω) ≥ z → t̂1 = t̂2)
• p ° t1 < t2 ≡ ∃z ∀ω (α(ω) ∧ f(ω) ≥ z → t̂1 < t̂2)
• p ° st(t) ≡ ∃z ∀ω (α(ω) ∧ f(ω) ≥ z → t̂ < z)

We then have 〈>, t̂〉 ° ¬st(t); in particular, if id is the identity function,
〈>, id〉 forces that ω is nonstandard. The reader can verify that the proof of
Theorem 2.2 still goes through, mutatis mutandis.

Finally, in the case of NPRAω, the translation can be simplified even further,
provided one allows Σ1 induction in the target theory. Conditions can be taken
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to be unary predicates p on N that hold for infinitely many values of ω,

∀z ∃ω ≥ z p(ω),

corresponding to sets in the Fréchet filter. These are the forcing clauses for
atomic formulae:
• p ° t1 = t2 ≡ ∃z ∀ω ≥ z (p(ω) → t̂1 = t̂2)
• p ° t1 < t2 ≡ ∃z ∀ω ≥ z (p(ω) → t̂1 < t̂2)
• p ° st(t) ≡ ∃z ∀ω ≥ z (p(ω) → t̂ < z)

In other words, p forces t1 = t2 if and only if t̂1 = t̂2 holds for all but finitely
many values of ω satisfying p. Although the necessity of having Σ1 induction
in the interpreting theory weakens the result, it is perhaps surprising that such
a straightfoward translation can be used to interpret nonstandard reasoning.

Σ1 induction is required to verify that ¬¬st(t) → st(t) is forced, as follows.

Lemma 6.4. Over PRAω, Σ1 induction is equivalent to the following prin-
ciple:

∃z ∀y (f(y) ≤ z) → ∃x ∀y (f(y) ≤ f(x)).

This principle expresses the fact that every bounded function on N has a
least upper bound, and attains it. Only the forward direction of the lemma is
required below, though the equivalence seems interesting in its own right.

Proof. The contrapositive of the principle is equivalent to

∀x ∃y (f(y) > f(x)) → ∀z ∃y (f(y) > z).(4)

We will show that Σ1 induction is equivalent to (4), arguing in PRAω. For the
forward direction, suppose ∀x ∃y (f(y) > f(x)). By induction on z, it is easy
to show ∃y (f(y) > z).

Conversely, suppose ϕ(u, v) is a ∆0 formula satisfying the two hypotheses
of Σ1 induction, ∃v ϕ(0, v) and ∀u (∃v ϕ(u, v) → ∃v ϕ(u + 1, v)). We need
to show ∀u ∃v ϕ(u, v). Define f(x) to be the greatest w ≤ x such that ∀u <
w ∃v ≤ x ϕ(u, v). It is not hard to show that for every x, ∃y (f(y) > f(x)); if
f(x) is 0, this follows from the first hypothesis, and otherwise it follows from
the second. By (4), for every u there is a y such that f(y) > u; the definition
of f implies ∃v ϕ(u, v). a

Lemma 6.5. Let t be any term. With the modified definition of forcing,
PRAω + Σ1induction proves the following: Let p be any condition and let q be
the predicate defined by

q(ω) ≡ p(ω) ∧ ∀u < ω (p(u) → t̂(u) < t̂(ω)).

Then if q is a condition, q ° ¬st(t).

Proof. The idea is that q corresponds to a subset of p on which t̂ is strictly
increasing as a function of ω. Suppose q is a condition, and let r be any
predicate satisfying r ¹ q. It suffices to show that if r ° st(t), then r is not a
condition.
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So, suppose r ° st(t), i.e.

∃z ∀ω ≥ z (r(ω) → t̂(ω) < z).(5)

Since r ¹ q we know that t̂ is increasing on r, that is,

∀u, v (r(u) ∧ r(v) ∧ u < v → t̂(u) < t̂(v)).(6)

Define f by

f(v) = max
u≤v∧r(u)

t̂(u).

By (5) we have that f is bounded by z. Using the principle of Lemma 6.4,
there is a value u such that ∀v (f(v) ≤ f(u)). But then (6) implies

∀ω > u ¬r(ω),

so r is not a condition. a
Lemma 6.6. PRAω + Σ1 induction proves that ¬¬st(t) → st(t) is forced.

Proof. Suppose p ° ¬¬st(t). Then ∀q ¹ p (q 6° ¬st(t)). Define q as in the
statement of Lemma 6.5. Then q ¹ p, and if q is a condition then q ° ¬st(t);
so q is not a condition. This means we have ∃z ∀ω ≥ z ¬q(ω), i.e. for some z
we have

∀ω ≥ z (p(ω) → ∃u < ω (p(u) ∧ t̂(ω) ≤ t̂(u)).

Since p is a condition, we can pick an ω ≥ z satisfying p(ω), and let v =
maxu≤ω∧p(u) t̂(u). Then we have

∀ω ≥ z (p(ω) → t(ω) ≤ v)

which implies p ° st(t). a
With the modified forcing definition, it is easy to show that ¬st(ω) is forced.

So, in the end, we can conclude that whenever NPRAω proves a formula ϕ,
PRAω + Σ1 induction proves that ϕ is forced.
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