
Predicative Functionals and
an Interpretation of ÎD<ω

∗

Jeremy Avigad

December 22, 1997

Abstract
In 1958 Gödel published his Dialectica interpretation, which reduces

classical arithmetic to a quantifier-free theory T axiomatizing the prim-
itive recursive functionals of finite type. Here we extend Gödel’s T to
theories Pn of “predicative” functionals, which are defined using Martin-
Löf’s universes of transfinite types. We then extend Gödel’s interpretation
to the theories of arithmetic inductive definitions ÎDn, so that each ÎDn

is interpreted in the corresponding Pn. Since the strengths of the theories
ÎDn are cofinal in the ordinal Γ0, as a corollary this analysis provides an
ordinal-free characterization of the <Γ0-recursive functions.

1 Introduction

1.1 Background

In 1958, Gödel [18] published what is now known as the Dialectica interpretation
of arithmetic, consisting of a quantifier-free theory T and interpretation of Peano
Arithmetic (PA) in that theory. T allows for the definition of functionals of
arbitrary finite type using a generalized form of primitive recursion, and at the
end of the article Gödel suggested that extensions of T could be constructed
using “transfinite” types of some sort.

The question we address here is as follows: are there interesting extensions
of T that are appropriate for the interpretation of stronger predicative theories,
that is, theories of proof-theoretic strength less than or equal to Γ0? Martin-
Löf’s theories of constructive mathematics [9, 22, 23, 24, 12, 8, 34, 36] offer
a natural means of extension, by incorporating a rich type-building structure
based on “universes” of types. We show here that these universes are sufficient
for the purpose just described.

First, we present theories P0, P1, . . . , axiomatizing what we are calling the
“predicative” functionals. The theories Pn are bare-bones versions of Martin-
Lof’s theories MLn, and are ordinal-free in that no mention of ordinals is made
∗The work described here comprises a part of the author’s Ph.D. dissertation [5], and was

supported in part by an Alfred E. Sloan Dissertation Year Fellowship.

1

in the defining schemata or axioms. We then show how, via a sequence of
syntactical manipulations, each of the theories ÎDn can be interpreted in the
corresponding Pn. ÎD0 is just PA and P0 is a logic-free variant of T , so in the
initial case our interpretation is essentially the same as Gödel’s.

The theories ÎDn are so named because they allow one to define sets of
natural numbers using a weak form of arithmetic inductive definition. Each
ÎDn has proof-theoretic ordinal ordinal γn, where 〈γn〉 forms a sequence that is
cofinal in the Feferman-Schütte ordinal Γ0. The union of these theories, ÎD<ω,
therefore has strength Γ0 itself.

In [6] we show that the theory ATR0, which is of just the right strength to
formalize some important mathematical arguments (see [28, 29, 16]), is conserva-
tive over ÎD<ω for arithmetic formulas. As a result, the work here characterizes
the provably total recursive functions of both these theories.

In recent years a number of other theories have been reduced to versions
of Martin-Löf’s. Most of these reductions are carried out in the “formulas-as-
types” framework (see [12, 19]). For example, Aczel [2, 4] interprets constructive
set theory, and Palmgren [25] interprets intuitionistic versions of the theories
IDn. But while the formulas-as-types framework (which bears a close kinship
to Kleene’s modified realizability; see [32]) provides an elegant setting for the
interpretation of constructive mathematics, it does not seem to provide the
means to interpret classical theories. In particular, modified realizability does
not verify Markov’s principle for primitive-recursive predicates, and so does not
directly provide a characterization of a classical theory’s provable functions.

At present, many reductions of classical theories to constructive ones pass
through the ordinal analysis of the former. We believe that the direct reduction
of classical theories to constructive ones is an illuminating way of extracting their
“constructive content,” thereby complementing the gains of an ordinal analy-
sis. To that end, functional interpretation seems to offer a fruitful approach.
We hope that the results reported here will spark further research along these
lines, motivated by the question: “What computational principles are needed
to interpret stronger classical theories?”

1.2 Overview

In Section 2 we introduce axiomatizations of first- and second-order logic that
are amenable to our interpretations, and define the relevant theories of first-
order and second-order arithmetic, including ÎDn and Σ1

1−AC. In Section 3
we define the purely equational theories Pn. Under a natural identification of
quantifier-free formulas ϕ in the language of arithmetic with assertions ϕ′ in the
language of P0, our main theorem can be stated as follows:

Theorem 1.1 Each theory ÎDn is interpreted (in the sense of [21]) in the
corresponding Pn. In particular, if ÎDn proves ∀x ∃y ϕ(x, y), where ϕ is a
quantifier-free formula in the language of arithmetic, there is a term t such that
Pn proves ϕ′(x, t(x)).

2

This implies that each provably total recursive function of ÎDn is represented
by a term of Pn. In Section 3.2 we point out that the converse is also true,
so that the provably total recursive functions of ÎDn are exactly the ones so
represented.

The interpretations are defined iteratively. In Section 4 we recast the Di-
alectica interpretation in our framework, as follows:

PA PAi

 P0.

First PA is interpreted in a variant PAi based on a fragment of intuitionistic
logic, and this in turn is interpreted in P0.

In Section 5, we describe a four-step interpretation of ÎD1 in P1:

ÎD1 Σ1
1-AC

 Σ1
1-ACi

 Frege-PAi

 P1.

First, we interpret the fixed-point constants of ÎD1 by Σ1
1 formulas in the theory

Σ1
1-AC; this step is due to Aczel. A “double-negation” interpretation reduces

Σ1
1-AC to a more contructive variant Σ1

1-ACi. Then we use a Dialectica-style
interpretation to reduce Σ1

1-ACi to a theory Frege-PAi which is halfway be-
tween Σ1

1-ACi and P1, by “reflecting” arithmetic formulas of Σ1
1-AC down to

quantifier-free formulas of Frege-PAi. The final interpretation of Frege-PAi in
P1 builds on the interpretation of PA in P0: because P1 has a universe of small
types, it can “internalize” the Dialectica interpretation and therefore handle the
reflected arithmetic formulas of Frege-PAi.

In Section 6, we sketch an interpretation of ÎD2 in P2, which relies on the
interpretation of ÎD1 in P1. Iterating this process yields the main result.

In [6] we present an effective proof of the following

Theorem 1.2 ATR0 is conservative over ÎD<ω for arithmetic sentences, though
there is necessarily a superexponential “speedup” in the lengths of proofs.

Letting P<ω be the union of the theories Pn, Theorem 1.1 yields

Corollary 1.3 Suppose ATR0 or ÎD<ω proves ∀x ∃y ϕ(x, y) where ϕ is a
quantifier-free formula in the language of arithmetic. Then there is a term t
such that P<ω proves ϕ′(x, t(x)).

In other words, our interpretation characterizes the provably total recursive
functions of both theories.

The work described here builds on not only the Dialectica interpretation,
but also work due to Feferman [15] and Aczel regarding ÎD<ω; nonconstructive
Dialectica-style interpretations due to Feferman (see [13]); and Martin-Löf’s

3

theories. Though familiarity with these results will provide some context for
ones described here, we have tried to keep this account self-contained. A more
detailed presentation can be found in [5].1

2 The Relevant Theories of Arithmetic

2.1 Predicate logic

Below we use the term “theory” quite broadly, applying it to any system of
axioms and rules of derivation. So, for example, the theory Σ1

1-AC consists of
a certain set of axioms, combined with the usual rules for forming terms and
formulas in the language of second-order arithmetic, and a set of axioms and
rules of classical predicate logic. The theory Σ1

1-ACi is similar, except that
it is based on a fragment of intuitionistic predicate logic. Finally, P1 is an
entirely different type of theory, with rules of derivation and term formation
that interleave with one another. In each case we’ll take the notation T ` ϕ
and the phrase “T proves ϕ” to mean that ϕ can be derived from the axioms
and rules of T , and an interpretation of T1 in T2 translates derivations in T1 to
derivations in T2.

We want to emphasize that the symbol “`” doesn’t imply any particular
choice of underlying logic. For example, if a theory is built on classical logic, we
will always specify this as part of the theory. In this section we present axioma-
tizations of first- and second-order classical predicate logic, denoted respectively
by C1 and C2, and then pick out intuitionistically justified fragments I1 and I2.
By “second-order logic” we really mean a two-sorted logic with variables ranging
over objects and sets, and an ∈ relation between the two: semantically, we don’t
assume that the second-order variables range over the entire power set of the
universe of objects, and the logic itself doesn’t include any set comprehension
axioms.

We fix ∀, ∧, →, and ⊥ (false) as our basic connectives, defining ¬ϕ as
ϕ → ⊥. Our reason for doing so is that classical and intuitionistic logic agree
on these connectives, a convenient fact that will facilitate our interpretations.
We define ϕ ∨ ψ as ¬(¬ϕ ∧ ¬ψ) and ∃x ϕ as ¬∀x ¬ϕ, but note that although
these definitions are classically justified, they are not adequate definitions for
the corresponding intuitionistic connectives. If ϕ(x) is a term or formula with
free variable x, we will write ϕ(t) to represent the formula obtained by replacing
free instances of x by t, changing the bound variables of ϕ(x) to prevent clashes,
if necessary.

Many axiomatizations of predicate logic include all propositional tautolo-
gies, but to verify our interpretations we need to choose a finite set of schemata.
Troelstra [32] provides a number of suitable candidates, due to Gödel [18],
Kleene, and Spector [30]. The axioms presented here are Spector’s, with the ax-
ioms regarding ∨ and ∃ removed, and the law of the excluded middle expressed

1The account here has been modified slightly to make the reliance on a double-negation
interpretation more explicit.

4

in the form ¬¬ϕ→ ϕ.

Axioms and rules of propositional logic

1. ϕ→ ϕ

2. If ψ, then ϕ→ ψ

3. If ϕ and ϕ→ ψ then ψ

4. If ϕ→ ψ and ψ → θ then ϕ→ θ

5. ϕ ∧ ψ → ϕ, ϕ ∧ ψ → ψ

6. If ϕ→ ψ and ϕ→ θ then ϕ→ ψ ∧ θ

7. If ϕ ∧ ψ → θ then ϕ→ (ψ → θ)

8. If ϕ→ (ψ → θ) then ϕ ∧ ψ → θ

9. ⊥ → ϕ

10. ¬¬ϕ→ ϕ

The diligent reader can check that the remaining axioms on Spector’s list can
be derived from these, once ∨ and ∃ are defined as described above.

Quantifier axioms and rules

1. If ϕ→ ψ(x), and x is not free in ϕ, then ϕ→ ∀x ψ(x)

2. ∀x ϕ(x)→ ϕ(t), for any term t whose variables are not bound in ϕ(t).

For second-order logic, which has variables and quantifiers ranging over two dif-
ferent sorts, these quantifier rules are duplicated for each sort. The language of
second-order logic also has a fixed binary relation symbol ∈ to denote member-
ship between objects of the two sorts. Finally, both logics come equipped with
an equality symbol for first-order terms, governed by the axioms below.

Equality axioms and rules

1. x = x

2. x = y → (ϕ(x)→ ϕ(y)), for quantifier-free formulas ϕ

The symmetry and transitivity of equality can be derived from these. We do
not include a separate equality symbol for second-order terms, but rather define
X = Y to mean

∀x (x ∈ X ↔ x ∈ Y).

Of the propositional axioms given above, only axiom 10, the law of the ex-
cluded middle, is not intuitionistically valid. We therefore define I1 and I2 to

5

consist of C1 and C2 respectively, with this axiom removed. We need to empha-
size the fact that I1 and I2 represent only a fragment of the usual intuitionistic
predicate logic, since they have nothing to say about the connectives ∨ and ∃.
As it turns out, this fragment is sufficient for our interpretations, and ignoring
the latter connectives shortens our task considerably.

In this setting, Gödel’s “double negation” interpretation simply adds a double-
negation before atomic formulas; that is, we define ⊥N to be ⊥, ϕN to be ¬¬ϕ
for atomic ϕ, and otherwise let the ·N translation commute with →, ∧, and ∀.
(If we had included ∨ and ∃ among the basic connectives, the ·N mapping would
replace them with the classically equivalent definitions mentioned above.) We
then have

Theorem 2.1 Suppose a set of sentences S proves a formula ϕ in C1 or C2.
Then SN proves ϕN in I1 or I2, respectively.

To prove this one only needs to show that the claim is true of the axioms
of each Cj and is maintained under the rules of interence. All the axioms and
rules of each Cj other than propositional axiom 10 reduce to their counterparts
in Ij , and a straightforward induction on formula complexity shows that the
translation of the law of the excluded middle

(¬¬ϕ→ ϕ)N = ¬¬ϕN → ϕN

is also derivable. (One uses the fact that in general formulas of the form
¬¬¬ψ → ¬ψ are intuitionisitically valid and provable from the axioms of Ij .)

For a full axiomatization of intuitionistic logic, or for more information on
its relationship to classical logic, see [8, 32, 33, 36].

2.2 The theories ÎDn

The language of Peano Arithmetic is a first-order language containing a con-
stant symbol 0, a unary function symbol S denoting the successor operation,
and binary function symbols + and ×. Peano Arithmetic consists of classi-
cal predicate logic C1 together with the following axioms and rules, where x′

abbreviates S(x).

Axioms of Peano Arithmetic

1. ¬x′ = 0

2. x′ = y′ → x = y

3. x+ 0 = x

4. x+ y′ = (x+ y)′

5. x× 0 = 0

6. x× y′ = x× y + x

6

7. Induction: From ϕ(0) and ∀x (ϕ(x)→ ϕ(x′)) conclude ∀x ϕ(x)

The usual axiomatic form of induction follows easily from the last rule.
ÎD0 is another name for PA. The language of ÎD1 extends that of PA by

adding an additional predicate Pϕ for each arithmetic formula ϕ(n,X) in which
a new predicate X occurs only positively. (“Occurs postively” means that if
ϕ is expressed solely in terms of ¬, ∧, and ∀, then X only occurs within the
scope of an even number of negations.) Such an arithmetic formula defines a
set function

Γϕ : P (ω)→ P (ω)

given by
Γϕ(X) = {y|ϕ(y,X)};

positivity insures this function is monotone, i.e. for any sets A and B, A ⊂ B
implies Γϕ(A) ⊂ Γϕ(B). Classically such a function has a fixed point, and the
predicate Pϕ is intended to denote such a set.2 Consequently, the axioms of
ÎD1 consist of the axioms of PA with induction extended to formulas involving
the new predicates, and an axiom

∀y (Pϕ(y)↔ ϕ(y, Pϕ))

for each Pϕ.
The move from ÎD0 to ÎD1 can be iterated, whereby each theory ÎDn+1

adds new constants for positive arithmetic formulas in the language of ÎDn and
the corresponding fixed-point axioms. Taking the union of all these theories
yields ÎD<ω; see [15] for more details.3

2.3 The theories Σ1
1-AC(ÎDn)

The theories Σ1
1-AC(ÎDn) are all based on second-order logic C2. Σ1

1-AC in-
cludes the axioms of PA, the induction rule extended to second-order formulas,
and a comprehension schema

∃X ∀y (y ∈ X ↔ ϕ(y)) (ACA)

for arithmetic formulas ϕ, possibly with set parameters other than X. To state
the remaining axiom of Σ1

1-AC, we define m ∈ Xn to mean 〈n,m〉 ∈ X, so
that X can be interpreted as coding a countable sequence of sets 〈Xn〉. The Σ1

1
axiom of choice asserts

∀y ∃X ϕ(y,X)→ ∃X ∀y ϕ(y,Xy), (Σ1
1-AC)

2In fact, every monotone set function has a least fixed point, and the stronger theory ID1
has additional axioms which assert that Pϕ is contained in any other arithmetically-defined
fixed point. See [10, 1].

3Note that the presentation in [15] adds only one new constant at each stage, so that each
ÎDn has only n new constants. This difference is inessential, since in any proof in our version
of ÎDn one can “collapse” all the fixed-point constants of each iterative depth to a single one.

7

where ϕ is any Σ1
1 formula. By coding pairs of sets as a single set we can

assume that ϕ is in fact arithmetic, since we can always “absorb” an existentially
quantified set in X.

More generally, Σ1
1-AC(ÎDn) is defined the same way except that we start

with the language and axioms of ÎDn instead of PA and add (ACA) and
(Σ1

1-AC) to those, allowing the new fixed-point constants to appear in the in-
duction, comprehension, and choice axioms.

3 Predicative Functionals

3.1 The theories Pn
In this section we describe the functional theories Pn. P0 is just a logic-free
version of Gödel’s T , while the theories Pn gain added strength through the
use of “universes,” which allow one to contruct transfinite types. Each Pn is
essentially a bare-bones version of Martin-Löf’s MLn, described in more detail
in [9, 22, 23, 24, 12, 8, 34, 36].

We start with an infinite stock of variables w, x, y, z, Terms are built up
from variables and constants as described by the rules below. As in Martin-Löf’s
type theories, we allow for four different kinds of assertions, or judgements:

1. A type, asserting that the term A denotes a type

2. A = B type, asserting that the terms A and B denote the same type

3. a ∈ A, asserting that the term a denotes an element of the type A

4. a = b ∈ A, asserting that the terms a and b denote equal elements of A

Note that we have just one stock of variables, rather than variables of each type.
To each judgement we append a list of assumptions, indicating what types the
variables are supposed to represent. For example, we will write

a ∈ A (x ∈ B, y ∈ C)

to assert that a is a term of type A, on the assumption that the variable x is of
type B and y is of type C. Such a list of assumptions is often called a “context”
and the corresponding relationship between contexts and type judgements is
sometimes written

(x ∈ B, y ∈ C) ` a ∈ A.

Below, however, we’ll stick with the first notation.
Variables occuring in terms can be free or bound. If we want to emphasize

that the variable x can occur freely in the term a we’ll write it as a[x], and we’ll
use the notation a[b/x] to denote the term obtained by replacing every free
occurance of x in a by the term b. Although we won’t spell out the details of
when a variable is free or bound, the rules are as one would expect: for example,

8

x occurs freely in the term x, but becomes bound in the terms λx.a, Πx∈AB[x],
and Σx∈AB[x].

In presenting the rules below, we omit type assumptions that are unchanged
in the conclusion. We also often leave type assumptions on terms implicit, so
that the rule expressing the symmetry of equality,

a = b ∈ A
b = a ∈ A

is more properly written

A type a ∈ A b ∈ A a = b ∈ A
b ∈ A .

We will sometimes even omit the type of an equality judgement, writing

π0(〈a, b〉) = a

to define the projection function and leaving the reader to fill in the necessary
type assumptions. For a more complete discussion of issues such as these we
refer the reader to [9, 34].

We’ve divided the rules into four groups, depending on the form of their
conclusion: A type, A = B type, a ∈ A, or a = b ∈ A. The exception is the
group of rules allowing us to state induction in the theory. These appear last.

Types of Pn

1. Natural numbers: N type

2. Universes: U0 type, U1 type, . . . , Un−1 type

3. Product type: A type
(x ∈ A)
B[x] type

Πx∈AB[x] type

4. Sum type: A type
(x ∈ A)
B[x] type

Σx∈AB[x] type

5. Reflection:
a ∈ Ui
a type

6. Instantiation of variables: a ∈ A
(x ∈ A)
B[x] type

B[a/x] type

The product type Πx∈AB[x] is a generalization of Gödel’s A → B: it denotes
the type of functions that take an object a of A to an object b of B[a], so that
the range is dependent on the argument. If x is not free in B, this just boils

9

down to A → B. Similarly, Σx∈AB[x] is a generalization of A × B, denoting
the type of ordered pairs of objects 〈a, b〉 where a is from A and b is from B[a].
Once again, if x is not free in A this type can be written A×B.

Notice that the reflection rule allows one to define types that depend on
variables, so that the types of P0, which has no universes, are just the finite
types of Gödel’s T .

Equality of Types in Pn

1. Reflection:
a = b ∈ Ui
a = b type

Note that the first rule says that an equality that holds of objects in a universe
is transfered to the corresponding types. One again, this rule is unavailable in
P0.

Terms of Pn

1. Variables: x ∈ A (x ∈ A)

2. Zero: 0 ∈ N

3. Successor: S ∈ N→ N

4. Explicit definition:
(x ∈ A)

b[x] ∈ B[x]
λx.b ∈ Πx∈AB

5. Application:
a ∈ A b ∈ Πx∈AB
b(a) ∈ B[a/x]

6. Pairing:
a ∈ A b ∈ B[a/x]
〈a, b〉 ∈ Σx∈AB

7. Projection:
c ∈ Σx∈AB
π0(c) ∈ A ,

c ∈ Σx∈AB
π1(c) ∈ B[π0(c)/x]

8. Primitive recursion:
a ∈ A[0/x] b ∈ Πx∈N(A[x]→ A[x′/x])

Ra,b ∈ Πx∈NA

9. Substitution of equal types:
a ∈ A A = B type

a ∈ B

10. Instantiation of variables: a ∈ A
(x ∈ A)

b[x] ∈ B[x]
b[a/x] ∈ B[a/x]

10

In the application rule, b(a) is shorthand for a formal term Apply(b, a). To
increase readability, if a is a term of an appropriate type, we’ll use a(b, c) as an
abbreviation for (a(b))(c). It will also be convenient, for objects c ∈ Σx∈AB, to
use the notations c0 and c1 for the projections π0(c) and π1(c) respectively. As
usual, x′ denotes S(x).

We haven’t yet described rules for building terms to denote elements of the
universes. Though they really belong with the previous group, we present them
separately in the following list.

Terms of universes of Pn

1. Natural numbers: N ∈ Ui

2. Universes: U0 ∈ Ui, U1 ∈ Ui, . . . , Ui−1 ∈ Ui

3. Product type: A ∈ Ui
(x ∈ A)
B[x] ∈ Ui

Πx∈AB ∈ Ui

4. Sum type: A ∈ Ui
(x ∈ A)
B[x] ∈ Ui

Σx∈AB ∈ Ui

All the rules above are duplicated for each i < n. These rules “reflect” type-
building operations down into the universes, and therefore look much the same
as Pn’s ordinary type-building rules.

Next we present the rules that allow one to conclude that two terms of Pn
are equal.

Equality of terms in Pn

1. Reflexivity:
a ∈ A

a = a ∈ A

2. Symmetry:
a = b ∈ A
b = a ∈ A

3. Transitivity:
a = b ∈ A b = c ∈ A

a = c ∈ A

4. Explicit definition: (λx.a)(b) = a[b/x]

5. Projection: π0(〈a, b〉) = a, π1(〈a, b〉) = b

6. Primitive recursion: Rab(0) = a, Rab(x′) = b(x,Rab(x)) (x ∈ N)

7. Substitution of equal terms: a = b ∈ A
(x ∈ A)

c[x] ∈ C[x]
c[a/x] = c[b/x] ∈ C[a/x]

11

8. Substitution of equal types:
a = b ∈ A A = B type

a = b ∈ B

9. Instantiation of variables: a ∈ A
(x ∈ A)

c[x] = d[x] ∈ C[x]
c[a/x] = d[a/x] ∈ C[a/x]

Finally, we define terms that allow us to express implication between assertions
of equality of type N objects, and induction.

Logical Axioms of Pn

1. Implication term: implies ∈ N× N→ N

2. Implication rules: implies(0, x) = x, implies(x′, y) = 0, and implies(x, 0) =
0

3. Equality term: equals ∈ N× N→ N

4. Equality rules: equals(0, x) = x, equals(y, 0) = y, equals(x′, y′) = equals(x, y)

5. Substitution: implies(equals(a, b), equals(c[a/x], c[b/x])) = 0

6. Induction rule:
a(0) = 0 implies(a(x), a(x′)) = 0 (x ∈ N)

a(x) = 0 (x ∈ N)

7. Equality transfer:
equals(a, b) = 0

a = b ∈ N

The idea behind the function implies is that numerical variables can be inter-
preted as propositional variables, where 0 denotes “true” and any nonzero value
denotes “false.” So, for example, using appropriate substitution and identity
rules we can have the following

Lemma 3.1 Modus ponens is a derived rule of Pn; that is, we can derive the
rule

a = 0 implies(a, b) = 0
b = 0

.

Similarly, equals(a, b) = 0 asserts that a and b represent the same number. We
could have defined both implies and equals using primitive recursion, but then
verifying that they satisfy the defining properties above would require some kind
of induction rule, which is what we are using them to state.

The final rule allows us to transfer equality assertions of the form equals(a, b) =
0 to assertions of the form a = b ∈ N. This allows us, for example, to use
induction to derive the commutativity of the primitive recursively defined mul-
tiplication function. On the other hand, our interpretations will rely on the
equals function rather than type N equality to interpret the equality symbol in

12

the language of arithmetic. As a result, for our purposes, the transfer rule is
unnecessary; we could just as well have omitted it.

We define the theory P<ω to be the union of the theories Pn. In P0 one
can define primitive recursive functions such as addition, multiplication, the
predecessor function, and truncated subtraction in the usual way. For each
type A, we can also use primitive recursion and explicit definition to define a
function cases ∈ N×A×A→ A by

cases(0, a, b) = a

cases(x′, a, b) = b.

When dealing with systems with multiple universes, it may be helpful to
keep the following picture in mind:

Types . . . Un Un−1 . . . U1 U0

By reflection anything in U0 is in U1, anything in U1 is in U2, and so on; and
anything in any of the universes is a type. Note that the passage from Pn to
Pn+1 by adding a universe Un actually allows us to define more terms in the
smaller universes. For example, in P0 we can do nothing more than define the
finite types. Once we add the universe U0, we can still define these types as
elements of U0, but we can do more: for example, we can use primitive recursion
to define a function T ∈ N → U0 by T (0) = N and T (x′) = T (x) → T (x), and
then conclude that Πn∈NT (n) is an element of U0, and hence a type.

3.2 The strength of the theories Pn
Our theories Pn are strongly derivative of Martin-Löf’s theories MLn, employ-
ing n universes and intensional equality, but lacking the W (well-foundedness)
types. The differences between the theories stem from differences in underlying
motivation.

Martin-Löf’s theories provide a powerful framework for constructive math-
ematics in which mathematical statements ϕ are associated with types Tϕ; the
classical assertion that ϕ is true is associated with the constructive assertion
that the type Tϕ is inhabited by a term t witnessing ϕ’s truth. This is known
as the “formulas-as-types” interpretation, or the “Curry-Howard” isomorphism
(see [12, 19]). To implement this framework, MLn contains a rich assortment
of type-forming operations. For example, for each type A and terms a and b
of type A there is an associated equality type I(a, b, A). In the intended inter-
pretation, I(a, b, A) is inhabited by a canonical element if and only if a and b
represent the same object of type A.

Here we avoid the formulas-as-types framework, and so our systems lack
many of the added formalisms of Martin-Löf’s. The theories Pn can be viewed
as minimal extensions of T , and as functional calculi they are conceptually
simpler than the theories MLn.

13

Given functional theories like MLn and Pn, it is natural to ask what their
models look like. In [32] there is a discussion of a number of different models of
T , including the “full” set-theoretic model, models based on recursive functions,
and term models. Many of these constructions extend to theories with universes
as well (see [36]). In particular, Beeson [9] extends the “hereditarily effective
operations” to form models of the theories MLn, in which terms and types
are represented by indices coding corresponding recursive objects. An adequate
interpretation of the universe U0 can be obtained in ÎD1, and, furthermore, each
theory ÎDn can appropriately define n such universes. As a result, each theory
MLn can be interpreted in ÎDn, in such a way that terms of type N → N in
MLn correspond to provably total recursive functions in the ÎDn. Since each
Pn can be interpreted in the corresponding MLn, we have the following converse
to Theorem 1.1:

Theorem 3.2 Each Pn is interpreted in ÎDn. In particular, if Pn proves

ϕ′(x, t(x)) (x ∈ N)

for some term t in N → N , there is an index e such that ÎDn proves

∀x ∃y ({e}(x) ↓= y ∧ ϕ(x, y))

where {e} denotes the eth recursive function.

Altogether, then, we have the chain of reductions

ÎDn Pn MLn ÎDn

indicating that the proof-theoretic strength of all these theories is the same.

4 Interpreting Peano Arithmetic in P0

4.1 Interpreting PA in PAi

The first part of the interpretation of PA in P0 involves reducing the former
theory to one that avoids the nonconstructive law of the excluded middle. To
that end, we define the theory PAi to consist of the same axioms and rules of
PA given in Section 2.2, only this time based on the fragment of intuitionistic
logic I1.

Theorem 4.1 Suppose PA proves ϕ. Then PAi proves ϕN .

Proof. If PA proves ϕ, then PAN proves ϕN in I1, so it suffices to show
that PAi proves these. But the doubly-negated defining equations for successor,
plus, and times are easily provable in PAi, and instances of induction in PA
translate to instances of induction in PAi. �

In fact, we can do a bit better. Since PAi proves

¬¬x = y → x = y

14

with a double induction on x and y, we could have allowed the ·N -translation
to leave these atomic formulas alone. For the sake of uniformity, we use the
notation ·N0 to denote this “do nothing” translation.

4.2 Interpreting PAi in P0

In this section we show how to interpret PAi in P0. Recall that without universes
the types of P0 are obtained from N using the operations → and ×, and so P0
is just a logic-free version of T . The interpretation we give here is essentially
Gödel’s, recast only slightly. As such, we only sketch the details and refer the
reader to [35, 18, 30, 33, 32] for more information.

Since P0 is logic-free, the first thing we have to do is embed the quantifier-free
fragment of predicate logic, that is, the axioms and rules dealing with proposi-
tional logic and equality. The functions implies and equals were introduced for
just this purpose, and allow us to build up logical combinations of assertions of
type N equality. We define false = 1,

not(x) = implies(x, false),

and
and(x, y) = not(implies(x, not(y))).

We can then interpret any propositional combination ϕ of statements of type
N equality in Pn with a single assertion tϕ = 0, by replacing a = b ∈ N by
equals(a, b) = 0 and then using the logical functions just described. In the
context of our functional theories, we will use greek letters ϕ to represent as-
sertions of the form tϕ = 0. The notation a ≈ b will stand for the assertion
equals(a, b) = 0, ϕ ∧ ψ will stand for the assertion and(tϕ, tψ) = 0, and so on.
With a little bit of work (see [5] for details), one can prove

Theorem 4.2 In P0 one can derive all the quantifier-free axioms and rules of
predicate logic.

We use + and × to denote addition and multiplication in P0, x−̇y to denote
truncated subtraction, x < y to denote

¬(y−̇x ≈ 0),

and x ≤ y to denote
x < y ∨ x ≈ y.

We can then associate quantifier-free formulas ϕ of Peano Arithmetic with for-
mulas ϕ′ in the language of P0. With an easy induction on formula complexity
one can prove

Lemma 4.3 Let ϕ be a closed quantifier-free formula in the language of PA,
and ϕ′ be the associated formula in P0. Then

(PA ` ϕ)⇔ (P0 ` ϕ′)⇔ (N |= ϕ).

15

The idea of using functions to interpret type N equality and propositional con-
nectives is well-known; see, for more information see also [30, 18, 35].

We now turn to the Dialectica interpretation proper. Our version of this
interpretation maps every formula ϕ of PAi to a formula ϕD0 of the form

∃x ∈ A ∀y ∈ B f(x, y) = 0 (1)

where A and B are types of P0, and f is a term of type A × B → N whose
free-variables are the same as those of ϕ. (For the moment, we allow for the
possibility that either or both quantifiers are absent, in which case the type of f
has to be modified accordingly.) The intepretation is defined in such a way that
if PAi proves ϕ, there is a term a ∈ A of P0 witnessing the existential quantifier
in ϕD0 , in the sense that that P0 proves

f(a, y) = 0 (y ∈ B).

We now define the mapping ·D0 . Mapping terms t of PA to terms tD0 ∈ N
of P0, we define (t1 = t2)D0 to be tD0

1 ≈ tD0
2 . If ϕD0 is given by

∃x ∈ A ∀y ∈ B ϕD0(x, y)

and ψD0 is given by
∃w ∈ C ∀z ∈ D ψD0(w, z)

we define (ϕ→ ψ)D0 by

ϕ→ ψ ∃x ∀y ϕD0(x, y)→ ∃w ∀z ψD0(w, z)
 ∀x ∃w (∀y ϕD0(x, y)→ ∀z ψD0(w, z))
 ∀x ∃w ∀z ∃y (ϕD0(x, y)→ ψD0(w, z))
 ∃y, w ∀x, z (ϕD0(x, y(x, z))→ ψD0(w(x), z))
 ∃u ∀v λu, v.tϕD0 (v0,u0(v0,v1))→ψD0 (u1(v0),v1))(u, v) = 0.

Here only the last line is important (intermediate lines are presented for moti-
vation) and we’ve suppressed the types for clarity: in the end, u is of type

(A→ C)× (A×D → B)

and v is of type A × D. In the final step we use the sum type and projection
operations to combine types, and explicit definition and application so that the
net result is of the form given by (1). To simplify the notation below we will
omit this final step, but it should be taken as implicit.

Assuming ϕD0 an ψD0 are given as in the last paragraph, the translation of
ϕ ∧ ψ is unsurprising:

ϕ ∧ ψ ∃x ∀y ϕD0(x, y) ∧ ∃w ∀z ψD0(w, z)
 ∃x,w ∀y, z (ϕD0(x, y) ∧ ψD0(w, z)).

16

⊥D is defined to be the formula false = 0. Finally, suppose the variable u is
free in ϕ, and hence ϕD0 . In that case, (∀u ϕ)D0 is given by the translation

∀z ϕ ∀u ∃x ∀y ϕD0(u, x, y)
 ∃x ∀u, y ϕD0(u, x(u), y),

where the variable x is skolemized.
Note that if ϕ is a quantifier-free formula of PAi then ϕD0 is essentially just

ϕ′. Gödel’s main theorem is as follows:

Theorem 4.4 Suppose PAi proves ϕ. Then P0 proves ϕD0 . In other words, if
ϕD0 is given by

∃x ∈ A ∀y ∈ B ϕD0(x, y)

then there is a term a ∈ A whose free variables correspond to those of ϕ such
that P0 proves

ϕD0(a, y) (y ∈ B).

To prove this theorem one need only show that it holds true of the axioms of
PAi, and is maintained under rules of inference. The details are routine and
well-known, and so here we only highlight two cases that will be of interest later
on.

Assuming ϕD0 and ψD0 are as above, to handle the rule ψ ⇒ ϕ→ ψ we can
assume that there is an a such that P0 proves ψD0(a, z), and we need terms b
and c such that P0 proves

ϕD0(x, b(x, z))→ ψD0(c(x), z).

For this purpose we use the following

Lemma 4.5 (Canonical constants) For each type A of P0, there is a con-
stant canonA ∈ A.

Proof. We can take

canonN = 0
canonA→B = λx.canonB

canonA×B = 〈canonA, canonB〉.�

Using the lemma, define c(x) = a and b(x, z) = canonB .
To handle the rule ϕ→ ψ,ϕ→ θ ⇒ ϕ→ ψ ∧ θ, we are given terms a, a′, b,

and c such that

ϕD0(x, a(x, z))→ ψD0(b(x), v) (2)

and

ϕD0(x, a′(x, v))→ θD0(c(x), v). (3)

17

We want terms e, f , and g such that

ϕD0(x, e(x, v, z))→ ψD0(f(x), z) ∧ θD0(g(x), v). (4)

If we define f(x) = b(x), g(x) = c(x), and

e(x, v, z) = cases(tψD0 (f(x),z), a
′(x, v), a(x, z))

we can show

ψD0(f(x), z)→ (ϕD0(x, e(x, v, z))↔ ϕ(v, a′(x, v)))

and
¬ψD0(f(x), z)→ (ϕD0(x, e(x, v, z))↔ ϕ(x, a(x, z)).

By substitition we can replace b(x) by f(x) in (2) and c(x) by g(x) in (3).
Equation (4) now follows using ordinary propositional logic.

The other axioms are readily taken care of; see, for example, [32, 30] for
details. Note that since ¬ϕ is defined as ϕ → ⊥, the translation of the axiom
¬¬ϕ→ ϕ is not in general verifiable in P0, which explains our reliance on I1.

Theorem 4.4 yields a characterization of the provably total recursive func-
tions of PA:

Corollary 4.6 Suppose PA proves ∀x ∃y ϕ(x, y) where ϕ(x, y) is quantifier
free. Then there is a term t such that P0 proves

ϕ′(x, t(x)) (x ∈ N).

In particular, if PA proves a quantifier-free ϕ, P0 proves ϕ′, and if PA proves
⊥ then P0 proves 1 = 0.

The ·D0 mapping as we’ve defined it takes formulas of PAi to formulas of the
form (1), but allows for the possibility that either quantifier in the translation
is absent. This nonuniformity will cause problems in Section 5.5, where we need
to assume that every formula is mapped to something strictly in this form. We
can achieve this by mapping atomic formulas t1 = t2 to

∃u ∈ N ∀v ∈ N equals(tD0
1 , tD0

2) = 0

where u and v are variables that don’t appear in either term. Though this is
inelegant, it does not harm the proof of Theorem 4.4 or Corollary 4.6. In fact,
since u and v above are just dummy variables, we can prove the following

Lemma 4.7 Let ϕ be a quantifier-free formula in the language of PAi, and
suppose ϕD0 is given by

∃w ∀z ϕD0(w, z)

under the modified ·D0 translation. Then P0 proves

ϕD0(w, z)↔ ϕ′.

In what follows, we’ll use ·D0 to denote this modified form of the interpretation.

18

5 Interpreting ÎD1 in P1

5.1 Interpreting ÎD1 in Σ1
1-AC

Having fixed the interpretation of PA in P0, we now turn to the interpretation of
ÎD1 in P1. The first step is to reduce ÎD1 to the theory Σ1

1-AC by interpreting
the fixed-point predicates by suitable Σ1

1 formulas. The method given below is
due to Aczel (see [15]) and hinges on the following

Lemma 5.1 Let ϕ(x,X) be an arithmetic formula in the language of Σ1
1-AC,

and assume X occurs only positively in ϕ. Then there is a Σ1
1 formula ψ(x)

such that Σ1
1-AC proves

∀x(ϕ(x, {z | ψ(z)}/X)↔ ψ(x)).

Here t ∈ {z | ψ(z)} should be interpreted as ψ(t).

Proof (sketch). The proof is similar to the proof of Gödel’s fixed-point
lemma: we use a complete Σ1

1 truth predicate and diagonalize. Let TrΣ(dθe, y, x)
be such a truth predicate with the free variables shown, and consider the formula

ϕ(x, {z | TrΣ(y, y, z)}/X).

Since X occurs only positively in ϕ, Σ1
1-AC proves this to be equivalent to a Σ1

1
formula θ(y, x) (the axiom of choice is used to bring the second-order quantifiers
out front), and so equivalent to TrΣ(dθe, y, x). Replacing y by dθe on both sides
of the equivalence we get

ϕ(x, {z | TrΣ(dθe, dθe, z)}/X)↔ TrΣ(dθe, dθe, x).

We can therefore take ψ(x) to be the formula TrΣ(dθe, dθe, x). �

This gives us the interpretation of ÎD1 into Σ1
1-AC, since we can interpret

the fixed-point predicates by the corresponding formulas ψ given by the lemma.
Induction in ÎD1 reduces to induction in Σ1

1-AC, and the other axioms of arith-
metic are unchanged. Calling this interpretation ϕ 7→ ϕΣ1 , we have

Theorem 5.2 Suppose ÎD1 proves ϕ. Then Σ1
1-AC proves ϕΣ1 .

By relativizing the truth predicate described above to constants in ÎDn we can,
in the same way, interpret ÎDn+1 in Σ1

1-AC(ÎDn). Letting ·Σn+1 denote the
interpretation in which level n + 1 fixed-point predicates are interpreted as Σ1

1

formulas in Σ1
1(ÎDn), we have

Theorem 5.3 Suppose ÎDn+1 proves ϕ. Then Σ1
1-AC(ÎDn) proves ϕΣn+1 .

Note that formulas ϕ which don’t contain any fixed-point predicates are un-
changed by ·Σn .

19

5.2 Interpreting Σ1
1-AC in Σ1

1-AC
i

Having reduced ÎD1 to Σ1
1-AC, our next step is to reduce Σ1

1-AC to a more
constructive variant, as we did with the interpretation of PA in PAi. The theory
Σ1

1-ACi is based on the intuitionistic fragment of second-order logic I2, with
the same arithmetic and induction axioms as Σ1

1-AC. We then add arithmetic
comprehension axioms (ACAi) of the form

∃X ∀y (y ∈ X ↔ ϕ(y))

and choice axioms (Σ1
1-ACi) of the form

∀y ∃X ϕ(y,X)→ ∃X ∀y ∃u ϕ(y,X〈u,y〉)

where ϕ is an arithmetic formula. (Remember that in both of these axioms,
as well as the classical versions, we are taking existential quantification to be
defined in terms of universal quantification and negation.) We are not claim-
ing that (Σ1

1-ACi) is the “correct” intuitionistic translation of (Σ1
1-AC); only

that it is strong enough for our current interpretation and weak enough to be
interpreted at the next stage.

The ·N0 -translation extends to a new translation ·N1 , obtained by adding
the clause

(t ∈ X)N1 = ¬¬t ∈ X

to cover the new atomic formulas t ∈ X.

Theorem 5.4 Suppose Σ1
1-AC proves ϕ. Then Σ1

1-ACi proves ϕN1 .

Proof. As in the case of PA, the interpretation verifies classical logic C2,
where the double-negation in front of formulas t ∈ X guarantees that the trans-
lations of the law of the excluded middle can be derived in I2. Translations
of instances of (ACA) follow from instances of (ACAi), using the fact that in-
tuitionistic logic proves the equivalence of ¬¬ϕN1 (which is equal to (¬¬ϕ)N1)
and ϕN1 .

Finally, over the other axioms of Σ1
1-AC, instances of (Σ1

1-AC) are equivalent
to (Σ1

1-ACi). That is, given an X satisfying the conclusion of (Σ1
1-ACi), we can

use arithmetic comprehension to define a set X ′ so that X ′y = X〈y,uy〉 for each
y, where uy is the least value of u satisfying ϕ(x,X〈y,u〉); this X ′ then satisfies
the conclusion of (Σ1

1-AC). But instances of (Σ1
1-ACi) translate to instances of

(Σ1
1-ACi), so we are done. �

In Section 6 we will need to extend the above interpretation to theories with
fixed-point axioms. Define the theory ÎD

i

1 to be the theory ÎD1 based on the
intuitionistic fragment I1, and extend the ·N0-translation to the language of this
theory by adding the clause

(Pϕ(x))N
′
1 = PϕN0 (x).

20

The ·N ′1 -translation of a fixed-point axiom of ÎD1 is now of the form

∀x (PϕN0 (x)↔ ϕN0(x, PϕN0)) (5)

which is a fixed-point axiom of ÎD
i

1. We only need to verify that the interpreta-
tion of the classical axiom ¬¬ψ → ψ holds when ψ is an atomic formula of the
form Pϕ(t); but this follows from (5) and the equivalence of ¬¬ϕN0 and ϕN0 .

Define ·N ′0 to be another name for the N0-translation, and inductively define
·N
′
n+1 by adding the clause

(Pϕ(x))N
′
n+1 = P

ϕN
′
n

(x),

to the definition of ·N ′n . Also, let ·Nn+1 be the extension of ·N ′n to second-order
logic as above. Then just as in the case of PA and Σ1

1-AC we can prove

Theorem 5.5 If ÎDn proves a formula ϕ, then ÎD
i

n proves ϕN
′
n . If Σ1

1-AC(ÎDn)

proves a formula ψ, then Σ1
1-ACi(ÎD

i

n) proves ϕNn+1 .

5.3 The theory Frege-PAi

This section introduces a theory called Frege-PAi. Although this system is
designed to be a stepping-stone for the interpretation of Σ1

1-ACi in P1, it is
possible that the underlying ideas may prove useful in other proof-theoretic
contexts as well.

In his work on the foundations of mathematics, Frege identified formulas
with mappings from their free variables to a truth values. He then interpreted
quantifiers as higher-order mappings, taking formula-mappings to truth values,
initiating a process that can be continued to even higher orders as well. We’ve
named the theory Frege-PAi after him because it makes these characterizations
explicit: a formula ϕ(x) gives rise to a map N → Prop, where elements of
type Prop are either true or not, and quantifiers are interpreted as maps from
N→ Prop to Prop. Once we’ve begun treating formulas as functions returning
truth values, all of a sudden we will find ourselves with additional means for
defining new formulas, using, say, composition and primitive recursion. Such
possibilities form the basis of Frege-PAi.4

Consider the following example. In the language of arithmetic, we can define
a formula ψ(x) that represents the empty set; for example, 0 = 1 will do.
Given a predicate variable X, we can also define a formula ϕ(x,X) specifying
what it means to be in the Turing jump of X; namely ∃z T (x, 0, z,X), where
T (x, 0, z,X) is a form of Kleene’s predicate asserting that z codes a halting
computation of Turing machine x with oracle X, acting on input 0. Using ψ
and ϕ we can then define succesive elements of the jump hierarchy, defining

J0(x) = ψ(x)
4The name was suggested by Solomon Feferman, who noted the similarities with Aczel’s

notion of a “Frege structure” (see [8, 3]). Frege structures may help elucidate the semantics
of Frege-PAi; we have not explored this possibility.

21

and
Jn+1(x) = ϕ(x, {x | Jn(x)}/X).

If we could somehow define the J predicates uniformly, i.e. define a formula
H(n, x) equivalent to Jn(x), we could then define the ωth jump of the empty
set. Of course, this takes us outside the realm of PA, since H(n,X) would
provide us with an adequate truth definition for formulas of PA. But Frege-
PAi was designed for just this kind of task. In this theory, defining H(n,X)
involves a simple instance of primitive recursion.

Frege-PAi is built on a finite type structure like that of T . In fact, for each
ordinal notation α < ε0, Frege- PAi allows us to define formulas representing
αth Turing-jump of the empty set, just as in T we can define terms representing
functions in the <ε0 fast-growing hierarchy (see [26]).

In Frege-PAi there are four types of judgements:

1. A type, asserting that A denotes a type

2. a ∈ A, asserting that the term a denotes an element of type A

3. a = b ∈ A, asserting that the terms a and b denote equal elements of A

4. For terms a of type Prop, the judgement a True, asserting that the propo-
sition denoted by a is true

The term-forming rules of Frege-PAi are more like those of T than the theories
Pn, in that terms are terms and types are types and there is no confusion between
the two. Using term-forming operations one can construct formulas (terms of
type Prop) which are just like the formulas of ordinary PAi, only more complex.
And, as in ordinary PAi, there are rules by which certain well-formed formulas
can be shown to be true on the basis of the axioms.

Types of Frege-PAi

1. Natural numbers: N type

2. Cross product:
X type Y type
X × Y type

3. Functions:
X type Y type
X → Y type

4. Propositions: Prop type

Terms of Frege-PAi

1. Variables: x ∈ A (x ∈ A)

2. Zero: 0 ∈ N

22

3. Successor: S ∈ N→ N

4. Explicit definition:
(x ∈ A)
b[x] ∈ B

λx.b ∈ A→ B

5. Application:
a ∈ A b ∈ A→ B

b(a) ∈ B

6. Pairing:
a ∈ A b ∈ B
〈a, b〉 ∈ A×B

7. Projection:
c ∈ A×B
π0(c) ∈ A ,

c ∈ A×B
π1(c) ∈ B

8. Primitive recursion:
a ∈ A b ∈ N→ (A→ A)

Ra,b ∈ N→ A

9. Equality: Equals ∈ N× N→ Prop

10. Implication: Implies ∈ Prop× Prop→ Prop

11. Conjunction: And ∈ Prop× Prop→ Prop

12. Universal Quantifier: Forall ∈ (N→ Prop)→ Prop

13. Falsity: False ∈ Prop

The first few type- and term-building rules are just those of T . The meaning
of the last few functionals on the previous list should be intuitively clear: Equals
takes two terms a and b and returns the proposition a = b, Implies takes two
propositions ϕ and ψ and returns the proposition ϕ → ψ, and so on. The
functional Forall deserves further comment. If ϕ(x) is an element of Prop with
free variable x ∈ N, then the term λx.ϕ(x) is of type N → Prop, and the term
Forall(λx.ϕ(x)) is the element of Prop that denotes, intuitively, the proposition
∀x ϕ(x). In order to have our notation agree with more common usage, below
we will write Forall x ϕ(x) for Forall(λx.ϕ(x)), ϕ Implies ψ for Implies(ϕ,ψ),
and so on. We will also omit parentheses according to the usual conventions of
predicate logic.

The rules for determining that two terms of Frege-PAi are equal are no
different from those of T . Note that the equality symbol of Frege-PAi has
nothing per se to do with the Equals functional, though rules given later on
will allow us to derive the assertion Equals(a, b) True from a = b, for any terms
a and b of type N.

Equality of terms in Frege-PAi

1. Reflexivity:
a ∈ A

a = a ∈ A

23

2. Symmetry:
a = b ∈ A
b = a ∈ A

3. Transitivity:
a = b ∈ A b = c ∈ A

a = c ∈ A

4. Explicit definition: (λx.a)(b) = a[b/x]

5. Projection: π0(〈a, b〉) = a, π1(〈a, b〉) = b

6. Primitive recursion: Rab(0) = a, Rab(x′) = b(x,Rab(x)) (x ∈ N)

7. Substitution: a = b ∈ A
(x ∈ A)
c[x] ∈ C

c[a/x] = c[b/x] ∈ C

8. Instantiation of variables: a ∈ A
(x ∈ A)

c[x] = d[x] ∈ C
c[a/x] = d[a/x] ∈ C

The equality rules just presented have little to say about the logical functions
Implies, Forall, and so on. The rules we’ve seen so far give us mechanisms
to define complex elements of the type Prop, as well as ways of showing that
certain elements of Prop are in a sense the same.

There is a natural map taking terms t in the language of arithmetic to
terms t̂ of type N in Frege-PAi. Similarly, we can map formulas ϕ in the
language of arithmetic to elements ϕ̂ of type Prop in the language of Frege-
PAi, by taking atomic formulas t1 = t2 to t̂1 Equals t̂2, formulas ϕ → ψ to
ϕ̂ Implies ψ̂, and so on. If Φ(ϕ1, . . . , ϕn) is a schema involving the formulas
ϕ1(x1, . . . , xk) to ϕn(x1, . . . , xk), we we define Φ̂ by replacing each ϕi with a
corresponding variable of type Nk → Prop; an instance of Φ̂ is obtained by
substituting appropriate terms for the variables. Similarly, an instance of a rule

Φ̂0 True, . . . , Φ̂m True

Φ̂ True

is also obtained by replacing variables by specific terms. We can now present
the rules concerning

Truth of propositions in Frege-PAi

1. If Φ an axiom or schema PAi, then any instance of Φ̂ True

2. If Φ0, . . . ,Φm ⇒ Φ is a rule of PAi, then any instance of

Φ̂0 True, . . . , Φ̂m True

Φ̂ True

24

3. Substitution of equal terms:
a = b ∈ A c[a/x] True

c[b/x] True

4. Instantiation of variables: a ∈ A
(x ∈ A)
b[x] True

b[a/x] True

More explicitly, clauses 1 and 2 include the propositional schemata, schemata
involving quantifiers, equality axioms, the defining equations for succesor, plus,
and times, and finally the induction rule. It should be clear that Frege-PAi is
an extension of PAi. However, since Frege-PAi is built on intuitionistic logic I1,
the law of the excluded middle ¬¬ϕ→ ϕ does not necessarily hold for arbitrary
ϕ ∈ Prop.

Note that we have
x Iff x True (x ∈ Prop),

so that if Frege-PAi proves that two terms a and b of type Prop are equal, then
by substitution it also proves a Iff b True.

5.4 Interpreting Σ1
1-AC

i in Frege-PAi

In this section we describe a Dialectica-style interpretation of Σ1
1-ACi in Frege-

PAi, in which the number variables of Σ1
1-ACi are mapped to number variables

of Frege-PAi and the set variables of Σ1
1-ACi are mapped to variables of type

N→ Prop. As in the Dialectica interpretation we associate to every formula ϕ
of Σ1

1-ACi a formula ϕF1 of the form

∃x ∈ A ∀y ∈ B ϕF1(x, y) True (6)

where ϕF1 is a term of Frege-PAi of type A × B → Prop. Once again, we
allow for the possibility that either quantifier is absent. We’ll then show, as in
Section 4.2, that from a proof of ϕ in Σ1

1-AC we can extract a term witnessing
the existential quantifier of (6). For arithmetic ϕ, ϕF1 will be just ϕ̂ T rue, so
that arithmetic formulas become “quantifier-free” in the translation.

The ·F1 mapping is very similar to the ·D1 mapping. One key difference is
in the clause for implication. In Section 4.2 verifying the interpretation of the
rule ϕ→ ψ,ϕ→ θ ⇒ ϕ→ ψ ∧ θ required a “definition by cases” dependent on
the truth value of a quantifier-free formula. In Frege-PAi the “quantifier-free”
formulas are arithmetic, and the theory does not provide the means to define a
function dependent on the truth of a term in Prop. As a result, we have to use
a trick due to Diller and Nahm [11] which avoids the need for such functions.

We start by defining (t1 = t2)F1 to be

t̂1 Equals t̂2 True

and once variables X̂ ∈ N → Prop are assigned to set variables X of Σ1
1-AC,

we can define (t ∈ X)F1 to be

X̂(t̂) True.

25

Now assuming ϕF1 is given by

∃x ∈ A ∀y ∈ B ϕF1(x, y) True

and ψF1 is given by

∃w ∈ C ∀z ∈ D ψF1(w, z) True

we define (ϕ→ ψ)F1 by

ϕ→ ψ ∃x ∀y ϕF1(x, y) True→ ∃w ∀z ψF1(w, z) True
 ∃x ∀y Forall u ϕF1(x, y(u)) True→ ∃w ∀z ψF1(w, z) True
 ∀x ∃w (∀y Forall u ϕF1(x, y(u)) True→ ∀z ψF1(w, z) True)
 ∀x ∃w ∀z ∃y (Forall u ϕF1(x, y(u)) Implies ψF1(w, z)) True
 ∃y, w ∀x, z (Forall u ϕF1(x, y(u, x, z)) Implies ψF1(w(x), z)) True

Note that in the second line we replace

∃x ∀y ϕF1(x, y) True

by
∃x ∀y Forall u ϕF1(x, y(u)) True.

Intuitively, we’re replacing elements y by sequences of elements λu.y(u). (In the
Diller-Nahm interpretation one uses finite sequences of elements, which would
work here also; for our purposes, using infinite sequences is sufficient and sim-
plifies the notation.)

The interpretations of the other propositional connectives remain the same:
(ϕ ∧ ψ)F1 is given by

∃x,w ∀y, z (ϕF1(x, y) And ψF1(w, z)) True,

and ⊥F1 is given by False True. The translation of second-order quantifiers is
also as before: ∀Z ϕ(Z) is translated to

∀Z ϕ(Z) ∀z ∃x ∀y ϕF1(z, x, y) True
 ∃x ∀z, y ϕF1(z, x(z), y) True

where z is of type N → Prop. More interesting is the interpretation of a first-
order quantifier: ∀z ϕ(z) is translated to

∀z ϕ(z) ∀z ∃x ∀y ϕF1(z, x, y) True
 ∃x ∀y Forall z ϕF1(z, x(z), y) True.

In other words, the first-order universal quantifier is absorbed by the “quantifier-
free” part of ϕF1 .

26

Theorem 5.6 Suppose Σ1
1-ACi proves ϕi. Then Frege-PAi proves ϕF1 . In

other words, if ϕF1 is given by

∃x ∈ A ∀y ∈ B ϕF1(x, y) True

then there is a term a ∈ A whose free variables correspond to those of ϕ such
that Frege-PAi proves

ϕF1(a, y) True (y ∈ B).

The verification of first-order axioms is routine, with induction and axioms
regarding implication handled as in [11]. (ACAi)F1 is easily taken care of:
axioms (ACAi) are of the form

¬∀X ¬∀y (y ∈ X ↔ ϕ(y))

and their ·F1-translations are of the form

∃x Not Forall u Not Forall y (x(u, y) Iff ϕF1(y)) True,

where x is of type N → (N → Prop); note that the “Forall u” arises from the
Diller-Nahm interpretation of a negation.5 We need a term a to witness the
existential quantifier; taking a = λuλy.ϕF1(y) suffices.

Axioms (Σ1
1-ACi) are of the form

∀y ¬∀X ¬ϕ(y,X) → ¬∀X ¬∀y ¬∀u ¬ϕ(y,X〈u,y〉).

The left-hand side translates to

∃x Forall y Not Forall u Not ϕF1(y, x(u, y)) True

while the right-hand side translates to

∃x′ Not Forall v Not Forall y Not Forall u Not ϕF1(y, x′(v)〈u,y〉) True.

Given an a witnessing the left-hand side, we need to define an a′ witnessing the
right. Defining a′ = λvλw.a(w00, w01, w1) yields a′(v, 〈〈u, y〉, t〉) = a(u, y, t) for
any term t, and hence

a′(v)〈u,y〉(t) Iff a(u, y, t) True.

We can use this to show

ϕF1(y, a(u, y)) Iff ϕF1(y, a′(v)〈u,y〉) True,

which yields the necessary implication.
For arithmetic ϕ that don’t involve set variables ϕF1 is just ϕ̂. As a result,

we have
5This extra quantifier was omitted in [5]. We are grateful to Justus Diller for pointing out

this error.

27

Corollary 5.7 If Σ1
1-ACi proves ϕ, where ϕ is arithmetic, then Frege-PAi

proves ϕ̂ T rue. In particular, if Σ1
1-ACi proves ⊥ then Frege-PAi proves

False True.

As in Section 4.2, though we initially allowed for the possibility that either
quantifier is absent in the definition of ϕF1 , we now want to rule out this pos-
sibility. We can bring this about by translating the atomic formula t1 = t2
to

∃u ∈ N ∀v ∈ N t̂1 Equals t̂2 True

where u and v don’t appear in t̂1 or t̂2, and similarly for atomic formas X(t).
This has the net effect that arithmetic formulas ϕ are translated to formulas
∃u ∈ A ∀v ∈ B ϕ̄ True where u and v don’t appear in ϕ̄. Once again we can
show that this doesn’t harm Theorem 5.6 or Corollary 5.7, and so from now on
we adopt this modified translation as ·F1 .

5.5 Interpreting Frege-PAi in P1

Frege-PAi looks a lot like T , except that formulas of PAi are “reflected down”
to quantifier-free formulas. Similarly, P1 looks a lot like T , except that types of
P0 are “reflected down” to the universe U0. Since PAi is interpreted in P0, it
might seem plausible that Frege-PAi can be interpreted in P1. In this section
we will show that this is indeed the case.

To interpret Frege-PAi in P1 we will translate types A of the former system
to types AD1 of the latter, and terms a ∈ A to terms aD1 ∈ AD1 . To motivate the
definition of PropD1 , remember that in the Dialectica interpretation formulas
ϕ of PAi are mapped to assertions ϕD0 of the form

∃x ∈ A ∀y ∈ B f(x, y) = 0 (7)

where A and B are types of P0 and f is of a term of type A × B → N. In
Frege-PAi, terms of type Prop are represent generalized formulas of PAi, so it
makes sense to define

PropD1 = ΣX∈U0,Y ∈U0f ∈ X × Y → N

of P1. We can now interpret terms ϕ ∈ Prop of Frege-PAi by elements 〈A,B, f〉
of PropD1 , in such a way that if Frege-PAi proves ϕ True then P1 proves (7);
that is, there is a term a ∈ A such that P1 proves

f(a, y) = 0 (y ∈ B).

This is done by “internalizing” the Dialectica interpretation, so that the propo-
sitional maps Implies, And, and Forall of Frege-PAi translate to the corre-
sponding operations on elements of Prop.

A small technical complication arises with this approach. The verification
of the rule ϕ ⇒ ψ → ϕ in Section 4 relied on the existence of “canonical
elements” of each type, given by Lemma 4.5. Unfortunately, we cannot generate

28

such elements uniformly; that is, there is no functional Canon ∈ ΠX∈U0X that
provides an element Canon(A) ∈ A for each type A of U0. However, we can
pick a canonical element of type N (e.g. 0), and given canonical elements for the
types appearing in ϕD0 and ψD0 we can get canonical elements for the types
appearing in (ϕ→ ψ)D0 , (ϕ∧ψ)D0 , and so on. So the solution is to leave room
for these elements in PropD1 . In short, we set

PropD1 = ΣX∈U0,Y ∈U0(X × Y → N)×X × Y

so that elements 〈A,B, f, canonA, canonB〉 of PropD1 include the canonical con-
stants as well as A, B, and f as above.

We now define ND1 to be N, (A×B)D1 be to be given inductively by AD1 ×
BD1 , and (A → B)D1 to be given by AD1 → BD1 . Similarly, to define the
mapping on terms of Frege-PAi, take 0D1 = 0, SD1 = S, map variables x ∈ A
of Frege- PAi to variables xD1 ∈ AD1 in P1, and let the map ·D1 commute with
explicit definition, application, pairing, projection, and primitive recursion.

All that is left to do is define the action of ·D1 on the Prop-valued functions
Implies, And, False, Equals, and Forall. To define

ImpliesD1 ∈ PropD1 × PropD1 → PropD1 ,

recall that if ϕD0 is given by

∃x ∈ A ∀y ∈ B f(x, y) = 0

and ψD0 is given by
∃w ∈ C ∀z ∈ D g(w, z) = 0

then (ϕ→ ψ)D0 is given by

∃u ∈ (A→ C)× (A×D → B) ∀v ∈ A×D
(λu, v.timplies(f(v0,u0(v0,v1)),g(u1(v0),v1)))(u, v) = 0.

We can then define

ImpliesD1(〈A,B, f, canonA, canonB〉, 〈C,D, g, canonC , canonD〉) =
〈(A→ C)× (A×D → B), A×D,
λu, v.timplies(f(v0,u0(v0,v1)),g(u1(v0),v1)),

〈λx.canonC , λx.canonB〉, 〈canonA, canonD〉〉.

Similarly, we define

AndD1(〈A,B, f, canonA, canonB〉, 〈C,D, g, canonC , canonD〉) =
〈A× C,B ×D,
λu, v.tand(f(u0,v0),g(u1,v1)),

〈canonA, canonC〉, 〈canonB , canonD〉〉;

29

also
EqualsD1(x, y) = 〈N,N, λu, v.tequals(x,y), 0, 0〉

and
FalseD1 = 〈N,N, λu, v.1, 0, 0〉.

The definition of ForallD1 involves a slight twist. Recall that if ϕ(z)D1 is given
by

∃x ∈ A ∀y ∈ B f(z, x, y) = 0

then (∀z ϕ(z))D1 is given by

∃x ∈ N→ A ∀〈z, y〉 ∈ N×B f(z, x(z), y) = 0.

Now we must consider the possibility that A and B also depend on z, so that
in general ϕ(z)D1 is given by

∃x ∈ A(z) ∀y ∈ B(z) f(z, x, y) = 0.

Instead of N→ A and N×B we now use the dependent product and sum types,
and define (∀z ϕ(z))D1 by

∃x ∈ Πz∈NA(z) ∀〈z, y〉 ∈ Σz∈NB(z) f(z, x(z), y) = 0.

In short, we define

ForallD1 ∈ (N→ PropD1)→ PropD1

by

ForallD1(d) = 〈Πz∈N .d(z)0,Σz∈N .d(z)1,

λu, v.d(z)2(v0, u(v0), v1), λz.(d(z)3), 〈0, d(0)4〉〉.

This completes the definition of ·D1 .

Theorem 5.8 The mapping ·D1 has the following properties:

1. If A is a type of Frege-PAi, then AD1 is a type of P1.

2. If Frege-PAi proves a ∈ A then P1 proves aD1 ∈ AD1 .

3. If Frege-PAi proves a = b ∈ A then P1 proves aD1 = bD1 ∈ AD1 .

4. Let d ∈ Prop in Frege-PAi, and suppose Frege-PAi proves d True. Then
P1 proves

∃x ∈ dD1
0 ∀y ∈ dD1

1 dD1
2 (x, y) = 0.

In other words, there is a term t ∈ dD1
0 whose free variables correspond to

those of d such that P1 proves

dD1
2 (t, y) = 0 (y ∈ dD1

1).

30

The details of the proof are routine, and can be found in [5]. For arithmetic ϕ,
ϕ̂D1 is essentially ϕD0 . As a result, we have

Corollary 5.9 Suppose ϕ is an arithmetic formula in the language of arith-
metic such that Frege-PAi proves ϕ̂ T rue. Then P1 proves ϕD0 . In particular,
if ϕ is the Π0

2 assertion ∀x ∃y ψ(x, y) where ψ is quantifier-free then there is a
term t such that P1 proves

ψ′(x, t(x)) (x ∈ N)

and if Frege-PAi proves False True then P1 proves 1 = 0.

5.6 Putting it all together

Now let’s consider what happens when the ·Σ1 , ·N1 , ·F1 , and ·D1 mappings are
composed. The ·Σ1 mapping takes formulas ϕ in the language of ÎD1 to formulas
ϕΣ1 in the language of second-order arithmetic, and ·N1 adds double-negations
before atomic formulas of the form t ∈ X. ϕΣ1N1F1 is then a formula of the
form

∃x ∈ A ∀y ∈ B f(x, y) True, (8)

where A and B are types of Frege-PAi and F is a term of Frege-PAi of type A×
B → Prop. The ·D1 mapping is only defined on types and terms of Frege- PAi

but we can extend it in the obvious way to map the formula (8) to ϕΣ1N1F1P1 ,
given by

∃x ∈ AD1 ∀y ∈ BD1 ∃w ∈ (fD1(x, y))0 ∀z ∈ (fD1(x, y))1 (fD1(x, y))2(w, z) = 0.

Now, combining Theorems 5.2, 5.6, and 5.8, we have the following

Theorem 5.10 Suppose ÎD1 proves ϕ. Then P1 proves ϕΣ1N1F1P1 . In other
words, if ϕΣ1N1F1P1 is given by

∃x ∈ A ∀y ∈ B ∃w ∈ (f(x, y))0 ∀z ∈ (f(x, y))1 (f(x, y))2(w, z) = 0

then there are terms t ∈ A and s[y] ∈ (f(t, y))0 (y ∈ B) such that P1 proves

(f(t, y))2(s, z) = 0 (y ∈ B, z ∈ (f(t, y))1).

Since the ·Σ1N1F1P1 mapping agrees with the ·N0D0 mapping on arithmetic for-
mulas, we get the following

Corollary 5.11 Suppose ÎD1 proves ϕ, where ϕ is does not involve any fixed-
point constants. Then P1 proves ϕN0D0 . In particular, if ÎD1 proves ∀x ∃y ϕ(x, y)
where ϕ is quantifier-free then there is a term t such that P1 proves

ϕ′(x, t(x)) = 0 (x ∈ N)

and if ÎD1 proves ⊥ then P1 proves 1 = 0.

31

6 Iterating the Interpretation

In Section 4 we showed how to interpret PA in P0. In Section 5 we saw that this
interpretation was “uniform” enough to allow for the interpretation of Frege-PAi

in P1 and hence, ultimately, the interpretation of ÎD1. This interpretation can in
turn be lifted to an interpretation of Frege-ÎD

i

1 in P2, yielding an interpretation
of ÎD2, and so on up the hierarchy.

The interpretation of PA in P0 ran

PA N0 PAi

 D0 P0.

and the interpretation of ÎD1 in P1 ran

ÎD1 Σ1 Σ1
1-AC

 N1 Σ1
1-ACi

 F1 Frege-PAi

 D1 P1,

where the last step relied on a uniform version of the interpretation of PAi in
P0. Turning to ÎD2, we’d like to interpret

ÎD2 Σ2 Σ1
1-AC(ÎD1)

 N2 Σ1
1-ACi(ÎD

i

1)

 F2 Frege-ÎD
i

1

 D2 P2,

where the last step similarly makes use of a uniform version of the interpretation
of ÎD

i

1 in P1.
The theory Σ1

1-AC(ÎD1) and the map ·Σ2 were defined in Section 5.1, and

Σ1
1-ACi(ÎD

i

1) and the ·N2 mapping were defined in Section 5.2. We now define

Frege-ÎD
i

1 to consist of Frege-PAi together with additional terms

Fixedϕ ∈ N→ Prop

for each positive arithmetic ϕ, and axioms

Forall z (Fixedϕ(z) Iff ϕ̂(z, λz.F ixedϕ(z))) True.

Just as in Section 5.4 we can define an interpretation ·F2 of Σ1
1-AC(ÎD

i

1) in

Frege-ÎD
i

1. To finish off the interpretation of ÎD2, we only need to define a

map ·D2 which will interpret Frege-ÎD
i

1 in P2.

32

The idea is as follows. In interpreting Frege-PAi in P1, we used the interpre-
tation of PAi in P0 to define functions ImpliesD1 , AndD1 , FalseD1 , EqualsD1 ,
and ForallD1 , returning values in

PropD1 = ΣX∈U0,Y ∈U0(X × Y → N)×X × Y.

This enabled us to translate terms t ∈ Prop of Frege-PAi to terms tD1 ∈ PropD1

of P1 in such a way that axioms and rules of PA were preserved. We can repeat
this maneuver to interpret Frege-ÎD

i

1 in P2. According to Theorem 5.10, the
interpretation of ÎD1 takes formulas ϕ of that theory to formulas ϕΣ1N1F1P1 of
the form

∃x ∈ A ∀y ∈ B ∃w ∈ (f(x, y))0 ∀z ∈ (f(x, y))1 (f(x, y))2(w, z) = 0 (9)

where A and B are types of P1 and f ∈ A × B → PropD1 . Since the type
building operations of P1 can be mirrored by operations on the universe U1 of
P2, we can define

PropD2 = ΣX∈U1,Y ∈U1(X × Y → PropD1)×X × Y,

so that intuitively an element 〈A,B, f, canonA, canonB〉 of PropD2 corresponds
to the formula given by (9). We can then define functions ImpliesD2 , AndD2 ,
FalseD2 , EqualsD2 , ForallD2 , and FixedD2

ϕ returning elements in PropD2 cor-
responding to the interpretation of ÎD1 in P1. With these maps we can identify
element t ∈ Prop of Frege-ÎD

i

1 with elements tD2 ∈ PropD2 of P2, such that

the axioms and rules of ÎD
i

1 are verified in the translation.
Iterating this idea gives the main result.

Theorem 6.1 For each n ÎDn is interpreted in Pn.

Here “interpreted” has to be construed in the appropriate sense. Since all the
interpretations are essentially the Dialectica interpretation when restricted to
on arithmetic formulas, we have

Corollary 6.2 Suppose ÎDn proves a formula ϕ involving none of the fixed-
point constants. Then Pn proves ϕN0D0 . In particular, if ÎDn proves ∀x ∃y ψ(x, y)
where ψ is quantifier free, there is a term t such that Pn proves

ψ′(x, t(x)) = 0 (x ∈ N),

and if ÎDn proves ⊥ then Pn proves 1 = 0.

But this is just our main result, Theorem 1.1.

7 Final Comments

When we began this project we were looking for a functional interpretation of
ATR0 in a theory like P<ω. As it turns out, the fact that P<ω is “stratified”

33

whereas ATR0 is not, together with the speedup result given by Theorem 1.2,
makes a direct interpretation unlikely. This, however, suggests an interesting
question: is there a “second-order” version of P<ω in which ATR0 can be inter-
preted directly?

Can one prove that a reduction procedure for closed terms of Pn is strongly
normalizing? If this could be carried out via an assignment of ordinals to terms
as in [31, 20], the result, combined with the analysis in this paper, would provide
an alternate route to the ordinal analysis of ÎD<ω.

We’d like to see this work extended to stronger systems. Proof-theoretic
investigations by Spector [30] and Girard [17] have shown that bar recursion
and an impredicative form of polymorphism suffice to interpret full second-order
arithmetic. Can fragments and variants of these schemata be used to interpret
other classical theories? We feel that such interpretations serve to illuminate
the classical strength of computational schemata, as well as the “constructive
content” of classical reasoning.

I’d like to thank Solomon Feferman for numerous discussions and suggestions
regarding the work here, and my advisor, Jack Silver for his support. Finally,
I’d like to thank the Sloan Foundation for supplying me with a dissertation-year
fellowship while I carried out this work.

References

[1] Aczel, Peter, “An introduction to inductive definitions,” in [7], pp. 739-782.

[2] Aczel, Peter, “The Type Theoretic Interpretation of Constructive Set The-
ory,” in A. Macintyre et al. eds., Logic Colloqium ’77, North Holland, 1978.

[3] Aczel, Peter, “Frege structures and the notion of proposition, truth, and
set,” in Jon Barwise et al. eds., The Kleene Symposium, North-Holland,
1980.

[4] Aczel, Peter, “The Type Theoretic Interpretation of Constructive Set The-
ory: Choice Principles,” in A. S. Troelstra and D. van Dalen eds., The
L.E.J. Brouwer Centenary Symposium, North Holland, 1982.

[5] Avigad, Jeremy, Proof-Theoretic Investigations of Subsystems of Second-
Order Arithmetic, Ph.D. dissertation, University of California, Berkeley,
1995.

[6] Avigad, Jeremy, “On the Relationship Between ATR0 and ÎD<ω,” Journal
of Symbolic Logic 61 (1996), 768-779.

[7] Barwise, Jon, ed., The Handbook of Mathematical Logic, North-Holland,
1977.

[8] Beeson, Michael J., Foundations of Constructive Mathematics, Springer,
1985.

34

[9] Beeson, Michael J., “Recursive Models for Constructive Set Theories,” An-
nals of Mathematical Logic 23 (1982), 127-178.

[10] Buchholz, Wilfried, et. al., Iterated Inductive Definitions and Subsystems of
Analysis: Recent Proof-Theoretical Studies, Lecture Notes in Mathematics,
vol. 897, Springer, 1981.

[11] Diller, J. and W. Nahm, “Eine Variante zur Dialectica Interpretation
der Heyting-Arithmetik endlicher Typen,” Archive Mathematische Logik
Grundlagenforschung 16 (1974), 49-66.

[12] Diller, J. and A.S. Troelstra, “Realizability and Intuitionistic Logic,” Syn-
these 60 (1984), 253-282.

[13] Feferman, Solomon, “Theories of Finite Type Related to Mathematical
Practice,” in [7], pp. 913-972.

[14] Feferman, Solomon et al., eds., Kurt Gödel: Collected Works, vol. 2, Oxford
University Press, 1990.

[15] Feferman, Solomon, “Iterated Inductive Fixed-Point Theories: Application
to Hancock’s Conjecture”, in G. Metakides ed. Patras Logic Symposium,
North-Holland, 1982.

[16] Gallier, J. H., “What’s So Special About Kruskal’s Theorem and the Or-
dinal Γ0? A Survey of Some Results in Proof Theory,” Annals of Pure and
Applied Logic 53 (1991), 199-260.

[17] Girard, Jean-Yves, Yves Lafont, and Paul Taylor, Proofs and Types, Cam-
bridge University Press, 1989.

[18] Gödel, Kurt, “Uber ein bisher noch nicht benutzte Erweiterung des finiten
Standpunktes,” Dialectica 12 (1958), 280-287; also appears, with English
translation, in [14].

[19] Howard, W. A., “The Formulae-As-Types Notion of Construction,” in J.P.
Seldin and J.R. Hindley, eds., To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus, and Formalism, Academic Press, 1980.

[20] Howard, W. A., “Assignment of ordinals to terms for primitive recursive
functionals of finite type,” in J. Myhill et al. eds., Intuitionism and Proof
Theory, North-Holland, 1970.

[21] Kreisel, G., “On the Interpretation of Non-Finitist Proofs,” I and II, Jour-
nal of Symbolic Logic 16 (1951) 241-267 and 17 (1952) 43-58.

[22] Martin-Löf, Per, “An Intuitionistic Theory of Types: Predicative Part,”
in H.E. Rose and J.C. Shepherdson, eds., Logic Colloqium, North-Holland,
1975.

35

[23] Martin-Löf, Per, “Constructive Mathematics and Computer Program-
ming,” in C.A.R. Hoare and J.C. Shepherdson, eds., Mathematical Logic
and Programming Languages, Prentice-Hall, 1985.

[24] Martin-Löf, Per, Intuitionistic Type Theory, Bibliopolis, 1984.

[25] Palmgren, Erik, “Type-theoretic Interpretation of Iterated, Strictly Posi-
tive Inductive Definitions,” Archive For Mathematical Logic 32 (1992) 75-
99.

[26] Schwichtenberg, Helmut, Einige Anwendungen von unendlichen Ter-
men und Wertfunktionalen, Habilitationsschrift, Westfälische Wilhelms-
Universität, Münster, 1973.

[27] Schwichtenberg, Helmut, “Some Applications of Cut-Elimination,” in [7]

[28] Simpson, Stephen G., “Subsystems of Z2 and Reverse Mathematics,” ap-
pendix to Gaisi Takeuti, Proof Theory (second edition), North-Holland,
1987.

[29] Simpson, Stephen G., “Friedman’s Research on Subsystems of Second Or-
der Arithmetic,” in Leo Harrington et al. eds, Harvey Friedman’s Research
on the Foundations of Mathematics, North-Holland, 1985.

[30] Spector, Clifford, “Provably Recursive Functionals of Analysis: A Con-
sistency Proof of Analysis by an Extension of Principles Formulated in
Current Intuitionistic Mathematics,” in J. Dekker, ed., Recursive Function
Theory, Proceedings of Symposia in Pure Mathematics Vol. 5, American
Mathematics Society, 1962.

[31] Tait, William, “Infinitely Long Terms of Transfinite Type,” in J. Cross-
ley and M. Dummet eds., Formal systems and recursive functions, North-
Holland, 1965.

[32] Troelstra, A.S., ed., Metamathematical Investigation of Intuitionist Arith-
metic and Analysis, Lecture Notes in Mathematics 344, Springer, 1973.

[33] Troelstra, A.S., “Aspects of Constructive Mathematics” in [7].

[34] Troelstra, A.S., “On The Syntax of Martin-Löf’s Type Theories,” Theoret-
ical Computer Science 51 (1987) 1-26.

[35] Troelstra, A.S., Introductory notes to [18], in [14].

[36] Troelstra, A.S. and D. van Dalen, Constructivism in Mathematics, An In-
troduction, vols. I and II, North-Holland, 1988.

36

