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Abstract

The metamathematical tradition, tracing back to Hilbert, employs syntactic mod-
eling to study the methods of contemporary mathematics. A central goal has been,
in particular, to explore the extent to which infinitary methods can be understood
in computational or otherwise explicit terms. Ergodic theory provides rich oppor-
tunities for such analysis. Although the field has its origins in seventeenth century
dynamics and nineteenth century statistical mechanics, it employs infinitary, non-
constructive, and structural methods that are characteristically modern. At the
same time, computational concerns and recent applications to combinatorics and
number theory force us to reconsider the constructive character of the theory and its
methods. This paper surveys some recent contributions to the metamathematical
study of ergodic theory, focusing on the mean and pointwise ergodic theorems and
the Furstenberg structure theorem for measure preserving systems. In particular, I
characterize the extent to which these theorems are nonconstructive, and explain
how proof-theoretic methods can be used to locate their “constructive content.”
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1 Introduction

The late nineteenth century inaugurated an era of sweeping changes in math-
ematics. Whereas mathematics had, until that point, been firmly rooted in
explicit construction and symbolic calculation, the new developments empha-
sized a kind of understanding that was often at odds with computational
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concerns. Dedekind, for example, wrote of his development of the theory of
ideals:

It is preferable, as in the modern theory of functions, to seek proofs based
immediately on fundamental characteristics, rather than on calculation, and
indeed to construct the theory in such a way that it is able to predict the
results of calculation. . . [21, page 102]

Such attitudes paved the way to the adoption of the infinitary, nonconstruc-
tive, set theoretic, algebraic, and structural methods that are characteristic of
modern mathematics.

The new methods were controversial, however. At issue was not just whether
they are consistent, but, more pointedly, whether they are meaningful, and
appropriate to mathematics. After all, if one views mathematics as an essen-
tially computational science, then arguments without computational content,
whatever their heuristic value, are not properly mathematical. The discovery
of logical and set-theoretic paradoxes at the turn of the twentieth century,
however, brought the issue of consistency to the fore, and Brouwer’s intu-
itionistic challenges in the 1910’s made the problem of finding an adequate
foundation and justification of the new methods even more pressing.

David Hilbert’s metamathematical program, unveiled in 1922 [42,43], is often
viewed, narrowly, as a response to the consistency problem, but it is better seen
as an attempt to justify the new methods in light of the broader concerns just
described. The strategy Hilbert proposed was to model the new methods using
formal, axiomatic systems, and then prove the consistency of those systems
using “finitary” methods, whose validity could not be questioned. Within a
formal system, one can enjoy modern methods to one’s heart’s content, with
the knowledge that from a metamathematical standpoint, the symbolic rules
endow the resulting proofs with an explicit combinatorial content. Of course,
something more is needed to justify the choice of symbolic rules with respect
to our understanding of the mathematical enterprise; at the bare minimum,
we wish to know that the universal assertions we derive in the system will
not be contradicted by our experiences, and the existential predictions will be
born out by calculation. This is exactly what Hilbert’s program was designed
to do.

Kurt Gödel’s incompleteness theorems of 1931 [36] demonstrated the impos-
sibility of achieving Hilbert’s goal, assuming that the safe, finitary portion
of mathematics is included among the broader range of methods to be jus-
tified. But the more general program of understanding modern methods in
syntactic terms, and using that understanding to clarify their computational
content, has been more successful. For one thing, we now know that signifi-
cant portions of mathematics can be formalized in theories that are strictly
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weaker than primitive recursive arithmetic, and therefore have a finitary justi-
fication. 2 Proof-theoretic methods now provide numerous ways of “reducing”
classical theories to constructive ones [3,24,25], and “mining” the constructive
content of classical proofs [34,51].

The theory of dynamical systems and ergodic theory provide fruitful arenas
for such analysis. Although these subjects arose from the study of physical and
statistical phenomena, they make full use of modern structural methods that
do not directly bear on the original computational concerns. My goal here will
be to survey some recent developments in the metamathematics of ergodic
theory with these issues in mind. In particular, I will try to clarify the extent
to which the methods of ergodic theory can be given a direct computational
interpretation, and explain how proof-theoretic methods enable us to obtain
useful information in situations when the methods are explicitly nonconstruc-
tive. Most of the work I will describe here has been carried out jointly with
Philipp Gerhardy, Ksenija Simic, and Henry Towsner.

2 Dynamical systems and ergodic theory

A discrete dynamical system consists of a structure, X , and a map T from (the
underlying set of) X to itself. One can view X as a space of configurations,
or states, of a physical system that evolves over time. Assuming x is any such
state, one can take Tx to be the state of the system after one unit of time has
elapsed. To have anything interesting to say, one has to assume X bears some
structure; for example, X may be a metric space, a topological space, or a
differentiable manifold. Laplace took this general model to form the scientific
basis for his mechanistic view of the universe:

We ought then to regard the present state of the universe as the effect of its
previous state and as the cause of that which is to follow. An intelligence
that, at a given instant, could comprehend all the forces by which nature
is animated and the respective situation of all the things that make it up,
if moreover it were vast enough to submit these data to analysis, would
encompass in the same formula the movements of the greatest bodies of the
universe and those of the lightest atoms. For such an intelligence, nothing
would be uncertain, and the future, as the past, would be present to its eyes
[59, page 2].

The study of dynamical systems can be traced back to Newton, who essen-
tially solved the two-body problem in providing a closed-form determination

2 See Simpson [66] and Avigad [4] for more precise claims, and Burgess [18] for a
helpful caveat.
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of the behavior of two bodies whose motion is constrained only by the gravi-
tational force between them. Newton soon learned that when one adds a third
body, the situation becomes significantly more difficult; he reported to the
astronomer John Machin that “his head never ached but with his studies on
the moon” (quoted in [76, page 544], and in [9, page 15]). Some of the great-
est mathematical minds of the eighteenth and nineteenth century, including
Euler, Lagrange, and Jacobi, were caught up in the three-body problem, and
the heady optimism of the Laplacian world view was soon thwarted. It was
Poincaré who first caught a glimpse of the modern theory of chaos, with the
realization that part of the problem lies in the sensitivity of a system to its
initial conditions:

If we knew exactly the laws of nature and the situation of the universe
at the initial moment, we could predict exactly the situation of that same
universe at a succeeding moment. But even if it were the case that the
natural laws had no longer any secret for us, we could still only know the
initial situation approximately. If that enabled us to predict the succeeding
situation with the same approximation, that is all we require, and we should
say that the phenomenon had been predicted, that it is governed by laws.
But it is not always so; it may happen that small differences in the initial
conditions produce very great ones in the final phenomena. A small error in
the former will produce an enormous error in the latter. Prediction becomes
impossible, and we have the fortuitous phenomenon [62, page 68].

The beginnings of a breakthrough came in the 1880’s when Poincaré shifted
attention from the “quantitative” features of curves defined by differential
equations to more “qualitative” features.

. . . this qualitative study has in itself an interest of the first order. Several
very important questions of analysis and mechanics reduce to it. Take for
example the three body problem: one can ask if one of the bodies will
always remain within a certain region of the sky or even if it will move away
indefinitely; if the distance between two bodies will infinitely decrease or
diminish, or even if it will remain within certain limits. Could one not ask
a thousand questions of this type which would be resolved when one can
construct qualitatively the trajectories of the three bodies? ([61]; translation
[9, page 31])

With this work, the focus of the theory of dynamical systems moved to ways of
characterizing their global behavior, even in situations that are not amenable
to closed-form solution or computational approximation.

This essay will focus on ergodic theory, where the system X is assumed to be a
finite measure space (X,B, µ) such that µ(X) is finite and T is assumed to be
a measure preserving transformation, which is to say, T satisfies µ(T−1A) =
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µ(A) for every A ∈ B. We will be solely concerned with cases where X is
separable, and I will refer to such a system as a measure preserving system.
These are often used to model physical processes; for example, if we model the
state of a system of N particles by giving the position and momentum of each
particle, the evolution of the system, in accordance with Hamilton’s equations,
preserves Lebesgue measure. Measure preserving systems can also be used
to model probabilistic processes: for each A ∈ B, µ(A) is the probability
that the system is in a state in A at time 0, in which case µ(T−1A) is the
probability that the system will be in a state in A one unit of time later. 3 We
will see, below, that measure preserving systems have useful applications in
number theory and combinatorics, where the measures in question are carefully
tailored to the application.

Although ergodic theory has its roots in seventeenth century dynamics and
nineteenth century statistical mechanics, the field is quintessentially modern,
enjoying the full range of algebraic, infinitary, nonconstructive, and structural
methods. These concerns are sometimes at odds with the motivating compu-
tational concerns, a tension we will explore below.

3 Analysis of the ergodic theorems

Let X = (X,B, µ, T ) be a measure preserving system, and let f ∈ L1(X )
be any real-valued integrable function. If we think of f as representing the
result of performing a measurement on the state of the system, then f ◦ T
represents the result of performing that same measurement after one unit of
time. Starting in state x, suppose now we perform n measurements,

f(x), f(Tx), f(T 2x), . . . , f(T n−1x),

and take their average. In the long run, do these averages stabilize?

Note that T induces an isometry T̂ : f 7→ f ◦T of the space L1(X ) of integrable
functions from X to R, and of the Hilbert space L2(X ) of square-integrable
functions. For each n ≥ 1, define Anf to be the function 1

n

∑
i<n T̂

if , so that,
for each x, Anf(x) denotes on the average measurement over the first n points
in the orbit of x. The von Neumann mean ergodic theorem [73] asserts that for
any f in L2(X ), the sequence (Anf) converges in the L2 norm. The Birkhoff
pointwise ergodic theorem [12] asserts that, moreover, for any f in L1(X ),
the sequence (Anf) converges pointwise, almost everywhere, and in the L1

3 Indeed, it is often not acknowledged that this is the implicit context of the Laplace
quotation above. According to Laplace, since the evolution of a dynamical system
is completely determined by its state, it is merely our ignorance of the precise state
that forces us to resort to probabilistic notions.
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norm. A clean geometric proof due to Riesz [64] shows that the von Neumann
theorem holds more generally for any nonexpansive operator T̂ on a Hilbert
space, that is, any operator satisfying ‖Tf‖ ≤ ‖f‖ for every f .

The measure preserving system X is said to be ergodic if it cannot be de-
composed into nontrivial components that are invariant under T , that is, if
T−1A = A implies that µ(A) = 0 or µ(A) = 1. When X is ergodic, the mean
and pointwise ergodic theorems imply that (Anf) converge to the constant
function

∫
f dµ, in all the senses of convergence indicated above. In other

words, if the space is ergodic, the result of averaging a measurement over
time is, in the limit, equivalent to averaging the measurement over all possible
configurations of the system.

It is now reasonable to ask how quickly the sequence (Anf) converges, and
whether a bound on the rate of convergence can be computed from the initial
data. In other words, given T and f , can one compute a function r : Q → N
such that for every rational ε > 0, ‖Amf −Ar(ε)f‖ < ε whenever m ≥ r(ε)? It
is known that a sequence of ergodic averages can converge arbitrarily slowly
(see [49,58] for precise formulations of this statement and related results),
but the question as to the computability of an r from the initial data is a
separate issue. For example, if (an)n∈N is any sequence of real numbers that
decreases to 0, no matter how slowly, one can compute a bound on the rate of
convergence by systematically querying the elements of the sequence until one
of them is seen to drop below ε. On the other hand, it is not hard to construct
a computable sequence (bn)n∈N of rational numbers that converges to 0, with
the property that no computable function r(ε) meets the specification above.
In a similar way, one can construct a computable sequence (cn)n∈N of rational
numbers that is monotone and bounded, but converges to a noncomputable
real number. Thus, neither monotonicity nor the existence of a computable
limit alone is enough to guarantee the effective convergence of a sequence of
rationals.

What these examples show is that the question as to whether it is possible
to compute a bound on a rate of convergence of a sequence from some initial
data is not a question about the speed of the sequence’s convergence, but,
rather, its predictability. To make the question precise, one needs to rely on
standard notions of computability in analysis; see [6,63,75] for details. Simic
and I [7,65] have shown that, in general, one cannot compute a bound on the
rate of convergence from the initial data; the following formulation is taken
from [6]. 4

Theorem 3.1 There are a computable measure preserving transformation of

4 Jan Reimann has recently brought to my attention work by V. V. V’yugin [74],
which also establishes the noncomputability of rates of convergence in the ergodic
theorems.
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[0, 1] under Lebesgue measure and a computable characteristic function f = χA
such that if f ∗ = limnAnf , then ‖f ∗‖2 is not a computable real number. In par-
ticular, f ∗ is not a computable element of L2(X ), and there is no computable
bound on the rate of convergence of (Anf) in either the L2 or L1 norm.

On the other hand, Gerhardy, Towsner, and I [6] have shown that to compute
a bound on the rate of convergence, and hence the limit of the sequence, it
suffices to know the norm of the limit.

Theorem 3.2 Let T̂ be a nonexpansive operator on a separable Hilbert space
and let f be an element of that space. Let f ∗ = limnAnf . Then f ∗, and a
bound on the rate of convergence of (Anf) in the Hilbert space norm, can
be computed from f , T̂ , and ‖f ∗‖. In particular, if T̂ arises from an ergodic
transformation T , then f ∗ is computable from T and f .

The second statement follows from the first, since in any ergodic space the
averages (Anf) converge to the constant function equal to

∫
f dµ, which is

computable from f .

The negative result of Theorem 3.1 is not surprising. The ergodic theorem
deals with the limiting behavior of dynamical systems, and one would not
expect such limiting behavior to be computable in every case. After all, the
“limiting behavior” of a Turing machine should include a determination as to
whether or not the machine halts on a given input, which is the most basic
example of an undecidable problem. From a logical perspective, the assertion
that the sequence (Anf) converges can be represented as follows:

∀ε > 0 ∃n ∀m > n (‖Amf − Anf‖ < ε). (1)

It is the inner universal quantifier that makes it impossible to compute a wit-
ness to the existential quantifier, since, in general, there is no finite test one
can perform to determine whether a given n has the requisite property. But
although Theorem 3.1 could have been anticipated, it is somewhat disconcert-
ing. What good is a convergence theorem if, in general, we cannot determine
the rate of convergence? Is there any constructive information to be had?

Bishop [13–15] provides one answer. The assertion that a bounded sequence
(an) converges is classically equivalent to the assertion that for every α < β,
the sequence crosses the strip between α and β at most finitely many times. (To
see this, note that lim inf an and lim sup an are always defined, with lim inf an ≤
lim sup an; the condition rules out a strict inequality.) Bishop used this idea to
fashion a constructive version of the pointwise ergodic theorem, which implies
its classical counterpart. There has lately been a resurgence of interest in such
“upcrossing inequalities”; see [44,45,47–50].

Gerhardy, Towsner, and I [6] provide an alternative approach. Assertion (1)
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is classically equivalent to the assertion that for any function K from N to N,
the following holds:

∀ε > 0 ∃n ∀m ∈ [n,K(n)] ‖Amf − Anf‖ < ε. (2)

Given ε > 0, clearly any n witnessing (1) satisfies (2) for any K. Conversely,
if (1) were false, then for some ε > 0 and every n, one could find an m > n
such that ‖Amf − Anf‖ ≥ ε. Letting K be the function that for each n ≥ 1
returns such an m yields a counterexample to (2). This yields our constructive
version of the mean ergodic theorem:

Theorem 3.3 Let T be any nonexpansive mapping on a Hilbert space, let f
be any element of that space, let ε > 0, and let K be any function. Then there
is an n ≥ 1 such that for every m in [n,K(n)], ‖Amf − Anf‖ < ε.

A special case of this statement has recently been used by Tao [70]. Gerhardy,
Towsner, and I provide a constructive proof of Theorem 3.3, with explicit
bounds on n expressed solely in terms of K and ρ = ‖f‖/ε. In particular, our
bounds are uniform on any ball in Hilbert space and independent of T . As
special cases, we have the following:

• If K = nO(1), then n(f, ε) = 22O(ρ2 log log ρ)
.

• If K = 2O(n), then n(f, ε) = 21
O(ρ2).

• If K = O(n) and T is an isometry, then n(f, ε) = 2O(ρ2 log ρ).

Similar considerations hold for the pointwise ergodic theorem, which is classi-
cally equivalent to the following:

Theorem 3.4 Given T and f as above, for every λ1 > 0, λ2 > 0, and K,
there is an n ≥ 1 satisfying

µ({x | max
n≤m≤K(n)

|Anf(x)− Amf(x)| > λ1}) ≤ λ2.

For f in L2(X ), Gerhardy, Towsner, and I provide explicit bounds on n in
terms of f , λ1, λ2, and K.

Our noncomputability result, Theorem 3.1, can be relativized, and yields pre-
cise information as to the degrees of noncomputability of ergodic limits. 5 The
results can also be cast in terms of provability in weak or constructive ax-
iomatic frameworks. Details are spelled out in [6], and stronger results on the

5 Specifically, if the measure preserving system and the function f are computable
from a set A, then the limit of the averages (Anf) is computable from A′; and
for every A, there are a system and function computable from A such that A′ is
computable from the limit of the averages.
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reverse mathematics of the ergodic theorems can be found in [7,65]. 6 It is
worth noting that our constructive version of the mean ergodic theorem is
an example of Kreisel’s no-counterexample interpretation [55,56], and our ex-
tractions of bounds can be viewed as applications of a body of proof theoretic
results that fall under the heading “proof mining” (see, for example, [34,51]).

4 The Furstenberg structure theorem and ergodic Ramsey theory

If a measure preserving system X = (X,B, µ, T ) is ergodic, the pointwise
ergodic theorem implies that the space has a certain “mixing” property: almost
every orbit x, Tx, T 2x, . . . traverses the space with enough regularity so that
for every integrable function f , the average of f over the sequence is equal to
the average measurement over the entire space. 7 Ergodicity is also equivalent
to saying that for every pair of measurable sets A and B, we have

lim
n→∞

1

n

n∑
i=1

µ(T−iA ∩B) = µ(A)µ(B).

This says, roughly, that the probability of being in a state in B at time 0 and
in a state in A after i units of time, is, on the average, close to the product of
the probability of being in A and the probability of being in B, assuming the
average is taken over a sufficiently large period of time.

Ergodicity is not a very strong mixing property, and any space can be decom-
posed into ergodic components. A space is said to be (strong) mixing if for
every A and B, one has

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B).

This means that for sufficiently large n the probability of being in B at time 0
and then in A at time n is roughly the product of the individual probabilities.

6 For example, the Riesz proof of the mean ergodic theorem shows that if T is
any nonexpansive map on a Hilbert space H, then H can be decomposed as an
orthogonal sum of the subspace M = {f | Tf−f} of fixed points, and the subspace
N that is the closure of the set spanned by vectors of the form {Tf − f}. It is
then easy to show that the ergodic averages Anf converge to the projection of f on
M. Simic and I [7] show that, over RCA0 , the statement that (Anf) converges is
equivalent to the assertion that the projection of f onN exists; but, surprisingly, the
statement “if the projection of f on M exists then Anf converges” is still equivalent
to arithmetic comprehension.
7 The pointwise ergodic theorem implies that this is true for a single function f ;
for the stronger claim just made, note that the conclusion can be made to hold for
a countable dense set of functions, simultaneously.
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So being mixing means being random in the sense that over sufficiently long
periods of time, events are uncorrelated: knowing that we are in a state in
B at time 0 does not give much information about what states we might be
in at a later time n. Although it is not readily apparent, a more natural and
better-behaved property of a system is that of being weak mixing :

lim
n→∞

1

n

n∑
i=1

|µ(T−iA ∩B)− µ(A)µ(B)| = 0.

This turns out to be equivalent to saying that limn→∞ µ(T−nA∩B) = µ(A)µ(B)
holds for every A and B, once we exclude a set of natural numbers of 0 den-
sity. 8

A system is said to be compact if it has the property that for every f in
L2(X,B, µ), the orbit {f, T̂ f, T̂ 2f, . . .} has compact closure. This is equivalent
to saying that for every such f , the set {f, T̂ f, T̂ 2f, . . .} is totally bounded : for
every ε > 0, there is an n, such that every T̂ if is within a distance of ε of
{f, T̂ f, . . . , T̂ nf} in the L2 norm.

Taking f to be the characteristic function of a set, compactness implies,
roughly, that events tend to recur at regular intervals. Thus compactness and
weak mixingness characterize opposite behaviors: a compact system exhibits
a high degree of regularity and order, while a weak mixing system exhibits a
high degree of randomness. This opposition is fundamental in analysis: a sys-
tem can be rigid, or chaotic; a channel can carry signal, or noise. In general,
a system will be neither weak mixing nor compact. However, a remarkable
theorem, due to Furstenberg [29,30,32], provides a structural decomposition
of any system in terms of these two types of behavior. First, we present two
key lemmas.

Lemma 4.1 (Koopman and von Neumann [52]) If a measure preserv-
ing system is not weak mixing, it has a nontrivial compact T -invariant factor.

There are a number of equivalent ways to think of a factor. If (X,B, µ) is a
measure space, one way to present a factor of the system is simply to provide
a sub-σ-algebra of sets B′ ⊆ B. Thus, the factor (X,B′, µ) is a coarsening of
the original system that can “see” fewer events. At the extreme, the trivial
factor consists of the two events {∅, X}. Any homomorphism f from a space
(X,B, µ) to a space (Y, C, ν) gives rise to the factor (X,B′, µ) with B′ = f−1C,
and, conversely, every factor is of this form; thus one can also view a factor as
a quotient, or homomorphic image, of the initial space. A factor B′ ⊆ B also
gives rise to the closed subspace L2(X,B′, µ) of L2(X,B, µ) that contains the
constants and is closed under min and max, and, once again, every factor arises

8 It is also equivalent to saying that the product, (X ×X,B × B, µ × µ, T × T ) is
ergodic.
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in this way. By definition, the factor is T -invariant when the sub-σ-algebra is
invariant under T ; equivalently, when the homomorphism is a homomorphism
of measure-preserving systems, or when the closed subspace L2 is T̂ -invariant.

One can define “relativized” notions of compactness and weak mixing in such
a way that the following generalization of Lemma 4.1 holds:

Lemma 4.2 (Furstenberg [29]) If a measure preserving system (X,B, µ, T )
is not weak mixing relative to a proper T -invariant factor B1, there is a T -
invariant factor B2, such that B1 ( B2 ⊆ B and (X,B2, µ, T ) is compact
relative to (X,B1, µ, T ).

Of course, if B2 6= B and (X,B, µ, T ) is not weak mixing relative to B2, we
can repeat the process and find another intermediate factor B2 ( B3 ⊆ B.
This can be iterated as long as the hypothesis of the lemma holds, yielding a
sequence of factors B1 ( B2 ( . . . ⊆ B. We can continue the process into the
transfinite by taking unions at limit stages Bλ = ∪α<λBα. This gives rise to a
strictly increasing sequence of subspaces L2(X,Bα, µ) of a separable Hilbert
space, L2(X,B, µ), and so the process has to stop at some countable ordinal
α. 9 Thus, we have the following:

Theorem 4.3 (Furstenberg structure theorem) Let (X,B, µ, T ) be any
ergodic measure preserving system. Then there is a transfinite increasing se-
quence of factors (Bα)α≤γ such that:

(1) B0 is the trivial factor, {∅, X}
(2) For each α < γ, (X,Bα+1, µ, T ) is compact relative to (X,Bα, µ, T ).
(3) For each limit λ ≤ γ, Bλ = ∪α<λBα.
(4) (X,B, µ, T ) is weakly mixing relative to (X,Bγ, µ, T ).

If Bγ = B, the system is said to be distal. In any case, Bγ is called the maximal
distal factor.

The exact sense in which Theorem 4.3 is nonconstructive will be addressed
in the next section. What is striking about the structure theorem is that it
has found direct application to finitary combinatorics, in a way I will now
describe.

A k-coloring of the integers is simply a function c from Z to {1, . . . , k}; think of
c(n) as the “color” assigned to the integer n. A set A ⊆ Z is monochromatic for
the coloring if it is contained in c−1(i) for some i. Van der Waerden’s theorem
[72] states the following:

9 With the obvious modifications, this argument works for nonseparable systems
as well.
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Theorem 4.4 In any coloring of the integers with finitely many colors, there
are arbitrarily long monochromatic arithmetic progressions.

By a straightforward combinatorial “compactness” argument, this is equiva-
lent to the following finitary version:

Theorem 4.5 For every m and k there is an n large enough so that for any
k coloring of the set {1, . . . , n}, there is a monochrome arithmetic progression
of length m.

If S is any set of integers, the upper Banach density of S is defined to be
limn supk |S ∩ [k, n)|/n. Thus the assertion that S has positive upper Banach
density is equivalent to the assertion that for some δ > 0, there are arbitrar-
ily long intervals in the integers on which the set S has density at least δ.
Szemerédi’s theorem is as follows:

Theorem 4.6 Every set S of integers with positive upper Banach density has
arbitrarily long arithmetic progressions.

This is strictly stronger than van der Waerden’s theorem, since for any k
coloring of the integers, there is a color i such that the set of elements S that
are assigned color i has upper Banach density at least 1/k. As was the case for
van der Waerden’s theorem, Szemerédi’s theorem can also be stated in finitary
terms:

Theorem 4.7 For every k and δ > 0, there is an n large enough, such that if
S is any subset of {1, . . . , n} with density at least δ, then S has an arithmetic
progression of length k.

Below, the least n satisfying the conclusion of the theorem for k and δ will be
denoted NSZ(k, δ).

Szemerédi provided a difficult combinatorial proof of Theorem 4.6 [68]. Soon
after, however, Furstenberg [29] provided a new proof using ergodic-theoretic
methods. His strategy was to recast the problem in measure-theoretic terms,
by identifying sets of integers with elements of an appropriate measure pre-
serving system. First, identify each set of integers S with its characteristic
function χS, and view χS as an infinite binary sequence whose positions are
indexed by the integers. We will define a T -invariant measure µS on the space
2Z of all such sequences, where Tx is the map which simply shifts each se-
quence to the left. If σ is a finite sequence of 0’s and 1’s, let [σ] denote the set
of elements x of 2Z that match σ starting at 0; it suffices to define µS([σ]) for
each σ. Pick a sequence Ij of intervals that witness the upper Banach density
of S; by thinning this sequence appropriately, one can arrange that for each σ,
the density of occurrences of σ in each interval approaches a limit, rσ. Define
µ([σ]) = rσ. Thus, for each σ, µ([σ]) is a measure of how often the pattern
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σ occurs in the set S, and the statement that S has positive upper Banach
density is equivalent to the statement that µ([1]) > 0. When the following
theorem is specialized to that measure space and the set A is taken to be the
set [1], Szemerédi’s theorem is an immediate consequence.

Theorem 4.8 For any measure preserving system (X,B, µ, T ) any set A of
positive measure, and any k there is an n such that

µ(A ∩ T−nA ∩ T−2nA ∩ . . . ∩ T (k−1)nA) > 0.

Conversely, it is not hard to prove Theorem 4.8 from Szemerédi’s theorem.
Thus the Furstenberg correspondence gives us a precise measure-theoretic ana-
logue.

The structure theorem was a by-product of Furstenberg’s analysis, though his
original proof of Szemerédi’s theorem [29] managed to avoid using the full
strength of the structure theorem. Soon after, Furstenberg and Katznelson
[31] presented a streamlined proof of an even stronger result, using the struc-
ture theorem in an essential way (see also [30,32]). It is easy to sketch the
key ideas. If (X,B, µ, T ) is weak mixing, Theorem 4.8 holds for the follow-
ing reason: since, on average, the events T−inA are close to uncorrelated for
i = 0, . . . , k − 1, the measure of the set in question is close to µ(A)k fairly
often. In combinatorial terms, if the original set S is random enough, one
would expect to find an arithmetic progression sooner or later, by dumb luck.
If (X,B, µ, T ) is compact, Theorem 4.8 holds for an entirely different reason:
for some n, the T−nA is guaranteed to return sufficiently close to A so that
the intersection is nonempty after k iterations of T−n. In combinatorial terms,
sufficient regularity in the original set S is enough to guarantee the existence
of an arithmetic progression.

For arbitrary spacesX, one formulates a slightly stronger inductive hypothesis;
that is, one says what it means for a space (X,B, µ, T ) to be “SZ.” One then
shows that every compact system is SZ, and that the property of being SZ
is preserved under compact extensions, limits, and weakly mixing extensions.
The Furstenberg structure theorem then implies that every space is SZ, which
yields the desired conclusion.

5 Analysis of the structure theorem

It is commonly acknowledged that the ergodic theoretic proofs of Szemerédi’s
theorem are nonconstructive. For example, Tao writes [69, page 2]:

This ergodic theory argument is the shortest and most flexible of all the

13



known proofs, and has been the most successful at leading to further gen-
eralizations of Szemerédi’s theorem. . . On the other hand, the infinitary na-
ture of the argument means that it does not obviously provide any effective
bounds for the quantity NSZ(k, δ).

But mathematicians are somewhat vague as to the precise source of the non-
constructivity. In surveying the background to the recent Tao-Green proof
that there are arbitrarily long arithmetic progressions in the primes [40], Kra
writes:

Furstenberg’s proof relies on a compactness argument, making it difficult
to extract any explicit bounds in the finite version of Szemerédi’s theorem.
[53, page 7]

Kra is referring to the compactness argument that is implicit in the Fursten-
berg correspondence principle, namely, the iterative thinning of an infinite
sequence of intervals witnessing the upper Banach density of S used in the
construction of the measure µ. Furstenberg himself writes, in his Mathematical
Review of Gowers’s elementary proof of Szemerédi’s theorem [39]:

However, the ergodic-theoretic approach depends essentially on passing to a
limit whereby a set {1, 2, 3, . . . , N} is replaced by a measure space, and the
translations n→ n+ a are replaced by measure preserving transformations
of this space. In passing to this limit one loses sight of the size N of the
interval {1, 2, 3, . . . , N}. As a result this approach is incapable of giving any
information regarding [NSZ(k, δ)] beyond the fact that it is finite.

But this use of nonconstructivity is fairly mild. The ergodic-theoretic argu-
ments show that for any measurable space (X,B), any measure µ on that
space, any set A in B, any k, and any δ > 0, there is an n such that if µ(A) ≥ δ,
µ(

⋂
i<k T

−inA) > 0. In particular, this holds for the fixed space (X,B) and the
fixed set A used in the Furstenberg correspondence. Now notice that the set of
probability measures µ on (X,B) is compact in the weak-* topology, as is the
closed subset of measures µ satisfying µ(A) ≥ δ. Moreover, fixing k and δ, the
function mapping µ to the least n such that µ(

⋂
i<k T

−inA) > 0 is continuous
in the weak-* topology (with the discrete topology on N), since the conclusion
involves only finitely many values of µ. Thus, for every k and δ, there is a
bound n(k, δ) that is independent of µ. It is a straightforward combinatorial
exercise to translate this to a bound on NSZ . 10

10 Specifically, given k and δ, let n = n(2k, δ), and let l = 2(k − 1)n + 1. Then if S
is any subset of [1, l] of density at least δ, S must have an arithmetic progression
of length k, and, moreover, one with common difference at most n. To see this,
note that otherwise, laying copies of S side by side, we obtain arbitrarily large
sets of density at least δ with no arithmetic progression of length 2k and common
difference at most n; but then any measure obtained from such a sequence via the
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In formal logical terms, this application of compactness can be a reduced to an
appeal to a principle known as “weak König’s lemma,” which asserts that any
infinite, finitely branching tree has an infinite path. This principle is, indeed,
nonconstructive; an argument due to Kleene shows that such a path cannot
always be computed, even if the tree is effectively presented. But the Jockusch-
Soare “low basis theorem” [46] guarantees that there is always a path of low
complexity. Building on a seminal conservation result due to Harvey Friedman,
proof theoretic research has provided a number of ways of eliminating the use
of weak König’s lemma from proofs of combinatorial statements. 11 Moreover,
modern proof mining methods [51] make it possible to do this effectively in
practice. In short, if the Furstenberg correspondence principle were the only
nonconstructive feature of the argument, it would not be hard to reinterpret
the proof in computational or combinatorial terms.

Of course, the transfinite iteration involved in the structure theorem should
seem suspect. But, from a constructive point of view, there is nothing in-
herently wrong with a definition by transfinite recursion. Indeed, many ax-
iomatizations of constructive mathematics allow induction and recursion on
inductively defined sets. To illustrate, define a tree T on N to be a set of
finite sequences of natural numbers closed under initial segments. Think of
each sequence as providing an “address” of the node; thus () is the root,
and any immediate children of an element σ are the elements of the form
σ (̂n). Such a tree is well-founded if there is no infinite path; that is, for ev-
ery function f : N → N there is a natural number n such that the sequence
(f(0), f(1), f(2), . . . , f(n)) has left the tree. It will be convenient to restrict
our attention to trees that are full, so that any node σ in the tree either has no
children, or σ (̂n) is in the tree for every n. Let e denote the tree {()} with just
one node, and if σ is any node of T , let Tσ denote the subtree {τ | σ τ̂ ∈ T}
rooted at σ. Classically, one can show that the set W of full well-founded trees
on N can be generated by the following two clauses:

• e is in W ; and
• If f : N → W is any sequence elements of W , and T is the tree such that

for every n the nth subtree T(n) is equal to f(n), then T is in W .

From a constructive point of view, the two characterizations of the set of
well-founded trees are not equivalent, and the latter, inductive, definition is
preferred. With that characterization, one can justify the following principle
of recursion: one can specify a function F from the set of well-founded trees

Furstenberg correspondence fails to have the property guaranteed by our choice of
n. (Alternatively, one can let n = n(k, δ′) for a slightly smaller value of δ′, pick l
large enough, and then remove a small number of elements from the end of S to
eliminate “wraparound” effects.)
11 There is not enough space here for me to survey what is known about weak
König’s lemma; but see [4, footnote 12] for an overview and references.
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to any other set X with two clauses,

F (e) = a

F (T ) = G(λn F (T(n))) if T is not e,
(3)

where a is an element of X and G is a function from sequences of trees to X.

Georg Kreisel’s theory ID1 [57,17] provides an axiomatic basis for reasoning
about such inductive definitions. Take classical first-order Peano arithmetic,
PA, to be formulated in a language with symbols for each primitive recursive
function and relation. The axioms of PA include basic axioms defining these
functions and relations, and the schema of induction:

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1)) → ∀x ϕ(x),

where ϕ is any formula in the language. Heyting arithmetic, HA, is the analo-
gous theory, founded on intuitionistic first-order logic. ID1 is an extension of
PA with additional predicates P intended to denote the fixed-points of certain
types of inductive definitions. Specifically, let ψ(P, x) denote a formula in the
language of arithmetic with one additional predicate or set symbol P that has
only positive occurrences in ψ. Formally, positivity means that the expressions
P (t) occur unnegated when the definition is written in negation-normal form;
intuitively, this means that the definition can only use positive information as
to which elements satisfy P . This determines a monotone operator Γψ from
sets to sets defined by

Γψ(S) = {x ∈ N | ψ(S, x)}.

Such an operator has a least fixed point, I =
⋂{S | Γψ(S) ⊆ S}. The theory

ID1 adds a new predicate symbol P for each such ψ, intended to denote this
fixed point, together with the following axioms:

• ∀x (ψ(P, x) → P (x))
• ∀x (ψ(θ/P, x) → θ(x)) → ∀x (P (x) → θ(x)), for each formula θ.

Here the notation ψ(θ/P ) denotes the result of replacing each atomic formula
P (t) with θ(t), renaming bound variables to prevent collisions. The first axiom
implies that P is closed with respect to Γψ, while the second axiom schema
expresses that P is the smallest set closed under Γψ, at least, to the extent
that it is possible to do so within a first-order language.

One can also design theories of inductive definitions based on intuitionistic
logic. In this case, however, one needs to be more careful in specifying the
positivity requirement on ψ. One option is to insist that P does not occur in the
antecedent of any implication, where ¬η is taken to abbreviate η → ⊥. Such a
definition is said to be strictly positive, and we can denote the corresponding
axiomatic theory ID i ,sp

1 . An even more restrictive requirement is to insist that
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θ is of the form ∀y (y ≺ x→ P (y)), where ≺ is a primitive recursive relation.
These are called accessibility inductive definitions, and serve to pick out the
well-founded part of the relation. In the case where ≺ is the “child-of” relation
on a tree, the inductive definition picks out the well-founded part of that
tree. We will denote the corresponding theory ID i ,acc

1 . The point is this: in
ID i ,sp

1 , one can define the set of computable well-founded trees and justify
the principle of recursion on those trees. If one restricts attention to primitive
recursive trees, the same goes through in ID i ,acc

1 . Moreover, these theories
have natural computational interpretations, and are commonly accepted as
constructively valid.

What, then, makes the Furstenberg proof nonconstructive? The answer is
found where mathematicians are unlikely to expect it, namely, in the fairly
mundane use of limits, or projections, in the argument. Lemma 4.1 and its
relativized version 4.2 make use of the ergodic theorem, and we have already
seen, in Section 3, that the theorem does not admit a direct computable in-
terpretation. 12 The transfinite iteration then amplifies the problem, yielding
a transfinite sequence of nonconstructive definitions.

At this point, the methods of descriptive set theory and effective descriptive set
theory are helpful in characterizing the complexity of the resulting structures.
Beleznay and Foreman [10] have shown that the Furstenberg construction can
exhaust the countable ordinals, in the following sense. Define the order of a
measure preserving system to be the length of the shortest tower satisfying
the conclusion of the Furstenberg structure theorem. Beleznay and Foreman
have shown:

Theorem 5.1 The set of orders of measure preserving systems is exactly the
set of countable ordinals. 13

In fact, if Y is a factor of a measure preserving system X , there is a largest
relatively compact extension Z(Y ) of Y , and the shortest Furstenberg tower is
obtained by taking this extension at every stage. Since we are assuming X is
separable, any element of L2(X ) can be coded as a set of natural numbers. It
is not hard to show, as Beleznay and Foreman do, that Z(Y ), viewed as a set
of elements of L2(X ), can then be defined by an arithmetic formula in X and
Y . Towsner and I have shown that there is a coding of the factors themselves
as sets of natural numbers such that Z(Y ) has a ∆2 arithmetic definition in
X and Y , and, moreover, the map Y 7→ Z(Y ) is monotone. With this coding,

12 The argument’s use of projections onto factors also requires arithmetic compre-
hension; see [7].
13 Beleznay and Foreman provide, moreover, a Borel construction that assigns to
any countable linear ordering a separable measure preserving system whose order
is the well-founded part, showing that the collection of measure distal systems is a
complete Π1

1 set under Borel reducibility.
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the maximal distal factor is therefore an instance of a monotone arithmetic
inductive definition. Seminal results due to Spector [67] together with “stage
comparison” methods due to Moschovakis, Aczel, and Kunen show that such
inductive definitions terminate by the Church-Kleene ordinal ωCK,X1 , that is,
the least ordinal that is not computable relative to a code X for the original
system (see [60] for details). Thus we have:

Theorem 5.2 Let X code any measure preserving system. Then the height
of the Furstenberg tower is less than or equal to ωCK,X1 . For any α < ωCK,X1 ,
the αth factor can be computed from HX

2·α, i.e. the 2 · αth hyperarithmetic set
relative to X. 14

Note that if α is a limit, 2 ·α = α. Towsner and I suspect that the complexity
lower bounds given by Theorem 5.2 are sharp, at least for limit ordinals, in the
sense that for every set A there is a measure preserving system computable
from A such that for every computable ordinal α, Hα is computable from the
αth factor. Proving such a theorem will require a careful and subtle analysis,
but a cruder analysis, based on the methods of Beleznay and Foreman, shows
that in the sense of reverse mathematics (see [66]), the structure theorem is
axiomatically strong:

Theorem 5.3 Over ACA0 , the Furstenberg structure theorem is equivalent to
the Π1

1 comprehension axiom.

Thus the Furstenberg tower associated to an arbitrary measure preserving sys-
tem may be a wildly uncomputable object. And yet, references to this object
allow us to prove a finitary combinatorial statement with explicit computa-
tional content. This state of affairs calls for metamathematical explanation: we
wish to understand how this detour through the infinite works, and the extent
to which it can be reconciled with a computational view of mathematics.

Towsner and I offer a two-part explanation. The first part is an analysis of the
Furstenberg proof in axiomatic terms. We have shown that the definition of
Z(Y ) in terms of Y can be given by a positive Σ4 arithmetic formula, which
implies:

Theorem 5.4 Let X code any measure preserving system. Then the code Ŷ
for the maximal distal factor of X has a positive arithmetic inductive definition
relative to X.

This enables us to develop a version of the structure theorem in ID1 . With
careful attention to the other analytic and combinatorial objects involved, we
are then able to show:

14 See Ash and Knight [2] for an introduction to hyperarithmetic set theory.
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Theorem 5.5 The Furstenberg proof of Szemerédi’s theorem can be carried
out in ID1 .

The second part of our analysis shows that proofs of statements like Sze-
merédi’s theorem in ID1 can always be interpreted in constructive terms. The
next section is devoted to filling out this claim.

6 The constructive content of ID1

In the logical terminology, a Π2 sentence is one of the form ∀x̄ ∃ȳ R(x̄, ȳ),
where x̄ and ȳ are tuples of variables ranging over the natural numbers, and
R is a primitive recursive relation. 15 Any such sentence can be understood
as making the computational assertion that an algorithm which, on input x̄,
searches for a tuple ȳ satisfying R is bound to terminate. In particular, the
finitary statements of van der Waerden’s theorem and Szemerédi’s theorem in
Section 4 have that form.

One way of assessing the constructive content of a theory, T , is to characterize
its Π2 consequences. Here are two forms such a characterization can have:

(1) Every Π2 sentence provable in T is also provable in a constructive theory,
T ′.

(2) Every Π2 sentence provable in T is witnessed by an elements of a partic-
ular class of computable functions, C.

The two types of results are often closely related: the relevant constructive
theory, T ′, is often based on principles that reflect natural programming con-
structs, and, conversely, a natural characterization of the relevant functions
can often be read off straightforwardly from T . These patterns leave the choice
of T ′ and C open, and the extent to which a particular choice of T ′ or a partic-
ular characterization of C is illuminating is subject to debate. The goal of this
section is present an informative characterization the constructive content of
ID1 in these terms. To set the stage, however, it will be helpful to review anal-
ogous facts regarding the constructive content of PA. The first result states
that PA is a conservative extension of HA for Π2 sentences:

Theorem 6.1 Every Π2 sentence provable in PA is provable in HA.

15 It is well known that the expressive power of a Π2 formula does not change
if one replaces “primitive recursive” with “computable” or “∆0 definable,” etc.
From an axiomatic standpoint, “primitive recursive” is a reasonable stand-in for
“straightforwardly computable.”
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To characterize the class of functions that are suffice to witness the Π2 theo-
rems of PA, define the set of finite types inductively, as follows:

• N is a finite type; and
• assuming σ and τ are finite types, so are σ × τ and σ → τ .

In the “full” set-theoretic interpretation,N denotes the set of natural numbers,
σ × τ denotes the set of ordered pairs consisting of an element of σ and an
element of τ , and σ → τ denotes the set of functions from σ to τ . But we
can also view the finite types as nothing more than datatype specifications of
computational objects. The set of primitive recursive functionals of finite type
is a set of computable functionals obtained from the use of explicit definition (λ
abstraction), application, pairing, and projections, and a scheme of primitive
recursion:

F (0) = a

F (n+ 1) = G(n, F (n))

Here, the range of F may be any finite type.

Theorem 6.2 Every Π2 theorem of PA is witnessed by a primitive recursive
functional of type Nk → N .

There are two principal ways of obtaining the pair of results we have just
described. In both cases, the first step is to use the Gödel-Gentzen double-
negation translation to interpret PA in HA. The interpretation does not,
unfortunately, preserve Π2 sentences, since ∀x̄ ∃ȳ R(x̄, ȳ) is interpreted as
∀x̄ ¬¬∃ȳ R(x̄, ȳ). From there, one has two choices.

(1) Use the double-negation interpretation to interpret PA in HA. Use the
Friedman-Dragalin A-translation [22,26] to “repair” the interpretation of
Π2 sentences to yield the desired conservation result. 16 Then use Kreisel’s
modified version of Kleene’s realizability to extract a witness (see [54,71]).

(2) Use the Dialectica interpretation [37,5] to extract a primitive recursive
functional witnessing the conclusion. This last step can also be interpreted
in HA, yielding the conservation result.

Both methods establish the two theorems, and are equally good, from that
perspective. But now one can ask, what happens when one applies the results
to particular proofs? The first method has been used to extract interesting
algorithms from proofs of classical results, such as Dickson’s lemma [11]. But
in ongoing research in “proof mining,” the experience of Kohlenbach and his
students has shown that the Dialectica interpretation is generally a more pow-
erful and effective tool. 17

16 An alternative method of repairing Π2 sentences is described in [3,20].
17 This experience is born out by an MS thesis [41] written by a student of mine,
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Let us now lift these results to ID1 . We have already met the appropriate
intuitionistic counterpart, in Section 6:

Theorem 6.3 Every Π2 sentence provable in ID1 is provable in ID i ,acc
1 .

One can characterize functions witnessing the Π2 theorems of ID1 with a
natural extension of the primitive recursive functionals of finite type, described
in [5, Section 9.1]. We simply extend the finite types by adding a new base
type, Ω, which is intended to denote the set of well-founded (full) trees on
the natural numbers. We add a constant, e, which denote the tree with just
one node, and two new operations: Sup, of type (N → Ω) → Ω, which forms
a new tree from a sequence of subtrees, and Sup−1, of type Ω → (N → Ω),
which returns the immediate subtrees of a nontrivial tree. Finally, we simply
add the principle of recursive definition corresponding to (3):

F (e) = a

F (Sup(h)) = G(λn F (h(n))),

where the range of F can be any of the new types. Call these the primitive
recursive tree functionals.

Theorem 6.4 Every Π2 theorem of ID1 is witnessed by a primitive recursive
tree functional of type Nk → N .

As was the case with Peano arithmetic, there are two distinct ways of arriving
at Theorems 6.3 and 6.4. The first involves using a combination of the double-
negation translation and a complex forcing relation due to Buchholz [16,1] to
prove Theorem 6.3, after which modified realizability provides Theorem 6.4.
Until recently, this was the only way of obtaining these results, short of pass-
ing through an ordinal analysis of ID1 . In particular, there was no way of
obtaining these two theorems using a variant of the Dialectica interpretation,
a disappointing fact that is highlighted in [5, Section 9.8]. Towsner and I [8]
have now closed the gap by providing a Dialectica interpretation of ID1 that
is clean and remarkably simple. We expect that this translation will prove to
be a valuable tool in the analysis of proofs, like the ergodic theoretic proof of
Szemerédi’s theorem, that rely on inductively defined sets and structures.

Aaron Hertz, who applied the Dialectica interpretation to obtain an constructive
proof of the Hilbert basis theorem (subsuming Dickson’s lemma). Whereas Berger
et al. [11] had difficulty with more than two variables, Hertz easily obtained terms
witnessing the Dialectica interpretation of the full version.
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7 Conclusion

The results I have described provide a strategy for obtaining a purely com-
binatorial version of the Furstenberg proof of Szemerédi’s theorem: formalize
the proof in ID1 , and then apply our Dialectica translation. Of course, the
final goal is not to obtain a formal derivation, but, rather, an explicit com-
binatorial proof that can be read and appreciated in ordinary mathematical
terms. Henry Towsner and I are currently working on obtaining such a proof.
Our analysis is thus similar to Girard’s “unwinding” [35] of a topological dy-
namical proof of van der Waerden’s theorem by Furstenberg and Weiss [33],
only more involved.

In 1998, Gowers was awarded a Fields Medal, in part, for his use of Fourier
analytic methods (and combinatorial results due to Freiman) to obtain ele-
mentary bounds on Szemerédi’s theorem [39]; that is, bounds in terms of a
fixed iterate of the exponential function. Gowers and Tao have both surmised
that a careful analysis of Szemerédi’s original proof will show that it yields
primitive recursive bounds (assuming one makes use of elementary bounds on
the Hales-Jewett theorem obtained by Shelah). Tao has [69] presented another
combinatorial proof of Szemerédi’s theorem inspired by Furstenberg’s proof,
and remarked, in passing:

It may be possible in principle to extract some bound for NSZ(k, δ) directly
from [Furstenberg’s] original argument via proof theory, using such tools as
Herbrand’s theorem.

The bounds resulting from Tao’s proof [69] seem to be slightly worse than
Ackermannian.

A by-product of the program that Towsner and I are pursuing would, indeed,
be a bound on the rate of growth of NSZ expressed in terms of the functional
calculus described in the last section. But functions in that calculus can have
astronomical rates of growth, and we do not expect that the expression we
extract from Furstenberg’s proof will yield useful bounds, without additional
work. There are, nonetheless, good reasons for pursuing the program we have
set. Our goal is to obtain a perspicuous new proof of Szemerédi’s theorem,
one that will clarify the combinatorial essence of the Furstenberg approach
and yield new combinatorial ideas and methods. The work may, for example,
lead to interesting generalizations and variants of Szemerédi’s theorem. It
may also point the way to finding combinatorial theorems that require the full
logical strength of ID1 , akin to similar combinatorial independences obtained
by Harvey Friedman (see, for example, [27,28]).

From a metamathematical perspective, our analysis is also interesting in its
own right. The fact that abstract, infinitary methods can have direct bearing
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on finitary concerns is a striking phenomenon, and one that should be explored.
Understanding how this works in the case of ergodic theory and combinatorics
is an important component of the more general project of understanding of the
role that infinitary methods play in mathematics, and the ways that modern
methods can be understood in computational terms.
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