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Abstract. In 1837, Dirichlet proved that there are infinitely many primes in any arithmetic
progression in which the terms do not all share a common factor. Modern presentations of the proof
are explicitly of higher-order, in that they involve quantifying over and summing over Dirichlet char-
acters, which are certain types of functions. The notion of a character is only implicit in Dirichlet’s
original proof, and the subsequent history shows a very gradual transition to the modern mode of
presentation.

In this essay, we study the history of Dirichlet’s theorem with an eye towards understanding the
methodological pressures that influenced some of the ontological shifts that occurred in nineteenth
century mathematics. In particular, we use the history to understand some of the reasons that func-
tions are treated as ordinary objects in contemporary mathematics, as well as some of the reasons
one might want to resist such treatment.

§1. Introduction. The philosophy of mathematics has long been concerned with the
nature of mathematical objects, and the proper methods for acquiring mathematical knowl-
edge. But as of late, some philosophers of mathematics have begun to raise questions of
a broader epistemological character: What does it mean to properly understand a piece
of mathematics? In what sense can a proof be said to explain a mathematical fact? In
what senses can one proof be viewed as better than another one that establishes the same
theorem? What makes a concept fruitful, and what makes one definition more natural than
another? Why are certain historical developments viewed as important advances?

Questions like these are sometimes classified as pertaining to the methodology of mathe-
matics, in contrast to more traditional ontological concerns. But methodology and ontology
cannot be so cleanly separated. Certainly part of the justification for our ontological com-
mitments stems from the positive effects those commitments have on the practice, and,
conversely, “internal” methodological shifts are influenced by a broader conception as to
what is permissible.

One of the hallmarks of the nineteenth century transition to modern mathematics was the
adoption of implicit or explicit set-theoretic language and methods. For Gauss (1801), the
number-theoretic relation of congruence modulo m was a relation that was similar to equal-
ity, and addition and multiplication modulo m were operations on integers that respect that
relation. Today, however, we can form the quotient structure of integers modulo m, which
consists of classes of integers that are equivalent modulo m. Addition and multiplication
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CHARACTER AND OBJECT 481

then lift to operations on these classes. This amounts to reifying the property of being
equivalent to an integer a modulo m to an object, [a], the equivalence class of a. Similarly,
to restore the property of unique factorization to the algebraic integers in a cyclotomic
field, Kummer (1846) introduced properties P(α) that were meant to be interpreted as the
assertion that α is divisible by a certain “ideal divisor.” Dedekind (Dirichlet, 1863) later
reified the property P to the class of elements α that satisfy it, thereby giving rise to the
modern notion of an ideal in a ring of integers. Other nineteenth century examples include
the construction of quotient groups, or the lifting of Gauss’ operation of “composition” of
binary quadratic forms to equivalence classes of such forms.

What these instances have in common is that they involve treating certain higher-order
entities—classes of integers, classes of algebraic integers, classes of quadratic forms, or
classes of elements in a group or a ring—as objects in their own right. By this we mean that,
in particular, one can quantify over them, sum over them, and define operations on them.
Moreover, one can consider algebraic structures whose elements are such classes, much
as one can consider algebraic structures whose elements are integers or real or complex
numbers.

Much of what can be said about the treatment of classes as objects in the nineteenth
century applies to the treatment of functions as objects as well. In 1837, Dirichlet proved
that there are infinitely many prime numbers in any arithmetic progression in which the
terms do not all share a common factor. Our goal here is to study the role that certain types
of functions, called Dirichlet characters, play in contemporary presentations of Dirichlet’s
proof, and the historical process that has led to our contemporary understanding.

In Section 2, we present a framework for assessing the ontological commitments of a
body of mathematics, one which is informed by, and can inform, the history of mathemat-
ics. In Section 3, we provide an overview of Dirichlet’s proof, and in Section 4, we clarify
the senses in which contemporary presentations treat characters as ordinary mathematical
objects. Despite the name, the notion of a Dirichlet character is not present in Dirichlet’s
original presentation. In Sections 5 and 6, we describe the history of presentations of
Dirichlet’s theorem, which shows a fitful and gradual transition to modern terminology
and usage.

Our presentation draws on a detailed historical study that we have carried out in another
work, Avigad & Morris (2014), which we will refer to as “Concept” in the presentation
below. For a longer version of this paper, which expands on the ontological considerations
and relates them to similar concerns in Frege’s work, see Avigad & Morris (unpublished).

§2. From methodology to ontology. It is instructive to consider those historical situa-
tions in which the mathematical community faced possibilities for methodological or onto-
logical expansion and reacted accordingly. For example, it is helpful to consider the ancient
Greek idealizations of number and magnitude, and the theory of proportion; the gradual
acceptance of negative numbers, and then complex numbers, in the Western tradition; the
use of algebraic methods in geometry, infinitesimals in the calculus, points at infinity in
projective geometry; the development of the function concept from Euler to modern times;
the gradual set-theoretic treatment of algebraic objects like cosets, ideals, equivalence
classes in the nineteenth century; and so on. By studying the historical concerns regarding
these expansions as well as the pressures that led to their ultimate acceptance, we can hope
to better understand the factors that influence such developments.

At junctures like these, historical developments tend to follow a common pattern. First,
expansions are met with resistance, or at least, extreme caution. Sometimes, the expansions
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482 JEREMY AVIGAD AND REBECCA MORRIS

can be explained in terms of the more conservative practice; for example, complex num-
bers can be interpreted as ordered pairs, algebraic solutions to geometric problems can
be reinterpreted geometrically, and equations can be rewritten to avoid consideration of
negative quantities. In other cases, the expansions are not generally conservative, but, at
least, can be explained away in particular instances; for example, arguments involving
infinitesimals can sometimes be interpreted in terms of “ultimate ratios” in a geometric
diagram, and operations on abstract objects can sometimes be understood as operations
on explicit representations. This makes it possible to adopt the expansions, tentatively, as
convenient shorthand for more tedious but conservative arguments. Over time, the rules
and norms that govern the expansions are clarified, and the expansions themselves prove
to be convenient, or even indispensable, while they do not cause serious problems. Over
time, the mathematical community grows used to them, to the point where they become
part of the usual business of mathematics.

Whiggish narratives tend to dismiss such historical hand-wringing and shilly-shallying
as short-sighted conservativism that stands in the way of mathematical progress. We, how-
ever, prefer to view it as a rational response to the proposed expansions, whereby the
benefits are carefully weighed against the concerns. In hindsight, we tend to make too
little of the pitfalls associated with an ontological or methodological expansion. To start
with, there are concerns about the consistency and coherence of the new methods, that is,
worries as to whether the changes will lead to mistakes, false results, or utter nonsense,
perhaps when employed in situations that have not even been imagined. Kenneth Manders
has also emphasized the importance of maintaining control of our mathematical practices
(Manders, 2008). Mathematics requires us to be able to come to agreement as to whether a
proof is correct, or whether a given inference is valid or not. If new objects come with rules
of use that are not fully specified, or vague, or unclear, the practice is in danger of breaking
down. In a sense, this concern comes prior to concerns of consistency: if it is not clear
what properties abstract magnitudes, negative numbers, complex numbers, infinitesimals,
sets, and “arbitrary” functions have, it doesn’t even make sense to ask whether using them
correctly will lead to contradictions.1

And then there are further concerns as to whether the new methods are meaningful and
appropriate to mathematics. Even if a body of methods is consistent and clearly specified,
it may still fail to provide us with the results we are after. If we expect an existence proof
to yield certain kinds of information about the object that is asserted to exist, methods that
fail to provide that sort of information do not constitute mathematics—or, at least, not the
kind of mathematics we should be doing. If you expect a mathematical theory to make
scientific predictions that we can act on rationally, it is a serious concern as to whether the
new methods can deliver.

In short, the concerns are not easily set aside. What, then, are the factors that might sway
a decision in favor of an expansion? Mathematicians tend to wax poetic in their praise of
conceptual advances, highlighting the power of new methods, the elegance and naturality
of the resulting theory, and the insight and depth of the associated ideas. Part of our goal
here is to deromanticize these virtues and gain clarity as to what might be achieved. In
many instances, the virtues in question have a lot to do with efficiency and economy of

1 Mathematics, however, often gets by surprisingly well with concepts that are problematic,
incompletely specified, and not fully understood, something which has been emphasized by
Wilson (1994) and Urquhart (2008).
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thought:2 we tend to value methods that make it possible to solve problems that were
previously unsolvable, or simplify proofs and calculations that were previously tedious,
complex, and error-prone. Below we will consider specific ways in which ontological and
methodological expansions help us to manage complex tasks by suppressing irrelevant
detail, making key features of a problem salient, and keeping key information ready-to-
hand. We will also try to understand the way they make it possible to generalize and extend
results, and facilitate the transfer of ideas to other domains.

To summarize our high-level historical model: when mathematics is faced with method-
ological expansion, benefits such as simplicity, generality, and efficiency are invariably
weighed against concerns as to the consistency, cogency, and appropriateness of the new
methods. Sufficient benefit encourages us to entertain the changes cautiously, while trying
to minimize the dangers involved. Cogency is obtained by working out the norms and
conventions that govern the new methods. Consistency may not be guaranteed, but our
experiences over time can bolster our faith that the new methods do not cause problems. In
this regard, initial checks that the new methods are partially conservative over the old ones
help to preserve mathematical meaning, and reassure us that even if the new methods turn
out to be problematic, one will be able to restrict their scope in such a way that preserves
their utility.3 Our goal here is to consider the history of Dirichlet’s theorem in these terms.

§3. An overview of Dirichlet’s theorem. Two integers, m and k, are said to be rel-
atively prime, or coprime, if they have no common factor. In 1837, Dirichlet proved the
following:

THEOREM 3.1. If m and k are relatively prime, the arithmetic progression m, m + k, m +
2k, . . . contains infinitely many primes.

In other words, if m and k are relatively prime, there are infinitely many primes congru-
ent to m modulo k.

In 1798, Legendre had assumed this, without justification, in a purported proof of the law
of quadratic reciprocity. Gauss pointed out this gap, and presented two proofs of quadratic
reciprocity in his Disquisitiones Arithmeticae of 1801, which do not rely on that fact. He
ultimately published six proofs of quadratic reciprocity, and left two more in his Nachlass,
but he never proved the theorem on primes in an arithmetic progression. Dirichlet’s proof
is notable not only for settling a longstanding open problem, but also for its sophisticated
use of analytic methods to prove a number-theoretic statement.

3.1. Euler’s proof that there are infinitely many primes. As Dirichlet himself made
clear, the conceptual starting point for his proof lies in the work of Euler. In the Elements,
Euclid proved that there are infinitely many primes, but his proof does not provide much
information about how they are distributed. Euler, in his Introductio in Analysin Infinitorum
(1748), proved the following:

THEOREM 3.2. The series
∑

q
1
q diverges, where the sum is over all primes q.

2 The phrase is borrowed from Ernst Mach’s The Science of Mechanics (1960); we are grateful to
Michael Detlefsen for bringing this to our attention.

3 Wittgenstein’s discussion of contradiction is interesting in this regard; see (Wittgenstein, 1989,
Lectures XI–XII).
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This implies that there are infinitely many primes, but also says something more about their
density. For example, since we know that the series

∑
n

1
n2 is convergent, it tells us that, in

a sense, there are “more” primes than there are squares.
Euler’s proof of Theorem 3.2 centers around his famous zeta function,

ζ(s) =
∞∑

n=1

n−s = 1 + 1

2s
+ 1

3s
+ · · · ,

defined for a real variable s. (The zeta function was later extended by Riemann to the
entire complex plane via analytic continuation.) It is not hard to show that the series ζ(s)
converges whenever s > 1. In that case, the infinite sum can also be expressed as an infinite
product:

∞∑
n=1

n−s =
∏

q

(
1 − 1

qs

)−1

, (1)

where the product is over all primes q. This is known as the Euler product formula.
Roughly, this holds because we can write each term of the product as the sum of a ge-
ometric series, (

1 − 1

qs

)−1

= 1 + q−s + q−2s + · · ·
and then expand the product into a sum. The unique factorization theorem tells us that every
integer n > 1 can be written uniquely as a product qi1

1 ·qi2
2 · · · qik

k . This means that the term

n−s = q−i1s
1 ·q−i2s

2 · · · q−ik s
k will occur exactly once in the expansion, corresponding to the

choice of the i j th element of the sum for each q j , and the choice of 1 in every other sum.
Since we are dealing with infinite sums and products, the Euler product formula implicitly
makes a statement about limits, and some care is necessary to make the argument precise;
but this is not hard to do.

If we take the logarithm of each side of the product formula and appeal to properties of
the logarithm function, we obtain

log
∞∑

n=1

n−s =
∑

q

− log

(
1 − 1

qs

)
.

Using the Taylor series expansion

log(1 − x) = −x − x2/2 − x3/3 − · · ·
and changing the order of summations yields

log
∞∑

n=1

n−s =
∑

q

1

qs
+

∞∑
n=2

1

n

∑
q

1

qns
.

Remember that we want to show that
∑

q
1
q diverges. Notice that the first term on the

right-hand side of the above equation is
∑

q
1

qs . Thus we should consider what happens
as s tends to 1 from above. One can show that the second term on the right-hand side is
bounded by a constant that is independent of s, a fact that can be expressed using “big O”
notation as follows:

log
∞∑

n=1

1

ns
=

∑
q

1

qs
+ O(1). (2)
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As s approaches 1 from above, the left-hand side clearly tends to infinity. Thus, the right-
hand side,

∑
q

1
qs , must also tend to infinity, which implies that

∑
q

1
q diverges.

3.2. Dirichlet’s approach. To make the ideas more perspicuous, Dirichlet first consid-
ered Theorem 3.1 in the special case where the common difference is a prime number p.
Any prime q other than p leaves a remainder of 1, . . . , p − 1 when divided by p. Splitting
up the sum in (2) we then have

log
∞∑

n=1

1

ns
=

∑
q≡1 mod p

1

qs
+

∑
q≡2 mod p

1

qs
+ · · · +

∑
q≡p−1 mod p

1

qs
+ O(1). (3)

This shows that (2) is too crude to prove Theorem 3.1: to show that there are infinitely many
primes congruent to m modulo p, we need to show that the mth term on the right-hand side
tends to infinity, not just the sum of all such terms. More work is therefore needed to tease
apart the contribution of the primes modulo m, for each nonzero residue m modulo p.

Dirichlet sketched his proof in a three-page note announcing the result (Dirichlet, 1837a),
before spelling out the details in a later publication (Dirichlet, 1837b). The method relies on
a trick that seems to come out of nowhere. We describe the trick here, and in the Appendix
we offer an explanation as to how Dirichlet may have come upon this approach.

It is a fact from number theory that for any prime number p, there is a number g,
such that the powers g0, g1, g2, . . . , g p−2 modulo p are exactly the nonzero residues
1, 2, 3, . . . , p − 1 modulo p in some order. Such an element g is called a primitive root
modulo p. For example, when p = 11, we can choose g = 2. In that case, the powers of g
modulo 11 are

1, 2, 4, 8, 5, 10, 9, 7, 3, 6,

which are just the numbers from 1 to 10 listed in a different order. Notice that the next
element on the list would be 1 again, and the list cycles. In general, if g is a primitive root
modulo p, then g p−1 is equal to 1 modulo p.

The statement that g is a primitive root modulo p means that for each nonzero residue
m modulo p, there is an exponent γ between 0 and p − 2, with the property that gγ is
equal to m modulo p. We will denote this exponent γm and call it the index of m modulo p
with respect to g, as Dirichlet did. For example, consulting the list above, we see that the
index of 10 is 5, because 25 is equal to 10 modulo 11. The function n �→ γn behaves like a
logarithm, in the sense that if m and n are nonzero residues modulo p, then γmn is equal to
γm + γn modulo p − 1. This is because we have

gγm+γn = gγm gγn = mn mod p,

and so γm + γn modulo p − 1 is the exponent corresponding to mn.
We now turn our attention from integer roots modulo a prime to the notion of a complex

root of unity. In general, if n is any integer, the equation xn = 1 will have n distinct roots
in the complex numbers. Moreover, we can choose such a root, ω, that is primitive in the
sense that ω0, ω1, ω2, . . . , ωn−1 are all such roots; taking ω = e2π i/n will do.

Notice that we are now using the phrase “primitive root” in two distinct, but related,
senses: to refer to primitive roots modulo a prime, and to refer to primitive roots of unity.
For future reference, notice also that the expression xn − 1 factors as (x − 1)(xn−1 + · · ·+
x2 + x + 1). So, for any complex number x , if x is a solution to xn = 1 other than 1, we
have xn−1 + · · · + x2 + x + 1 = 0.

Returning to Dirichlet’s theorem, let p be any prime, fix a primitive root g modulo p,
and let ω be any (p − 1)st root of 1, primitive or not. Consider the function χ(n) which
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maps any nonzero residue n to the value ωγn . The function χ is multiplicative, which is to
say, χ(mn) = χ(m)χ(n) for any two nonzero residues m and n. This holds because

χ(mn) = ωγmn = ωγm+γn = ωγm ωγn = χ(m)χ(n).

In the next section, we will see that the functions χ are exactly the characters on the group
of nonzero residues modulo p. Here, following Dirichlet, we will avoid writing χ(n) and
stick with the notation ωγn .

A crucial ingredient in Dirichlet’s proof is the observation that the Euler product formula
can be generalized. What makes Euler’s argument work is the fact that (1/ms) · (1/ns) =
1/(mn)s , that is, the fact that the function which maps n to 1/ns is multiplicative. The
same argument goes through if we replace the quantity 1/ns by the function

ψ(n) =
{

ωγn /ns if n is not divisible by p
0 otherwise.

Thus, generalizing (1), we obtain∑
p�n

ωγn

ns
=

∏
p �=q

(
1 − ωγq

qs

)−1

.

The sum on the left-hand side ranges over numbers n that are not divisible by p, and the
product on the right ranges over prime numbers q other than p. Euler’s calculation then
shows that we have

log
∑

n

ωγn

ns
=

∑
q

ωγq

qs
+ O(1),

in place of (2). Here, the first sum ranges over the same values of n, and the second sum
ranges over the same values of q as before. Now decompose the sum on the right in terms
of the remainder that q leaves when divided by p, and notice that, by definition, γq only
depends on this remainder. In other words, we have

log
∑

n

ωγn

ns
=

( ∑
q≡1 mod p

1

qs

)
ωγ1 +

( ∑
q≡2 mod p

1

qs

)
ωγ2 + · · ·+

( ∑
q≡p−1 mod p

1

qs

)
ωγp−1 + O(1). (4)

The next step involves the trick we alluded to above. Remember, to show that there are
infinitely many primes congruent to m modulo p, we want to show that the coefficient
of the mth term in the preceding equation,

∑
q≡m mod p

1
qs , approaches infinity as s ap-

proaches 1. If we let ω be a primitive (p − 1)st root of 1, then all the roots are given by
ω0, ω1, ω2, . . . , ω p−2. The idea is to plug in all these roots into the preceding equation,
and use that to solve for the mth coefficient.

Replacing ω by ωi in the last equation yields

log
∑

n

ωiγn

ns
=

( ∑
q≡1 mod p

1

qs

)
ωiγ1 +

( ∑
q≡2 mod p

1

qs

)
ωiγ2 + · · ·+

( ∑
q≡p−1 mod p

1

qs

)
ωiγp−1 + O(1).
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This yields p − 1 many equations, as i ranges from 0 to p − 2. To solve for the mth
coefficient, for each i , multiply the i th equation by ω−iγm , and add them.

This is where the magic occurs. If we write Li for the expression
∑∞

n=1
ωiγn

ns that occurs
on the left, then the left-hand side of the sum can be written as

log L0 + log L1 · ω−γm + log L2 · ω−2γm + · · · + log L p−2 · ω−(p−2)γm .

On the right-hand side, the mth term is exactly

(p − 1) ·
( ∑

q≡m mod p

1

qs

)
,

because ωiγm · ω−iγm = 1 for each i , and we are simply summing the same value,∑
q≡m mod p 1/qs , p − 1 times. When j is different from m, however, the j th term will be

(ω0(γ j −γm ) + ω1(γ j −γm ) + · · · + ω(p−2)·(γ j −γm )) ·
( ∑

q≡ j mod p

1

qs

)
.

If we write η = ωγ j −γm , then the coefficient in the last expression is

1 + η + η2 + · · · + ηp−2.

But since ω is a (p − 1)st root of 1, so is η, and since γ j �= γm , η is not equal to 1. By
the observation above, this sum is equal to 0. In other words, all the other terms magically
disappear.

Thus we have shown that

log L0 + ω−γm log L1 + ω−2γm log L2 + · · · + ω−(p−2)γm log L p−2 =
(p − 1) ·

∑
q≡m mod p

1

qs
+ O(1). (5)

Solving for
∑

q≡m mod p 1/qs yields

∑
q≡m mod p

1

qs
= 1

p − 1

(
log L0 + ω−γm log L1 + ω−2γm log L2 + · · ·+

ω−(p−2)γm log L p−2

)
+ O(1). (6)

As a result, we have managed to “extricate” the expression
∑

q≡m mod p 1/qs from (3).
The goal is now to show that this expression approaches infinity as s approaches 1. We
now come to the analytic part of Dirichlet’s proof: he showed that as s approaches 1, L0
approaches infinity, but each of the other Li ’s approaches a nonzero limit as s approaches
1. This implies that the right-hand side approaches infinity as s approaches 1. Thus the left-
hand side approaches infinity as well, which is only possible if there are infinitely many
primes congruent to m modulo p.

The presentation here follows Dirichlet’s short 1837 presentation fairly closely, though
Dirichlet is more terse. As Dirichlet pointed out in that note, the argument can be pushed
through for an arbitrary modulus k. But, as we will see in Section 5, the details become
unwieldy, and subsequent authors found more convenient ways to express the ideas. In
the next section, we explain how the argument above can be described in terms of group
characters, and then generalized to the case of an arbitrary modulus.
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3.3. Group characters. Let G be a finite abelian group. In contemporary terms, a
character on G is a function χ from G to the set of nonzero complex numbers with the
property that, for every g1, g2 ∈ G, χ(g1g2) = χ(g1)χ(g2). If g is an element of any finite
abelian group, then there is an integer n > 0 such that gn is equal to the identity element
of G. This implies that χ(g)n = χ(gn) = χ(1) = 1. This means that for every g, χ(g) is
a complex root of 1. The notion of “character” introduced in the last section corresponds
to the special case where G is the group of nonzero residues modulo p, with the operation
of multiplication.

The point is that the key properties of the expressions ωγn that came into play in the
last section hold more generally of the set of characters on any finite abelian group. In
particular, for any such group G, one can show that there are exactly |G| many distinct
characters on G, where |G| denotes the number of elements of G. In the case where G is
the group of nonzero residues modulo p, |G| = p − 1, so the characters correspond to
the p − 1 choices of ω in the previous section. More generally, for any k ≥ 1, the set of
residues m modulo k that have no common factor with k form a group under multiplication.
The cardinality of this group is commonly denoted ϕ(k), and ϕ is known as the Euler
phi function. Thus, for every k, there are ϕ(k) many characters on the group of residues
modulo k.

In fact, the set of characters itself has the structure of a group Ĝ, where the identity is the
character χ1 that always returns 1, and the product of two characters is given pointwise,
(χ · χ ′)(g) = χ(g)χ ′(g) for every g. The following theorem expresses two important
properties, known as the “orthogonality relations” for group characters.

THEOREM 3.3. Let G be a finite abelian group. Then for any character χ in Ĝ, we have

∑
g∈G

χ(g) =
{

|G| if χ = χ0

0 if χ �= χ0,

and for any element g of G, we have

∑
χ∈Ĝ

χ(g) =
{

|G| if g = 1G

0 if g �= 1G.

The remarkable fact is that it is no harder to prove these facts in the general case than
in the specific case where G is a group of residues modulo p. For example, the second
equation clearly holds when g is the identity of G, since, in this case, each term of the sum
is equal to 1. Otherwise, choose a character ψ such that ψ(g) �= 1 and note

ψ(g)
∑
χ∈Ĝ

χ(g) =
∑
χ∈Ĝ

ψ(g)χ(g) =
∑
χ∈Ĝ

χ(g),

since multiplying each character χ in Ĝ by ψ simply permutes the elements of Ĝ. Subtract-
ing the right side of the equation from the left, we see that (ψ(g) − 1) · ∑

χ∈Ĝ χ(g) = 0,
and since ψ(g) is not equal to 1, we have that

∑
χ∈Ĝ χ(g) = 0. The first equation can be

established in a similar way.
The second orthogonality relation gives rise to the “cancellation trick” used in the last

section, where we multiplied each identity by ω−iγm and added them, to isolate a particular
coefficient. The general phenomenon can be expressed as follows:
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COROLLARY 3.4. For any g, h ∈ G we have the following:

∑
χ∈Ĝ

χ(g)χ(h) =
{

|G| if g = h

0 if g �= h.

Here z̄ denotes the complex conjugate of z, which is in fact equal to 1/z when z is a root
of unity. The corollary follows from the fact that we have

∑
χ∈Ĝ

χ(g)χ(h) =
∑
χ∈Ĝ

χ(g)χ(h)−1 =
∑
χ∈Ĝ

χ(gh−1) =
{

|G| if g = h

0 if g �= h.

Notice that the abstract algebraic formulation simplifies matters by eliminating clutter.
For example, the presentation in the last section depended on choices of a primitive element
g modulo p, and a primitive (p − 1)st root of unity ω. Although these played a role in the
computations, any choice of g and ω works just as well. The abstract version “factors these
out” of the presentation. Recall also that the calculation in the last section required facts
such as γmn = γm +γn . Once again, the abstract version factors this out of the computation;
the requisite property of γ subsumed by the more general fact that Ĝ is a group, and only
the latter fact enters into the proof.

3.4. A modern formulation of Dirichlet’s proof. With the notion of a group character
in mind, we can now describe Dirichlet’s original proof of Theorem 3.1 in modern terms.
Let k be an integer greater than or equal to 1. It is a fundamental theorem of number theory
that an integer n is relatively prime to k if and only if n has a multiplicative inverse modulo
k; in other words, if and only if there is some n′ such that nn′ ≡ 1 mod k. This implies
that the residues of integers modulo k that are relatively prime to k form a group, denoted
(Z/kZ)∗, with multiplication modulo k. As noted above, the cardinality of (Z/kZ)∗, that
is, the number of residues relatively prime to k, is denoted ϕ(k).

A character χ on the group of residues modulo k can be viewed as a function defined on
all integers by

X (n) =
{

χ(n mod k) if n is relatively prime to k

0 otherwise.

Such a function is called a Dirichlet character modulo k. Dirichlet characters are com-
pletely multiplicative, which is to say, X (1) = 1 and X (mn) = X (m)X (n) for every m
and n in Z. Mathematicians typically use the symbol χ to range over Dirichlet characters,
blurring the distinction between such functions and their group-character counterparts.
This is harmless, since there is a one-to-one correspondence between the two, and so we
will adopt this practice as well.

Recall that in the case where k is a prime number p, Dirichlet considered certain expres-
sions Li (s), analogues of Euler’s zeta function, where i is an integer between 0 and p − 2.
Each such i corresponds to a choice of a character χ modulo p. In the modern formulation,
then, we define

L(s, χ) =
∞∑

n=1

χ(n)

ns
,

where χ is such a character. The function L(s, χ) is called the Dirichlet L-function, or
L-series.
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The calculation in Section 3.2 can be generalized to show:

log L(s, χ) =
∑
q�k

χ(q)

qs
+ O(1).

Now comes the crucial use of Corollary 3.4 to pick out the primes in the relevant residue
class. We multiply each side of the above equation by χ(m) and then take the sum of
these over all the Dirichlet characters modulo k. (Recall that we can identify each Dirichlet
character with the corresponding group character, that is, the corresponding element of
̂(Z/kZ)∗.) Thus we have:∑

χ∈ ̂(Z/kZ)∗
χ(m) log L(s, χ) =

∑
χ∈ ̂(Z/kZ)∗

χ(m)
∑
q�k

χ(q)

qs
+ O(1).

To simplify this expression, we exchange the summations on the right-hand side, and
appeal to Corollary 3.4. Since the cardinality of the group (Z/kZ)∗ is ϕ(k), we obtain∑

χ∈ ̂(Z/kZ)∗
χ(m) log L(s, χ) = ϕ(k)

∑
q≡m (mod k)

1

qs
+ O(1). (7)

This is analogous to the equation (2) in Euler’s proof, and equation (5) in Section 3.2. Our
goal is once again to show that the left-hand side tends to infinity as s approaches 1 from
above. This implies that the right-hand side tends to infinity, which, in turn, implies that
there are infinitely many primes q that are congruent to m modulo k.

To show that
∑

χ∈ ̂(Z/kZ)∗ χ(m) log L(s, χ) tends to infinity as s approaches 1, we divide

the characters into three classes, as follows:

1. The first class contains only the principal character χ0, which takes the value of 1
for all arguments that are relatively prime to k, and 0 otherwise.

2. The second class consists of all those characters which take only real values (i.e. 0
or ±1), other than the principal character.

3. The third class consists of those characters which take at least one complex value.

It is not difficult to show that L(s, χ0) has a simple pole at s = 1, which implies that
the term χ0(m) log L(s, χ0) approaches infinity as s approaches 1. The real work involves
showing that for all the other characters χ , L(s, χ) has a finite nonzero limit. This implies
that the other terms in the sum approach a finite limit, and so the entire sum approaches
infinity.

For characters in the third class, that is, the characters that take on at least one complex
value, the result is not difficult. For characters in the second class, the result is much harder,
and Dirichlet used deep techniques from the theory of quadratic forms to obtain it. In the
years that followed, other mathematicians found alternative, and simpler ways of handling
this case. But even in modern presentations, this case remains the most substantial and
technically involved part of the proof.

§4. Functions as objects. In Section 5 below, we will discuss, in greater detail, the
implicit treatment of characters in Dirichlet’s original proof, and in Section 6, we will
summarize the gradual historical transition to the modern formulation. The general theme
will be that, over time, characters came to be treated as objects in their own right. Before
surveying the history, however, it will be helpful for us to provide some general background
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information on the nineteenth century concept of “function,” and begin to spell out what it
means to treat functions like characters as “objects.”

In “Concept,” we discussed a number of nineteenth-century methodlogical changes that
are clustered around the function concept. These include what we termed the “unifica-
tion” or “generalization” of the function concept, whereby particular instances (including
real- and complex-valued functions, number-theoretic functions, sequences, permutations,
transformations, automorphisms, and so on) gradually came to be subsumed under a gen-
eral notion; the “liberalization” of the function concept, whereby mathematicians adopted
novel means of defining particular functions, such as Dirichlet’s 1827 example of a real-
valued function that takes one value on the rationals, and another value on the irrationals;
the “extensionalization” of the function concept, whereby functions gradually came to be
viewed less as syntactic or algebraic expressions, and more as the abstract entities denoted
by such expressions; and the “reification” of the function concept, whereby functions were
gradually treated as bona fide mathematical objects.

The notion of “reification” is vague. The claim that over the course of the century
characters gradually become treated as new sorts of objects supports our contention that the
transformation has ontological overtones, but it raises serious questions as to what, exactly,
it means to treat certain entities as objects.

To start with, consider the fact that in our presentation of Dirichlet’s theorem we iden-
tified the concept of a “character,” reasoned about the entities falling under this concept,
and ascribed various properties to them. This seems to be a bare-minimum requirement
to support the claim that a mathematical text sanctions certain entities as objects, namely,
that it recognizes them as being entities of a certain sort, capable of bearing predicates
and being the target of certain operations. It does not matter whether we take this sort as
fundamental (for example, as we take the notion of “integer” in most contexts) or as derived
from a broader sort (for example, when we view characters as functions of a certain kind).
What is important is that the entities belong to a grammatically recognized category, and
this category helps to determine the predicates and operations that can be meaningfully
ascribed to it. For example, one can talk about one integer being larger than another, but
not one character as being larger than another. In sum, our first criterion of objecthood is
whether the entities in question have a recognizable role in the grammar of the language.

The fact that we took characters to be “represented” by certain symbolic expression
provides another clue, insofar as we generally speak of a representation of something or
other. For example, we think of expressions like “6” and “2×3” as representing an integer.
As Michael Detlefsen has pointed out to us, one common view is that an “object” is what
remains invariant under all its representations; in other words, what is left over when one
has “squeezed out” all the features that are contingent on particular representations. When
it comes to the notion of a function, what is the underlying invariant? There may be lots of
ways of describing a particular function, but what makes them representations of the same
function is surely that they take the same values on any given input. Thus treating function
expressions extensionally is a sign that one is reasoning about functions as objects, rather
than reasoning about the expressions themselves.4

The third hallmark of object-hood that is present in our list is evidenced by the fact
that we can sum over characters, just as we can sum over natural numbers. Notice that
in an expression

∑
χ . . . χ . . . , the variable χ is a bound variable that ranges over the

entities in question. Similar considerations hold for the universal and existential quantifiers.

4 Recall Quine’s dictum that “there is no entity without identity,” for example in Quine (1969).
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Viewing the natural numbers as quintessential mathematical objects, a sign that an entity
has attained the status of object-hood is that it is possible to quantify over them in theorems
and definitions, just as one quantifies over the natural numbers.5 The consideration admits
of degrees: whereas the bare-minimum requirement discussed above may allow us to state
theorems about, and define operations on, “arbitrary” entities of the sort, a more full-blown
notion of object-hood will give us more latitude in the kinds of quantification and binding
that are allowed.

The fourth criterion for object-hood is evidenced by the fact that characters are allowed
to appear as arguments to the L-functions, for example, in the expression L(s, χ). To avoid
making this consideration depend on the modern notion of a function, let us note that what
is essential here is that an expression denoting a recognized mathematical object (in this
case, a complex number) is allowed to depend on a character, much the way that a real
number (s)i in a sequence depends on the value of the index i , or a value ϕ(n) of the
phi function depends on n. What makes this more potent than the mere ability to define
operations on characters is that the dependent expressions are treated as objects in their
own right. L(s, χ) is not just an operation on s and χ : fixing χ , the function s �→ L(s, χ)
is an object that one can integrate and differentiate, and fixing s, we can sum over the
values obtained by varying χ .

It is also notable that the characters can be components in the construction of other
mathematical objects and structures. For example, one can form sets and sequences of
characters, in much the same way that one forms sets and sequences of numbers, and one
can define a group whose elements are characters, in much that same way that one can
form a group whose elements are residues modulo some number m.

To summarize, here are some of the various senses in which one might say that characters
are treated “as objects” in our presentation of Dirichlet’s proof:

1. Characters fall under a recognized grammatic category, which allows us to state
things about them and define operations and predicates on them.

2. There is a clear understanding of what it means for two expressions to represent the
same character, and conventions ensure that the expressions occurring in a proof
respect this “sameness.”

3. One can quantify and sum over characters; in other words, they can fall under the
range of a bound variable.

4. One can define functions which take characters as arguments.

5. One can construct new mathematical entities, like sets and sequences, whose
elements are characters. In particular, characters can be elements of an algebraic
structure like a group.

We recognize that determining the “ontological commitments” of a practice may not be as
clear-cut as Quine’s writings suggest. Our goal here is not to explicate what it means to
say that a certain manner of discourse is committed to treating some entity as an object. In
particular, we do not claim to have given a precise sense to the question as to whether a
particular mathematical proof is committed to functions as objects. We do claim, however,
to have identified various important senses in which contemporary proofs of Dirichlet’s
theorem treat functions as ordinary mathematical objects, whereas Dirichlet’s original
proof did not.

5 This echoes another Quine dictum, “to be is to be the value of a bound variable” (Quine, 1948,
p. 15).
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It may be helpful to compare the way we treat functions today to the way we treat
natural numbers today. For example, the expressions “2 + 2” and “4” both denote integers,
but we think of the number as the object denoted, rather than the expression. Thus we
can send numbers as arguments to functions, and when we write f (2 + 2) and f (4), it is
understood that the function f cannot distinguish the mode of presentation. We can form
sets of numbers, like the set of even number or the set of prime numbers, and we can
consider algebraic structures on these sets; for example, the ring of integers, or the field of
integers modulo 7. We can quantify over numbers in definitions, such as when we say n
divides m if there is some k such that nk = m, and in theorems, such as when we assert
that every integer greater than one has a prime divisor. If S is a finite set of integers and
f is a function from the integers to the integers or the reals, we can readily form the sum∑

x∈S f (x).
In contemporary mathematics, nothing goes awry if you replace integers with functions

in the examples in the last paragraph. In other words, one can define functionals F( f ) that
depend only on the extension of f , and not its manner of presentation. We can consider
sets of functions, rings of functions, and spaces of functions. We quantify over functions
in definitions and theorems, and, if S is a finite set of functions, we think nothing of
considering a sum

∑
f ∈S F( f ). In the proof of Dirichlet’s theorem, these “higher order”

operations are manifest when we consider the group of characters χ , define the Dirichlet
L series L(s, χ), and form the sum

∑
χ χ(m) log L(s, χ).

In “Concept,” we argued in detail that these very features of the modern treatment
of functions were alien to early nineteenth century mathematics, and that the history of
presentations of Dirichlet’s theorem shows a very gradual evolution, in fits and starts,
towards the contemporary manner of thought. We will highlight some of the key features of
the historical development in Sections 5 and 6, and, in Section 7, explore what the history
tells us about the nature of mathematics.

§5. Dirichlet’s treatment of characters. Contemporary mathematicians are often sur-
prised to hear that there is no explicit notion of “character” in Dirichlet’s 1837 proof.
After all, the expressions X (n) defined in Section 3.4 are known as “Dirichlet characters”
precisely because of their implicit use in that proof. But Dirichlet did not introduce notation
for the characters or refer to them as such. When we speak of the “characters” in his proof,
we are projecting a modern interpretation onto the symbolic expressions that appear there.

Remember how it works in the case where the common difference is a prime, p. Let g
be a primitive element modulo p, and for every n coprime to p, let γn denote the index
of n with respect to g, so that gγn ≡ n mod p. Then each character χ corresponds to a
(p − 1)st root of unity ω, with defining equation χ(n) = ωγn . In that case, Dirichlet wrote
ωγn where we would write χ(n).

We obtain all the characters by picking a primitive (p − 1)st root of unity, �, so that
all the (p − 1)st roots of unity are given by the sequence �0, . . . , �p−2. This provides a
convenient numbering scheme for the characters and L-series: Dirichlet used Lm to denote
the L-series based on the character χ that corresponds to �m , where we would write instead
L(s, χ). And where we would form a summation over the set of all characters, Dirichlet
instead took a summation over the values 0, . . . , p − 2. For example, after demonstrating
the Euler product formula, ∏ 1

1 − ωγ 1
qs

=
∑

ωγ 1

ns
= L ,
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Dirichlet wrote:

The equation just found represents p −1 different equations that result if
we put for ω its p−1 values. It is known that these p−1 different values
can be written using powers of the same � when it is chosen correctly,
to wit:

�0, �1, �2, . . . , �p−2.

According to this notation, we will write the different values L of the
series or product as:

L0, L1, L2, . . . , L p−2.

In the case where the modulus k is not prime, the procedure is more complicated. It is a
fundamental theorem of group theory that every finite abelian group can be represented as a
product of cyclic groups, but that theorem was first proved by Kronecker (1870). Dirichlet
instead used the particular instance of this fact for the group (Z/kZ)∗ of residues modulo
k that are relatively prime with k (these are sometimes called the “units” modulo k). The
structure of that group was known to Gauss. First, write k as a product of primes,

k = 2λ pπ1
1 pπ2

2 · · · p
π j
j

where each pi is an odd prime and πi is greater than or equal to 1. Then the group of
units modulo k is isomorphic to the product of the groups of units modulo each term in
the factor. If p is an odd prime and π is an integer greater than or equal to 1, then one can
more generally find a primitive element c modulo pπ . This means that the residue class
of c generates the cyclic group (Z/pπZ)∗, or, equivalently, for every n relatively prime
to p there is a γn such that cγn ≡ n mod pπ . Thus we can choose primitive elements
c1, . . . , c j corresponding to pπ1

1 , pπ2
2 , . . . , p

π j
j . If λ ≥ 3, however, there is no primitive

element modulo 2λ. Rather, (Z/2λ)∗ is a product of two cyclic groups, and for every n
relatively prime to 2λ there are an αn and βn such that (−1)αn 5βn ≡ n mod 2λ. Thus for
any n relatively prime to k, we can write

n ≡ (−1)αn 5βn c
γ1,m
1 c

γ2,m
2 . . . c

γ j,m
j mod k,

where each γi,n is the index n relative to pπi
i . As above, if we choose appropriate roots of

unity θ, ϕ, ω1, ω2, . . . , ω j , we obtain a character

χ(n) = θαn ϕβn ω
γ1,n
1 ω

γ2,n
2 · · · ωγ j,n

j .

And, once again, every character is obtained in this way. We should note that Dirichlet used
the notation p, p′, . . . rather than p1, . . . , p j to denote the sequence of odd primes. More-
over, he used the notation α, β, γ, γ ′, . . . to denote the indices, suppressing the
dependence on n. Thus, Dirichlet wrote θαϕβωγ ω′γ ′

. . . for the expression we have
denoted χ(n) above, leaving it up to us to keep in mind that α, β, . . . depend on n.

To summarize, in the simple case of a prime modulus p, Dirichlet fixed a primitive
element modulo c, and represented each character χ in terms of a (p − 1)st root of unity,
ω. In that case, the value χ(n) is given by ωγn . In the more general case of a composite
modulus k, Dirichlet fixed primitive elements modulo the terms of the prime factorization
of k, and represented each character χ in terms of a sequence θ, ϕ, π, π ′ of roots of unity.
In that case, the value χ(n) was written θαϕβωγ ω′γ ′

. . . , suppressing the information that
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the exponents α, β, γ, γ ′, . . . depend on n. For example, he described the Euler product
formula as follows:∏ 1

1 − θαϕβωγ ω
′γ ′ · · · 1

qs

=
∑

θαϕβωγ ω′γ ′ · · · 1

ns
= L , (8)

where the multiplication sign ranges over all primes, with the exclusion
of 2, p, p′, . . . , and the summation ranges over all the positive integers
that are not divisible by any of the primes 2, p, p′, . . . . The system of
indices α, β, γ, γ ′, . . . on the left side corresponds to the number q, and
on the right side to the number n. The general equation (8), in which the
different roots θ, ϕ, ω, ω′, . . . can be combined with one another arbi-
trarily, clearly contains K -many particular equations. (Dirichlet, 1837b,
p. 17; equation number changed)

Note, again, Dirichlet’s characterization of the general equation as “containing” the partic-
ular instances. Here, K is what we have called ϕ(k), the cardinality of the group (Z/kZ)∗.

Dirichlet went on to observe that we can choose primitive roots of unity �,�,�,�′, . . .
so that all choices of θ, ϕ, ω, ω′, . . . can be expressed as powers of these,

θ = �a, ϕ = �b, ω = �c, ω′ = �c
′
, . . . ,

just as in the simpler case. He wrote that we can thus refer to the L-series in a “convenient”
(bequem) way, as La,b,c,c′,..., where a, b, c, c′, . . . are the exponents of the chosen primitive
roots. Notice that the representations just described depend on fixed, but arbitrary, choices
of the primitive roots of unity, as well as fixed but arbitrary generators of the cyclic
groups. Modulo those choices, we have parameters a, b, c, c′, . . . that vary to give us all
the characters; and for each choice of a, b, c, c′, . . . we have an explicit expression that
tells us the value of the character at n.

For Dirichlet, summing over characters therefore amounted to summing over all possible
choices of this representing data. In the special case of where the common difference is a
prime, p, Dirichlet ran through calculations similar to those described in Section 3.4 to
obtain the following identity:∑ 1

q1+ρ
+ 1

2

∑ 1

q2+2ρ
+ 1

3

∑ 1

q3+3ρ
+ · · ·

= 1

p − 1
(log L0 + �−γm log L1 + �−2γm log L2 + · · · + �−(p−1)γm log L p−2).

This is exactly equation (6) above, with � in place of our ω, and 1 + ρ in place of s, and
the “O(1)” expression left explicit. In the more general case, he arrived at the analogous
result:∑ 1

q1+ρ
+ 1

2

∑ 1

q2+2ρ
+ 1

3

∑ 1

q3+3ρ
+ · · ·

= 1

K

∑
�−αma �−βmb�−γmc�−γ ′

mc
′ · · · log La,b,c,c′,....

Here the summation on the right-hand side of the equation is over the possible values of
a, b, c, c′, . . . . This corresponds to equation (7) in Section 3.4.

Finally, recall from the sketch in Section 3.4 that Dirichlet divided the L functions into
three classes, depending on whether the corresponding character was trivial (identically
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496 JEREMY AVIGAD AND REBECCA MORRIS

equal to 1), real-valued, or complex-valued. But in Dirichlet’s presentation, the categoriza-
tion was made in terms of the roots used to describe the character. Thus the three classes
of L functions were characterized as follows:

1. the one in which all the roots contained in the expression are 1

2. those, among the ones that remain, in which all the roots are real (±1)

3. those in which at least one of the roots is not real

Dirichlet showed that the first approaches infinity as ρ approaches 0, while the others
approach finite limits, which establishes the desired conclusion.

Let us summarize the features of Dirichlet’s presentation we wish to highlight. First,
he did not name or identify the characters, and simply used the corresponding algebraic
expressions. The corresponding L functions were then characterized by the data that
appeared in the expression, rather than in terms of a functional dependence on the character.
In other words, Dirichlet wrote Lm or La,b,c,c′,... where we would write L(s, χ). As a
result, where we would sum an expression over all values of the characters

∑
χ . . ., he

summed over the representing data
∑

m . . . or
∑

a,b,c,c′,... . . .. Finally, in preparation for
the analytic part of the proof, he sorted the L functions in terms of this data, rather than in
terms of the values of the corresponding characters.

In the next section, we will see that, over time, all of these features were gradually
eliminated from later expositions.

§6. The transition to the modern treatment of characters. In “Concept,” we studied
the treatment of characters in subsequent works by Dirichlet (1840, 1841), Dedekind’s
supplements to the first two editions of (Dirichlet, 1863), work by Kronecker from the
1870’s that was eventually published in (Kronecker, 1901), and works by Weber (1882),
Hadamard (1896), de la Vallée Poussin (1897), and Landau (1909, 1927). We will not
review all the details here, but, rather, summarize the salient features of the history.

6.1. Reification. We have seen that in Dirichlet’s original proof, characters are present
only in the form of the algebraic expressions ωγn in the simple case, and in the form
θαn ϕβn ωγn ω′γ ′

n . . . in the case of an arbitrary modulus. In 1841, however, Dirichlet consid-
ered expressions

�n = ϕαn ϕ
′α′

n × · · · × ψβn χγn ψ
′β ′

n χ
′γ ′

n × · · · × θδn ηεn ,

analogous to the characters in his 1837 proof. In this case, however, he introduced the
explicit notation �n , and isolated four key properties of these values:

1. �nn′ = �n�n′ for every n and n′.
2. �n′ = �n whenever n′ ≡ n (mod k).

3.
∑

�l = 0 or
∑

�l = 1
4ψ(k) depending on whether there is at least one root among

the roots in �l that is different to 1, or whether they are all equal.

4. S�n = 1
4ψ(k) or S�n = 0 depending on whether n ≡ 1 (mod k) or n �≡ 1

(mod k), where the sign “S” indicates a sum over all combinations of the roots that
can occur in �.

In modern terms, the first clause asserts that the function n �→ �n is a multiplicative
function from the integers to the complex numbers, and the second asserts that the value
�n only depends on the value of n modulo p. If you add the constraints that �n is nonzero
when n is relatively prime to k and zero otherwise, this is exactly the algebraic definition
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of character we presented in Section 3.3. The third and fourth properties correspond to the
two orthogonality relations we presented in Section 3.3. The article provided only a short
sketch of a generalization of his 1837 proof, but it is notable that there Dirichlet went out
of his way to flag these expressions as playing a key role, and to abstract away the general
properties that are common to both proofs.

In 1863, Dedekind gave an exposition of Dirichlet’s proofs in one of the appendices,
or “supplements,” to the first edition of his presentation of Dirichlet’s lectures on number
theory Dirichlet (1863). When presenting the generalization of the Euler product formula,
he went out of his way to point out that the function

ψ(n) = θαηβωγ ω′γ ′ · · ·
ns

is multiplicative, and that this is what makes the generalization hold. In a later 1871 edition
of the work, he added a footnote, in which he singled out the numerator of this expression,
and introduced the notation χ(n):

The numerator [of ψ(n)] χ(n) = θαηβωγ ω′γ ′ · · · has the characteristic
property χ(n)χ(n′) = χ(nn′) . . . (Dirichlet, 1863, §133, footnote).

It is notable that he went out of his way to add this footnote, calling attention to the
importance of these expressions.6

In 1879, in the third edition of the lectures, Dedekind introduced the notion of a character
in an entirely different context: his theory of ideals in an algebraic number field. Rather
than considering characters on the multiplicative group of residues modulo an integer, he
considered characters defined on another finite abelian group, namely, on the class group
in an algebraic number field:

. . . the function χ(a) also possesses the property that it takes the same
value on all ideals a belonging to the same class A; this value is therefore
appropriately denoted by χ(A) and is clearly always an hth root of unity.
Such functions χ , which in an extended sense can be termed characters,
always exist; and indeed it follows easily from the theorems mentioned
at the conclusion of §149 that the class number h is also the number of
all distinct characters χ1, χ2, . . . , χh and that every class A is completely
characterized, i.e. is distinguished from all other classes, by the h values
χ1(A), χ2(A), . . . , χh(A).7

As we emphasize in “Concept,” this was not only the first use of the term “character” in
its modern sense, but also, as far as we know, the earliest instance of the use of the term
“function” for something defined on a domain other than the integers, real numbers, or
complex numbers. (Another broad use of the term occurs in Frege’s Begriffsschrift, which
was published in the same year.) Within three years, in an 1882 publication, Weber gave
the general definition of a character of an abelian group and provided a thorough analysis
of their properties.

6 In “Concept,” we mistakenly asserted that Dedekind did not alter the text of this supplement
in later editions. He made very few such changes, however, making this particular addition
especially interesting.

7 The quotation appears in §178 in the 1879 edition of the Vorlesungen Dirichlet (1863), and
in §184 of the 1894 edition, which is reproduced in Dedekind’s Werke Dedekind (1968). The
translation above is by (Hawkins, 1971, p. 149).
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498 JEREMY AVIGAD AND REBECCA MORRIS

Thus, over time, the symbolic expressions appearing in Dirichlet’s proof were named
and flagged as entities worthy of attention. Their properties were stated abstractly, and
developed in a manner that were independent of the original formulation. This, in turn,
made it possible to apply the notion in other settings. As we have argued in Section 4, this
provides at least a minimal sense in which characters can be viewed as objects, namely, as
entities which can bear properties and be a target of assertions.

6.2. Functional dependence and summation. In Section 4, we also flagged it as no-
table that, in the modern view, functions can depend on characters, and we can form the
sum of an expression with a variable ranging over the characters. Let us consider the
way these features of the treatment of characters play out in the various presentations of
Dirichlet’s theorem.

We have noted that one benefit of identifying the characters as such is that it facilitates
extracting the central properties that play a role in the proof, such as the identity∑

χ∈Ĝ

χ(g) =
{

|G| if g = 1G

0 if g �= 1G

in Theorem 3.3, and the consequence expressed by Corollary 3.4 that for every g and h in
an abelian group G, ∑

χ ∈ Ĝ

χ(g)χ(h) =
{

|G| if g = h

0 if g �= h.

In the case where G is the group of nonzero residues modulo p, Dirichlet expressed the
latter by saying that we have

1 + �hγ−γm + �2(hγ−γm ) + · · · + �(p−2)(hγ−γm ) = 0,

except when hγ − γm ≡ 0 mod p − 1, in which case the sum is equal to p − 1. In the
case of an arbitrary modulus, Dirichlet did not even state the conclusion as a separate
result. Rather, it is implicitly contained in an argument in which he considered the sum
1
h

∑
W 1

qh+hρ ,

. . . where the symbol
∑

ranges over all primes q and W denotes the
product of the sums taken over a, b, c, c′, . . . or respectively over∑

�(hα−αm )a,
∑

�(hβ−βm )b,
∑

�(hγ−γm )c,
∑

�′(hγ ′−γ ′
m )c′ , . . . .

(Dirichlet, 1837b, p. 340)

This makes it harder to appreciate the nature of the cancellation trick. Moreover, although
values �,�,�,�′, . . . can be used to define the individual characters, these tuples and
the corresponding representation play no role in the subsequent proof, which depends only
on the orthogonality relations and the multiplicative nature of the characters. It seems
reasonable, then, to seek a manner of expression that abstracts away the details of the
representation. We saw that in his 1841 paper on arithmetic progressions in the quadratic
integers, Dirichlet briefly used the expression S�n to denote the result of summing the
values of �n over all possible combinations of roots that occur in �. Kronecker maintained
the dependence of the characters on the defining tuples of data, but found a much more
elegant notation for expressing the dependence. He denoted the character corresponding
to the tuple of parameters (k) by �(k), and in the case of a modulus m, he expressed the
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second orthogonality relation by writing∑
(k)

�(k)(r0) = ϕ(m),

when r0 is congruent to 1 modulo m, and∑
(k)

�(k)(r) = 0

otherwise. In his 1883 paper on general characters, Weber adopted a curious means of
abstracting the representation of the characters: he simply assigned arbitrary indices to
the characters, listing them as χ1, . . . , χh . He then expressed the second orthogonality
principle without summation notation, as

χ1(�) + χ2(�) + · · · + χh(�) = 0,

for each group element �. In 1896, however, de la Vallée-Poussin adopted notation Sχ for
summation over characters:

Consider . . . the sum extending over all the characters, that is to say over
all the systems of roots

Sχχ(n) = Sωω
ν1
1 ω

ν2
2 · · ·

. . . For every number n, the sum extending over the totality of characters
satisfies

Sχχ(n) = 0,

the only exception being the case where

n ≡ 1 (mod M),

because then all the indices are zero and one has

Sχχ(n) = ϕ(M).

(Poussin, 1895–1896, pp. 14–15)

It is notable that he chose a symbol distinct from the usual summation symbol,
∑

, which
he used for sums ranging over natural numbers. Nonetheless, he seems to be the only
nineteenth century author to have taken summation over characters at face value.

Setting aside the orthogonality relation, let us consider the subsequent calculation, in-
volving the L-series, where those identities are put to use. We have observed that the mod-
ern notation L(s, χ) allows us to express the dependence of an L-series on the character
χ , and that the notation

∑
χ χ(m) log L(s, χ) allows us to sum over characters, but these

means of expression were not available to Dirichlet. In the case of a prime modulus p,
Dirichlet defined the L series

L0, L1, . . . , L p−2,

where the index corresponds to a particular numeric parameter occurring in the algebraic
expression that we now recognize as the value of the corresponding character, and

log L0 + �−γm log L1 + �−2γm log L2 + · · · + �−(p−1)γm log L p−2
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500 JEREMY AVIGAD AND REBECCA MORRIS

to sum over the p−1 many L series in the case of a prime modulus. In the case of a general
modulus k, each L series has a similar denotation

La,b,c,c′,...

where a, b, c, c′, . . . are a sequence of numeric parameters that appear in the algebraic
expression for the general character, and the summation is denoted by∑

�−αma�−βmb�−γmc�−γ ′
mc

′ · · · log La,b,c,c′,...

where the summation ranges over the ϕ(k) many choices of values of a, b, c, c′, . . . . Thus
Dirichlet took the L series to depend on particular tuples of numeric parameters involved
in the definition of the characters, and took summations to range over these parame-
ters. Dedekind’s 1863 presentation followed Dirichlet in this respect, as did de la Vallée-
Poussin’s 1897 presentation. Hadamard in 1896 and Landau in 1909 adopted a tack similar
to Weber’s, assigning arbitrary indices to the characters, and then letting the L-series
depend on those indices. For example, Hadamard wrote ψ1, ψ2, . . . , ψϕ(k) for the list of
characters modulo k, and defined the L-functions as follows:

Lv (s) =
∞∑

n=1

ψv(n)

ns
.

The key summation over the characters is then written
∑

v
log Lv (s)
ψv (m) .

To the modern eye, it seems strange to assign otherwise meaningless indices to the char-
acters in order to express the functional dependence of the L series on a character and to
sum over them, when one can just write L(s, χ) and

∑
χ . But while it was perfectly natural

in the nineteenth century to sum over integers, summing over the functions themselves
may not even have occurred to these authors. It is not until 1897 that we first see L series
expressed as a functional dependence on characters, when de la Vallée Poussin introduced
the notation Z(s, χ). Subsequent authors adopted the notation L(s, χ), reverting back to
Dirichlet’s use of the letter L . By 1927, for example, Landau was using L(s, χ) and

∑
χ

just as we do today, and from then on the usage seems to have stuck.

6.3. Extensionalization. Let f (x) be the function on the real numbers defined by
f (x) = 3x2 + 1. In logical parlance, the intension of this last expression is the manner of
presentation, in some sense—if not the purely syntactic string of symbols, something close
to it. In contrast, the extension is the abstract object denoted, that is, the abstract input–
output relation. Today, when we refer to functions, we generally have their extensions in
mind. A note of intensionality creeps in when we say things like “the leading coefficient
of f ” or “the constant term of f ,” but when called on to explain what we mean, we are
generally able to clarify the fact that by “ f ” we really mean the expression for f rather than
the object itself. The extensional nature of the function concept is embodied in the fact that
when we define a functional F( f ) on a collection of functions, we ensure the definition
does not depend on the manner of presentation of f , since F is supposed to “act” on the
extension, not the intension.

In “Concept,” we argued that this distinction was not as clearly drawn in the nineteenth
century treatment of functions. Early instances of functions—not just functions on the real
and complex numbers, but also objects like permutations, automorphisms, and so on—
were more tightly associated with a manner of expression. The history of the treatment of
characters in Dirichlet’s theorem shows exactly this sort of ambiguity, and a gradual move
towards an extensional treatment.
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Consider, for example, the definition of the concept of character itself. For each k,
the set of characters modulo k can be defined extensionally, as the set of nonzero ho-
momorphisms from (Z/kZ)∗ to the complex numbers, or intensionally, as functions de-
fined by certain algebraic expressions involving certain primitive elements modulo the
prime powers occurring in the factorization of k, and certain complex roots of unity. Even
though the two definitions give rise to the same set of characters, proofs can differ in
the extent to which they rely on the specific representations or the abstract characterizing
property. Dirichlet’s proof relied only on the symbolic representations, but we have seen
that later proofs emphasized the key properties of the characters, which were extensional in
nature.

Recall also that Dirichlet divided the L series into three classes, depending on a corre-
sponding division of the characters on which they depend. Dirichlet described the division
in terms of the tuples of roots appearing in the algebraic expressions, whereas a modern
characterization describes the three kinds of characters as follows:

1. the character with constant value 1

2. the (other) real-valued characters

3. the (other) complex-valued characters

What is perhaps surprising is that even as later authors introduced notation like χ or ψi

to range over characters, they still carried out the classification in terms of the roots. For
example, both Dedekind’s and Hadamard’s division of the characters into the trivial, real,
and complex cases was also described in terms of the characters’ representations, even
though the distinction is naturally expressed in terms of the values they take. Kronecker
and de la Vallée-Poussin provided both descriptions, and even though Kronecker made it
clear that all operations and classifications can be carried out, algorithmically, in terms
of the canonical representations, his careful choice of notation and organization made the
extensional properties salient. By 1927, Landau clearly favored the extensional characteri-
zation in his textbook.

As yet another means of highlighting the difference between intensional and extensional
ways of thinking about functions, we will close this section by noting that a number
of the authors we considered adopted a strikingly similar means of describing identities
parameterized by the characters. Recall that after stating the generalized version of the
Euler product identity (8), Dirichlet wrote:

The general equation, in which the different roots θ, ϕ, ω, ω′, . . . can be
combined with one another arbitrarily, clearly contains K -many particu-
lar equations.

The notion of a single identity “containing” K -many particular equations sounds strange
to us today. In contrast to thinking of an identity like ex+y = ex +ey as a single equation in
which x and y are taken to range over the real or complex numbers, it is almost as though
Dirichlet conceived of the generalized Euler product formula as a template, or a schema,
for the particular assertions obtained by instantiating the variables θ, ϕ, ω, ω′, . . . with the
particular data representing each character. In a similar way, when Dedekind defined the L
series in 1863, he wrote:

Since these roots can have a, b, c, c′, . . . values, respectively, the form L
contains altogether abcc′ . . . = ϕ(k) different particular series. . .
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This manner of speaking persisted even after authors began using a single symbol χ to
stand for an arbitrary character. For example, in 1882, Weber, after deriving a pair of
identities involving an arbitrary character χ , wrote:

Each of the formulas . . . represents h different formulas, corresponding
to the h different characters χ1, χ2, . . . , χh .

And in a very similar situation, de la Vallée Poussin wrote in 1897:

. . . this equation (E) represents in reality ϕ(M) distinct ones, which result
from exchanging the characters amongst themselves.

Such language suggests that, to some extent, authors thought of the act of “instantiating”
a general identity involving characters at a particular character as somewhat different from
instantiating a general identity over numbers at a particular number.

§7. Methodology and ontology revisited. Let us review some of the general histor-
ical trends we have discerned in the treatment of characters. Over time, authors isolated
certain symbolic expressions appearing in Dirichlet’s proof, viewed them as functions of an
integer parameter (or equivalence class) n, and baptized them “characters.” They isolated
important properties of the characters and articulated them in a way that renders them
independent from the rest of the proof. Collaterally, this made it possible to generalize the
notion of a character on a multiplicative group of residues to the notion of a character on
any abelian group.

Initially, each character was seen to be represented by a bundle of defining data, so
what we now characterize as a functional dependence on the character was expressed as a
dependence on the bundle of data, and a summation over the characters was expressed as
a summation of a range of values of the bundle of data. But, over time, the role that the
representing data had to play in the proof was diminished. Authors began to adopt notation
and patterns of argumentation that suppressed that information, for example, by assigning
arbitrary indices to the characters and letting expressions depend on those indices. Ulti-
mately, authors simply began expressing functional dependences on, and summing over,
the characters themselves.

Avoiding the need to refer to any particular representation of the characters meant re-
lying instead on properties of the characters that can be expressed in terms of the values
they take on suitable inputs. In other words, it amounted to adopting an extensional view
of the characters, in which statements about the characters are cast purely in those terms.
In contemporary proofs of Dirichlet’s theorem, this is taken to the extreme when we define
the set of characters as the set of nonzero homomorphisms from the group in question
to the complex numbers, and carry out the proof without indicating any way of representing
individual characters, let alone means of computing with them.

One might describe these changes as “merely notational,” or “merely pragmatic.” But
dismissing them in that way belies the fact that these changes reflect a fundamentally
different way of talking about, thinking about, and reasoning about the characters. And
this was by no means an isolated example. As we have noted in the introduction, during
the nineteenth century the treatment of other mathematical entities that we now take to be
instances of sets, functions, or structures evolved in similar ways, and for similar reasons.
So the history we have traced here is but one instance of a general transformation in
mathematical thought, with a new conception of the basic objects of mathematics and
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appropriate means of reasoning about them. It seems strange to resist seeing this as a
change in ontology. (Gray (1992) nicely emphasizes this point.)

According to the model presented in Section 2, we should view the history of
Dirichlet’s theorem as a response to fundamental methodological pressures, as mathe-
maticians struggled to meet both intrinsic and extrinsic mathematical goals while respect-
ing intrinsic and extrinsic methodological constraints. As philosophers, we should not be
interested so much in the historical and psychological contingencies that shaped
the process, but, rather, the sense in which the outcome is rational and justified. In other
words, we wish to understand the extent to which the methods of contemporary mathe-
matics serve to achieve our mathematical goals, given some conception of those goals and
what it means to do mathematics. Attention to the history can bring some of the goals and
constraints to light, but then we are left to weigh their importance and assess the merits
of the present solution. This is the point at which philosophical analysis must come into
play.

In broad terms, here we will view mathematics as a process by which finite beings
attempt to impose a useful order on the complex and varied data that confront them. The
philosophical task is then to develop more refined characterizations of the mathematical
process, in terms that adequately reflect the constraints we face as mathematical agents
and the goals we pursue. In “Concept,” we provided a detailed discussion of some of the
various methodological benefits and concerns that accrue to the use of the modern function
concept. Let us briefly review these here, and see what they have to tell us about the nature
of mathematics.

Treating characters as objects, in all the senses described in Section 4, brings a num-
ber of methodological benefits. Expressions become simplified, meaning that the reader
has to keep track of less information when parsing them, and the author of a proof can
record and convey the relevant information more compactly. Proofs become simplified
as well, meaning that readers have to keep track of less information while following the
argumentative structure of a proof, and authors have to keep track of less information while
working out the details. Information that is irrelevant to the argument at hand is suppressed,
making key data and relationships more salient.

Moreover, proofs became more modular, as properties of the characters were abstracted
away and proved separately. This further supports the aim of reducing the amount of
information in play at any given point. While developing a theory of the characters, we can
focus on their defining properties, and when checking that particular instances of functions
are characters, we only need to check that these instances satisfy the defining properties.
Then, when reasoning about these particular characters, we can invoke results from the
general theory, such as the orthogonality lemma, as “black boxes.” The fact that extraneous
information has been filtered out means that expressions depend on fewer parameters, and
inferences depend on fewer assumptions. This makes it easier to check details and avoid
mistakes.

Modularity brings additional benefits, in that definitions and theorems that have been
abstracted away from the body of the proof can be reused elsewhere. The process of
abstraction clarifies the data that serves to parametrize a definition and the hypotheses
that are required to establish a proposition. This facilitates not only using the definitions
and proposition in other contexts, but also modifying the definitions and propositions
by varying the parameters and hypotheses accordingly. In this way, modularity supports
generality as well as reuse.

Thus, with a modular structuring, dependencies between mathematical components are
minimized, and the mathematics becomes easier to understand. It also becomes easier to
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ensure correctness, and components can be modified and reused. Notice, incidentally, that
these are exactly the benefits associated with modularity in software engineering.8

The key point is that treating characters as objects supports this modularity. To start with,
identifying characters as “things” means that they can be objects of study. We can make
assertions about them, and specify predicates and functions that take them as arguments.
Moreover, notations, definitions, and theory designed to handle other “things” now apply:
we can form sums that range over the characters and reason about them; we can form sets
and sequences of characters and reason about them; we can consider groups of characters
and reason about them; and so on. In short, all of methods that are available to us for
reasoning about mathematical objects become applicable to reasoning about characters.

Given the apparent benefits of treating characters as full-blooded objects, why did it
take so long for the mathematical community to do so? When we look back at the history
of mathematics, it is hard to appreciate the difficulties that accompany significant shifts
in method, but they are substantial. Mathematics is a communal activity: when a math-
ematician writes a proof, his or her intention is that others will read it and judge it to
be informative and correct. This requires that the author and the reader have a common
understanding not only as to what is permissible, but also as to what is appropriate and
desirable.

In Section 2, we enumerated some of the concerns that arise when new methods are
introduced. In “Concept,” we explored the way these concerns apply specifically to the
modern treatment of characters, and to functions more generally. To start with, it is im-
portant that the new manner of speaking about functions come with clear rules of use.
If there is no agreement as to which inferences are permissible—for example, under what
conditions it is legitimate to consider two expressions denoting functions as “equal,” and to
substitute one expression for another in a given context—then the mathematical enterprise
falls apart, and mathematicians cannot read each others’ proofs.

Moreover, whether the rules of use are presented explicitly or implicitly, there is also
the question as to whether they are consistent. Even if we think of the new treatment of
characters as a mere short cut to establishing Dirichlet’s theorem, such short cuts are clearly
illegitimate if they lead to false or nonsensical conclusions. It is by no means apparent that
there are no hidden pitfalls in quantifying over characters, summing over characters, and
treating characters as arguments to other functions. It would be mathematically reckless
to adopt these devices out of sheer convenience, without some assurances that the results
obtained are reliable. Frege used these very concerns to motivate his foundational project:

The endeavor to be brief has introduced many inexact expressions into
mathematical language, and these have reacted by obscuring thought and
producing faulty definitions. Mathematics ought properly to be a model
of logical clarity. In actual fact there are perhaps no scientific works
where you will find more wrong expressions, and consequently wrong
thoughts, than in mathematical ones. Logical correctness should never
be sacrificed to brevity of expression. (Frege, 1904, p. 665)

As suggested in Section 2, to some extent it helps to know how the new methods can be
interpreted in terms of the prior methods, bolstering the understanding that if we try to
view talk of characters as short cuts to proving new theorems, the long way is still, in
principle, open to us.

8 This is a topic is explored in greater detail in Avigad (in preparation).
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Even if the new rules of use seem to be reliable, there is still the question as to whether
they are meaningful. We argued in Section 6 that early authors tended to think of characters
as symbolic expressions of a certain kind, or at least, as entities with canonical represen-
tations as such symbolic expressions. If the new methods no longer support such a view,
one has to come to terms with the question of how one should think of a character. Put
succinctly, once we have proved a statement about characters, what do we know?

And even if we come to believe that a certain manner of working with characters is
consistent, legitimate, and meaningful, there is still the question as to whether it constitutes
good mathematics, which is to say, whether it furthers our epistemic goals and provides
satisfactory answers to our questions. This issue becomes pressing when we try to reconcile
a computational conception of mathematics with the new methods of abstraction. For most
of its history, mathematics was essentially computational, supplying methods of calculation
that could be used to predict the motion of the planets, succeed in games of chance, and
compute lengths and magnitudes of all sorts. A central feature of the modern treatment
of characters is that it suppresses details of how to represent and compute with individual
characters, and often even eliminates these details entirely. We may feel as though we have
an understanding of what it means for a function, viewed as a general procedure, to take a
natural number as input, but what does it mean for a function to take a character, viewed
abstractly, as input? If we expect a mathematical theory of characters to tell us how to
represent them and compute with them, then a theory that fails to provide that information
is simply defective.

Separating concerns as we have done here is somewhat artificial. For example, main-
taining a computational view of characters is one way of interpreting their meaning, and
the ability to ascribe any sort of meaning to mathematical objects tends to clarify the rules
of use and support the belief in these rules are consistent. On our analysis, the factors
that ultimately support adopting a modern treatment of functions are an uneasy mix of
pragmatic, empirical, and broadly philosophical considerations. That does not mean that
they are not good reasons, however, nor that we have not made important philosophical
progress by understanding them better.

§8. Appendix: From cyclotomy to Dirichlet’s theorem. In Section 3, we sketched
Dirichlet’s approach to proving his theorem on primes in an arithmetic progression. Our
goal here is to explain how Dirichlet is likely to have come upon his method of modifying
Euler’s argument to tease apart the contribution of the primes in each residue class from
the overall sum of their reciprocals.

Recall that if we split up the sum in Euler’s equation (2), we obtain

log
∞∑

n=1

1

ns
=

∑
q≡1 mod p

1

qs
+

∑
q≡2 mod p

1

qs
+ · · · +

∑
q≡p−1 mod p

1

qs
+ O(1). (3)

As explained in Section 3.2, this shows that (2) is too crude to prove Theorem 3.1: we
need to know that each of the terms on the right-hand side tends to infinity, not just their
sum. It is here that ideas from the theory of equations are helpful. They come into play
specifically in the theory of cyclotomy from Gauss’ Disquisitiones Arithmeticae, work with
which Dirichlet was intimately acquainted. Historical overviews of the relevant ideas can
be found in excellent books by Edwards and Tignol on the history of the theory of equations
Edwards (1984); Tignol (2001), and Curtis’ equally impressive history of representation
theory Curtis (1999). Curtis also explains the role of characters in the theory of cyclotomy
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and Dirichlet’s proof. What we aim to do here is make the progression of ideas leading
from cyclotomy to Dirichlet’s proof as explicit as possible.

An important concern in the field of algebra is the extent to which the roots of a poly-
nomial can be expressed in terms of arithmetic operations on the coefficients together with
the extraction of roots. The quadratic formula dates to antiquity, and solutions to the cubic
and quartic were presented by Cardano in his Ars Magna of 1542. A natural challenge was
then to determine a similar formula for the quintic. In 1770, Lagrange presented a general
method of attacking this problem, using what has come to be known as the Lagrange
resolvent. Let t0, . . . , tn−1 be the roots of the nth degree polynomial in question, and let ω
be an nth root of unity, that is, a solution to the equation ωn = 1. Notice that 1 is always
a solution to this equation, but there are n − 1 others. In fact, all of the roots can be taken
to be powers a single “primitive” root of unity; for example, taking ω to be the complex
number e2π i/n will do. Lagrange considered the quantity

t0 + ωt1 + ω2t2 + · · · + ωn−1tn−1,

as well as the quantities obtained by permuting the roots t0, . . . , tn−1. Suppose ω is a
primitive nth root of unity, and consider the values obtained by replacing ω in the previous
expression with each of the values 1, ω, ω2, . . . , ωn−1:

x0 = t0 + t1 + t2 + · · · + tn

x1 = t0 + ωt1 + ω2t2 + · · · + ωn−1tn−1

x2 = t0 + ω2t1 + ω4t2 + · · · + ω2(n−1)tn−1

...

xn−1 = t0 + ωn−1t1 + ω2(n−1)t2 + · · · + ω(n−1)2
tn−1.

Lagrange observed that one can solve for each of t0, t1, . . . , tn−1 in terms of x0, x1, . . . ,
xn−1. For example, consider x0 + x1 + · · · + xn−1. Summing the first column gives n · t0.
Summing the second column gives t1 · (1 + ω + ω2 + · · · + ωn−1). But because ω is a root
of

ωn − 1 = (ω − 1)(ωn−1 + · · · + ω2 + ω + 1)

and ω �= 1, we have 1 + ω + ω2 + · · · + ωn−1 = 0. Similarly, summing the third column
gives t2 · (1 + ω2 + ω4 + · · · + ω2(n−1)); but ω2 is also an nth root of unity, and if ω is
primitive (and n > 2), ω2 is also not equal to 1, and the same argument shows that this
quantity sums to 0. The same argument shows that the remaining columns also sum to 0,
so we have t0 = (x0 + · · · + xn−1)/n, which is the desired expression for t0.

A similar trick works to compute the other values tk : multiplying the i th equation by
ω−ik simply “rotates” the powers of ω, leaving 1’s in the kth column. Thus we have

tk = 1

n

n−1∑
i=0

ω−ik xi ,

which provides an expression for tk in terms of t0, . . . , tn−1. Lagrange went on to consider
the values of x0, . . . , xn−1 that are obtained by replacing ω with other roots of unity, and
conditions under which one can solve for those values, and hence x0, . . . , xn , in terms
of radicals. In doing so, he was analyzing and generalizing methods of solving equations
developed by Viète, Tschrinhaus, and others who had come before. He showed that these
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ideas can be used to account for the known solutions to the quadratic, cubic, and quartic
equations.

The methods break down for the general solution to the quintic, but variations on the
method can, however, be used to determine roots of particular polynomials. Consider, for
example, the polynomial xn − 1 itself. We have already noted that we have xn − 1 =
(x − 1)(xn−1 + xn−2 + · · · + x2 + x + 1). If n is not a prime number, the second term
can be factored into polynomials of lower degree, until one reaches polynomials that can
no longer be factored; these are called irreducible polynomials. The task of determining
the roots of these polynomials is known as “cyclotomy,” or “circle division,” because the n
complex roots of xn − 1 are evenly spaced around the unit circle in the complex plane.

The problem can be reduced to the case where n is a prime number, which we will
denote as p instead. In that case, x p−1 + x p−2 +· · ·+ x2 + x + 1 is irreducible, and if α is
any root of this polynomial, the other p − 2 roots are α2, α3, . . . , α p−1. An expression for
these roots in terms of radicals was provided by Vandermonde for the case where p = 11,
and the general problem was taken up by Gauss in the last chapter of the Disquisitiones.9

The solution involves using the Lagrange resolvent, and taking the roots t0, t1, . . . , tp−2 to
be the p − 1 roots α, α2, . . . , α p−1, but in a particular order.

The proof involves choosing, for the prime p in question, a primitive element g mod-
ulo p. Recall from Section 3.2 that this means that the powers g0, g1, . . . , g p−1 modulo p
are exactly the nonzero residues modulo p. The solution to the equation x p−1 + x p−2 +
· · · + x2 + x + 1 = 0 is obtained by considering the Lagrange resolvent

αg0 · ω0 + αg1 · ω1 + αg2 · ω2 + · · · + αg p−2 · ωp−2, (9)

where ω is a (p − 1)st root of unity. If we define ti to be αgi
, then this expression becomes

t0 + ωt1 + ω2t2 + · · · + ωp−2tp−2,

and we are in the situation analyzed above. Lagrange’s tricks tell us that if we can solve
for the values of this expression when ω is replaced by 1, ω, ω2, . . . , ω p−2 in succession,
we can solve for all the values of αgi

, which are just the values α, α2, . . . , α p−1 written in
a different order.

The reason for writing the elements α in the particular order they appear in (9) is that,
when they are written in that order, it is possible to solve for each ti , with an expression
involving radicals. The details of the solution are not relevant to the proof of Dirichlet’s
theorem, but one particular aspect of the solution is. What makes the argument work is the
careful pairing of αgi

with ωi , which has the effect that for each i and j , the element

(αgi
)g j = αgi ·g j = αgi+ j

is paired with ωi+ j . Using the notion of “index” defined in Section 3.2, we can express
this as follows: for any m and n, αm is paired with ωγm , αn is paired with ωγn , and αmn

is paired with ωγmn = ωγm+γn = ωγm ωγn . In other words, the key property used in the
calculation of the roots of cyclotomic equations is that the map m �→ ωγm is multiplicative
on the nonzero residues modulo p.

9 Gauss was particularly interested in the case where p is a prime number of the form 2m − 1,
and showed that in that case, the solution enables one to carry out a geometric construction using
compass and straightedge that divides the circle into p equal parts. The Disquisitiones hints at the
solution to the general case, but both Edwards (1984) and Tignol (2001) observe that there are
gaps in the presentation; a complete solution was provided by Galois.
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Dirichlet’s great insight is that these ideas can be applied in the number-theoretic setting
at hand, using the fact that the Euler product formula holds more generally with such a mul-
tiplicative function in the numerator. In the case where the common difference is a prime
number p, if we choose a primitive root g modulo p and define ti = ∑

q≡gi mod p 1/qs ,
then equation (4) in Section 3.2 can be written as

log
∑

n

ωγn

ns
= t0 + t1ω + · · · + tp−2ω

p−2 + O(1).

The derivation of this equation relies on the generalized Euler formula, which requires that
the map m �→ ωγm is multiplicative. But once we have the equation in hand, we need to
only use the Lagrange trick, which is exactly what Dirichlet did. The more general case
where p is replaced by an arbitrary modulus k is technically more difficult, but it builds on
the same idea, combined with the behavior of the multiplicative group of residues modulo k
that are coprime to k. Once again, this is something which Dirichlet was intimately familiar
with, from the work of Gauss.
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