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Hand motion capture data are now relatively easy to obtain, even for com-

plicated grasps; however, these data are of limited use without the ability to

retarget it onto the hands of a specific character or robot. The target hand

may differ dramatically in geometry, number of degree of freedom (DOF),

or number of fingers. We present a simple but effective framework capa-

ble of kinematically retargeting human hand-object manipulations from a

publicly available dataset to diverse target hands through the exploitation

of contact areas. We do so by formulating the retargeting operation as a

nonisometric shape matching problem and use a combination of both sur-

face contact and marker data to progressively estimate, refine, and fit the

final target hand trajectory using inverse kinematics. Foundational to our

framework is the introduction of a novel shape matching process, which we

show enables predictable and robust transfer of contact data over full ma-

nipulations (pregrasp, pickup, in-hand re-orientation, and release) while

providing an intuitive means for artists to specify correspondences with

relatively few inputs. We validate our framework through demonstrations

across five different hands and six motions of different objects. We addition-

ally demonstrate a bimanual task, perform stress tests, and compare our

method against existing hand retargeting approaches. Finally, we demon-

strate our method enabling novel capabilities such as object substitution

and the ability to visualize the impact of hand design choices over full

trajectories.
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1 Introduction

Advancements in motion capture technology have made it possible

to collect motion data at high levels of detail, including large-scale
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Fig. 1. All hands used in our experiments, including the (a) source MANO,

(b) alternate human, (c) witch, (d) alien, (e) custom prosthetic, and (f) Alle-

gro Hand. (g) We retarget demonstrations performed by the source hand

to all these hands by procedurally transferring contact areas over the en-

tire time series via shape matching.

body movements and fine-grained hand movements together in a

single capture [Romero et al. 2017; Taheri et al. 2020]; however, us-

ing these data are still difficult, because the target embodiment for

the data is almost never the same as that of the demonstrator. For

hands in particular, retargeting is often required because of differ-

ences in hand models and the precision required to make grasps,

especially those with many points of contact, look compelling. Un-

fortunately, this process often generates artifacts such as motion

misalignment or lack of contact that are difficult to repair in post-

processing. The problem becomes even more challenging when

the target hand is not humanlike, whether that includes differ-

ent finger proportions, degress of freedom (DOFs), or number

of fingers.

The lack of reliable retargeting methods for adapting existing

contact-rich hand motion data remains a bottleneck for multiple

communities. In film and game production, considerable animator

time is spent customizing common manipulations to different

character rigs. In robot learning, the difficulty in adapting existing

manipulation data to different hands significantly contributes to

the data sparsity problem [Sivakumar et al. 2022], which in turn

limits the feasibility of supervised and semi-supervised machine

learning algorithms. A standardized approach for re-purposing

existing data, and in particular data easily collectible from hu-

mans, would provide a much-needed solution for a broad range of

applications.

This article presents an approach for kinematic retargeting of

existing contact-rich anthropomorphic hand-object manipulations

through the use of dense correspondences (bijections of discretized

point sets) between contact areas. To do so, we treat time-varying
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contact distributions as a foundational retargeting medium and for-

mulate the mapping of distributions between different hands as a

nonisometric shape matching problem. We then show that exploit-

ing retargeted contact correspondences between hands and objects

leads to the development of a straightforward motion synthesis

pipeline. Despite its simplicity, our approach is robust, predictable,

and effective, which we demonstrate by mapping motions of vary-

ing complexity from the publicly available GRAB dataset [Taheri

et al. 2020] to five kinematically, morphologically, and geometri-

cally diverse hands sourced as-is from artist rigs intended for me-

dia production and robot manipulators intended for simulation.

We make the following novel technical contributions:

— A local shape matching algorithm for robust time-series con-

tact transfer based on an intuitive markup scheme

— A straightforward multi-stage optimization pipeline to com-

pute the retargeted motion

We evaluate our method with the following experiments:

— Thirty retargeted single-hand demonstrations from a pub-

licly available dataset (5 hands × 6 motions of different

objects—details in Appendix B) as well as a bimanual task

— Quantitative evaluation via distance and intersection

metrics

— Stress tests, including cyclic retargeting and re-using

contacts across hand size variations

— Baseline comparisons and ablations to validate the impor-

tance of contact information

— Novel extensions, including visualizing the impact of hand

design parameters and object substitution

The techniques and algorithms proposed in this article are de-

signed for standardization and simplicity, which we show enable

reliable generation of high-quality retargeted hand motion trajecto-

ries. Our decision to focus on kinematics, rather than dynamics, is

primarily motivated by reliability and secondarily by speed, as well

as the conjecture that, for this problem, kinematic solutions are suf-

ficiently constrained through the use of multiple large contact ar-

eas. We show that our method produces high-quality results, gen-

eralizes well across manipulators, and gracefully handles complex

manipulation tasks with many and changing contacts. Depending

on the application, our solutions can be considered complete as-is

or a first pass for additional processing.

2 Related Work

We consider three categories of relevant prior work: motion

retargeting, shape matching, and contact-driven grasp synthesis.

These categories collectively provide both an overview of existing

retargeting strategies and background for our shape matching

contribution.

2.1 Motion Retargeting

Adapting existing motion data to new characters is a long-standing

and well-studied problem for both full-body and hand animation.

Joint-based retargeting remains a common approach in full-

body character animation; however, resolving environmental and

self-contact events complicates the process. Proposed solutions in-

clude adapting to variations in body shape using learning-based

methods exclusively [Aberman et al. 2020] or augmented by

physics-based simulation [Ryu et al. 2021; Won and Lee 2019],

differentiating between unwanted self-contacts and desired foot

contacts during optimization [Villegas et al. 2021], exploiting spa-

tial maps [Jang et al. 2024; Kim et al. 2016], standardized wrapper

meshes [Jin et al. 2018] or interaction graphs [Zhang et al. 2023a],

and dynamics-augmented projected motion optimization [Lee and

Lee 2019]. These methods have produced useful results; however,

a key distinction between hand and full-body retargeting is the

number of contact points required to make a motion visually com-

pelling. More concretely, single point contacts between objects and

different body parts have proven largely sufficient at the full-body

scale even for transferring highly complex interactions between

multiple characters and objects [Zhang et al. 2023a]. Conversely,

a small number of points has been shown to insufficiently model

the complexity of realistic interaction between hands and objects

[Lakshmipathy et al. 2023]. Additionally, as illustrated in Figure 1,

the problem is further compounded by the fact that hand shapes,

morphologies, and kinematics can vary widely between different

characters.

Common approaches to retargeting motions from hand track-

ing include direct joint mapping [Kumar and Todorov 2015; Ra-

jeswaran et al. 2018], keypoint-based inverse kinematics (IK)

[Antotsiou et al. 2018; Dasari et al. 2023; Humberston and Pai 2015;

Qin et al. 2022], inverse dynamics from input joint angles [Kry

and Pai 2006], and relative keyvector distances [Handa et al. 2019;

Sivakumar et al. 2022]. The latter methods remain state-of-the-art

approaches when the hands are more divergent. These approaches

can also be adapted to previously collected data; however, we show

that doing so often creates significant artifacts that are difficult to

clean up in postprocessing.

Physics simulation is also commonly used to improve visual

plausibility and Sim2Real transfer success. Due to the complexi-

ties of frequent making and breaking of contacts during manipu-

lation, several approaches employ learning from demonstration to

generate controllers from human motion data [Dasari et al. 2023;

Qin et al. 2022; Wu et al. 2022a]. Standard kinematic retargeting

techniques (e.g., direct joint mapping, keypoint or keyvector IK)

are often used in these approaches to create expert trajectories

and subsequently prepopulate reward tables; however, this strat-

egy can result in failures or unexpected results if the retargeted

hand trajectory is poor. Identifying retargeting failures, as well as

disentangling such error contributions from policy learning and

reward shaping, is especially challenging at scale. Our goal in this

work is to provide a solution for reliable upstream expert trajectory

estimation that can be used in conjunction with any downstream

physics simulator.

There is currently no standardized solution for reliably retarget-

ing existing hand-object motion data. We argue in this work that

contact information is vital to produce high-quality results across

a broad range of motions and hands.

2.2 Shape Matching

Shape matching addresses the problem of finding geometrically

meaningful correspondences between different shapes. Existing lit-

erature in this space can be approximately divided into isometric

ACM Trans. Graph., Vol. 44, No. 2, Article 14. Publication date: April 2025.
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and nonisometric problem domains. We provide a brief summary

of each variant.

Isometric shape matching concerns instances where the base-

line shape is (approximately) the same. Common examples include

character meshes that have undergone skeleton-driven deforma-

tion or deformable objects. The key assumption in this domain is

that the Reimannian metric (e.g., distances, angles) is preserved.

This assumption enables the use of methods such as functional

maps with consistent descriptor functions [Attaiki et al. 2021; Ovs-

janikov et al. 2012; Pai et al. 2021] and heat diffusion [Sharp et al.

2022] to identify equivalences; consequently, problems in this do-

main are comparatively easier. Unfortunately, these techniques are

rarely applicable to our domain due to the large range of geometric

variations in hand models.

Nonisometric shape matching relaxes the preservation assump-

tion, thereby extending the problem space to fully differentiated

shapes at the cost of substantially escalating problem difficulty.

The majority of existing works in this space consider mapping of

global media (e.g., textures) and require some form of user input to

compensate for the lack of reliable quantitative measures of equiv-

alence, typically in the form of landmark points [Ezuz et al. 2019;

Panine et al. 2022] or curves [Gehre et al. 2018]. Landmarks are sub-

sequently used as boundary conditions [Gehre et al. 2018; Panine

et al. 2022], as keypoints for the extraction of hyperbolic Tutte em-

beddings [Aigerman and Lipman 2016; Takayama 2022], or other

demarcations. Although we initially tried several such techniques,

we found that they were not able handle all of the variations in

our hand and object geometries and generally struggled with exact

mappings of individual points (point-to-point transfers). We show

in this work that relaxing the need to map globally smooth media

enables the use of alternate strategies capable of performing pre-

cise point-to-point transfers from similar landmark annotations.

Efforts have been made to fully automate the nonisometric case,

including automating the discovery of landmarks though heuris-

tics [Edelstein et al. 2020; Marin et al. 2020], aligning extrinsic cor-

respondences such as normals [Li et al. 2007], and automatically

segmenting meshes via data-driven techniques [Kalogerakis et al.

2010]. However, the immense variety in hand designs (number of

finger segments, finger lengths, finger counts, palm shapes, etc.)

compounded with their ability to change shape with pose render

the application of heuristics or extrinsic metrics particularly chal-

lenging. Existing pose data for arbitrary hand models is also dif-

ficult to obtain as it is infeasible to cover the entire space of all

possible hand designs. Furthermore, fully automated methods typ-

ically permit little control over results, which can render such tech-

niques unusable for quality-critical applications. In this work, we

instead focus on creating highly reliable mappings for direct, local

data transfer using simple curve-based annotations easily obtain-

able from an artist. We also note that our approach is dependent

only on intrinsic quantities, which inherently makes it robust to

isometric changes in geometry (e.g., deformation induced by pose

changes).

2.3 Contact-driven Grasp Synthesis

Contact points have played a vital role in the generation of grasps

and manipulations. Techniques include analyzing optimal indepen-

dent regions within which point contacts can be placed [Roa and

Suarez 2009] or using contacts as error terms in the training of gen-

erative models [Christen et al. 2022; Wu et al. 2022b]. Approaches

in manipulation planning switch between contact modes [Cheng

et al. 2021] or optimize single point contact placement and force

for physically plausible results [Hazard et al. 2020; Mordatch et al.

2012; Ye and Liu 2012]. The Ferrari-Canny metric [Ferrari and

Canny 1992]—the most widely used grasp quality metric—is fun-

damentally rooted in its analysis at individual contact points.

However, characterization of grasps as single points highly sim-

plifies the complexities of real interactions [Brahmbhatt et al.

2019a, 2020] and cannot account for geometric consistency outside

the designated point. Consequently, there has been considerable re-

cent interest in collecting, analyzing, and exploiting contact areas

kinematically [Brahmbhatt et al. 2019b; Fan et al. 2023; Lakshmi-

pathy et al. 2022, 2021; Taheri et al. 2020] and dynamically [Pang

et al. 2023; Turpin et al. 2022]. We focus on kinematics in this ar-

ticle, following recent works that generate and optimize poses by

matching contact patches [Brahmbhatt et al. 2019b; Grady et al.

2021; Lakshmipathy et al. 2022, 2023; Wei et al. 2023]. Our primary

goal in this work is to establish the techniques necessary to adapt

contact patch-driven grasping strategies to full manipulations. Al-

though this idea appears straightforward, it was not possible to do

so without completely rethinking the problem of shape matching

due to the dense, complex, and constantly changing collections of

contact areas that had to be transferred meaningfully between dif-

ferent hands.

3 Method

Our retargeting pipeline is shown in Figure 2 and can be divided

into the following steps:

(1) Extract a dense corresponding set of contact areas between

the object and source hand per frame

(2) Procedurally transfer all contacts from the source to target

hand across all frames

(3) Estimate an initial trajectory for the target hand using fixed

markers and the transferred contacts

(4) Refine the estimates to improve temporal consistency

(5) Construct the final trajectory through B-Spline fitting

Importantly, the design of our pipeline assumes that the desired

solution is one that attempts to match the interaction mechan-

ics of the source manipulation as exactly as possible. For this rea-

son, we assume contacts on the object are the same across all

hands. We detail the inputs and processing steps in the following

subsections.

3.1 Inputs

Our method requires existing hand-object motion data as input,

which we expect to minimally include the following:

(i) Accurate meshes of the original object and source hand

(ii) A set of dense per-frame contact annotations on either the

object or hand mesh

(iii) A complete set of frames defining the motion sequence

The GRAB [Taheri et al. 2020] and ARTIC [Fan et al. 2023]

datasets contain all three types of data. We select the former as

ACM Trans. Graph., Vol. 44, No. 2, Article 14. Publication date: April 2025.
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Fig. 2. Overview of our retargeting framework. (a) Our approach requires inputs of accurate meshes of the original object and source hand, per-frame

contacts on either the object or source hand, and complete motion sequences of the object and source hand. (b) To perform the retarget, we require a

skeleton-driven target hand mesh as well as a set of artist-annotated corresponding virtual markers and axial curves. (c) After recovering a dense set of

contacts between the object and source hand, we transfer hand contacts across the entire time series and (d) use the virtual markers and transferred contacts

to synthesize motion for the target hand from scratch.
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Fig. 3. Illustration of the raycasting procedure used to obtain one-to-one

correspondences of a contact region (magenta) between the object (blue

interior, orange boundary) and hand (skin-colored). Starting from contact

points on the object boundary (yellow points A, D, G, and H), we cast rays

along surface normals (green) and must resolve three possible events. If a

single hand intersection is found (B), then we assume the contact region is

located within the hand and invert the direction to obtain the contact point

on the palmar surface (C). If two intersections are found (E and F, I and

beyond), then we take the closer of the two intersections by distance (E, I).

However, we discard instances that exceed a specified distance threshold

(H,I) as errors. Finally, if no intersections are found (G), then the contact

point is considered an error and discarded.

the data source for our experiments. Importantly, we only require

one set of dense contacts and do not require the original hand

skeleton.

For retargeting to a new hand, we require the following:

(iv) A skeleton-driven target hand mesh

(v) A set of artist-annotated corresponding virtual markers on the

source and target hand

(vi) A set of artist-annotated corresponding axial curves [Laksh-

mipathy et al. 2023] on the source and target hand in their

respective default configurations

We expand on the required artist annotations and their usages in

the following sections but note that the work required to prepare a

new hand is typically under 1 hour. We also require the source and

target hands to be manifold; however, it is possible to overcome

this constraint by using an approximate manifold wrapper. We

demonstrate a result with the fully articulated Allegro Hand1

as an example. Importantly, we do not assume any similarity

between the source and target hand (e.g., identical finger counts,

triangulations, finger or palm shape, finger length).

3.2 Dense Contact Pairing

Consistent with existing datasets, we assume contact areas are

represented by a finite set of discrete points per frame across the

1https://www.wonikrobotics.com/research-robot-hand

ACM Trans. Graph., Vol. 44, No. 2, Article 14. Publication date: April 2025.
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(a)

(b)

Fig. 4. Virtual markers can be configured as traditional single-point one-

to-one, or alternatively (a) heterogeneous many-to-one, or (b) dense, area-

based configurations. Configuration (a) can be utilized to model virtual

marker location uncertainty between differing source and target hands,

which can be useful when finger link lengths are different sizes. Configu-

ration (b) can be used to weight the importance of matching the deformed

hand states over large regions, which can be useful when deformation be-

haviors diverge despite similar link lengths.

entire motion sequence. We assume a one-to-one correspondence

between each hand-object contact point pair. Contact points are

stored as barycentric coordinates to render our approach sampling

agnostic, and thus robust, to variances in triangulations across dif-

ferent meshes. This approach ensures that data can be collected

and transferred from coarsely triangulated hands (e.g., the MANO

hand [Romero et al. 2017]) to arbitrarily fine or irregularly sam-

pled target hand meshes without risk of discretization error from

vertex clamping.

In the event of only one dense set being available, as in the case

of the GRAB dataset, we can generate a corresponding dense set

through raycasting. We trace contacts out from source mesh loca-

tions along element normals until the opposite mesh is intersected,

automatically generating a paired barycentric point. In the event

of penetration into the source mesh, we invert the trace direction

and retry. Points that do not intersect the opposite mesh or are

further apart than an ϵ-metric are considered errors and discarded.

We note that while this technique proved reasonably reliable in

practice, results tend to be inaccurate if the source manifold ex-

hibits high local curvature at the contacts. Figure 2 illustrates an

example of dense pairing obtained from raycasting, while Figure 3

illustrates the procedure in more detail.

3.3 Hand Shape Matching

We use the deformed state of the source hand and a (possibly

empty) set of dense corresponding contacts between the object

and source hand to compute the target hand pose per frame. As

demonstrated in the grasping literature [Lakshmipathy et al. 2022,

2023; Wei et al. 2023], we can robustly compute target hand poses

during contact-rich frames if we know the target hand contact

distribution. To create these contact distributions, we transfer

contacts from source to target hands over the entire time series

using a one-time set of artist annotations consisting of virtual

markers and axial curves. Virtual markers help to define hand

poses in situations where contact information is sparse or absent

Fig. 5. Single point virtual marker configuration on the source MANO

hand and area based corresponding marker sets on all other hands used

in our experiments. We use a manifold wrapper of the Allegro Hand for

contact processing. Marker points were selected at vertex indices for con-

venience.

altogether, while axial curves provide an intuitive control scheme

for the placement of landmark points and adjustment of landmark

parameters. Landmarks and parameters are subsequently used

to enable scalable and customizable contact transfer through the

use of local charts, as described in Section 3.3.2. Importantly, our

annotation requirements are no greater than existing state of the

art methods that exploit user-provided landmark points or curves

for nonisometric shape matching [Aigerman and Lipman 2016;

Gehre et al. 2018; Panine et al. 2022; Takayama 2022] or keypoint

tracking [Dasari et al. 2023; Humberston and Pai 2015; Qin et al.

2022; Sivakumar et al. 2022; Wei et al. 2023], yet they adapt well to

dense and rapidly changing contacts. Details of annotations and

usage procedures are described below, while Figure 2 illustrates

the shape matching inputs.

3.3.1 Virtual Marker Alignment. Our pipeline expects a corre-

sponding set of artist-annotated virtual markers on both the source

and target hand to assist with pose computation, particularly when

contact data are sparse or unavailable. We define virtual mark-

ers as an arbitrary collection of fixed corresponding sets of mesh

points between the source and target hand. Markers can either be

traditional single points or areas. In the former case, aligning vir-

tual markers for pose computation reduces to traditional keypoint-

based IK solving consistent with existing literature [Dasari et al.

2023; Humberston and Pai 2015; Qin et al. 2022; Sivakumar et al.

2022; Wei et al. 2023]. Area-based correspondences can be gener-

ated by applying existing contact transfer methods [Lakshmipa-

thy et al. 2022, 2023] to produce an automatic mapping between

such markers, which can be viewed as analogous to matching “con-

tacts" in mid-air. Notably, however, an area-area configuration re-

quires both sets to contain a 1:1 correspondence of discretized el-

ements. Heterogenous mappings between single point and area

based markers are also possible and trivial to designate as a one-

to-many association under this modality. Figure 4 illustrates each

configuration and instances where hetergeneous and area-based

correspondences may be beneficial.

The annotation procedure is manual but was straightforward

for an artist and only has to be performed once per source and

target hand pair. Details of the annotation process are provided in

Appendix A. Figure 5 illustrates the heterogeneous virtual marker

sets received from the annotation process and subsequently used

as-is for all results, in which the source hand was allocated a set of

single-point markers and the target hand an area-based set. In am-

ACM Trans. Graph., Vol. 44, No. 2, Article 14. Publication date: April 2025.
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Fig. 6. (Top row) Object contacts, (second row) source hand contacts, (third row) computed target hand contacts, and (Bottom Row) source and retargeted

hand motion for four different stages of a phone manipulation: (first column) table pickup, (second column) in-hand dialing, (third column) holding for use,

and (last column) movement back toward the table for release. Although poses and contact distributions vary dramatically during the manipulation, our

method can successfully produce target hand motion by using source hand contact distributions as a foundational retargeting medium.

biguous cases such as the three-fingered alien hand, the received

configuration mapped each human finger marker set to a single

finger on the target hand (e.g., thumb, index, middle on the alien

hand); however, configurations that map multiple source finger

marker sets to a single target finger are supported as well. We also

found that area-based virtual markers proved useful in modeling

uncertainty on target hands, because it was not always clear where

a corresponding single-point virtual marker should be placed.

3.3.2 Contact Alignment. Unlike markers, contact distributions

are dynamic and can vary greatly between motion frames (e.g.,

Figure 6). We model bulk transfer as an intrinsic nonisometric

shape matching problem, with the key insight of formulating

the correspondence as being governed by an atlas of multiple

coordinate charts [Jost 2008]. Atlases can be comprised of one or

many coordinate charts, provided the union of all charts generates

a cover of the underlying manifold [Jost 2008].

Techniques targeting transfer of global media (e.g., textures),

however, typically consider only single chart correspondences

and require careful landmark placement to use effectively. Mul-

tiple chart correspondences are uncommon in such contexts, be-

cause careful handling of interpolation across transition regions

and hard chart boundaries is required to maintain global smooth-

ness [Jost 2008]. Additionally, we found that the inherently high

sensitivity to landmark placement makes artist annotation difficult

in practice.

(a) Palm Source (b) Thumb Tip Source
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Fig. 7. (a) When examining geodesic distance and outgoing tangent vec-

tor direction from a landmark point on the palm, clusters of contact points

are clearly separable. (b) Viewing the same distribution from a landmark

on the thumb tip cleanly isolates thumb contacts from those of remain-

ing fingers, allowing us to easily introduce discontinuities to filter out the

remaining contacts and subsequently perform arbitrary transformations

exclusively on the isolated distribution.

The highly local nature of contact areas, however, allows us to

sidestep many of the drawbacks of mapping global features. For

example, a chart used to parameterize contacts on the index finger

need not have any influence on a chart used for the middle fin-

ger (qualitative semantic boundary), and a chart toward the tip of

ACM Trans. Graph., Vol. 44, No. 2, Article 14. Publication date: April 2025.
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Fig. 8. Cover generated from a set of landmarks (dark blue), chart bound-

aries (black), and example corresponding landmarks on each surface (red,

orange, teal, light blue) obtained from annotation. A sample contact distri-

bution (cyan) within the boundary of chart Ui is parameterized against the

chart’s affiliated landmark using logmap transform ψi . Inverting ψi allows

the distribution to be reconstructed from the corresponding landmark on

AΩT
, while Vi determines the location of the contact’s new embedding.

a finger need not influence a chart toward the base (quantitative

geodesic distance boundary). Quantitative boundaries are particu-

larly useful, because they can be reliably used even when semantic

information is missing or unreliable. Figure 7 illustrates an exam-

ple, where clusters of contact areas between different fingers are

quantitatively distinguishable from each other when viewed from

a sample reference point on the palm. It is therefore possible to

isolate each finger region by introducing a hard discontinuity in

the region of separation, allowing for subsequent fine-grained con-

trol over the parameters of each chart independently of the others.

The atlas produced from the union of such disjoint charts is thus a

segmentation of the manifold; however, contacts parameterized by

any constituent chart can be fully reconstructed through chart in-

version. We select the well-understood logarithmic map (logmap)

[Schmidt et al. 2006] as the template for each chart due to its low

dimensional parameterization, easy inversion via the exponential

map (expmap), and ability to be quickly and accurately computed

via heat diffusion [Sharp et al. 2019]. The atlas of the source hand

manifold ΩS , termed the source contact atlas, is thus formulated as

follows:

AΩS
:= {(Ui ,ψi ) : i ∈ [1,M], ψi = loдq (c)}

s .t .
M⋃

i=1

Ui = ΩS Ui ∩Uj = � ∀ i, j ∈ [1,M],
(1)

where (Ui ,ψi ) represents each of the M constituent charts such

that Ui is the subdomain of ΩS governed by chart i and ψi is

the logmap function that transforms contact c from barycentric

Ui coordinates into logmap coordinates (rc ,θc )q relative to origin

q in the transformed space. We then postulate the atlas of target

manifold ΩT , termed the target contact atlas, to be of the form:

AΩT
:=

{(
Vi ,ψ

−1
i

)
: i ∈ [1,M]

}

s .t .
M⋃

i=1

Vi = ΩT ,
(2)

where ψ−1
i = expqc , which can be computed by tracing a geo-

desic originating from q with parameters (rc ,θc )q . Including the

disjoint condition is not necessary, because chart assignment is al-

ready determined on ΩS . Note also that while segmentations of

some contact distributions may not always be clear (i.e., full hand

power-grasps), any partition of ΩS is guaranteed to produce a con-

tact point reconstruction on ΩT . Figure 8 illustrates the aforemen-

tioned terms and proposed formulation.

Our formulation requires only the ability to compute Laplacians

and geodesics, which are both intrinsic quantities. Unlike extrinsic

methods that exploit properties related to a geometry’s embedding

in space (e.g., vertex locations, normals) [Li et al. 2007], intrinsic

methods instead only consider the connectivity of the structure. In-

trinsic properties are highly advantageous for hands, because such

metrics are isometry invariant and therefore allow us to move data

between hand geometries without knowledge of either the source

or target hand pose.

We start by determining each region Ui ∈ ΩS using a set of

M landmarks extracted from artist annotation performed once for

each new source hand. For convenience, we designate each land-

mark as the origin (q) of each logmap. We next determine the

closest landmark to each contact point (q∗) using the Vector Heat

Method [Sharp et al. 2019] and MMP [Mitchell et al. 1987] to ex-

tract the logmap coordinates of each contact point (rc ,θc )q∗ . Im-

portantly, automatically determining q∗ means that we do not re-

quire contact data to be annotated or strictly associated with a pre-

determined individual or grouped set of landmarks as mandated

in previous work [Lakshmipathy et al. 2023] while also ensuring

that the set of contact points for each source chart is unique. No-

tably, while any partition is suitable under our formulation, our

approach of taking the closest landmark to each contact is special

in that it generates an equivalent point partition to that of a geo-

desic Voronoi segmentation [Herholz et al. 2017] with the added

benefit of providing an exact method of reconstruction.

However, rather than requiring landmarks to be provided as in-

dividual points, we instead adopt a curve-based input approach

[Gehre et al. 2018]. We select axial curves [Lakshmipathy et al.

2023] as the annotation implementation. Axial curves contain the

following:

(1) a finite set of points {a1, . . . ,an } ∈ Ω that in our case serve

as landmarks, with a shortest geodesic дi connecting each

pair of adjacent points (ai ,ai+1) for i = 1, . . . ,n − 1;

(2) turning angles {ϕi }
n−1
i=2 , where each ϕi is the angle of rota-

tion from the ending direction of дi−1 to the initial direction

of дi , expressed in the tangent space of ai .

We found that axial curves enabled our artist to easily generate and

tweak multiple landmarks via simplified control handles, thereby

greatly reducing annotation time. Axial curves also substantially

reduced the need for careful landmark placement, automatically

resolved the annotation overhead of consistently orienting the

logmap zero angle of all constituent axis points, simplified the

process of designating corresponding consistently oriented land-

marks on ΩT , and provided a representation that enabled straight-

forward modification of expmap reconstruction parameters (dis-

cussed shortly). In practice, we found that even simple collections
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λA, λS > 1

λA = λS = 1
Fig. 9. Illustration of contact transfer between two widely varying hand

shapes. An isometry-preserving-as-possible transfer (λA = λS = 1) results

In undesirable squishing of contacts on the target domain that fails to

capture semantic equivalence between fingers. Altering λA and λS fixes

the problem.

of curves (Figure 10) easily obtainable from an artist yielded re-

markably effective contact atlases capable of transferring contact

areas reliably.

In typical cases, corresponding axial curves can be easily drawn

by an artist; however, there are several interesting alternate cases.

In the case of ΩT having fewer fingers than ΩS , such as the

three-fingered alien hand illustrated in Figure 8, it is possible to

safely discard unwanted contact groups by setting any Vi = � or,

equivalently, removing unwanted Ui . By doing so, contacts that

would originally be bound to the removed Ui regions will instead

be bound to the nearest available Ui . Such contacts are typically

unwanted (e.g., contacts on the human ring finger or pinky) and

can easily be filtered out by a geodesic distance threshold Eд due

to their significantly further distances from their respective new

landmark bindings. Similarly, hands with additional fingers do

not necessarily require all fingers to be used—the chart nearest

the unused finger simply extends to the region, ensuring a cover

of ΩT is maintained.

To address variations in finger or palm shape, we introduce

an expmap scaling metric λs (θ ) and reformulate ψ−1
i to trace

geodesics of the form (λs (θ )r ,θ ). This modification effectively per-

mits “deforming" contact distributions parameterized on ΩS into

any shape on ΩT , although in practice we found that uniform

scaling was largely sufficient. Although such a parameter breaks

the assurance of the expmap providing an isometry-preserving-as-

possible reconstruction of contacts embedded by (Ui ,ψi ) on ΩT , as

illustrated in Figure 9, we found that such distortion is often desir-

able to meaningfully capture semantic similarity between geomet-

ric variations.

Finally, we address finger length variations by altering geodesic

lengths from landmarks and by extension the desired locations of

Vi . We therefore introduce one more parameter λa that can be used

to extend or contract the length of the geodesics connecting the

axial curve points on ΩT . As also illustrated in Figure 9, the com-

bination of λs and λa enables fine-grained, predictable adaptation

of contact distributions across even widely varying geometries. Im-

portantly, the flexibility to perform such alterations is made possi-

ble by the source and target contact atlases.

We obtain a corresponding set of landmarks on both ΩS and ΩT ,

as well as hyperparameters λa and λs , from one-time artist anno-

tation. We implement and build on tools from existing published

work [Lakshmipathy et al. 2023] to facilitate the process and de-

tail the annotation procedure in Appendix A. Contacts across en-

tire manipulation time series are subsequently procedurally trans-

ferred between the source and target hand. Figure 10 illustrates the

received annotations and a representative sample transfer.

3.4 Motion Retargeting

We perform motion reconstruction for the target hand in three

steps using a consistent objective formulation: (1) estimation of

an initial trajectory for the target hand, (2) refinement of the ini-

tial estimate, and (3) construction of the final trajectory through

B-Spline fitting.

3.4.1 Objective Formulation. We use a simple and common ob-

jective formulation in all steps for computing solutions per frame:

θf
∗ = arg min

θ
λm ΓM + λc ΓC + +λt ΓT + λj ΓJ

s.t. θL ≤ θ ≤ θU ,
(3)

where ΓM , ΓC , ΓJ , and ΓT are the penalty terms, θ is the DOF vector,

θL and θU define the lower and upper bounds of θ , respectively,

and λc , λm , λj , and λt are weighting hyperparameters.

We next describe each penalty term. The marker penalty (ΓM )

encourages aligning source hand and target hand virtual markers

at frame f . Assuming M virtual marker points, ΓM is defined as:

ΓM =

M∑
m=0

ΓMD,m , (4)

where ΓMD,m represents the L2 distances between corresponding

marker points. The contact penalty (ΓC ) encourages aligning target

hand and object contacts at frame f . Assuming C contact points,

ΓC is defined as follows:

ΓC =

C∑
c=0

(λcd ΓCD,c + λcn ΓCN ,c ), (5)

where ΓCD,c represents the L2 distances between corresponding

contact points, ΓCN ,c penalizes deviation from surface normal in-

version at the contact points, and λcd and λcn are weighting hyper-

parameters. The table penalty ΓT discourages hand-table intersec-

tion. Assuming S sampling points on the target hand, ΓT is defined

as follows:

ΓT =

S∑
s=0

max(0,−ΓSD,s ), (6)

where ΓSD,s represents the signed distance function (SDF) of

the table evaluated at the location of point s . For simplicity, we use

the vertex set of the target hand or its affiliated manifold wrapper

as S . We also assume a box geometry for the table, whose SDF can

be computed analytically.2 Last, the “prior" penalty (ΓJ ) serves as

a regularizer against either the default rest pose or the previously

2https://iquilezles.org/articles/distfunctions/
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Fig. 10. One-time axis annotation (top) enables scalable retargeting of original contacts (magenta) to customized configurations per target hand (cyan).

Axis colors indicate matching annotations.

existing keyed value at frame f . Assuming J DOFs, we obtain the

following:

ΓJ =

J∑
j

ΓP, j , (7)

where ΓP, j represents the deviation between DOF j and its existing

value. We use the Method of Moving Asymptotes [Svanberg 2002],

a local gradient-based solver, implemented in the NLOPT library

[Johnson 2017] to compute solutions to Equation (3). All gradients

are computed via a finite difference.

3.4.2 Initial Trajectory Estimation. Because no baseline data are

available for the target hand motion, we must synthesize it from

scratch. We do so by first estimating a per-frame optimal initial

trajectory estimate over F total motion frames, which we define as

follows:

Θ∗ = {θ0
∗,θ1

∗, . . . ,θF
∗}. (8)

Importantly, the above formulation entails that each frame of the

optimal trajectory is independent of the estimates of its neighbors,

which runs counter to many existing works that add explicit con-

ditioning terms on the estimate of the previous pose [Handa et al.

2019; Qin et al. 2021; Sivakumar et al. 2022]. This crucial distinc-

tion proved vital in mitigating error buildup over long sequences,

which caused the estimates of frames later in the motion to con-

verge to undesirable local minima. Independent estimation also al-

lowed us to reliably prune poor local optima during later process-

ing stages.

We perform the trajectory estimation in two passes. We first

solve for only the root joint position per frame. We then solve for

the full pose per frame using the root estimate as the seed. Default

poses for all hands are illustrated in Figure 1.

3.4.3 Trajectory Refinement. We next refine the estimated tra-

jectory to improve temporal consistency using acceleration as the

smoothing metric. To do so, we impose a threshold Eacc and re-

move all frames that violate the threshold. We then replace each

violated frame with a linear interpolation between its nearest valid

left and right neighbors and re-solve Equation (3) to obtain more

temporally consistent estimates that are. Frames are removed on

a per-DOF basis and in a single pass. We impose the same thresh-

old across all DOFs in our results regardless of joint coupling (e.g.,

codependence between ball joint DOFs) or units (e.g., angular vs.

linear DOFs) in support of standardization.

However, updating violations can introduce new violations in

the resulting trajectory. We thus perform the refinement procedure

iteratively until either until no further violations are found or the

number of iterations exceeds a maximum cap. All unresolved viola-

tions at the end of iteration exhaustion are ignored during fitting.

Applying this refinement strategy to the raw initial trajectory

slowed the method considerably due to high numbers of violations

resulting from independent pose computation per frame. Instead,

following precedent [Handa et al. 2019; Qin et al. 2022; Sivakumar

et al. 2022], we found it beneficial to re-solve for the estimates

after applying low-pass and peak removal filters. Preprocessing
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substantially reduced the number of acceleration violations, and

thus the overall computation time required for this stage.

3.4.4 B-Spline Fitting. Finally, we use the refined frame solu-

tions as sample points and fit a cubic B-Spline to each DOF across

the computed time series, ensuring our final solution guarantees

C2 continuity. We designate a fixed number of control points and

solve simultaneously for both values and locations in time using

least squares pseudoinverse approximation [Eberly 2005]. This rep-

resentation also permits artist control over the fitted spline, and

better approximations, at the cost of possible overfitting, can be

easily obtained either by increasing the number of control points

or hierarchically compositing splines to reduce error residuals [Lee

and Shin 1999]. Notably, we found that most motions could be rep-

resented with relatively few control points.

4 Results

We performed a number of experiments to both qualitatively and

quantitatively evaluate our method. In addition to evaluating our

thirty retargeted tasks, we also assess our method’s effectiveness

across a bimanual task, hand size variations, cyclic motion retar-

geting, two baseline comparisons, and two ablations.

4.1 Qualitative Evaluation

Results for our 30 retargeted demonstrations can be viewed in the

supplementary video. Result computation times ranged from 4 to

22 hours when run on a single Intel Xeon W-1250 3.3-GHz pro-

cessor without parallel threading or GPU acceleration. Following

our commitment to standardization, we use a uniform set of opti-

mization hyperparameters across all hands and motions, the same

transfer coefficients for each hand across all motions, and an iden-

tical number of control points per motion across all hands and

DOFs. We note that no parameter required careful tuning, follow-

ing our commitments to reliability and simplicity. We also did not

modify the generated DOF spline motion curves in any of our ex-

amples. Parameter values for all hands, transfer coefficients, opti-

mization weighting coefficients, and control point counts are tab-

ulated in Appendix B. Overall, we found the retargeted trajecto-

ries to be of generally high-quality despite blanket standardization.

Such generalization is particularly notable, because results confirm

that parameterization of contacts across arbitrary motions is possi-

ble without knowledge of distributions in advance and without cus-

tomization of landmarks to individual distributions.

4.2 Quantitative Evaluation

Distance Metrics. Figure 11 quantifies the average marker and

contact distances generated by our method across all results. As

can be observed, average contact distance during segments of high

contact density are reasonably stable across all hands and tasks. In

contrast, contact distance tends to be higher in low density regions

and spikes at region boundaries due to the competing table penalty

(Equation (6)). Marker distances, in contrast, appear elevated dur-

ing high contact density regions due to the competing, and typi-

cally dominant, contact penalty term. Nonetheless, distances for

both quantities are typically no more than a few centimeters. Un-

surprisingly, the Allegro Hand appears to perform the worst due

to its large size and limited DOFs.

Intersection Metrics. Figure 12 quantifies the total amount of

hand-object, self, and table intersection generated by our method

across all results. To compute these quantities, we first deter-

mine all penetrating hand vertices via raycasting as detailed in

Section 3.2. The resulting points are then clustered via depth-first

search on the hand mesh. Finally, we compute the convex hull of

each cluster and extract its volume. Total intersection is defined

as the sum of all such hull volumes relative to the total volume

of the hand, expressed as a percentage. All reported percentages

are overestimates due to convex hull approximation. Despite not

performing any hand-object or self-intersection resolution, we

observe that intersection volumes are nonetheless low. Our results

indicate that contact areas, in part due to their implicit encoding

of natural grasp states, are viable as a cheap approximation of

both physical motion and intersection avoidance in the absence

of a full physics simulation.

4.3 Bimanual Manipulation Retargeting

Our method can trivially extended to bimanual manipulations via

superpositioning of independently computed left- and right-hand

trajectories. We demonstrate this capability through retargeting a

game controller manipulation task, which can be viewed in the

supplementary video. However, our method is currently limited

to instances where hands interact only with the object. We do not

anticipate a successful result for hands interacting with each other,

because the state of the contacts will vary with the state each hand

during the optimization process. Resolving the resulting cyclic de-

pendency is an interesting problem for future work.

4.4 Evaluation across Hand Size Variations

We stress tested our method against variations in hand size to de-

termine whether identical contact distributions can be re-used. We

selected dimensions representative of the fifth percentile of 7-year-

old female children [Malina et al. 1973] and the 95th percentile of

adult males [NASA 2000] as variants. Figure 13 illustrates the hand

size variations. A complete result for the stapler task is available

in the supplementary video. We found that the reconstructed mo-

tions to be of high quality, indicating that our method is capable

of supporting hand scale variations without the need to re-map

contact distributions.

4.5 Cyclic Motion Retargeting

We further stress tested our approach through an additional ex-

periment of cyclic retargeting. We select the phone task and witch

hand as the intermediary, which we found to be the most chal-

lenging task and most difficult five-fingered hand to work with

respectively. To do so, we first retargeted the original motion to

the witch hand. We then used the witch hand virtual markers as

references for tracking the new MANO hand motion. We used the

original contacts on the MANO hand, because the contact atlas

for the witch hand was generated via the fully invertible expmap

transform from the MANO hand. The reconstructed motion can

be viewed in the supplementary video. Figure 14 illustrates the

motion curve differentials between our cyclically retargeted re-

sult and the original motion. We observed that strong alignment

between the original and intermediate hand roots (orange, green,
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Fig. 13. Different human hand sizes used in our evaluations, including

the original human hand (center), a small hand representing the fifth per-

centile of 7-year-old female children (left), and a large hand representing

the 95th percentile of adult males (right).
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Fig. 14. Reconstructed motion curve error differentials between our cycli-

cally retargeted result and the original motion, including the root rotation

(a), root translation (b), and a representative finger joint (c). Rotations are

expressed as Euler angles following the same order as the original motion.

Colored boxes illustrate alignment between the cyclically retargeted hand

(skin-colored), original hand (cyan), and intermediate witch hand (green

silhouette) at various stages of manipulation.

magenta) typically resulted in high-quality cyclic reconstructions,

while weaker alignments (turquoise) resulted in deterioration. Dis-

crepancies between finger DOFs had relatively minor qualitative

impact on results compared to the root (orange). Figure 15 pro-

vides an alternate evaluation by instead comparing contact and

marker distance metrics. These errors are generally small, with the

contact error routinely being under 1 cm outside the first and last

few frames. Spikes in contact errors at the boundaries are similarly

induced by large divergences in the witch hand motion from the

MANO reference, which subsequently leads to unreliable virtual

marker guidance during cyclic motion construction.

4.6 Baseline Comparisons

We next validate the importance of contact information by compar-

ing our approach against two existing contact-free methods used

in tele-operation: fingertip keypoint tracking [Dasari et al. 2023;

Qin et al. 2022] and whole-hand relative keyvectors [Handa et al.

2019; Sivakumar et al. 2022]. We use the Allegro Hand for con-

sistency with the baselines. To isolate the objective formulation,
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Fig. 15. Reconstructed average marker (orange) and contact (blue) dis-

tance errors between the original motion and our cyclically retargeted re-

sults. Average contact error for the original motion (green) and contact

density (light pink) curves are also provided for reference. Marker error

for the original motion is always zero.

Keyvector Retargeting Keypoint Retargeting

Fig. 16. (Top row) Poses computed using keyvectors or keypoints visi-

bly struggle encouraging hand-object contact and motion alignment es-

pecially when source and target hand geometries greatly diverge. (Bottom

row) Using contact areas greatly reduces such artifacts.

Table 1. Aggregate Statistics of Average Contact and Marker

Distance Error Metrics across the Entire Task Suite

Baseline Distance Metric Comparisons (cm)

Marker Contact

Med. μ ± σ Med. μ ± σ

Keypoint 0.549
0.854 ±

0.810
3.22

3.2250 ±

0.607

Keyvector 4.705
4.675 ±

0.766
4.773

5.026 ±

1.478

Ours 2.967
2.996 ±

0.300
1.438

1.511 ±

0.429

Lower values are better. Bold values indicate the best statistics.

we augment both methods with information about the known full

source trajectory. Specifically, we provide access to ground-truth

root joint estimation, independent pose computation per frame

(Section 3.4.2), and retroactive smoothing of the whole sequence

(Section 3.4.3).
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(a)

(b)

Fig. 17. Sample motion frames (a) without and (b) with contact informa-

tion during a doorknob manipulation.

(a)

(b)

Fig. 18. Example (a) without and (b) with root preconditioning.

Fingertip Keypoint Tracking. We select four keypoints at the tips

of each Allegro finger to track the human thumb, index, middle,

and ring fingertip positions. The corresponding Allegro hand pose

is computed using an existing optimization formulation [Qin et al.

2022], which is equivalent to Equation (3) with λC = 0.

Whole-hand Relative Keyvectors. We next consider the strategy

of generating target hand poses using pairs of keypoints (i.e.,

keyvectors) [Handa et al. 2019; Sivakumar et al. 2022]. Specifically,

we use the objective formulation proposed by DexPilot [Handa

et al. 2019] as the basis for pose computation. Exact keyvectors

and detailed term explanations are available in the cited work.

Full trajectory comparisons to both methods are available in

the supplementary video. As illustrated in Figure 16, we observe

that both baseline methods, while capable of producing smooth

trajectory estimates, generally struggle to make contact with

the object and produce nontrivial motion misalignment artifacts.

Table 1 tabulates the performance of all methods across the entire

task suite using average contact and marker distance error metrics.

Because keypoint tracking only optimizes for marker error and

tracks only fingertip positions, the overall marker error is less than

that of our method; however, doing so comes at the cost of contact

distance, which we argue results in comparatively worse artifacts

qualitatively. It is also interesting to observe that our marker error

standard deviation is significantly better despite the lower median

of keypoint tracking, which indicates that dense virtual markers

Fig. 19. (a) The original design candidate thumb is unable to reach the

flashlight switch while (b) the revised candidate thumb length adequately

closes the gap in all such frames.

tend to be more consistent than single-point tracking. Both our

method and keypoint tracking, however, are superior to keyvector

tracking in relation to both metrics by substantial margins.

Because both of these techniques have been used for retargeting

in teleoperation scenarios, a person in-the-loop can interactively

correct for errors such as those shown in Figure 16. In contrast,

the approach presented in this article provides results with good

contact without the need for such intervention.

4.7 Ablations

No Contact Data. We perform an ablation against a pure marker

tracking pipeline to test the importance of contact information. We

select the alternate human hand for simplicity and perform the ab-

lation by setting λc = 0. We examine results after per-frame full

pose estimation, because large divergences in behavior are already

apparent. Figure 17 provides several comparison frames. Notably,

the hand lacking contact information fails to conform to the door-

knob at numerous points of the manipulation, resulting in a motion

estimate that is poor at the outset. We note that this failure was

compounded in the case of less humanlike hands, where marker

estimates were less reliable. The dramatic difference in motion re-

construction, even at a coarse level, clearly indicates that marker

tracking information alone is not sufficient for motions involving

rich object interaction—contact information is essential.

No Root Preconditioning. We perform an additional ablation to

examine the necessity of computing root transforms as a prepro-

cessing step. Figure 18 illustrates the outcome for a representative

sequence of motion frames. Notably, omission of root precondi-

tioning creates instances of root “drift," in which locally optimal

solutions in subsequent frames are found by moving other joints in

the kinematic chain. The root joint is typically only updated when

the accumulated marker error buildup becomes large, which re-

sults in undesirable sudden jumps in translation. We found results

to be similar regardless of the hand, object, or motion and argue

that it is because the root transformation has a disproportionately

large influence over gradients. A poor starting root transform can

thus bias solutions toward undesirable local minima that can only

be escaped from when marker error buildup becomes substantial.

ACM Trans. Graph., Vol. 44, No. 2, Article 14. Publication date: April 2025.
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(a)

(b)

Fig. 20. (a) A typical three-finger axis mapping and its resulting pose com-

pared to (b) an unusual “Spock"-like configuration achieved by assigning

multiple curves to a single finger.

(a) (b)(b)( ) (b)

Fig. 21. Frame comparison of the prosthetic with (a) one DOF and (b) two

DOFs at the proximal phalange joint.

Solving for the root transformation first directly combats this issue

by reducing problem dimensionality.

5 Extensions

We next discuss two extensions of our method beyond hand mo-

tion retargeting: visualizing hand design choice impacts over full

trajectories and retargeting demonstrations to different objects.

5.1 Visualizing Design Choice Impacts

Our method enables task-specific visualization of design choices as

well as insights into how such parameters can be adjusted. For ex-

ample, determining appropriate finger lengths is a common prob-

lem in both rigging and rapid prototyping. Figure 19 illustrates an

example in which the original thumb is not able to reach the ob-

ject when the source contact distribution is used, while the revised

candidate is able to do so. Another such example is testing alter-

nate finger mappings. As illustrated in Figure 20, it is possible to

change the three-fingered hand’s interaction with the phone by as-

signing multiple axial curves to a single finger, effectively seman-

tically mapping contacts from two human fingers (e.g., index and

middle) to a single alien finger. Such flexibility is particularly use-

ful for hands with different finger counts or other morphological

Fig. 22. Our method can be extended to accommodate retargeting generic

motions between different objects. Hand grasps successfully make subtle,

but important adjustments to adapt to simple shapes (left) as well as more

dramatic adjustments for more complex features (right).

0

2π�

Index Middle Ring Pinky

0

22ππ�

Fig. 23. Approximate atlases used to retarget contacts of a handoff ma-

nipulation between a simple apple and a more geometrically complex gar-

goyle figurine. Axial curves corresponding to each finger are denoted by

different curve colors, while black spheres denote the start point of each

curve. Curve placements on the target surface can be used to implicitly

modify grasps with respect to the surface to any extent desired.

differences. Full trajectories for both examples are in the supple-

mentary video.

A third example is using our method to visualize the impact of

DOFs. Because our method does not make assumptions about the

kinematics of the system, it is possible to modify the underlying

skeleton and automatically recompute the entire motion sequence.

This functionality is useful for rapid prototyping of new hand de-

signs or selecting the best hand for a particular task set [Bauer et al.

2022], especially for driving decisions such as adding or removing

motors. We illustrate this capability in a case study of the pros-

thetic hand. We start by assuming 1-DOF knuckle joints at each

finger controlling flexion and extension and preform a comparison

against a 2-DOF knuckle joint variant capable of adduction and ab-

duction. Figure 21 illustrates a representative frame of noticeable

difference in computed solutions during the hammer task. Under

the same settings, the 1-DOF variant generates intermediate solu-

tions containing physically implausible hammer grips. In compari-

son, the 2-DOF variant provides a more realistic grip. These obser-

vations suggest the 1-DOF variant does not possess the dexterity

required to manipulate the tool in an anthropomorphic manner

ACM Trans. Graph., Vol. 44, No. 2, Article 14. Publication date: April 2025.
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(a) (b)

Fig. 24. When optimized from the same start position with the same

marker and contact distribution targets, (a) a 2-DOF MCP joint converges

to a solution that penetrates through the hammer while (b) a 3-DOF MCP

joint is able to conform to the hammer’s handle with much less intersec-

tion. We found that the torsional DOF was utilized in this particular grip

across all hands that included a 3-DOF MCP joint.

and that including a second motor per finger might be worthwhile.

Our method can thus be used to evaluate task-centric dexterity

mid-manipulation, which would otherwise be challenging to do

manually.

5.2 Object Substitution

Our method also enables retargeting generic manipulations to

different objects. Contact sets can be generated on new objects

through any means of correspondance, including by reversing the

raytrace process from the source hand, tracing from the original

object, through diffusion models [Wei et al. 2023], or, perhaps most

interestingly, by using our contact atlas approach. The remainder

of the pipeline is subsequently applied normally to produce the

final result. We illustrate examples in Figures 22 and 23, and the

supplementary video of re-purposing an existing apple “handoff"

manipulation to a potato, where contacts on the potato are gener-

ated by tracing the original contacts outward from the apple, and a

more geometrically complex gargoyle sourced from the Thingi10K

dataset [Zhou and Jacobson 2016], where contacts are instead re-

targeted using a contact atlas between the apple and the gargoyle.

6 Discussion

We next provide additional analyses of our results and a compari-

son of our framework against learning-based retargeting methods.

6.1 Assessment of Results

We were pleasantly surprised to find that high-quality retargets

were possible even with a uniform set of parameters across all

hands, although certain hands were comparatively easier to retar-

get than others. Surprisingly, the three fingered alien hand was the

easiest to work with despite its unusual morphology. Its compara-

tively thick size was highly beneficial for limiting pose estimate un-

certainty with respect to both markers and contacts. The only no-

ticeable drawback was higher relative self-intersection compared

to other hands; however, this behavior was unsurprising, because

the large majority of these intersections were caused by overlap

between the second and third phalange, which were mapped to

to the index and middle finger of the human hand—two fingers

that commonly moved together in close proximity within the task

suite we examined. In contrast, despite its more anthropomorphic

appearance, estimations of the prosthesis wrist position were com-

paratively far noisier due to its thin profile. The prosthesis also

exhibited relatively high hand-object intersection for the hammer

and stapler tasks, which we found could be attributed to its small

size and limited DOFs. In the case of the stapler, the prosthesis

had difficulty curling fingers cleanly around the entire object. In

the case of the hammer, as illustrated in Figure 24, the lack of a tor-

sional metacarpophalangeal (MCP) DOF caused the index finger to

penetrate through the hammer rather than wrapping around the

handle. The witch and Allegro hand were the most difficult to re-

target due to their unusually long finger lengths, which we found

to be one of the most significant factors in determining retargeting

complexity between hands.

However, despite the Allegro hand’s general difficulty in re-

targeting, our method was still able to produce remarkably

high-quality solutions. As demonstrated in recently published

work [Lakshmipathy and Pollard 2024], retargeted kinematic tra-

jectories can be utilized as high-quality priors for building down-

stream physics-based controllers. The cited work even demon-

strates that such controllers can be synthesized online in real time

through simple predictive sampling in a local search space.

Additionally, although we focus on hands in this article, we

showed that our shape matching approach is general and can be

used to precisely define transfer of arbitrary local data between

shapes. Additional applications include defining complex interac-

tions between surfaces (e.g., between two deformables) or porting

assets from one surface to another. We are interested in exploring

additional extensions of our approach to broader contexts in the

future.

Finally, we notably did not receive any hand pairs following an

area-area virtual marker configuration; however, because our goal

in this work was to examine a wide variety of dissimilar hands,

we suspect that the annotator’s decision to use only many-to-one

configurations is largely a result of experiment specifics. Even the

retargeted human hand we used had different finger length sizes

than the source. Retargeting between human hands of similar pro-

portion or highly anthropomorphic robot hands (e.g., the Shadow

Hand3) may provide a more compelling use case for area markers.

6.2 Comparison with Machine Learning Approaches

Our straightforward contact-driven motion retargeting process

contrasts with many modern retargeting approaches from the full-

body character animation literature, the large majority of which

are learning-based. We include a brief discussion of such ap-

proaches and how we position our work relative to them.

A major advantage of our method is agnosticism to each hand’s

underlying skeleton. Previous approaches have demonstrated the

ability to generalize over skeleton variations between different

characters in terms of bone lengths [Won and Lee 2019; Zhang

et al. 2023b, a] or entire kinematic chains [Aberman et al. 2020;

Reda et al. 2023]. Our work falls into the latter category. The latter

two cited works, however, either assume that retargeted skeletons

3https://www.shadowrobot.com/dexterous-hand-series/
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Fig. 25. Our method does not adapt to object substitution instances that

require significant pregrasp or release adjustments. (Top) The retargeted

approach for the original apple object produces a clean trajectory; however,

(bottom) our method fails to accommodate geometries with widely differ-

ing features, because no contact data are available during these segments.

Any smoothed transitions made during final reconstruction within these

segments is purely incidental and a consequence of interpolation rather

than a response to the underlying problem.

are homomorphic in kinematic chain endpoints [Aberman et al.

2020] or requires far more computationally expensive reinforce-

ment learning [Reda et al. 2023]. To put reinforcement learning

requirements into perspective, Zhang et. al. required 3–9 days of

training on a cluster of 640 CPUs [Zhang et al. 2023a] while one of

our most expensive retargets (prosthetic hand × doorknob task) re-

quired 20.57 hours of single-thread processing on one CPU, even

accounting for an inefficient front end and finite-difference gra-

dient computations. We also discuss methods to improve compu-

tation time in Appendix C. Our method thus offers a more direct

approach and is comparatively much faster while requiring far less

computational resources.

Another broad category of learning-based approaches in cross-

skeleton retargeting involves discovering mappings between ei-

ther source and target character motions in a joint embedding

space [Choi et al. 2020; Li et al. 2023] or a set of reference poses

[Kim et al. 2022; Rhodin et al. 2014]. The former approach assumes

that motion data for the target embodiment already exist, while

the latter assumes that a small number of representative poses is

sufficient to capture the entire space of possible mappings. But in

this work, as is common in real-world settings, the hand assets

are custom and therefore have no existing motion data. Addition-

ally, the space of possible manipulations is massive—it is unclear

if a small number of representative poses will sufficiently general-

ize over such a space. Our retargeting method, in contrast, is mo-

tion agnostic and assumes that no motion data for the target hand is

available, which we argue more closely captures the limitations of

real-world settings.

In summary, the primary benefits of our approach are its lim-

ited target embodiment assumptions with respect to both struc-

ture (skeleton, geometry, etc.) and mechanics (prior motion, op-

eration space, etc.), direct and intuitive approach, and minimal

computation overhead requirement in comparison to ML-based ap-

proaches. We acknowledge that it is possible, and even probable,

that many aforementioned techniques can offer compelling solu-

tions for some of our hands and tasks; however, we maintain that

our approach offers a viable alternative to situations where method

assumptions or computational overhead can limit adoption.

7 Drawbacks and Limitations

While effective in retargeting motions across a wide range of

hands, objects, and manipulations, our method contains several

limitations.

The atlas generated by our shape matching approach is notably

discontinuous and nondifferentiable, making it unsuitable for gra-

dient computations or transfer of global media such as smooth

functions or textures. Although these properties were not critical

to our problem scope, formulating a C∞ atlas can potentially en-

able a broader range of useful applications.

Our method does not guarantee a retargeted solution free of ar-

tifacts. Common artifacts included wobbles resulting from leftover

trajectory estimation noise or under/over fitting splines. However,

both of these artifacts can generally be resolved by tweaking the ac-

celeration cutoff for trajectory refinement or adjusting the number

of B-Spline control points. We found that a fixed set of parameters

was suitable for most motions, but note that further refinement is

possible with per-hand-per-motion customization if desired.

Our method sometimes has difficulty resolving table intersec-

tions in a manner that appears natural, which can result in un-

canny finger contortions during object pickup and release. This

issue arose in the flashlight and stapler manipulations by the

witch hand, and the problem is generally more common in un-

constrained long-fingered hands. These observations suggest that

long-fingered hands may require root solutions that substantially

deviate from standard hands, and that using a more similar refer-

ence hand may improve results.

Although we have discussed two interesting instances of object

retargeting, our method is currently highly limited in the range

of object variations it can support. In particular, we observe two

primary failure modes: failure to adapt to different pregrasp and

release configurations and failure to adapt to instances where

contacts are not reachable. Figure 25 illustrates an instance where

pregrasp adaptation negligence can produce severe penetration

artifacts. We also provide examples in the supplementary video to

illustrate similar issues for scaled objects; however, we show that

our method is capable of handling such variations to a limited

extent.

Finally, our formulation of matching source hand object

contacts is generally less effective for target hands with large

morphological or kinematic divergences. The Allegro hand is a

prime example of a challenging retargeting problem because of its

size and limited DOFs. The main difficulty caused by the large size

of this manipulator was greater self-intersection, the likelihood of

which is generally higher in larger hands. In such instances, and

in others where the target hand diverges enough to substantially

alter the general expected interaction mechanics (e.g., a human

vs. a Barrett Hand4) or with respect to a particular manipulation

(e.g., a pinch grasp on a larger hand vs. a human power grasp),

matching original contacts exactly may not be the best problem

formulation. While we demonstrated that our method can still han-

dle considerable divergences, assuming identical object contacts

4https://robots.ros.org/barrett-hand/
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between hands is a limiting factor of our approach. In these

instances, it may be worth considering alternative representations

for mapping between hand motions [Karunratanakul et al. 2020;

Khargonkar et al. 2023; She et al. 2022, 2024] and possibly augment-

ing these representations with methods introduced in this article.

Addressing such divergences is an interesting area for future work.

8 Conclusion

We have presented a simple, reliable, and standardized framework

capable of kinematically retargeting contact-rich anthropomor-

phic manipulations to a wide variety of target hands. Central to

our method is the utilization of contact areas, for which we have

presented both a novel, atlas-based shape matching algorithm

capable of transferring localized contact data procedurally with

high control and precision, and an optimization pipeline capable

of utilizing said information to create high-quality retargeted

results. We have also shown that our method performs well on

bimanual tasks and under stress tests of hand size variations and

cyclic retargeting. We have demonstrated that our method is ca-

pable of enabling unique extensions, including object substitution

and visualizing the impact of hand design parameters over full

trajectories. Finally, we have shown the value of contact informa-

tion and key aspects of our processing pipeline through baseline

comparisons and ablations. Importantly, we have maintained our

commitment to standardization, simplicity, and reliability in the

design of our pipeline, which we hope will encourage its adoption

in downstream applications.
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Appendices

A Artist Annotation Procedures

All virtual markers and axial curves used in our results were gen-

erated by an artist with basic training in our annotation tools.

We roughly detail the artist’s annotation process, the requests we

made, and tools we provided in the following subsections.

λA = 1 λA = 1.338

λS = 1 λS = 2

Fig. 26. Depictions of sample starting and final values of λA and λS , which

typically are adjusted to target finger length and girth, respectively.

A.1 Virtual Markers

We provided the artist with a representative photo of a full hand

marker set commonly used in motion capture. We requested the

artist to designate equivalent sets of markers on the source and

all target hands. The artist performed the annotation by selecting
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individual or groups of vertices on each mesh using default brush

tools commonly available in three-dimensional modeling software.

The received annotations were processed and stored as corre-

sponding virtual marker sets for all experiments.

A.2 Axial Curves

We requested the artist to identify similar features on the palmar

surface of each hand but provided no further directions.

We provided the artist a custom tool set to assist with the axis

creation process. To do so, the artist first selects two points on the

source hand. A geodesic is then traced between the two points

in the order of selection, and all intermediate edge crossings

are automatically designated as discrete axis points. Traversal

between points is stored via the exponential map with the turning

angle of the outgoing tangent vector being computed relative to

that of the incoming tangent vector. This representation allows

for approximate isometric reconstruction independently of the

tangent basis at any point except the starting location, which

is critical for the transfer procedure. A more comprehensive

explanation of the axial curve model is available in existing work

[Lakshmipathy et al. 2023].

The artist then selects two points on the target hand to initi-

ate the transfer process. We use the first point as the origin for

the axis reconstruction and the geodesic trace between the two

points to determine the initial turning angle. The remainder of the

axis curve is then reconstructed automatically from the exponen-

tial map computed on the source domain. After reconstruction, the

artist determines λA for the target hand axis. In practice, a satis-

factory λA extended the axis along the full length of the finger

(Figure 26). The procedure is repeated until all axial curves have

been designated on the source hand, transferred to the target hand,

and fitted with an appropriate λA. The source hand curves were re-

used to accelerate annotation of the remaining target hands.

To determine λS , we provided the artist three sample frames of

contact data on the source hand from a single motion sequence.

Contacts were first loaded and parameterized on the source hand.

After parameterization, contacts were transferred to the target

hand and reconstucted from corresponding axial points under the

linear scaling previously determined by λA. λS was then adjusted

until an appropriate semantically meaningful distribution was pro-

duced (Figure 26). The artist then validated the parameter choice

by repeating the transfer procedure with the remaining two frames

of data. The procedure was repeated with all axial curves and

hands to complete the annotation. The determined parameter val-

ues were used to procedurally transfer all frames of contact data

in all results without any additional adjustment.

B Experiment Details

Tables 2 and 3 tabulate the parameters of our target hand models

and transfer coefficients. The optimization weighting coefficients

λm , λcd , λcn , λc , and λt were all set to 1.0, while λj was set to 50.0.

The same coefficients were used in all retargets. The MANO hand

does not contain a skeleton and was instead animated via vertex

positions. Table 4 tabulates the total frames, contacts per frame,

and number of fitted B-Spline control points for each task in our

suite.

Table 2. Parameters for All Target Hands

Hand Parameters

Root
No.

Fingers

No.

VMarkers
No. DOFs

MANO Wrist 5 19 N/A

Human Forearm 5 19 54

Witch Forearm 5 19 54

Alien Forearm 3 13 42

Allegro Wrist 4 16 22

Prosthetic Wrist 5 19 26

Table 3. λ Coefficients Used for Bulk Contact Transfer from the

MANO Hand

Hand Alignment Parameters (λA , λS )

Thumb Index Middle Ring Pinky

Human 1.0, 1.2 1.0, 1.0 1.0, 1.0 1.0, 1.0 1.0, 1.0

Witch 1.15, 1.46 1.55, 1.5 1.55, 1.59 1.55, 1.51 1.55, 1.5

Alien 1.22, 1.45 1.27, 1.5 1.23, 1.57 N/A N/A

Allegro 1.8, 1.9 1.8, 1.913 1.8, 1.97 1.8, 2.0 N/A

Prosthetic 1.33, 1.5 1.33, 1.4 1.33, 1.4 1.33, 1.3 1.33, 1.43

Table 4. Parameters for All Tasks in Our Suite

Task Parameters

Frames
No. Contacts /

Frame (μ ± σ )

Control

Points

Apple 703 1648.75 ± 360.17 60

Doorknob 1040 4766.07 ± 1334.91 40

Flashlight 1040 552.75 ± 274.48 80

Hammer 768 1235.53 ± 536.34 90

Phone 1145 415.62 ± 161.28 120

Stapler 877 516.27 ± 387.64 70

Motions all run at 120 FPS.

We set Eacc to 500◦/s2 for all angular motion and 500 cm/s2

for all linear motion. We cap the number of iterations at 20. The

same bounds were applied to all DOFs across all manipulators in-

discriminately. Note that the units of linear motion are arbitrary

and vary depending on the scene scale. While these thresholds are

high, we found that tighter bounds were not necessary, because

the provided estimates were only data points for spline fits. Brief

and intermittent noise from remaining large jumps in acceleration

were automatically smoothed out due to our splines consisting of

relatively few control points (<12% of total frame counts).

C Compute-time Analysis

Although our computation times are currently somewhat slow,

there do exist several cheap acceleration strategies. We consider

four techniques in this section: reducing mesh resolution, reduc-

ing the number of DOFs, reducing the number of virtual marker

points, and reducing the number of contact points. We then con-

clude with a discussion of further potential improvements.

We consider the initial trajectory estimation phase of the pros-

thesis hand doorknob task for our analysis, which is notable for

being the slowest step of one of the slowest results to compute
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among all 30 tasks. Consequently, this step has considerable room

for improvement among our four axes of analysis.

C.1 Results

Table 5. Compute-time Variations Induced by Mesh Resolution

Alterations

Compute Times by Mesh Resolution (Res.)

Original 50% Res. 25% Res. 12.5% Res.

13.76 hr 13.34 hr 12.54 hr 12.18 hr

Mesh Resolution Reduction. The original prosthesis mesh is com-

prised of 27,780 faces. We consider three levels of face reduction:

50%, 75%, and 87.5%. Table 5 tabulates the results of the findings.

Table 6. Compute-time Variations Induced by DOF

Alterations

Compute Times by DOFs

Original

(26-DOFs)

3-DOF PCP

(31-DOFs)

1-DOF PCP

(21-DOFs)

13.76 hr 15.73 hr 11.56 hr

DOF Reduction. The original prosthesis rig is composed of 2-

DOF proximal phalange (PCP) joints at each finger. We examine

two alterations: 3-DOF PCP finger joints and 1-DOF PCP finger

joints. Table 6 tabulates the results of the findings.

Virtual Marker Reduction. The original prosthesis hand consists

of 19 virtual markers with approximately 60 points each. We exam-

ine an alteration where each marker is summarized into a single

point via averaging. Table 7 tabulates the results of the findings.

Table 7. Compute-time Variations Induced by Virtual

Marker Counts

Compute Times by Marker Counts

Original (19 Markers, ∼60

points each)

Reduced (19 Markers, 1

point each)

13.76 hr 11.56 hr

Table 8. Compute-time Variations Induced by Altering the

Number of Total Contact Points across All Frames

Compute Times by No. of Contacts

Original 50% Contacts 25% Contacts

13.76 hr 9.40 hr 7.15 hr

Contact Point Reduction. The doorknob task contains the largest

number of contact points out of all tasks by a large margin. We

can systematically reduce the number of contact points across

all frames by reducing the filter tolerance as outlined in Sec-

tion 3.3.2, paragraph 3. We select tolerances such that the total

number of contacts are reduced by 50% and 75% and show results

in Table 8.

C.2 Discussion

Tables 5–8 clearly indicate that compute times can be reduced by

reducing mesh resolution, DOFs, number of marker points, and

number of contact points, although performance gains vary de-

pending on the axis of reduction. Reducing the number of con-

tact points provides the most substantial speedup; however, as ob-

served from the baseline comparisons, ignoring contacts can signif-

icantly degrade motion reconstruction quality. From these results,

we recommend the following steps to improve computation times:

(1) Reduce the total number of DOFs in the system if possible.

(2) Reduce mesh resolution as much as possible. Reductions in

resolution will not impact the final retarget.

(3) Reduce the number of virtual marker points, but verify free-

space trajectory estimates will remain largely unaltered.

(4) Reduce the number of contact points such that the initial

trajectory estimates remain acceptable. It is reasonable to

predict that the final retarget will approximate a smoothed-

out version of the initial trajectory estimate.

C.3 Future Improvements

The compute-time reduction techniques proposed in this section

are intended to be inexpensive and easy to perform under our pro-

posed method; however, there is still ample room for further im-

provement. Two immediate pathways are worth considering.

First, our entire retargeting pipeline was implemented in Au-

todesk Maya. Although Maya’s UI was useful, we found that

it was not optimal for compute-time performance. Because the

software suite is closed source and does not provide a detailed

overview of scene graph updates, it is possible that there is consid-

erable “bookkeeping" overhead induced during our optimization

pipeline. A more bare-bones software suite optimized for optimiza-

tion pipelines could therefore provide substantial speedup out of

the box.

Second, our optimization is currently bottlenecked by finite-

difference (FD) approximations of gradients. We used FD due to

both its ease of implementation and ability to easily adapt to dif-

ferent skinning policies, contact distributions, and scene geome-

tries. Analytical or chain-rule computed gradients thus also have

the potential to provide substantial speedup, albeit at the cost of

additional implementation or memory overhead.
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