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Fig. 1: Snapshots of a robotic hand performing dexterous in-hand manipulation tasks using the integration scheme we
developed. Tasks from left to right: 1) horizontally turning a screwdriver, 2) vertically turning the screwdriver, 3) turning an
M2 threaded rod, 4) pressing down a knurled hobby knife, 5) pressing down a dining knife, 6) closing tweezers.

Abstract— Reasoning about rolling and sliding contact, or
roll-slide contact for short, is critical for dexterous manipulation
tasks that involve intricate geometries. But existing works
on roll-slide contact mostly focus on continuous shapes with
differentiable parametrizations. This work extends roll-slide
contact modeling to manifold meshes. Specifically, we present
an integration scheme based on geodesic tracing to first-order
time-integrate roll-slide contact directly on meshes, enabling
dexterous manipulation to reason over high-fidelity discrete
representations of an object’s true geometry. Using our method,
we planned dexterous motions of a multi-finger robotic hand
manipulating five objects in-hand in simulation. The planning
was achieved with a least-squares optimizer that strives to
maintain the most stable instantaneous grasp by minimizing
contact sliding and spinning. Then, we evaluated our method
against a baseline using collision detection and a baseline using
primitive shapes. The results show that our method performed
the best in accuracy and precision, even for coarse meshes.
We conclude with a future work discussion on incorporating
multiple contacts and contact forces to achieve accurate and
robust mesh-based surface contact modeling.

I. INTRODUCTION

Societal expectations have been growing for humanoid
robots to contribute to manufacturing, assembly, agriculture,
and healthcare [1]]-[3]]. To meet such expectations, humanoid
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robots need to have strong dexterous manipulation capabil-
ities, which remain challenging to achieve largely because
modeling and reasoning about contact is difficult.

A seminal work on contact modeling is the rigid-body
single-point roll-slide contact kinematics model formulated
by Montana in 1988 [4]. This model considers the contact-
ing bodies’ detailed geometries, addresses both rolling and
sliding motions, and has seen iterations of improvements
and different formulations [S[]-[13]]. Meanwhile, significant
research progress has been made on dexterous manipulation
motion planning with roll-slide contact [[14]—[28].

Yet, related prior works mostly focused on primitive
shapes with globally differentiable parametric functions,
whereas many real-world objects cannot be easily modeled
in these approaches. Furthermore, decomposing a complex
shape into primitive shapes introduces artificial discontinu-
ities, making it difficult to model continuous global contact
motion.

In contrast, manifold meshes are performant and versatile
in discretely representing realistic shapes—they are the data
structure of numerous CAD models and 3D digital art works,
the blueprints for computer-aided manufacturing processes
such as 3D printing and CNC machining. Hence, extending
roll-slide contact modeling to manifold meshes can enable
dexterous manipulation to reason over high-fidelity discrete
representations of an object’s true geometry beyond contin-



uous shapes. We believe that this has the potential to unlock
new capabilities for multi-finger robotic hands.

To this end, we present a geodesic tracing-based inte-
gration scheme to first-order time-integrate roll-slide contact
directly on manifold meshes. We used our method to plan
motions of a multi-finger robotic hand performing dexterous
in-hand manipulation tasks, as shown in Fig. [T} The planning
was achieved with a least-squares optimizer that computes
the most stable instantaneous grasp by minimizing contact
sliding and spinning. Then, we evaluated our method against
two baselines—one using collision detection and one using
primitive shapes—in two simulation experiments: a hand
turning a screwdriver, and a sphere rolling on a ring under
different mesh resolutions. The results show that our method
performed the best in accuracy and precision, even for coarse
meshes, with limitations in handling multiple contacts. We
conclude with a discussion on resolving these limitations
while incorporating contact forces to create an accurate and
robust mesh-based surface contact model.

II. RELATED WORKS
A. Roll-Slide Contact Modeling

The roll-slide contact kinematics model we refer to in
this work is a set of first-order differential equations that
characterizes the positions and velocities of contact points
on two rigid surfaces that roll and slide on each other. Some
oldest versions of this model date back to the 1980s [4],
[29]. Since then, this subject has been extensively studied in
rigid body kinematics [S]-[9]], and the results are summarized
in robotics textbooks [11]], [30]—[33[]. Meanwhile, improve-
ments and alternative formulations have been proposed [10],
[12], [13]]. A key difference among these formulations is their
surface parametrizations.

However, these prior works typically concern continuous
geometries with global, differentiable parametrizations. For
geometries that are difficult to parametrize with closed-form
differentiable functions, the methods in these prior works
may not be readily applicable. Our work builds on these prior
works’ ideas—particularly Montana’s formulation [4]—but
focuses on the discrete setting with manifold meshes, which
do not always have closed-form global parametrizations.

B. Dexterous Motion Planning with Roll-Slide Contact

The roll-slide contact kinematics model has been linked
to dexterous manipulation motion planning for multi-finger
robotic hands since its inception. Early works on this subject
absorbed the roll-slide contact model into the robotic hand’s
kinematics and dynamics equations [[14]-[18]]. Through Ja-
cobians, contact type models, grasp matrix, and inverse
kinematics and dynamics, dexterous motions were generated.
However, as existing roll-slide contact models mostly rely
on differentiable surface parametrizations, these early works
only considered primitive shapes as the manipulated objects.

Later, trajectory optimization and policy learning ap-
proaches surged in popularity in dexterous manipulation
motion planning. As a more classical method, the roll-
slide contact model has often acted as a foundational but

supporting part in a larger algorithmic framework. Several
works did exploit rolling motions in hand motion planning,
but few addressed roll-slide contact kinematics for detailed
geometries of general objects [19]-[27].

A closely related work to ours is [28]], which employed
signed distance field to parametrize general shapes in a
trajectory optimization framework that emphasizes differ-
entiability. The authors generated dexterous motions for a
multi-finger robotic hand, and impressively demonstrated
them in the real world. However, a limitation is that [28]]
still modeled the manipulated objects as primitive shapes,
with the authors themselves noting that accepting meshes as
input is generally intractable. Our method offers a solution
to this limitation by taking full manifold meshes as input.

III. METHODS

Our method uses Montatna’s roll-slide contact kinematics
model [4] as the basis. Hence, we will first recapitulate
Montana’s theory, and then present our method on top.

A. Induced Velocity of Contact Frame

Consider a general 3D rigid body with a body frame
{B} fixed to it. Assume that the body has an orthogonal
coordinate chart f : R2 — R3 that describes its surface
relative to {B}. Define a contact frame {C'}, whose origin
moves on the surface and whose z-axis is parallel with
the surface normal at {C}’s origin. Define ¢ € R? as
the minimal-coordinate position of {C}’s origin relative to
{B} through f, and ¢ as its time derivative. Then, {C}’s
generalized velocity relative to {B} expressed in {C'}, or
{C}’s body twist, is
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W, vh o € R3 are {C}’s angular and linear velocities
relative to {B} expressed in {C'}, respectively. M € R?*?2
is the metric tensor, K € R?*2 is the curvature tensor, and
T € R'*? is the torsion form. Next, define a local frame {L}
that instantaneously coincides with {C'} but is fixed to the
body. This means that {L} has the same pose, i.e., position
and orientation, as {C'}, but zero velocities relative to {B}.

B. Roll-Slide Contact Kinematics

Now, consider two rigid bodies indexed 0 and 1. With the
above definitions, we have six frames: {B;},{C;},{L;},i €
{0, 1}. Without loss of generality, define each body’s surface
normal to be outward-pointing. Then, an ideal point contact
between the two bodies means that their contact frames’
origins coincide and z-axes anti-align. If the contact is
maintained, the relative velocities between {Cy} and {C}}
will be zero except the angular element about the z-axis,
which is the spin element. Mathematically,
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Tc,c, is the homogeneous transformation representing
{C1}’s pose relative to {Cp}. A “+” means any scalar. We
refer to (2) as the ideal point contact constraint.

Since {L;} coincides with {C;} but is fixed to body
i, the relative twist between {Lo} and {L;}, VLbO I,
[we wy w: vz vy vZ]T, represents the Cartesian
rolling and sliding velocities between the two bodies. w, is
the spinning speed about the contact normal, v, is the separa-
tion/interpenetration speed, and v, v, are the sliding speeds
in the contact tangent plane. By twist frame transformation
[31], V£ ., and V& ., are related by

VlIfOLl + Vglcl = Achlco Vgoco + VCb’oCla (3)

where Ad is the adjoint. (3) and (I) connect the Cartesian
rolling and sliding velocities and the contacts’ minimal-
coordinate velocities, ¢g;’s, of both bodies, forming the gov-
erning equations of roll-slide contact kinematics.

C. Body-to-Contact Integration with Collision Detection

After reviewing Montana’s theory, we investigate first-
order time integration of roll-slide contact on manifold
meshes with the target application of dexterous manipulation
motion planning. Since what matters is the relative motion
between two contacting bodies, without loss of generality, we
define body 0 as the reference body whose pose and body
twist relative to a stationary world frame {W} are known,
and body 1 as the moving body. Then, the problem is to
time-update the poses of {Cp}, {C1}, and {B;} relative to
{W}, given both bodies’ poses, their contacts’ poses, and
the relative contact twist, VLbO L, at the current time step.

An intuitive solution is to integrate the bodies’ velocities
first, and then update the contacts based on closest points.
Applying twist frame transformation [31] to V> | = yields

V£0L1 = AdTLlsl VVlE/Bl - AdTLlBO VI;)/BOa “4)

where Vi} 5 is {B;}’s body twist relative to {W}. Since
TWBD7 TW31 y TBOLO s TBlLl s VJI)/BO’ and VIIfULl are kHOWH,
we can solve for V% p, and use any standard integrator
to integrate the body twists and update the poses.

Next, we update the contact frames. If the two bodies
interpenetrate, we update each body’s contact point as the
point on that body closest to the penetration depth-weighted
average of the interpenetration points; the deeper the pene-
tration, the larger the weight. If the two bodies separate, we
update each body’s contact point as the closest point on that
body to the other. Then, we update the contact frames’ z-
axes as the linearly interpolated vertex normals at the updated
contact points. The z- and y-axes can be updated arbitrarily
as long as they form valid rotation matrices with the z-axes.
For ease of visualization, we update the z-axes as the vectors
pointing from the current contacts to the updated contacts,
orthogonally projected onto the z-axes. Lastly, we update the
y-axes with cross product and normalize all three axes to unit
vectors. We implemented this method as a baseline using a
collision detector [[34]—[36]], a closest point querier [37]], and
the 4th-order Runge-Kutta (RK4) integrator in MuJoCo [38]],
with all dynamics—including gravity—turned off.

D. Contact Stabilization

Despite its intuitiveness, the collision detection-based
baseline cannot always keep the two bodies in an ideal point
contact. This is because explicit time integration of velocities
can produce drift and motions in the contact tangent plane,
causing interpenetration or separation.

To resolve this issue, we implemented an inverse
kinematics-inspired contact stabilizer [33]], shown in Algo-
rithm E} At each time step, the stabilizer acts as a reactive
feedback controller and generates a stabilizing twist Vi
that, if added to fo’o Lyi» pushes the current T, ¢, closer to the
ideal T¢ ¢, in (). In Algorithm [T} T¢, ¢, is the two contact
frames’ current relative pose. Tc,c, ideal 15 the T, c, in @[)
Wstbl, Usthi are the angular, linear velocities in V. expm ()
and logm (-) are matrix exponential and matrix logarithm.

Algorithm 1 Contact Stabilizer

Torror Tg'olcl TCO Cq,ideal

Terror [: 3,: 3] < expm (azew-m-)

‘/stbl — logm (Terror)

VEpy & Viow, + Rl kovl]’

Unlike in the inverse kinematics case, the two contact
frames’ x- and y-axes do not need to coincide. Hence, before
taking the matrix logarithm, we replace the rotation matrix
in T in Algorithm [T] with a rotation matrix computed
from a._ ., an axis-angle vector that anti-aligns only the
two contact frames’ z-axes. Lastly, two independently tuned
gains, k,, and k,, are applied to the angular and linear veloci-
ties in Vg, before it is added to VL”0 L, We implemented this
contact stabilizer for the collision detection-based baseline.

E. Contact-to-Body Integration with Geodesic Tracing

Another approach to time-integrating roll-slide contact on
meshes is to apply Montana’s theory. However, a mesh is
generally non-smooth and does not always have a differen-
tiable parametrization in a global coordinate chart. Also, our
target application is dexterous manipulation motion planning.
It is inadequate to define a local coordinate chart based on
a prescribed differentiable space curve as the contact’s path.

Our solution is to use the contact frame itself as the
coordinate chart that locally parametrizes the surface in the
Euclidean space, and update the contact frame at every time
step. Hence, this local coordinate chart only needs to stay
valid for one time step. Specifically, we define the minimal-
coordinate position ¢ in (I]) as the signed geodesic distances
from the contact frame’s origin in the positive z- and y-
directions. To time-integrate the contact point, we trace the
geodesic defined by g relative to the body frame { B} using
explicit Euler and a mesh-based geodesic tracer [39]. This
ensures that the integrated contact point stays on the mesh.
After the integration, we update the contact frame with the
linearly interpolated vertex normals as its z-axis. The other
two axes can be arbitrary as long as they form a valid rotation
matrix with the z-axis, and we update them in the same



way as in the collision detection-based baseline. Algorithm
shows this procedure with time step size At.

Algorithm 2 Geodesic Tracing-Based Contact Integrator
do, g1 < roll-slide kinematics (V2 , , Ko, K1) ,
pB,c, < trace geodesic (¢;At),i € {0,1} [39]

Rp,c; + update contact frame (pp,c;)

Rp,c, and pp,c, are {C;}’s rotation matrix and Carte-
sian position relative to {B;}, respectively. Based on g;’s
definition, the metric tensor M in @) is the identity matrix.
K; is the curvature tensor at the current contact point on
body ¢, which is estimated using a central difference based
on geodesic tracing and linearly interpolated vertex normals.
Since the x- and y-axes are not tracked, we ignore the torsion
form and the spin element in (TJ.

After updating Rp,c, and pp,c,, since the reference
body’s updated pose is known, a rigid body transformation
would yield the moving body’s pose that exactly satisfies the
ideal point contact constraint

TWBI = TWBOTBOCOTCOCI (w) ];116'1' o)

We refer to (3) as exact mating. However, since spin is not
tracked, the top-left 2 x 2 block of T¢,c, is unknown, as
in (2). This means that the moving body has spin as an un-
constrained degree of freedom (DoF), which we parametrize
with a scalar 1. To resolve this issue, we compute a “shadow
orientation” of the moving body, Ry, , by integrating its
angular velocity with RK4. Though Ry, p, Mmay not satisfy
the contact constraint, it helps determine 1), which we solve
for by minimizing the axis-angle vector error between Ry .
and Ry p, with iterative inverse kinematics [33]].

The method above ensures that the integrated frames
exactly satisfy the ideal point contact constraint (2)). Yet, for
closed kinematic chains, such as a multi-finger grasp, addi-
tional structural constraints are present, which may render
the entire kinematic system overdetermined. In those cases,
we use the contact stabilizer in Algorithm [I] instead.

F. Hand Motion Planning with Roll-Slide Contact

Consider a multi-finger hand in contact with an object. The
kinematic objective of dexterous in-hand manipulation is to
achieve desired poses and twists of the object via the hand’s
movement. Hence, we define the object as the reference body
with a known initial pose and twist trajectory.

To plan the hand’s motion, we let the hand maintain the
most stable instantaneous grasp. Kinematically, this means
to minimize the sliding and spinning speeds at each con-
tact while preventing separation and interpenetration, which
translates into a constrained least-squares optimization

iy = argmin (w? + v} 4+ v;) subject to v, =0.  (6)

w, and vz, vy, v, are the spin and the linear elements of
VL”O ,» respectively. g is the hand’s minimal-coordinate
velocities, usually finger joint and palm velocities. To ap-
ply (6) to a hand holding an object, we employ and

Jacobians to express VL”0 r, in terms of minimal-coordinate
velocities: V7 ;= Jutpg + Jotio, where Jy and Jo
are the hand’s and the object’s Jacobians, respectively, and
1o 1s the object’s minimal-coordinate velocity, which is
known. Substituting this equation into (€) yields wy. We
implemented this procedure with an off-the-shelf constrained
least-squares optimizer [40], [41]. In addition, we added
two regularization terms to (6), one to encourage finger
movement and discourage palm movement, and the other
to smooth the trajectory of .

IV. RESULTS AND DISCUSSION
A. Hand Motion Planning with Meshes from the Internet

We downloaded five objects’ meshes from online [42]] and
imported them to the simulation for hand motion planning.
The objects are shown in Fig. 1| The screwdriver has con-
cavities for grip, the threaded rod has threads, and the hobby
knife’s handle is knurled—all are intricate geometric features
difficult to model with primitive shapes or differentiable
parametrizations. The tweezers have one revolute joint for
each arm at its base. The hand consists of four identical 3-
DoF fingers, indexed 1-4 from the thumb to the ring finger.
Each finger has a capsule-shape distal link, can flex/extend
and adduct/abduct at the MCP joint, and flex/extend at the
IP joint. The palm is modeled as a 6-DoF floating base.

To plan the hand’s motion, we first manually configured
the hand into the pose for holding each object. Then, we
prescribed each object’s twist as a constant, and planned
the finger joint and palm velocities with (6) at every time
step. Each object moved in one direction for 5 seconds, and
immediately moved in the opposite direction with the same
speed for another 5 seconds. The simulation ran at 100 Hz.
Fig. [T] shows the motion snapshots in the first 5 seconds.

Overall, the hand motions are realistic, especially the
twisting motions for the screwdriver and the threaded rod,
which engage the fingers’ adduction/abduction DoF. How-
ever, the collision detection-based baseline produced noisy
contact movements, whereas the geodesic tracing-based
method produced interpenetration between the fingers and
the threaded rod.

B. Quantitative Experiment: Hand Turning Screwdriver

To quantitatively compare these methods, we computed
four metrics for each contact during the horizontal screw-
driver motion shown in the first column of Fig.[T} The metrics
are explained below. The ideal values mean the metrics for
an ideal point contact with zero sliding.

1) Separation, computed as the mean of all interpenetra-
tion points’ depths if two meshes interpenetrate, or
the minimum distance between two meshes if they
separate. A positive, negative value means separation,
interpenetration, respectively. Ideal value = 0 mm.

2) Alignment, computed as the angle between the contact
frames’ z-axes on two meshes. Ideal value = 180°.

3) Slippage, computed in three steps: a) record the
geodesic distance traveled by the contact on each mesh
at every time step, b) sum these distances from start
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Fig. 2: Contact paths on the screwdriver’s handle relative to the screwdriver’s body frame. On the right, each column contains
a detail view and a normal view of each finger’s contact paths. The brown eye symbol and arrow indicate the incident light
direction in which the normal view in the corresponding bottom row in brown box is captured. The red arrows point at
finger 1’s contact points produced by the collision baseline at time steps 450 and 451, respectively. The “Tool” and “Finger”
suffixes in the legend mean that the corresponding contact path is on the screwdriver or the finger.
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Fig. 3: One-time step integration from the same contact point
at time ¢ with the primitive baseline (top left), the geodesic
method (top right), and the collision baseline (bottom) on a
3-edge 2D mesh. The black solid lines are the mesh. The
red points are the contact points.

time to current time, ¢) subtract the sums between the
two meshes. Ideal value = 0 mm.

4) Sliding, computed as the sliding speed
the least-squares (6). Ideal value = 0 mm/s.

2 4 42
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Additionally, we added a primitive shape-based baseline
by fitting an ellipsoid to the screwdriver’s handle and a
cylinder and a hemisphere to the finger’s distal link. Then, we
computed the contacts’ minimal coordinate velocities with
(I) and cylindrical- and spherical-coordinate parametriza-
tions. Lastly, we integrated these velocities using explicit
Euler without contact stabilization as in Algorithm[T]or exact
mating as in (3). Since the primitive shapes are abstract
models and the meshes are the true geometries, we computed
the metrics for this baseline by projecting the contact point
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Fig. 4: Screwdriver experiment metrics. Each column rep-
resents a finger. The subplots on each row have the same
vertical axis ticks. “um” means micrometer.

on the primitive shape onto its corresponding mesh using ray
tracing. Fig [3] compares the primitive shape-based baseline
with the collision detection-based baseline and the geodesic
tracing-based method. For conciseness, we abbreviate the
three methods’ names to “the primitive baseline”, “the col-
lision baseline”, and “the geodesic method”.

Fig. 2] and [ show the results. We make the follow-
ing observations: 1) The fingers maintained contact with
the screwdriver for the collision baseline and the geodesic
method, but lost contact for the primitive baseline, as shown
by the “Separation” metric in Fig. @] Meanwhile in Fig. [2] if
a finger is in contact with the screwdriver, the contact path
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Fig. 5: Sphere experiment metrics. The top and bottom 9
plots with “In” and “Out” in the titles are for the sphere
rolling inside and outside the ring, respectively. Each column
represents a mesh resolution.

on the screwdriver and the contact path on the finger should
coincide, which is not the case for the primitive baseline,
indicating separation. This is expected, as an ellipsoid cannot
accurately fit the screwdriver’s detailed geometries, and noth-
ing in the primitive baseline prevents the explicit integration
drift. 2) Both the collision baseline and the geodesic method
produced metrics close to the ideal values. But in Fig. [
the “Alignment” and “Sliding” trajectories for the geodesic
method are smoother. Also, in Fig. |2[’s bottom row, the
geodesic method’s contact paths resemble smooth versions of
the collision baseline’s contact paths in parts where the two
methods’ paths overlap. Both phenomena indicate that the
geodesic method is more precise. This is reasonable, as the
geodesic method traces the incremental geodesics integrated
from the geodesic velocities exactly on the meshes, preserv-
ing a sense of spatial continuity for the contact frames. In
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Reso- Number of Total Geodesic Distance
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Fig. 6: (Top) Sphere experiment paths. Each row represents
a side of the ring. Each column represents a mesh resolution.
The paths on the rings are the contacts’ paths. The paths not
on the rings are the paths of the sphere’s centroid. The length
unit is millimeters. (Bottom) Sphere experiment tabular data.
Pri., Col., Geo., and Truth stand for the primitive baseline,
the collision baseline, the geodesic method, and the ground
truth, respectively.

contrast, the collision baseline incorporates only positions
without considering velocities. Consequently, a contact point
updated by the collision baseline can be anywhere on the
mesh. 3) Shown in Fig. |Z|’s bottom row, from time step
t = 450 to t = 451, finger 1’s contact point produced
by the collision baseline traveled for a considerably long
geodesic distance. When this happened, finger 1’s “Separa-
tion”, “Alignment”, and “Slippage” metrics remained close
to their ideal values. Only the collision baseline exhibited this
behavior. We interpret this as a discontinuous contact shift
in a situation where more than one possible contact point
exist due to the geometry around the contact. This behavior
occurred only for the collision baseline because it does not
preserve spatial continuity and considers all possible contact
points on the entire mesh. In contrast, the geodesic method
obeys the point contact model and integrates velocities to
positions, making it unlikely to discontinuously break a con-
tact and establish a distinct new contact. This also explains
why the collision baseline is less prone to interpenetration
than the geodesic method for the threaded rod. 4) In Fig. [
the sliding speeds are small relative to the screwdriver’s size,



indicating that the fingers mostly rolled on the screwdriver.
The spikes at the 5th second are due to the abrupt reversal
of the screwdriver’s prescribed velocity.

C. Quantitative Experiment: Sphere Rolling on Ring

We compared the three methods in a simpler experiment
of a sphere rolling on the inside and outside of two rings.
The side of the ring on which the sphere rolls always has a
diameter of 20 mm. The sphere’s diameter is 10 mm. Both
the sphere and the rings have fine, medium, and coarse mesh
resolutions. The simulation ran at 100 Hz for 10 seconds. The
sphere’s angular velocity was prescribed so that the sphere
would travel for exactly one revolution around the ring in 10
seconds if the shapes were continuous. The sphere purely
rolls, meaning that the contact sliding speed is always zero.
Hence, we changed the “Sliding” metric from the screwdriver
experiment to the total geodesic distance traveled, which is
averaged between the contacts on the sphere and the ring.
This metric’s ground truth is the ring’s circumference under
continuous geometry: 207. Since the kinematic system is an
open chain, we used the exact mater in () instead of the
contact stabilizer in Algorithm |l| for the geodesic method.

Fig. [5] and [6] show the results. Our observations are as
follows: 1) Without contact stabilization or exact mating,
the primitive baseline drifted quickly and could not maintain
the contact. Though these drifts are not obvious on the
contact paths in Fig. [6] they are significantly more severe
than the results from the other two methods, as reflected
by the “Separation” metric in Fig. f] 2) The collision
baseline’s metrics and contact paths became noisier, and its
total geodesic distance traveled drastically deviated from the
ground truth as mesh resolution decreased. This is because,
for the collision baseline, the contact traveled increasingly
laterally on the ring for coarser meshes, generating the zig-
zag contact paths in Fig. [6] 3) The geodesic method almost
exactly maintained the pure rolling motion and the ideal point
contact for fine and medium mesh resolutions. For coarse
meshes, interpenetration became larger and the sphere’s
traveling direction was off from the ring’s center, causing a
slightly spiral path of the sphere’s centroid. This is because
the meshes developed flatter faces and sharper corners as
their resolutions decreased, whereas their vertex normals
were still linearly interpolated and the exact mater (5) was
used. When the meshes were too coarse, the interpolation
could no longer obtain surface normals close to those on a
smooth sphere or ring. Thus, interpenetration and movement
direction drift became more likely. Nevertheless, the geodesic
method’s total geodesic distance traveled remained close to
the ground truth for coarse meshes, as shown in Fig. [6]

D. Limitations and Future Work

The geodesic method has limitations in handling multiple
contact points. As the screwdriver experiment showed, multi-
contact situations are hard to avoid for complex shapes.
Hence, a meaningful future direction would be to extend roll-
slide contact modeling to surface contact between meshes.
A promising approach to achieving this is to combine the

geodesic method and the collision baseline, as they appear
complementary. The geodesic method excels at accuracy
and precision, but is local. The collision baseline excels
at recognizing all contacts on the entire mesh, but lacks
precision and robustness against mesh resolution degrada-
tion. Therefore, the two methods can be combined into
a hierarchical integration scheme: The collision baseline
globally detects the most likely contacts in low precision,
and the geodesic method finely integrates each contact.
Another limitation is that this work concerns first-order
kinematic integration, which involves poses and velocities
but not forces. This means that the planned motions are
kinematically feasible, but may not be feasible when gravity,
friction, and inertial forces are present. Despite this, consider-
ing the complex kinematic and contact constraints in dexter-
ous multi-finger in-hand manipulation, the planned motions
contain detailed information about roll-slide behaviors, and
could be close to well-conditioned trajectories feasible in the
real world, which could be useful for downstream trajectory
optimization, policy learning, and animation tasks.
Meanwhile, we envision the incorporation of soft contact
models, such as pressure field contact [43]], [44], to produce
the center of pressure as a representative contact point.
This could enable a point contact model to describe the
essential movement trend of a surface contact patch for
motion planning, which is an exciting direction to explore.

V. CONCLUSIONS

This work presents a geodesic tracing-based method to
first-order time-integrate roll-slide contact directly on mani-
fold meshes. The significance is that our method enables roll-
slide contact modeling and dexterous manipulation motion
planning to reason over high-fidelity discrete representations
of an object’s true geometry, beyond primitive shapes and
shapes with differentiable parametrizations. Our method’s
technical core is to use the contact frame as the coordinate
chart to locally parametrize the surface in the Euclidean
space, and apply Montana’s theory with a mesh-based
geodesic tracer. We used our method to plan the motion
of a multi-finger robotic hand performing dexterous in-hand
manipulation tasks. The results are qualitatively realistic.
Then, we quantitatively evaluated our method in two simula-
tion experiments against a baseline using collision detection
and a baseline using primitive shapes. The results show
that our method performed the best in accuracy, precision,
and robustness against low mesh resolution, with limitations
in handling multiple contacts. Lastly, we discuss future
directions to complementarily combine our geodesic method
and the collision baseline, and to incorporate contact forces
via soft contact models and the center of pressure.
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