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Abstract
Online learning algorithms that minimize regret provide strong guarantees in situations that involve
repeatedly making decisions in an uncertain environment, e.g. a driver deciding what route to drive
to work every day. While regret minimization has been extensively studied in repeated games, we
study regret minimization for a richer class of games called bounded memory games. In each round
of a two-player bounded memory-m game, both players simultaneously play an action, observe
an outcome and receive a reward. The reward may depend on the last m outcomes as well as the
actions of the players in the current round. The standard notion of regret for repeated games is no
longer suitable because actions and rewards can depend on the history of play. To account for this
generality, we introduce the notion of k-adaptive regret, which compares the reward obtained by
playing actions prescribed by the algorithm against a hypothetical k-adaptive adversary with the
reward obtained by the best expert in hindsight against the same adversary. Roughly, a hypothetical
k-adaptive adversary adapts her strategy to the defender’s actions exactly as the real adversary
would within each window of k rounds. Our definition is parametrized by a set of experts, which
can include both fixed and adaptive defender strategies.

We investigate the inherent complexity of and design algorithms for adaptive regret minimiza-
tion in bounded memory games of perfect and imperfect information. We prove a hardness result
showing that, with imperfect information, any k-adaptive regret minimizing algorithm (with fixed
strategies as experts) must be inefficient unless NP = RP even when playing against an oblivious
adversary. In contrast, for bounded memory games of perfect and imperfect information we present
approximate 0-adaptive regret minimization algorithms against an oblivious adversary running in
time nO(1).
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c© 2012 .

ar
X

iv
:1

11
1.

28
88

v2
  [

cs
.G

T
] 

 1
6 

Fe
b 

20
12



ADAPTIVE REGRET MINIMIZATION IN BOUNDED-MEMORY GAMES

1. Introduction

Online learning algorithms that minimize regret provide strong guarantees in situations that involve
repeatedly making decisions in an uncertain environment. As a concrete example, imagine you
are playing rock-paper-scissors against an adversary whose strategy is unknown. A regret mini-
mizing algorithm will guarantee that you will perform as well as the best fixed action (also called
an “expert”) in hindsight (i.e., rock, paper, or scissor) against any sequence of actions played by
the adversary. Indeed, there is a well developed theory for regret minimization in repeated games
(see Blum and Mansour (2007) for a survey).

The goal of this paper is to study regret minimization for a richer class of settings. As a moti-
vating example consider a firm that faces a series of different customers or rivals every k rounds (a
generalization of the chain-store game (Fudenberg and Levine, 2008)). A specific example might
be an auctioneer who repeatedly sells goods to different groups of bidders. The auctioneer will want
to learn from past experience, even if the bidders are different in every auction (Chakraborty and
Stone, 2008). Another motivating involves developing effective auditing strategies in an adversar-
ial environment: Consider a hospital (defender) where a series of different employees or business
affiliates (adversary) access patient records for legitimate purposes (e.g., treatment or payment) or
inappropriately (e.g., out of curiosity about a family member or for financial gain). The hospital
wants to minimize its overall loss by balancing the cost of audits with the risk of externally detected
violations.

In these settings, a reasonable strategy for the defender is one that minimizes her regret. Mod-
eling these scenarios as a repeated game of imperfect information is challenging because the games
have two additional characteristics that are not captured by a repeated game model: (1) History-
dependent rewards: The payoff function depends not only on the current outcome but also on previ-
ous outcomes. For example, the reputation of a hospital depends on violations detected in the past,
not just in the current audit. (2) History-dependent actions: Both players may adapt their strategies
based on history.

We capture this form of history dependence by introducing bounded memory games, a subclass
of stochastic games (Shapley, 1953). Bounded memory games are an extension of repeated games,
in which payoffs may depend on the state of the game. In each round of a two-player bounded-
memory-m game, both players simultaneously play an action, observe an outcome and receive a
reward. The reward depends only on the outcomes in the last m rounds and the actions of the
players in the current round.

In a bounded memory game, the standard notion of regret for a repeated game is not suitable
because the adversary may adapt her actions based on the history of play. To account for this
generality, we introduce (in Section 3) the notion of k-adaptive regret, which compares the reward
obtained by playing actions prescribed by the algorithm against a hypothetical k-adaptive adversary
with the reward obtained by the best expert in hindsight against the same adversary. Roughly, a
hypothetical k-adaptive adversary plays exactly the same actions as the real adversary except in the
last k rounds where she adapts her strategy to the defender’s actions exactly as the real adversary
would. When k = 0, this definition coincides with the standard definition of an oblivious adversary
considered in defining regret for repeated games. When k =∞we get a fully adaptive adversary. A
k-adaptive adversary is a natural model for the series of different customers in the chainstore game,
different bidders in a repeated auction or different employees in a hospital audit. Our definition is
parameterized by a set of experts, which can include both fixed and adaptive defender strategies.
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An initial unsurprising result is that for the general class of stochastic games, there is no k-
adaptive regret minimization algorithm, even when k = 0. We include this result in the appendix
for completeness (Theorem 11).

Next, we investigate the inherent complexity of and design algorithms for adaptive regret mini-
mization in bounded-memory games of perfect and imperfect information. Our results are summa-
rized in Table 1. We prove a hardness result (Section 4; Theorem 2) showing that, with imperfect
information, any k-adaptive regret minimizing algorithm (with fixed strategies as experts) must be
inefficient unless NP = RP even when playing against an oblivious adversary and even when k = 0.
In fact, the result is even stronger and applies to any γ-approximate k-adaptive regret minimizing
algorithm (ensuring that the regret bound converges to γ rather than 0 as the number of rounds
T → ∞) for γ < 1

8nβ
where n is the number of states in the game and β > 0. Using a slightly

stronger complexity-theoretic assumption, we improve this bound to include any value of γ less
than 1

8 log2 n
. Technically, the hardness results are established via reduction from MAX3SAT. In the

reduction, each of the exponentially many possible variable assignments corresponds to an expert
(fixed strategy); performing as well as the best fixed strategy in the game corresponds to satisfying
as many clauses as the best variable assignment. The reduction uses in a critical way the state of the
bounded-memory game and the history-dependence of rewards. We also prove that fully adaptive
regret minimization algorithms do not exist for bounded-memory games following the impossibility
result for stochastic games.

We present an inefficient k-adaptive regret minimizing algorithm by reducing the bounded-
memory game to a repeated game. The algorithm is inefficient for bounded-memory games when
the number of experts is exponential in the number of states of the game (e.g., if all fixed strategies
are experts). However, the algorithm efficiently minimizes k-adaptive regret for repeated games
with fixed strategies as experts since such games have only one state. In contrast, for bounded-
memory games of perfect information, we present an efficient nO(1/γ) time γ-approximate 0-
adaptive regret minimization algorithm against an oblivious adversary for any constant γ > 0
(Section 5;Theorem 5). We also show how this algorithm can be adapted to get an efficient γ-
approximate 0-adaptive regret minimization algorithm for bounded-memory games of imperfect
information (Section 5;Theorem 6). The main novelty in these algorithms is an implicit weight
representation for an exponentially large set of adaptive experts, which includes all fixed strategies.

Imperfect Information Perfect Information
Oblivious Regret (k = 0) Hard (Theorem 2) APX (Theorem 5)

APX (Theorem 6)
k-Adaptive Regret (k ≥ 1) Hard (Theorem 2) Hard (Remark 8 )
Fully Adaptive Regret (k =∞) X (Theorem 11) X (Theorem 11)

Table 1: Regret Minimization in Bounded Memory Games
X - no regret minimization algorithm exists
Hard - unless NP = RP no regret minimization algorithm is efficiently computable
APX - efficient approximate regret minimization algorithms exist.

Related Work Stochastic games were defined by Shapley (1953). Much of the work on stochastic
games has focused on finding and computing equilibria for these games (Shapley, 1953; Mertens
and Neyman, 1981).
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ADAPTIVE REGRET MINIMIZATION IN BOUNDED-MEMORY GAMES

Regret minimization in stochastic games has not been the subject of much research. Papadim-
itriou and Tsitsiklis (1999) showed that many natural optimization problems relating to stochastic
games are hard. These results don’t apply to bounded memory games. Golovin and Krause (2010)
recently showed that a simple greedy algorithm can be used when a stochastic optimization prob-
lem satisfies a property called adaptive submodularity. In general, bounded memory games do not
satisfy this property. Even-Dar et al. (2005) show that regret minimization is possible for a class of
stochastic games (Markov Decision Processes) in which the adversary chooses the reward function
at each state but does not influence the transitions. They also prove that if the adversary controls the
reward function and the transitions, then it is NP-Hard to even approximate the best fixed strategy.
Mannor and Shimkin (2003) show that if the adversary completely controls the transition model (a
Controlled Markov Process) then it is possible to separate the stochastic game into a series of matrix
games and efficiently minimize regret in each matrix game. Bounded-memory games are a different
subset of stochastic games where the transitions and rewards are influenced by both players. While
our hardness proof shares techniques with Even-Dar et al. (2005), there are significant differences
that arise from the bounded-memory nature of the game. We provide a detailed comparison in
Section 4.

In a recent paper, Even-Dar et al. (2010) handle a few specific global cost functions related to
load balancing. These cost functions depend on history. In their setting, the adversary obliviously
plays actions from a joint distribution. In contrast, we consider arbitrary cost functions with bounded
dependence on history and adaptive adversaries.

Our efficient regret minimization algorithms represent the weights of the experts implicitly. A
related approach is taken by Takimoto and Warmuth (2003) in developing an online shortest path
algorithm. In their setting the experts consists of all fixed paths from the source to the destination. In
our settings, an additional challenge arises because experts adapt to adversary actions. We address
this challenge by developing a novel implicit weight representation (see Section 5). Using this im-
plicit weight represent it would have been possible to apply the general framework of Awerbuch and
Kleinberg (2008) to achieve approximate regret minimization. However, in the perfect information
setting we are able to achieve better regret bounds by simulating the weighted majority algorithm
(Littlestone and Warmuth, 1989).

There has been lot of work in regret minimization for repeated games. A closely related work is
the regret minimizing audit mechanism of Blocki et al. (2011) that uses a repeated game model for
the audit problem. It deals with history-dependent rewards under certain assumptions about the pay-
off function, but does not consider history-dependent actions. Farias and Megiddo (2006) deal with
adaptive adversaries, and not a fixed sequence of adversary actions as is usual in regret minimiza-
tion for repeated games. They define a general class of adversaries called “flexible” adversaries. A
defender playing against a flexible adversary can learn the average expected reward of every expert.
Then they present an algorithm that achieves the reward of the best expert asymptotically. Our work
differs from theirs in two ways. First, we work with a stochastic game as opposed to a repeated
game. Second, our algorithms can handle a sequence of different k-adaptive adversaries instead of
learning a single flexible adversary strategy. A single k-adaptive strategy is flexible, but a sequence
of k-adaptive adversaries is not.
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2. Preliminaries

Stochastic Games Stochastic games are a generalization of repeated games, in which the payoffs
depend on the state of play. Formally, a two-player stochastic game between an attacker A and a
defender D is given by (XD,XA,Σ, P, τ), where XA and XD are the actions spaces for players A
and D, respectively, Σ is the state space, P : Σ × XD × XA → [0, 1] is the payoff function and
τ : Σ×XD ×XA × {0, 1}∗ → Σ is the randomized transition function linking the different states.
Thus, the payoff during round t depends on the current state (denoted σt) in addition to the actions
of the defender (dt) and the adversary (at).

Bounded-Memory Games Bounded-memory games are a sub-class of stochastic games, in which
outcomes and states satisfy certain properties. An outcome of a given round of play is a signal ob-
served by both players (called “public signal” in games Fudenberg and Tirole (1991)). Outcomes
depend probabilistically on the actions taken by the players. We useO to denote the outcome space
and Ot ∈ O to denote the outcome during round t. We say that a game satisfies independent
outcomes if Ot is conditionally independent of

(
O1, ..., Ot−1

)
given dt and at. Notice that the de-

fender and the adversary in a game with independent outcomes may still select their actions based
on history. However, once those actions have been selected, the outcome is independent of the game
history.

A bounded-memory game with memory m (m ∈ N) is a stochastic game with the following
properties: (1) The game satisfies independent outcomes, and (2) The states Σ = Om encode the
last m outcomes, i.e., σi =

(
Oi−1, . . . , Oi−m

)
. We use n = |Σ| to denote the number of states.

Note that a repeated game is a bounded-memory-0 game (a bounded-memory game with memory
m = 0).

A game in which players only observe the outcome Ot after round t but not the actions taken
during a round is called an imperfect information game. If both players also observe the actions
then the game is a perfect information game.

The history of a game H =
(
O1, O2, . . . , Oi, . . . , Ot

)
, is the sequence of outcomes. We use

Hk to denote the k most recent outcomes in the game (i.e., Hk =
(
Ot−k+1; . . . ;Ot

)
), and t = |H|

to denote the total number of rounds played. We use H i to denote the first i outcomes in a history
(i.e., H i =

(
O1, . . . , Oi

)
), and H;H ′ to denote concatenation of histories H and H ′.

A fixed strategy for the defender in a stochastic game is a function f : Σ → XD mapping each
state to a fixed action. F denotes the set of all fixed strategies.

3. Definition of Regret

As discussed earlier, regret minimization in repeated games has received a lot of attention (Blum and
Mansour, 2005). Unfortunately, the standard definition of regret in repeated games does not directly
apply to stochastic games. In a repeated game, regret is computed by comparing the performance of
the defender strategy D with the performance of a fixed strategy f . However, in a stochastic game,
the actions of the defender and the adversary in round i influence payoffs in each round for the rest
of the game. Thus, it is unclear how to choose a meaningful fixed strategy f as a reference. We
solve this conundrum by introducing an adversary-based definition of regret.
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ADAPTIVE REGRET MINIMIZATION IN BOUNDED-MEMORY GAMES

3.1. Adversary Model

We define a parameterized class of adversaries called k-adaptive adversaries, where the parameter
k denotes the level of adaptiveness of the adversary. Formally, we say that an agent is k-adaptive if
its strategy A(H) is defined by a function f : O∗ × N → XA such that A(H) = f (Hi, t), where
i = t mod (k + 1). Recall that Hi is the i most recent outcomes, and t = |H|.

As special cases we define an oblivious adversary (k = 0) and a fully adaptive adversary
(k =∞). Oblivious adversaries essentially play without any memory of the previous outcomes.
Fully adaptive adversaries, on the other hand, choose their actions based on the entire outcome his-
tory since the start of the game. k-adaptive adversaries lie somewhere in between. At the start of
the game, they act as fully adaptive adversaries, playing with the entire outcome history in mind.
But, different from fully adaptive adversaries, every k rounds, they “forget” about the entire history
of the game and act as if the whole game was starting afresh. As discussed earlier, there are nu-
merous practical instances where k-adaptive adversaries are an appropriate model; for instance, in
games in which one player (e.g., a firm) has a much longer length of play than the adversary (e.g.,
a temporary employee), it may be judicious to model the adversary as k-adaptive. In particular,
k-adaptive adversaries are similar to the notion of “patient” players in long-run games discussed
by Celentani et al. (1996). Their notion of “fully patient” players correspond to fully adaptive ad-
versaries, “myopic” players correspond to oblivious adversaries, and “not myopic but less patient”
players correspond to k-adaptive adversaries.

Another possible adversary definition could be to consider a sliding window of size k as the
adversary memory. But, because such an adversary can play actions to remind herself of events in
the arbitrary past, her memory is not actually bounded by k, and regret minimization is not possible.
See section 8.3 in the appendix for details.
AKD and AKA denote all possible K-adaptive strategies for the defender and adversary, respec-

tively.

3.2. k-Adaptive Regret

Suppose that the defender D and the adversary A have produced history H in a game G lasting T
rounds. Let a1, ..., aT denote the sequence of actions played by the adversary. In hindsight we can
construct a hypothetical k-adaptive adversary Ak as follows:

Ak
(
H ′
)

= A
(
Ht−i;H ′i

)
,

where t = |H ′| and i = t mod (k + 1). In other words, the hypothetical k-adaptive adversary
replicates the plays the real adversary made in the actual game regardless of the strategy of the
defender he is playing against, except for the last i rounds under consideration where he adapts
his strategy to the defender’s actions in the same manner the real adversary would. There are two
important special cases: (1) Hypothetical Oblivious Adversary (A0): The hypothetical oblivious
adversary plays a fixed sequence of actions always, (2) Hypothetical (Fully) Adaptive Adversary
(A∞): The hypothetical fully adaptive adversary is identical to the real adversary.

Abusing notation slightly we write P (f,A,G, σ0, T ) to denote the expected payoff the defender
would receive over T rounds of G given that the defender plays strategy f , the adversary uses strat-
egy A and the initial state of the bounded-memory game G is σ0. Similarly, we use P̄ (f,A,G, T )
to denote the average per-round payoff that the defender would get by playing the strategy f starting
from the initial state of G (σ0), i.e., P̄ (f,A,G, T ) = P (f,A,G, σ0, T ) /T .
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We use
R̄k (D,A,G, T, S) = max

f∈S
P̄ (f,Ak, G, T )− P̄ (D,Ak, G, T ) ,

to denote the k-adaptive regret of the defender strategy D using a fixed set S of experts against an
adversary strategy A for T rounds of the game G.

Definition 1 A defender strategy D using a fixed set S of experts is a γ-approximate k-adaptive
regret minimization algorithm for the class of games G if and only if for every adversary strategy
A, every ε > 0 and every game G ∈ G there exists T ′ > 0 such that ∀T > T ′

R̄k (D,A,G, T, S) < ε+ γ .

If γ = 0 then we simply refer to D as a k-regret minimization algorithm. If D runs in time
poly (n, 1/ε) we call D efficient.

The k-adaptive regret considers a k-adaptive hypothetical adversary who can adapt within each
window of size (at most) k + 1. Note that the performance of a fixed strategy f against the hy-
pothetical oblivious adversary might be completely different from its performance against the real
adversary A. Intuitively, as k increases this measure of regret is more meaningful (as the hypotheti-
cal adversary increasingly resembles the real adversary), albeit harder to minimize.

There are two important special cases to consider: k = 0 (oblivious regret) and k =∞ (adaptive
regret). Observe that if the actual adversary is k-adaptive then the hypothetical adversary A∞ is
same as the hypothetical adversary Ak, and hence R̄∞ = R̄k. Also, if the actual adversary is
oblivious then R̄∞ = R̄0 = R̄k. Adaptive regret is the strongest measure of regret.

In this paper G will typically denote the class of perfect/imperfect information bounded-memory
games with memory m. We are interested in expert sets S which contain all of the fixed strategies
F ⊆ S.

4. Hardness Results

In this section, we show that unless NP = RP no oblivious regret minimization algorithm which
uses the fixed strategies F as experts can be efficient in the imperfect information setting. In the
appendix (remark 8) we explain how our hardness reduction can be adapted to prove that there is no
efficient k-adaptive regret minimization algorithm in the perfect information setting for k ≥ 1.

Specifically, we consider the subclass of bounded-memory games G with the following proper-
ties: |O| = O(1), m = O (log n), |XA| = O(1), |XD| = O(1) and imperfect information. Any
G ∈ G is a game of imperfect information (on round t the defender observes Ot, but not at) with
O(n) states. Our goal is to prove the following theorem:

Theorem 2 For any β > 0 and γ < 1/8nβ there is no efficient γ-approximate oblivious regret
minimization algorithm which uses the fixed strategies F as experts against oblivious adversaries
for the class of imperfect information bounded-memory-m games unless NP = RP.

Given a slightly stronger complexity-theoretic assumption called the randomized exponential
time hypothesis (Impagliazzo and Paturi, 2001) we can prove a slightly stronger hardness result.
The randomized exponential time hypothesis says that no randomized algorithm running in time
2o(n) can solve SAT.
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ADAPTIVE REGRET MINIMIZATION IN BOUNDED-MEMORY GAMES

Theorem 3 Assume that the randomized exponential time hypothesis is true. Then for any γ <
1/
(
8 log2 n

)
there is no efficient γ-approximate oblivious regret minimization algorithm which uses

the fixed strategies F as experts against oblivious adversaries for the class of imperfect information
bounded-memory-m games.

The proofs of Theorems 2 and 3 use the fact that it is hard to approximate MAX3SAT within
any factor better than 7

8 (Hastad, 2001). This means that unless NP = RP then for every constant
β > 0 and every randomized algorithm S in RP , there exists a MAX3SAT instance φ such that
the expected number of clauses in φ unsatisfied by S(φ) is ≥ 1

8 − β even though there exists an
assignment satisfying (1− β) fraction of the clauses in φ.

We reduce a MAX3SAT formula φwith variables x1, ..., xn and clausesC1, ..., C` to a bounded-
memory game G described formally below. We provide a high level overview of the game G before
describing the details. The main idea is to construct G so that the rewards in G are related to the
fraction of clauses of φ that are satisfied.

InG, for each variable x there is a state σx associated with that variable. The oblivious adversary
controls the transitions between variables. This allows the oblivious adversary AR to partition the
game into stages of length n, such that during each stage the adversary causes the game to visit each
variable exactly once (each state is associated with a variable). During each stage the adversary
picks a clause C at random. In G we have 0, 1 ∈ XD. Intuitively, the defender chooses assignment
x = 1 by playing the action 1 while visiting the variable x. The defender receives a reward if and
only if he succeeds in satisfying the clause C.

The Game G:
Defender Actions: XD = {0, 1, 2}
Adversary Actions: XA = {0, 1} × {0, 1, 2, 3}
Outcomes and States: Each round i produces two outcomes: observe that these outcomes sat-
isfy the independent outcomes requirement for bounded-memory games. There are n = 2m+1

states, where σi is the state at round i. Observe that each state encodes the last m outcomes
Õ and the last outcome Ôi. Intuitively, the last m outcomes Õi are used to denote the vari-
able xi, while Ôi is 1 if the defender has already received a reward during the current phase.

Õi = ai[1] and Ôi =

{
1 if di = 2 or di = ai[2];

0 otherwise.

σi =
(
〈Õi−1, . . . , Õi−m〉, Ôi−1

)
,

The defender actions 0, 1 corre-
spond to the truth assignments 0, 1.
The defender receives a reward for
the correct assignment. The defender
is punished if he attempts to obtain a
reward in any phase after he has already received a reward in that phase. Once the defender has
already received a reward he can play the special action 2 to avoid getting punished. The intuitive
meaning of the adversary’s actions will be explained in Section 4.

If we ignore the outcome Ô then the states form a De Bruijn graph (Good, 1946) where each
node corresponds to a variable of φ. Notice that the adversary completely controls the outcomes
Õ with the first component of his action a[1]. By playing a De Bruijn sequence S = s1...sn the
adversary can guarantee that we repeatedly take a Hamiltonian cycle over states(for an example see
Figure 2 in the appendix).
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Rewards:1

P
(
σi, di, ai

)
=


−1 if Ôi−1 = 1 and di 6= 2 and ai[2] 6= 3;

1 if di 6= 2 and di = ai[2] and Ôi−1 = 0;

0 otherwise.

An intuitive interpretation
of the reward function is
presented in parallel with
the adversary strategy.

• Input: Random string R ∈ {0, 1}∗
• Input: MAX3SAT instance φ, with variables
x1, . . . , xn−1 , and clauses C1, . . . , C`.
• De Bruijn sequence: s0, ..., sn−1

• Round t: Set i← t mod n.
1. Select Clause: If i = 0 then select a clause

C uniformly at random from C1, ..., C` using R.
2. Select Move:

ai =


(si, 3) if i = 0;

(si, 1) if xi ∈ C;

(si, 0) if x̄i ∈ C;

(si, 2) otherwise.

Figure 1: Oblivious Adversary: AR

Adversary Strategy The first component of
the adversary’s action (a[1]) controls the tran-
sitions between variables. The adversary will
play the action ai[2] = 1 (resp. ai[2] = 0)
whenever the corresponding variable assign-
ment xi = 1 (resp. xi = 0) satisfies the
clause that the adversary chose for the current
phase. If neither variable assignment satisfies
the clause (if xi /∈ C and x̄i /∈ C) then the
adversary plays ai[2] = 2. This ensures that a
defender can only be rewarded during a round if
he satisfies the clause C, which happens when
di = ai[2] = 0 or 1.

Notice that whenever Ô = 1 there is no
way to receive a positive reward. The defender
may want the game G to return to a state where
Ô = 0, but unless the adversary plays the spe-
cial action ai[2] = 3 he is penalized when this happens. The adversary action ai[2] = 3 is a special
‘reset phase’ action. By playing ai[2] = 3 once at the end of each phase the adversary can ensure
that the maximum payoff the defender receives during any phase is 1. See Figure 1 for a formal
description of the adversary strategy.

Analysis At a high level, our hardness argument proceeds as follows: 1. If there is an assignment
that satisfies (1 − β) fraction of the clauses in φ, then there is a fixed strategy that performs well
in expectation (see Claim 2). 2. If there a fixed strategy that performs well in expectation, then
any γ-approximate oblivious regret minimization algorithm will perform well in expectation (see
Claim 3). 3. If an efficiently computable strategy D performs well in expectation, then there is an
efficiently computable randomized algorithm S to approximate MAX3SAT. This would imply that
NP = RP. The proofs of theorem 2 and theorem 3 can be found in the appendix.

Our hardness reduction is similar to a result from Even-Dar et al. (2005). They consider regret
minimization in a Markov Decision Process where the adversary controls the transition model. Their
game is not a bounded-memory game; in particular it does not satisfy our independent outcomes
condition. The current state in their game can depend on the last n actions. In contrast, we consider
bounded-memory games with m = O (log n), so that the current state only depends on the last
m actions. This makes it much more challenging to enforce guarantees such as “the defender can
only receive a reward once in each window of n rounds”—a property that is used in the hardness
proof. The adversary is oblivious so she will not remember this fact, and the game itself cannot
record whether a reward was given m+ 1 rounds ago. We circumvented this problem by designing

1. We use payoffs in the range [−1, 1] for ease of presentation. These payoffs can easily be re-scaled to lie in [0, 1].
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ADAPTIVE REGRET MINIMIZATION IN BOUNDED-MEMORY GAMES

a payoff function in which the defender is penalized for allowing the game to “forget” when the last
reward was given, thus effectively enforcing the desired property.

5. Regret Minimization Algorithms

In section 5.1 we present a reduction from bounded-memory games to repeated games. This reduc-
tion can be used to create a k-adaptive regret minimizing algorithm (see section 8.1 in the appendix).
This is significant because there is no k-adaptive regret minimization algorithm for the general class
of stochastic games. A consequence of Theorem 2 is that when the expert set includes all fixed
strategies F we cannot hope for an efficient algorithm unless NP = RP. In section 5.2 we present
an efficient approximate 0-adaptive regret minimization algorithm for bounded-memory games of
perfect information. The algorithm uses an implicit weight representation to efficiently sample the
experts and update their weights. Finaly, we show how this algorithm can be adapted to obtain
an efficient approximate 0-adaptive regret minimization algorithm for bounded-memory games of
imperfect information.

5.1. Reduction to Repeated Games

All of our regret minimization algorithms work by first reducing the bounded-memory game G to a
repeated game ρ (G,K). One round of the repeated game ρ (G,K) corresponds to K rounds of G.
Before each round of ρ (G,K) both players commit to an adaptive strategy. In ρ (G,K) the reward
that the defender gets for playing a strategy f ∈ AKD is the reward that the defender would have
received for using the strategy f for the next K rounds of the actual game G if the initial state were
σ0: P (f, g, ρ (G,K)) = P (f, g,G, σ0,K).

The rewards in ρ (G,K) may be different from the actual rewards in G because the initial state
before each K rounds might not be σ0. In the appendix we show that this difference is small (see
claim 4).

The key idea behind our k-adaptive regret minimization algorithm BW is to reduce the original
bounded-memory game to a repeated game ρ (G,K) of imperfect information (K ≡ 0 mod k).
In particular we obtain the regret bound in Theorem 4. Details and proofs can be found in the
appendix.

Theorem 4 Let G be any bounded-memory-m game with n states and let A be any adversary
strategy. After playing T rounds of G against A, BW (G,K) achieves regret bound

R̄k (BW, A,G, T, S) <
m

T 1/4
+ 4

√
N logN

T 1/4
,

where N = |S| is the number of experts, A is the adversary strategy and K has been chosen so that
K = T 1/4 and K ≡ 0 mod k.

Intuitively, the m/T 1/4 = m/K term is due to modeling loss from Claim 4 and the other term
comes from the standard regret bound of Auer et al. (1995).

5.2. Efficient Approximate Regret Minimization Algorithms

In this section we present EXBW (Efficient approXimate Bounded Memory Weighted Majority),
an efficient algorithm to approximately minimize regret against an oblivious adversary in bounded-
memory games with perfect information. The set of experts E used by our algorithms contains the
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fixed strategies F as well as all K-adaptive strategies AKD (K = m/γ). We prove the following
theorem

Theorem 5 Let G be any bounded-memory-m game of perfect information with n states and let A
be any adversary strategy. Playing T rounds of G against A, EXBW runs in total time TnO(1/γ)

and achieves regret bound

R̄0 (EXBW, A,G, T, E) ≤ γ +O

m
γ

√
m
γ n log (N)

T

 ,

whereK has been set tom/γ andN =
∣∣AKD ∣∣ = (|XD|)n

1/γ

is the number ofK-adaptive strategies.

In particular, for any constant γ there is an efficient γ-approximate 0-adaptive regret minimiza-
tion algorithm for bounded-memory games of perfect information. We can adapt this algorithm
to get EXBWII (Efficient approXimate Bounded Memory Weighted Majority for Imperfect Infor-
mation Games), an efficient approximate 0-adaptive regret minimization algorithm for games of
imperfect information using a sampling strategy described in the proof of theorem 6.

Theorem 6 Let G be any bounded-memory-m game of imperfect information with n states and
let A be any adversary strategy. There is an algorithm EXBWII that runs in total time TnO(1/γ)

playing T rounds of G against A, and achieves regret bound

R̄0 (EXBWII, A,G, T, E) ≤ 2γ +O

mn1/γ

γ2

√
mn1/γ

γ n log (N)

T

 .

whereK has been set tom/γ andN =
∣∣AKD ∣∣ = (|XD|)n

1/γ

is the number ofK-adaptive strategies.

The regret bound of Theorem 5 is simply the regret bound achieved by the standard weighted
majority algorithm (Littlestone and Warmuth, 1989) plus the modeling loss term from Claim 4.
The main challenge is to provide an efficient simulation of the weighted majority algorithm. There
are an exponential number of experts so no efficient algorithm can explicitly maintain weights for
each of these experts. To simulate the weighted majority algorithm EXBW implicitly maintains the
weight of each expert.

To simulate the weighted majority algorithm we must be able to efficiently sample from our
weighted set of experts (see Sample (E)) and efficiently update the weights of each expert in the
set after each round of ρ (G,K) (see update weight stage of EXBW).

Meet the Experts Instead of using F as the set of experts, EXBW uses a larger set of experts E
(F ⊂ E). Recall that a K-adaptive strategy is a function f mapping the K most recent outcomes
HK to actions. We use a set of K-adaptive strategies E = {fσ : σ ∈ Σ} ⊂ AKD to define an
expert E in ρ (G,K): if the current state of the real bounded-memory game G is σ then E uses the
K-adaptive strategy fσ in the next round of ρ (G,K) (i.e., the next K rounds of G). E denotes the
set of all such experts.

10
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Maintaining Weights for Experts Implicitly To implicitly maintain the weights of each expert
E ∈ E we use the concept of a game trace. We say that a game trace p = σ, d1, O1, ..., di−1, Oi−1, di

is consistent with an expert E if fσ
(
O1, ..., Oj−1

)
= dj for each j. We define the set C (E) to be

the set of all such consistent traces of maximum length K and C =
⋃
E∈E C (E) denotes the set of

all traces consistent with some expert E ∈ E . EXBW maintains a weight wp on each trace p ∈ C.
The weight of an expert E is then defined to be WE =

∏
p∈C(E)wp.

Given adversary actions a = a1, ..., aK and a trace p = σ, d1, O1, ..., di−1, Oi−1, di we define
R (a, σ′, p).

R
(
a, σ′, p

)
=

{
0 if σ 6= σ′;∏
j<i Pr

[
Oj aj , dj

]
otherwise;

Intuitively, R (a, σ′, p) is the probability
that each outcome of p would have oc-
curred given the adversary actions were a
and the initial state was σ′. We use ` (p,a, σ′) to denote the payment that the defender received
for playing di (the last action in p). Formally ` (p,a, σ′) = P

(
σfp , di, ai

)
R (a, σ′, p), where σfp

denotes the state reached following the trace p (after observing outcomesO1, ..., Oi−1 starting from
σ0) and di is the final defender action in the trace. Notice that in the imperfect information setting
the defender could not compute ` because he would not observe the adversary’s actions a.

Updating Weights Efficiently While updating weights EXBW maintains the invariant that wp =

β
∑T/K
j=1 `(p,aj ,σjK), where σjK is the state of G after jK rounds and at is the actions the adver-

sary played during the j’th round of ρ (G,K). The standard weighted majority algorithm maintains

the invariant that WE = β
∑T/K
j=1 P(E,at,ρ(G,K)). In the appendix EXBW also maintains this invari-

ant(see claim 5).

Sampling Experts Efficiently We can also efficiently sample from E using dynamic program-
ming (see Sample (E)). Using the notation p @ p′ for p′ extends p we can define ŵp. Intuitively,
ŵp;O;d represents the weight of the action d from history p;O.

ŵp =
∑

E:p∈C(E)

∏
p′∈C(E)∧p@p′

wp′

Using dynamic programming we can efficiently compute
ŵp for each trace p because there are only nO(1/γ) such
traces. Using the weights ŵp we can efficiently sample
from E . We use p;O; d to denote a new game trace which
contains all of the outcomes/actions in p appended with O and d.

Algorithm: EXBW (γ,G)
• Initialize: K = m/γ
• Construct: ρ (G,K)
• Each Round:

1. σ ← G.CurrentState
2. E ← Sample (E)
3. Play E

4. Observe adversary actions a =
a1, ..., aK .

5. Update Weights: For each p ∈ C
Compute ` (p,a, σ)
Set wp ← wp × β`(p,a,σ).

Algorithm: Sample (E)
• For each trace p ∈ C recursively compute
ŵp using the formula:

ŵp =
∑
O∈O

∑
d∈XD

β
∑T
t=1 `(p;O;d,at,σKt)ŵp;O;d .

• Build Strategy E: For each p ∈ C and
O ∈ O, randomly select d ∈ XD

Pr [d p, O] =
ŵp;O;d∑

d′∈XD ŵp;O;d′
.

• E play d any time it observes history p;O.

11



In the appendix we prove that Sample (E) outputs each expert E with probability proportional
to WE (see claim 6). Given Sample (E) it is straightforward to simulate the standard weighted
majority algorithm. To update weights EXBW simply loops through all traces p ∈ C applying the
update rule wp = wp × β`(p,a

t,σtK), where β is a learning parameter we tune later. The full proof
of Theorem 5 can be found in the appendix.

At a high level our algorithm is similar to the online shortest path algorithm developed by
Takimoto and Warmuth (2003). In their work, they consider the set of all source-destination paths
in a graph as experts. Since there are exponentially many paths they also maintain the weights
of the experts implicitly. In their setting, the defender completely controls the chosen path. In
contrast, our experts adapt to adversary actions. The challenge was constructing a new implicit
weight representation which works for K-adaptive strategies.

Using this implicit weight representation we could have also used the general barycentric span-
ner approach to online linear optimization developed by Awerbuch and Kleinberg (2008) to design a
γ-approximate 0-adaptive regret minimization algorithm running in time nO(1/γ). However, we are
able to achieve better regret bounds in theorem 5 by simulating the weighted majority algorithm.
(Awerbuch and Kleinberg, 2008, Theorem 2.8) achieves average regret bound O

(
Md5/3/T 1/3

)
,

where d is the dimension of the problem space and M is a bound on the cost vectors. By compari-
son our regret bounds in Theorems 5 and 6 tend to 0 with 1/

√
T . In our setting, the dimension of the

problem space is d = O
(
n(1/γ)

)
(the number of nodes in the decision tree), and M = K = m/γ

is the upper bound on the cost vector in each round of ρ (G,K). The average regret bound would
be O

(
m
γ n

5/(3γ)/T 1/3
)

. the regret bound is proportional to
√
n1/γ/T . By comparison Theorem 5

has a
√
n1/γ in the numerator.

The standard regret minimization trick for dealing with imperfect information in a repeated
game is to break the game up into phases and perform random sampling in each round to estimate
the cost of each expert and update weights. The challenge in adapting EXBW is that there are
exponentially many experts in E . Our key idea was to estimate ` (p,a, σ) for each p ∈ C so there are
only nO(1/γ) samples to take in each phase. We can then update the implicit weight representation
using the estimated values ` (p,a, σ).

6. Open Questions

In this paper, we defined a new class of games called bounded-memory games, introduced several
new notions of regret, and presented hardness results and algorithms for regret minimization in
this subclass of stochastic games. Because both the games and the notions of regret we study in this
paper rely on novel definitions, they raise a number of interesting open problems: (1) To what extent
can the hardness results of Theorems 2 and 3 be further improved? (γ = 1/log n?) Could similar
hardness results apply to games with perfect information? (2) Is there an efficient non-approximate
oblivious regret minimization algorithm for bounded-memory games with perfect information? (3)
Is there a γ-approximate oblivious regret minimization algorithm with running time no(1/γ)? For
example, could one design a γ-approximate oblivious regret minimization algorithm with running
time n− log γ? (4) For repeated games (m = 0) is there an efficient γ-approximate k-adaptive regret
minimization algorithm if we use AKD as our set of experts (K = log n)?

12
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7. Hardness Reduction: Proof of Claims

This section contains the proofs of the lemmas and theorems from section 4.

Claim 1 Fix a polynomial p(·) and let α = n · ER
[
P̄ (D,AR, G, T )

]
, where T = p(n) and D

is any polynomial time computable strategy. There is a polynomial time randomized algorithm S
which satisfies α fraction of the clauses from φ in expectation.

Proof Let p(◦) be given such that T (D) ≤ p(n) and set

α = n× ER
[
P̄ (D,AR, G, T )

]
.

We present S ( Algorithm 1) - an algorithm to recover the variable assignment. S runs in time

T (S) = O
(
p(n)2

)
.

During the simulation we present D with (potentially) false history in each stage, where the
defender always thinks he hasn’t satisfied the clause C. Let Yj be the expected fraction of clauses
satisfied in stage j of the simulation. We define the random variable Xj to be the reward D earns
in stage j in the actual game. Observe that the game is structured so that two rewards during the
same stage must be separated by a penalty. When the defender receives a reward the outcome Ôt−1

is produced. If the defender wishes to avoid an offsetting penalty then he must keep producing the
outcome Ôt−1 by playing dt = 2, preventing him from receiving an award for the rest of the stage.
The maximum payout a defender strategy D can receive during any stage is 1 so Xj ∈ {0, 1}.
Because of imperfect information the defender cannot learn any information about the clause the
adversary has selected. We have
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E[Xj ] = Pr[Xj = 1] = E[Yj ] .

In particular

α =
n

T

T/n∑
j=1

E[Yj ] ,

so there exists a round j such that E[Yj ] ≥ α. Let Y denote the number of clauses satisfied by S,
then

Y = max
j

Yj ,

so we have
E[Y] ≥ α .

Claim 2 Suppose that there is a variable assignment that satisfies (1− β) · ` of the clauses in φ.
Then there is a fixed strategy f such that ER

[
P̄ (f,AR, G, n)

]
≥ (1− β) /n , where R is used to

denote the random coin tosses of the oblivious adversary.

Proof Let x1∗, ..., xn−1∗ be the assignment that satisfies at least (1−β) fraction of the clauses and
let s0, ..., sn−1 be the De Bruijn sequence played by the adversary. xn is an additional variable that
is not in any of the clauses. Then the on round t we have

σt =
(
〈si−1 mod n, ..., si−m mod n〉, Ôt−1

)
,

where i = t mod n so both these states are associated with the variable xi. For 0 ≤ i < n we
set

f (〈si−1 mod n, ..., si−m mod n〉, 0) = xi ∗ .
To avoid taking a penalty we set

f (〈si−1 mod n, ..., si−m mod n〉, 1) = 2 ,

for 0 < i < n. For i = 0 we set

f (〈si−1 mod n, ..., si−m mod n〉, 1) = 0 ,

to produce the outcome Ôt = 0 (recall that the adversary will play at = (s0, 3) whenever t ≡ 0
mod n so we can avoid the penalty). The fixed strategy f will receive reward 1 in stage j if and
only if x1∗, ..., xn−1∗ satisfies the clause Cj chosen in stage j.

ER
[
P̄ (f,AR, G, n)

]
≥ (1− β)

n
(1)
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Claim 3 Suppose that D is an
(

1
8n −

3β
n

)
-approximate oblivious regret minimization algorithm

against the class of oblivious adversaries and there is a variable assignment that satisfies (1 − β)
fraction of the clauses in φ. Then for T = poly(n)

ER
[
P̄ (D,AR, G, T )

]
≥ 7

8n
+
β

n
,

where R is used to denote the random coin tosses of the oblivious adversary.

Proof By Claim 2 there is a fixed strategy with

ER
[
P̄ (D,AR, G, T )

]
≥ (1− β)

n
.

Set ε = β/n, and apply definition 1 to get

P̄ (f,AR, G, T )− P̄ (D,AR, G, T ) ≤
(

1

8n
− 3β

n

)
+ β/n ,

for any random string R (adversary coin flips). This means that

ER
[
P̄ (f,AR, G, T )

]
− ER

[
P̄ (D,AR, G, T )

]
≤
(

1

8n
− 3β

n

)
+
β

n
.

Rearranging terms

ER
[
P̄ (D,AR, G, T )

]
≥ (1− β)

n
− 1

8n
+

2β

n

=
7

8n
+
β

n

Before we prove Theorem 2 we will first prove an easier Lemma using these claims. The proof
of Lemma 7 can be easily adapted to prove Theorems 2 and 3. Details can be found in the appendix.

Lemma 7 Unless NP = RP, for γ < 1/8n there is no efficient γ-approximate oblivious regret
minimization algorithm which uses the fixed strategies F as experts against oblivious adversaries
for bounded-memory-m games of imperfect information.

Proof of Lemma 7. Suppose that D were an efficient γ-approximate oblivious regret minimization
algorithm and consider the polynomial time randomized algorithm S. Combining Claim 3 and
Claim 1, for every MAX3SAT formula φ with ≥ (1 − β) fraction of the clauses satisfiable S
satisfies ≥ 7

8 + β fraction of the clauses from φ in expectation. This would imply that NP = RP
(Hastad, 2001). �The proof of Theorem 2 is very similar to the proof of Lemma 7.

Reminder of Theorem 2. For any β > 0 and γ < 1/8nβ there is no efficient γ-approximate obliv-
ious regret minimization algorithm which uses the fixed strategies F as experts against oblivious
adversaries for the class of imperfect information bounded-memory-m games unless NP = RP.
Proof of Theorem 2. The key point is that if an algorithm S runs in time O (p(n)) on instances of
size nβ for some polynomial p(n) then on instances of size n S runs in time O

(
p
(
n1/β

))
which is

still polynomial time. Unless NP = RP ∀ε, β > 0 and every algorithm S running in time poly(n),
there exists an integer n and a MAX3SAT formula φ with nβ variables such that
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1. There is an assignment satisfying at least (1− ε) of the clauses in φ.

2. The expected fraction of clauses in φ satisfied by S is ≤ 7
8 + ε.

If we reduce from a MAX3SAT instance with nβ variables we can construct a game withO(n) states
(n1−β copies of each variable). One Hamiltonian cycle would now corresponds to n1−β phases of
the game. This means that the expected average reward of the optimal fixed strategy is at least

max
f∈F

ER
[
P̄ (f,AR, G, T )

]
≥ n1−β (1− ε)

n
,

while the expected average reward of an efficient defender strategy D is at most

ER
[
P̄ (D,AR, G, T )

]
≤
n1−β (7

8 + ε
)

n
.

Therefore, the expected average regret is at least

R̄0 (D,AR, G, T, F ) ≥
(

1

8
− 2ε

)
n−β .

�
While the proof of Theorem 3 makes use of the randomized exponential time hypothesis the

argument is similar to the proof of Theorem 2.

Reminder of Theorem 3. Assume that the randomized exponential time hypothesis is true. Then
for any γ < 1/

(
8 log2 n

)
there is no efficient γ-approximate oblivious regret minimization algo-

rithm which uses the fixed strategies F as experts against oblivious adversaries for the class of
imperfect information bounded-memory-m games.
Proof of Theorem 3. (sketch) Assume that the randomized exponential time hypothesis holds. Then
because it is NP-hard to approximate MAX3SAT within any factor better than 7

8 Hastad (2001) no
randomized algorithm which satisfies≥ 7

8 +ε of the clauses in a MAX3SAT instance in expectation
can run in time

2o(n) .

Now we argue that it is sufficient to reduce from a MAX3SAT instance with n′ = log2 n
variables (instead of nβ variables). One Hamiltonian cycle now corresponds to

n

log2 n
,

phases of the game. Our bounded-memory game G has n states then any efficient γ-approximate
regret minimization algorithm S must run in time O

(
nk
)

for some constant k. If the randomized
exponential time hypothesis holds then the expected average reward of an efficient defender strategy
D is at most

ER
[
P̄ (D,AR, G, T )

]
≤

n
log2 n

(
7
8 + ε

)
n

,

since
nc = 2k

√
log2 n = 2k

√
n′

= 2o(n
′) .
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However, if the MAX3SAT formula was satisfiable then the expected average reward of the
optimal fixed strategy is at least

max
f∈F

ER
[
P̄ (f,AR, G, T )

]
≥

n
log2 n

(1− ε)
n

=
1− ε
log2 n

.

Therefore, the expected average regret is at least

R̄0 (D,AR, G, T, F ) ≥
(

1
8 − 2ε

)
log2 n

.

Assume for contradiction that γ < 1
8 log2 n

then S can be adapted to satisfy ≥ 7
8 + ε of the

clauses in MAX3SAT with running time

nc = 2k
√

log2 n = 2k
√
n′

= 2o(n
′) .

This contradicts the randomized exponential time hypothesis.
�

Remark 8 how our hardness reduction can be adapted to prove that there is no efficient k-
adaptive regret minimization algorithm in the perfect information setting k ≥ 1.

Remark 8 In bounded-memory games of perfect information we can replace the oblivious adver-
sary AR in figure 4 with a 1-adaptive adversary and essentially the same reduction will still work.
We only need to make a few small modifications. The states of the game will be modified to store
the defenders last action. The adversary again plays a Hamiltonian cycle through the states in each
phase. Now the first two states we visit correspond to the variable x1, the next two visited states
will correspond to x2, etc. If the defender plays actions 1 and 1 (resp. 0 and 0) while visiting the
variable x1 then this corresponds to assigning x1 to true (resp. false). If the defender plays 1 and
0 (or 0 and 1) which corresponds to no assignment then the adversary strategy will ensure that he
cannot receive a reward.

The 1-adaptive adversary will always play at[2] = 2 on even rounds (t = 0 mod 2) and on
odd rounds the adversary will adaptively select at[2] = dt−1 if the defender’s last action satisfied
the chosen clause C, otherwise at[2] = 2. The defender receives a reward only if (1) he plays a
consistent assignment during both rounds (2) the assignment satisfies the chosen clause C and (3)
he has not already received a reward during this phase. Now Claim 1 still holds because a defender
will always observe the adversary action at[2] = 2 until he satisfied the clause C.

7.1. Transition Example

By playing a De Bruijn sequence S = s1...sn the adversary can guarantee that we repeatedly take a
Hamiltonian cycle over states. For example, considering 8 states and starting from x0, the sequence
10111000 corresponds to the Hamiltonian cycle x0, x1, x2, x5, x3, x7, x6, x4

8. Regret Minimization Algorithms

8.1. Regret Minimization Algorithm with Imperfect Information

We present BW (Bounded Memory Weighted Majority), an algorithm that minimizes k-adaptive
regret for bounded-memory games. This result is significant because there is no k-adaptive regret
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Figure 2: De Bruijn example

minimization algorithm for the general class of stochastic games(see Theorem 11 in the appendix).
A consequence of Theorem 2 is that when the expert set includes all fixed strategies F we cannot
hope for an efficient algorithm unless NP = RP. Indeed, our algorithm would not be efficient in this
case because it would have to explicitly maintains weights for exponentially many fixed strategies
|F | = |XD|n.

The key idea behind our k-adaptive regret minimization algorithm BW is to reduce the original
bounded-memory game to a repeated game ρ (G,K) of imperfect information (K ≡ 0 mod k).
BW uses the Exp3 regret minimization algorithm of Auer et al. (1995) for repeated games of imper-
fect information. In particular, BW uses the strategies selected by Exp3 in each round of ρ (G,K)
to play the next K rounds of G. BW feeds Exp3 the hypothetical losses from ρ (G,K) to update
the weights of each expert.

Reminder of Theorem 4. Let G be any bounded-memory-m game with n states and let A be any
adversary strategy. After playing T rounds of G against A, BW (G,K) achieves regret bound

R̄k (BW, A,G, T, S) <
m

T 1/4
+ 4

√
N logN

T 1/4
,

where N = |S| is the number of experts, A is the adversary strategy and K has been chosen so that
K = T 1/4 and K ≡ 0 mod k.
Proof of Theorem 4. (Sketch) The proof of theorem uses standard regret bound for regret minimiza-
tion algorithms in games of perfect information Auer et al. (1995). After playing T rounds (T/K
rounds of ρ (G,K)) we have

P̄ (D,Ak, ρ (G,K) , T/K)− P̄ (f,Ak, ρ (G,K) , T/K) ≥ −4

√
KN logN

T/K
,

for all fixed strategies f ∈ F . Here, N is the number of experts

N = |F | = |XD||Σ| ,

and K also denotes the maximum payout in any round of ρ (G,K).Because K was chosen such
that K ≡ 0 mod k the adversary Ak is always in phase with ρ (G,K) and we can apply Claim 4
to get Theorem 4. �
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In particular, BW is a k-adaptive regret minimization algorithm for the class of bounded-
memory games in the sense of Definition 1 because R̄k → 0 as T →∞.

Remark 9 BW is inefficient when number of experts f ∈ S is exponential in n, the number of
states in G. For example, if S = F then |F | = |XD|n. For small values of n (example: for repeated
games n = 1) it will still be tractable to run BW with S = F .

8.2. Proofs of Claims and Theorems

This section contains the proof of claims and theorems from section 5.
Claim 4 bounds the difference between the hypothetical losses from ρ (G,K) and actual losses

in G using the bounded-memory property.

Claim 4 For any adaptive defender strategy f ∈ AKD and any adaptive adversary strategy g ∈ AKA
and any state σ of G we have |P (f, g,G, σ,K)− P (f, g,G, σ0,K)| ≤ m .

Proof of Claim 4. (Sketch) Once the defender selects f and the adversary selects strategy g ∈
K − ADAPTA, the actions of the adversary and the defender are fixed for the next K rounds of
G. Let d1, ..., dK (resp. a1, ..., aK) denote the actions taken by the defender (resp. adversary).
Once R1, ..., RK (the random coins used by the outcome function) are fixed then the outcomes
O1, ..., OK are also fixed. Let σ1, ..., σK states encountered in the actual game and let σ1

∗, ..., σ
K
∗

be the states that we would have encountered if we had started at σ0 as in ρ (G,K). In a bounded-
memory property game the state encodes the last m outcomes, but the outcomes do not depend on
the starting state so we have

σj = σj∗ ,

for all j ≥ m. This means that for j ≥ m

P
(
σj , dj , aj

)
= P

(
σj∗, d

j , aj
)
.

Consequently,

|P (f, g, σ,G)− P (f, g, σ0, G)| =

∣∣∣∣∣
k∑
t=1

P
(
dt, at, σ

i
)
−

k∑
t=1

P
(
dt, at, σ

i
∗
)∣∣∣∣∣

=

∣∣∣∣∣
m−1∑
t=1

P
(
dt, at, σ

i
)
− P

(
dt, at, σ

i
∗
)∣∣∣∣∣

≤ m .

�
The standard weighted majority algorithm maintains the invariant thatWE = β

∑T/K
j=1 P(E,at,ρ(G,K)).

Claim 5 says that EXBW also maintains this invariant.

Claim 5 ∏
p∈C(E)

β
∑T/K
j=1 `(p,aj ,σjK) = β

∑T/K
j=1 P(E,aj ,ρ(G,K)) .
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Proof of Claim 5. First notice that we can write

T/K∑
j=1

P
(
E,aj , ρ (G,K)

)
=

∑
p∈C(E)

T/K∑
j=1

`
(
p,aj , σjK

)
,

since the overall payoff of an expert E can be expressed as a sum of the individual immediate
payoffs after each action.

∏
p∈C(E)

β
∑T/K
j=1 `(p,aj ,σjK) = β

∑
p∈C(E)

∑T/K
j=1 `(p,aj ,σjK)

= β
∑T/K
t=1 P(E,at,ρ(G,K)) .

�
Claim 6 says that Sample (E) samples from the right distribution.

Claim 6 For each expert E ∈ E Algorithm Sample (E) outputs E with probability

Pr [E] ∝WE .

Proof Given a trace p = p0;O; d let Chosen (p0;O) be the event that the strategy output by
Algorithm Sample (E) plays d from given history p0;O.

Pr [Output E] =
∏

p∈C,O∈O
Pr [Chosen (p;O) = E (p;O)]

=
∏

p∈C,O∈O,d=E(p,O)

ŵp;O;d∑
d′∈XD ŵp;O;d′

=
∏

p∈C,O∈O,d=E(p,O)

∑
E′:(p;O;d)∈C(E′)

∏
p′∈C(E′)∧p;O;d@p′ wp′∑

d′∈XD
∑

E′:(p;O;d′)∈C(E′)

∏
p′∈C(E′)∧p;O;d′@p′ wp′

=
∏

p∈C,O∈O,d=E(p,O)

∑
E′:(p;O;d)∈C(E′)

∏
p′∈C(E′)∧p;O;d@p′ wp′∑

d′∈XD
∑

E′:(p;O;d′)∈C(E′)

∏
p′∈C(E′)∧p;O;d′@p′ wp′

×
∏
p′@pwp′∏
p′@pwp′

=
∏

p∈C,O∈O,d=E(p,O)

∑
E′:(p;O;d)∈C(E′)

∏
p′∈C(E′)wp′∑

d′∈XD
∑

E′:(p;O;d′)∈C(E′)

∏
p′∈C(E′)wp′

=
∏

p∈C,O∈O,d=E(p,O)

∑
E′:(p;O;d)∈C(E′)WE′∑

d′∈XD
∑

E′:(p;O;d′)∈C(E′)WE′

=
∏

p∈C,O∈O,d=E(p,O)

∑
E′:(p;O;d)∈C(E′)WE′∑

E′∈EWE′

=
WE∑

E′∈EWE′
.
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Reminder of Theorem 5. Let G be any bounded-memory-m game of perfect information with n
states and let A be any adversary strategy. Playing T rounds of G against A, EXBW runs in total
time TnO(1/γ) and achieves regret bound

R̄0 (EXBW, A,G, T, E) ≤ γ +O

m
γ

√
m
γ n log (N)

T

 ,

whereK has been set tom/γ andN =
∣∣AKD ∣∣ = (|XD|)n

1/γ

is the number ofK-adaptive strategies.
Proof of Theorem 5. By Claims 5 and 6 Algorithm EXBW perfectly simulates the weighted
majority algorithm Littlestone and Warmuth (1989). Notice that there are Nn experts in E and we
are playing T/K rounds of ρ (G,K). The maximum payment in round of ρ (G,K) is K = m/γ.
The regret bound immediately follows from Claim 4 (the γ = m/K term) and the standard regret
bound from Littlestone and Warmuth (1989) after setting

β = min{1

2
,

√
n ln (N)

T
} .

The regret bound holds against all experts E ∈ E so in particular the regret bound also holds
against all fixed experts f ∈ F since F ⊂ E .

The running time of EXBW is proportional to the number of traces in C. There are only nO(1/γ)

total traces in C so for any constant γ the running time is polynomial. �

Reminder of Theorem 6. Let G be any bounded-memory-m game with n states and let A be any
adversary strategy. After playing T rounds of G against A, BW (G,K) achieves regret bound

R̄k (BW, A,G, T, S) <
m

T 1/4
+ 4

√
N logN

T 1/4
,

where N = |S| is the number of experts, A is the adversary strategy and K has been chosen so that
K = T 1/4 and K ≡ 0 mod k.
Proof of Theorem 6. (Sketch) We group the rounds of ρ (G,K) into phases of n1/γ

γ rounds. Each
phase now corresponds to

K
n1/γ

γ
=
mn1/γ

γ2
,

rounds of G. As before there are Nn experts.
Within a single phase let ai

(
i = 1, ..., n1/γ/γ

)
denote the actions of the adversary during round

i of that phase. To update our implicit weight representation we would like to compute∑
i

`
(
p,ai, σ

)
,

for each p ∈ C. However, we do not know the adversary actions ai in each phase. Instead of
computing ∑

i

`
(
p,ai, σ

)
,
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we will estimate this quantity. For each

d ∈ X
m
γ

D ,

we will play the defender actions d in a randomly chosen round of the phase. Let O and ` =(
`1, ..., `m/γ

)
denote the observed outcomes and payoffs in this round and let pj be the path corre-

sponding to the first j defender actions from d and outcomes from O. For each path pj we set

`′
(
pj , σ

)
=
n1/γ

γ
`j .

If the path p never occured during a sampling round of the phase then we set

`′
(
pj , σ

)
= 0 .

For each path p ∈ C we have

E
[
`′ (p, σ)

]
=

n1/γ

γ
E [`i]

=
n1/γ

γ

∑
i

γ

n1/γ
`
(
p,ai, σ

)
=

∑
i

`
(
p,ai, σ

)

where the expectation is taken over the random selection of sampling rounds. Now we can use the
estimated losses `′ to maintain our implicit weight representation.

The following factors explain why the final regret bound is slightly worse than the bound in the
perfect information setting (Theorem 5):

1. We spend at most ∣∣∣∣X m
γ

D

∣∣∣∣ ≤ n1/γ ,

rounds of each phase sampling. There are n1/γ

γ rounds in a phase so the average sampling
loss per round is at most

n1/γ(
n1/γ

γ

) = γ .

This is in addition to modeling loss (γ) from claim 4. In the perfect information setting there
is no sampling loss just the modeling loss.

2. We are only now only updating weights after each phase. If T is the number of rounds of the
bounded-memory game G that we play then we only update weights T ′ times where

T ′ =
Tγ2

mn1/γ
.

In the perfect information setting we had T ′ = Tγ
m .
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3. The maximum loss in each phase is now the length of a phase

m

γ

(
n1/γ

γ

)
,

instead of the length of a round m/γ.

�

Remark 10 Because repeated games are a subset of bounded-memory games, EXBW (resp. EXBWII)
could also be used to minimize oblivious regret in a repeated game of perfect information (resp. im-
perfect information) usingAKD as experts. In this case there is no modeling loss from claim 4 so the
guarantee is that we perform as well as the best K-adaptive defender strategy in hindsight. As long
as K = O (log n) the running time of our algorithms will be time polynomial in n.

8.3. Impossibility of Regret Minimization in Stochastic Games

Stochastic Games Stochastic games are a generalization of repeated games, in which the payoffs
depend on the state of play. Formally, a two-player stochastic game between an attacker A and a
defender D is given by (XD,XA,Σ, P, τ), where XA and XD are the actions spaces for players A
and D, respectively, Σ is the state space, P : Σ × XD × XA → [0, 1] is the payoff function and
τ : Σ×XD ×XA × {0, 1}∗ → Σ is the randomized transition function linking the different states.

Thus, the payoff during round t depends on the current state (denoted σt) in addition to the ac-
tions of the defender (dt) and the adversary (at). This added flexibility enables us to develop realistic
game models for interactions where the rewards depend on game history. The hospital-employee
interaction we introduced earlier is one example of such an interaction: an employee committing a
given violation for the first time is unlikely to meet the same punishment as an employee committing
the same violation for the tenth time.

A fixed strategy for the defender in a stochastic game is a function f : Σ → XD mapping each
state to a fixed action. F denotes the set of all fixed strategies.

In this section we demonstrate that there is no regret minimization algorithm for the general class
of stochastic games. More specifically for every notion of regret k (oblivious (k = 0), k-adaptive,
fully adaptive (k = ∞)) there is no k-adaptive minimization algorithm for the class of stochastic
games. It suffices to consider ‘oblivious regret’ against an oblivious adversary (see remark 12). The
example in Theorem 11 is fundamentally similar to example IV.1 of Yu and Mannor.

Theorem 11 There is a stochastic game G such that for any defender strategies D there exists an
oblivious adversary A such that

lim
T→∞

R̄k (D,A,G, T ) > 0 .

Proof
In particular, consider the stochastic game G illustrated in Figure 3. The figure shows a game

with two players D and A with action sets XD = {d1, d2} and XA = {a1, a2} respectively. The
reward function for the defender depends only on his own action as well as the current state σ. Ob-
serve that σ2 is a sink state which the game can never leave. If the game reaches this state then the
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defender will be continuously rewarded in every round for the rest of the game. However, the only
way to reach σ2 is if the defender and the adversary play (d1, a1) simultaneously in some round t.
If the defender fails to play d1 then he might permanently miss his opportunity to reach σ2. This
suggests that the defender must always play d1. However, if the adversary never plays a1 then it is
best to use the fixed strategy always play d2.

Notice that for any A ∈ A0
A and any defender strategy D we have

P̄ (D,A,G, T ) = P̄ (D,A0, G, T ) ,

because A = A0. Hence, R̄0 = R̄k whenever the adversary is oblivious.

Remark 12 1. If D can minimize k-adaptive regret against any k-adaptive adversary then D
can minimize k-adaptive regret against any oblivious adversary (k = 0) because

A0
A ⊂ AkA .

2. If D can minimize k-adaptive regret against any k-adaptive adversary then D can minimize
k-adaptive regret against any oblivious adversary because R̄0 = R̄k whenever the adversary
is oblivious.

3. If D is a k-regret minimization algorithm a class of games G and G′ is a subclass of G then D
is also a k-regret minimization algorithm for the class of games G′.

σ  
2

σ  

1
d  , a

1

1
d  , a

2

2
d  , *

*, *

1

P (d1, σ1) = −1 P (d1, σ2) = 1
P (d2, σ1) = 0 P (d2, σ2) = 1

Figure 3: A counterexample to prove Theorem 11

This example also illustrates why it is impossible to minimize fully adaptive regret against a
non-forgetful adversary. In particular a non-forgetful adversary could use the states from 3 to decide
whether or not to cooperate. Note that even if the adversary can only see the lastm outcomes (sliding
window) the adversary could play to remind himself of events arbitrarily long ago. For example,
an adversary who wanted to remember whether or not the defender played action d during round 1
might play a special reminder action every m rounds when the latest reminder is about to go out of
memory.
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Algorithm 1 Assignment Recovery

• Input: D

• Input: MAX3SAT instance φ, with variables

x1, . . . , xn−1 ,

and clauses
C1, . . . , C` ,

• De Bruin sequence: s0, ..., sn−1

• Initialize: Set t← 0, H ← ∅, T ← p(n), α∗ ← 0

• Round t: Set i← t mod n

1. Check 1: If t ≥ T then return.

2. Check 2: If our current assignment x1, ..., xn−1 satisfies y fraction of the clauses where
y > α∗ then set

xi∗ ← xi ,

and
α← y .

3. Select Clause: If i = 0 then select a new clauseC uniformly at random fromC1, ..., C`,
and set H ′ = ∅.

4. Select Adversary Move:

ai ←


(si, 3) if i = 0;

(si, 1) if xi ∈ C;

(si, 0) if x̄i ∈ C;

(si, 2) otherwise.

5. Select Defender Move:

di ← D
(
Ht−i;H ′

)
,

6. Update: Let Oi be the outcome and set

H ← H +
(
si, Ô

i
)
,

H ′ ← H ′ + (si, 0) ,

t← t+ 1 ,

xi ← di ,
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