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ABSTRACT

There has been significant work in recent times on the use of hu-
man cardiac rhythm as a tool for identification. While most work in
this area explores the use of electrocardiogram signals for analysis,
this paper investigates a novel concept of the use of accelerome-
ter signals from heart-induced vibrations in an automobile seat, for
the specific application of user identification. Experiments are per-
formed on eight individuals with accelerometers placed on the neck
for proof of concept, and underneath a chair where the user sits to
replicate a real world scenario. Filtering was performed on the data
to eliminate noise, and features that could be used to identify the
user were extracted from the signals. Decision Tree, Random For-
est and Gaussian Naive Bayes classifiers were used for classifica-
tion of the dataset. We have found that the Random Forest model
worked best for this work: the random forest classifier model was
tested using randomized 20-fold cross validation and yielded an ac-
curacy of 86%.

1. INTRODUCTION

This project is motivated by the growing significance of security
and user identification. User identification is required for authoriza-
tion (to verify if a user has access to perform a particular action),
and for authentication (to prove if the user is who they claim to
be). Occupant identity information in a smart home setting or an
work environment is useful for enabling personalized environment
settings like specific temperature and lighting settings, which also
improves energy efficiency. In this project, we look at the specific
application of driver identification in automobiles. We will try to
identify the person occupying the driver’s seat for authorization of
starting the vehicle. This system could stop the car in the case of
detecting a user that is not in the list of authorized users, and alert
the owner of the vehicle.

While there exist more popular forms of biometric identifica-
tion, we believe this non-intrusive method of user identification us-
ing cardiac rhythm has advantages over these existing techniques.
Retina scanning is highly invasive and many users feel uncomfort-
able while scanning. Fingerprint scanning is another form of identi-
fication, but users’ fingerprint can be subject to some form of wear
and tear and hence this is not always permanent. The closest form
of identification using cardiac rhythm is user identification using
electrocardiogram (ECG), but it is not practical to use record read-
ings using ECG each time you need to identify a user. While heart-
beat rate is also subject to changes due to aging [14], the cardiac
rhythm between pulses still remains the same - it is only the fre-
quency of the pulses that change.

In this project we propose a non-intrusive method for user identi-
fication using accelerometers, based on heart-induced vibration in
chairs. The accelerometer picks up vibration data from the chair

caused by the cardiac rhythm of the user seated in the chair, and
that data is used to identify the individual.

In addition to accelerometer data from the chair, we have taken
data from an accelerometer attached to the neck. Because the heart-
beat signal is much stronger and suffers much less from noise, from
the neck, we hope that this will offer a proof-of-concept for the pos-
sibility of user identification through heartbeat signals.

The shape of the heartbeat is quantified by the following param-
eters (as can be seen in Figure 1): P is the first peak, Q is the next
trough, R is the next largest peak, S is the next trough, and T is the
final peak in a heartbeat pattern.
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Figure 1: PQRST form of the Heartbeat [4]

This method works based on the fact that unique characteristics
in the heart beat pattern correspond to unique individuals. Various
features, such as the distances between the peaks of the heartbeat
pulse, are extracted from the accelerometer and used to identify the
user. These features have been used in the past in order to identify
users based on heartbeats from ECG data.

2. RELATED WORK

Recent studies in the field of biometrics have shown that human
electrocardiogram (ECG) signals can serve as a biometric identi-
fication tool [5]. As the muscles in the heart expand and contract,
electrochemical signals are generated near the muscles which cause
spikes in the ECG signal. Use of this signal for human identifica-
tion have been investigated and proven with accuracy of over 90%
by various authors. The unique features of this signal are the rel-
ative distances between the P, Q, R, S, T points in the heartbeat



wave, which was used by Israel et al in 2005 [9]. Wubbeler et al in
2007 verified the long term stability of individual ECG signals and
achieved an equal error rate smaller than 3% [16].

A combination of processing techniques was used by Irvine et
al in 2008 for human identification with ECG signals [8]. They
achieved a near 100% enrollment rate. Fang et al in 2009 developed
an unsupervised identification method by measuring similarity in
ECG phase space portraits [7]. The use of ECG signal from the
fingers was investigated by Lourenco et al in 2011 [3].

While the research discussed above proved the concept of bio-
metric identification as well as developed techniques to improve
accuracy, the signal source was an ECG electrode from either the
chest or fingers and therefore are a partially intrusive method of
detection. In our project we attempt to use an accelerometer for
sensing the heartbeat from underneath the chair seat, with no direct
contact to the user. This is a novel method compared to previous
work because 1) it uses an accelerometer for identification and 2)
it is an extremely non-intrusive method, as the accelerometer is not
in direct contact with the user.

Additionally, there has been some work on the use of accelerom-
eter for heart rate measurement. Phan et al in 2008 used an ac-
celerometer mounted on the chest to measure heart rate and res-
piratory function [10]. This preliminary study verifies that cardiac
patterns can be detected and observed with an accelerometer. The
accelerometer picks up changes in acceleration caused by the flow
of blood vessels against the skin [13].

A recent paper from MIT shows the use of an accelerometer from
an iPhone for detection of heartbeats. This preliminary study veri-
fies that cardiac patterns can be detected and observed with an ac-
celerometer. The accelerometer picks up changes in acceleration
caused by the flow of blood vessels against the skin [13]

3. CHALLENGES

We have faced some research challenges as this project proves
a concept that has never been attempted in the past. Since the use
of accelerometer for identification has not been done before, iden-
tifying the right features is a challenge since there are no existing
proven methods. In addition, the physical phenomenon that con-
nects the heart’s pumping cannot be easily associated with peaks
that occur in the accelerometer signal (as in the case of an ECG).
Therefore choosing the appropriate features to identify the user, and
filtering parameters to isolate the peaks, needs to be chosen through
a brute force method.

Once we have extracted the appropriate features from the ac-
celerometer signal, there is a challenge in fully understanding the
nature of these extracted features. These features may be correlated,
independent, or have some type of probabilistic function, but these
characteristics are not well understood. This makes it difficult to
decide the appropriate classifier to use for identification of the in-
dividual based on these features. As a result, we have tested a few
simple classifiers and will compare the results between these clas-
sifiers.

4. SYSTEM ARCHITECTURE

There are three major sources of data for this project. The first is
from an accelerometer placed on the neck. The second is taken from
an accelerometer mounted on a chair beneath the surface where the
user sits. The third is from a Fitbit band placed on the user’s wrist,
which serves as the ground truth for the experiment. The heartrate
BPM information from the Fitbit is matched with the accelerometer
data to ensure that the peaks from the accelerometer match up with
the expected heartrate. Ten 30-second runs of data were taken from

ten individuals. The data from the accelerometer was sent through a
National Instruments Data Acquisition system which is then passed
to the computer. Figure 2 shows the data acquisition tools we used
in this work. The position of the two accelerometers from which
data was collected can be seen in Figure 3, which shows data col-
lection session in progress.

NI Data Acquisition System

Accelerometer used

Fitbit (Ground Truth)

Figure 2: Schematic of the Experimental Setup

Data Collection in Progress

Figure 3: Data Collection

S. SIGNAL PROCESSING AND FEATURE
EXTRACTION

5.1 Filtering the Data

The heartbeat pattern is a continuous analog signal that has been
discretized by the sensing system at a sampling frequency of 10.24
kHz. The heartbeat from the user is picked up by the accelerometer
and processed. This raw data is sent to a Butterworth band pass



filter with cut off frequencies of 10 and 90 Hz and order of 3 to
remove ambient noise. After applying the Butterworth band pass
filter with these parameters on the raw signals shown in Figures 4(a)
and 4(c), we obtained filtered data samples presented in Figures
4(b) and 4(d) respectively. Two sharp peaks and two sharp troughs
can be observed for each pulse of the individual from the neck data
and one peak and one trough for the chair data.
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Figure 4: Filtering Data

5.2 Extracting Features

Since the properties of these peaks and troughs are the features
for the project, a peak detection algorithm is used to identify both
the amplitude and the time of the peaks and trough (peaks from
chair data can be seen in Figure 5(b)). The peaks are distinguished
as first and second peaks of a pulse for the neck data only (Figure
5(a)). The features used for this project are the various distances
between the peaks and troughs of each pulse. The absolute values
of amplitudes of the peaks and troughs were also used as features.
Finally, a Fast Fourier Transform was performed on parts of the
signal and the frequency with the maximum amplitude in the FFT
is used as a feature. For each peak detected in the earlier steps, we
perform FFT on a set of 1000 points before the peak, the peak and
the set of 1000 points after the peak (around 0.2 seconds of data per
peak). The frequency at which we obtain a maximum amplitude is
used as a feature for that peak. Figure 5(c) shows an example of the
FFT output performed on a set of points around a neck-peak.

The combination of the features described above contains infor-
mation that is unique to an individual. Since the objective of the
project is to use the features listed above to identify individuals, the
classification labels for this project are the identity of the individu-
als observed.

6. MACHINE LEARNING METHODS

For our classification of individuals based on accelerometer data,
we will be using a few machine learning methods: Decision Tree
Classifier, Random Forest, and Gaussian Naive Bayes. Because we
do not fully understand the nature of the features we extract, we
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Figure 5: Peaks and troughs from 5(a) Neck and 5(b) Chair and
5(c) Output of FFT done on one neck peak

have used a few simple classification methods to try to determine
which classifier performs best. Through further analysis of the fea-
tures as well as the results of the classifiers, we hope to gain a better
understanding of the features we have chosen to use for user iden-
tification, and the appropriate type of classifiers to use for these
datasets.

6.1 Decision Tree Classifier

The decision tree classifier is a machine learning technique that
creates a set of sequential optimal splits in the feature space such
that the variance within each leaf is minimized. The splits are made
based on decisions pertaining to the features [15]. Thus the final de-
cision tree contains leaves which each have a set of unique feature
criteria. One or more leaves can be associated to a label. Decision
trees are one of the most visually simple classifiers.

6.1.1 Justification for Use

The decision tree classifier was chosen in this project because
it makes no assumption about the nature of the features, and sim-
ply splits the features to create leaves that minimizes the variance
of the labels within each leaf. This seemed ideal considering we
do not have a great understanding of the nature of the features we
have extracted from the accelerometer heartbeat data. Additionally,
the decision tree classifier gives an idea of which features are the
strongest to obtain the desired labels [1]. Since the idea of using ac-
celerometer data to identify individuals is novel and has never been
done before, this information will be of significant importance.

6.1.2 Parameter Optimization

Various parameters of the classifier have been optimized for each
dataset to give us the best accuracy of user identification. These pa-
rameters include the depth of the tree, number of features, criterion,
and splitter.

The depth of the tree (i.e. the number of levels of leaves) can be
controlled. Increasing the depth can refine the nuances in the fea-
ture space but a very high depth can cause an over-fit. The number
of features considered when choosing for the best feature split can



also be determined. Unless it is specified in the function, it auto-
matically considers all the features for each split.

The criterion parameter determines the function to measure the
quality of a feature split, including gini impurity and entropy. Gini
impurity is measured by the probability of incorrect label selection
if labels are randomly distributed in a leaf, while entropy defines the
criterion by amount of information gain given a split. The splitter
parameter determines the strategy used to choose the feature splits
at each node [1].

6.2 Random Forest Classifier

Random decision forests are an ensemble learning method for
classification, and operates by constructing many decision trees at
training time. The classifier fits a number of decision trees on var-
ious sub-samples of the dataset, and uses averaging to improve ac-
curacy by controlling over-fitting of the dataset /citerandom-forest.

6.2.1 Justification for Use

Like the decision tree classifier, random forests do not make any
assumption about the nature of the features, and simply splits the
features to create leaves that minimizes the variance of the labels
within each leaf. Random forests run efficiently on large data bases,
and can handle thousands of features without any deletion of the
features. The random forest also has an effective method for guess-
ing missing data, and is able to maintain accuracy when a large
portion of the data is missing [6].

Additionally, similar to the decision tree classifier, this classifier
gives an estimates of which features are most important in the clas-
sification. Since we do not know which features are most important
and useful in identifying individuals, this can be a very useful tool
for boosting our classification accuracy [2].

6.2.2 Parameter Optimization

Various parameters of the classifier have been optimized for each
dataset to give us the best accuracy of user identification. These pa-
rameters include the depth of the tree, number of features, number
of estimators, and criterion.

The depth of the tree (i.e. the number of levels of leaves) can be
controlled. Increasing the depth can refine the nuances in the fea-
ture space but a very high depth can cause an over-fit. The number
of features considered when choosing for the best feature split can
also be determined. Unless it is specified in the function, it auto-
matically considers all the features for each split [2].

The number of estimators decides how many trees will be con-
sidered in the forest. The default value is 10 trees if a specific value
is not set. The criterion parameter determines the function to mea-
sure the quality of a feature split, including gini impurity and en-
tropy. Gini impurity is measured by the probability of incorrect la-
bel selection if labels are randomly distributed in a leaf, while en-
tropy defines the criterion by amount of information gain given a
split [2].

6.3 Gaussian Naive Bayes Classifier

Gaussian Naive Bayes classifiers are simple probabilistic clas-
sifiers based on applying Bayes theorem. The classifier assumes
strong independence amongst the features; in other words, it as-
sumes that the presence of a particular feature in a class is unre-
lated to the presence of any other feature [12]. For this report, we
will assume independence and a Gaussian distribution of our fea-
tures, meaning that our features are unrelated and follow a normal
distribution. However, this is not definite and we will have to inter-
pret our features further to determine that this is the case in order
to justify use of this classifier. The Gaussian Naive Bayes Classifier

in the python scikit-learn library does not have any parameters for
optimization.

6.3.1 Justification for Use

Naive Bayes model is easy to build and useful for large data sets.
This classifier is simple and known to outperform highly sophisti-
cated classification methods. The Naive Bayes classifier performs
best when the assumption of independence of the features holds
true. It is useful because less training data is required. The use of
the Naive Bayes may be an issue with this application due to the
assumption of independent predictors [12]. This is almost never
true in real life, and in our case, many of our features are likely to
be correlated, such as the distances between peaks of the heartbeat
pulse and the maximum FFT frequency.

7. RESULTS

We analyze the performance of our classifier models through k-
fold cross validation, confusion matrices, and visualization of the
decision boundaries. These results reflect the classification of 8 dif-
ferent people, for whom we have taken heartbeat accelerometer
data over a S-minute period. Some sections of this data had to be
removed due to noise issues.

We test the classifiers on 6 datasets - Chair_All, Chair_Mean,
Chair_Median, Neck_All, Neck_Mean, and Neck_Median. The
"Mean" and "Median" data are the datasets with features averaged
over a run, meaning each person will have 10 samples per feature
since each person had 10 experiment runs. In contrast, the "All"
data corresponds to the datasets where each heartbeat pulse is a
sample, corresponding to around 500 samples per person, which is
the number of heartbeat pulses over a 5 minute period.

7.1 K-Fold Cross Validation

Results from a 20-fold cross validation on the classifier data us-
ing Random Forest, Decision Tree and Gaussian Naive Bayes clas-
sifiers is tabulated in Table 1. Different sets of data, as mentioned
above, has also been used. It can be seen that Chair Mean data per-
forms exceptionally well irrespective of the classifier used. Classifi-
cation on the Chair data has produced more accurate classifications
than the Neck data. Random Forest has the overall best accuracy of
the three classifiers used. It is important to note that running Ran-
dom Forest Classifier took more time than the other two classifiers
due to the computational complexity.

7.2 Confusion Matrix

Figures 6, 7 and 8 show the confusion matrix for Decision Tree,
Gaussian Naive Bayes, and Random Forest Classifiers respectively
with the ChairMean data. Each cell in the matrix can be is the in-
tersection of row i and column j and it represents the number of
user samples which are actually user i and has been classified as
user j by our algorithm. Sum of all cells in a row i gives the total
number of samples for that user i. It can be seen that the Decision
Tree and Random Forest classifiers performs better than Gaussian
Naive Bayes classifier as they do not have any incorrect classifica-
tions. The poor accuracy given by Gaussian Naive Bayes could be
due to the collinearity in the features, since Naive Bayes assumes
feature independence as well as a Gaussian distribution. It should
also be noted that the confusion matrices for Decision Tree and
the Random Forest classifiers are perfect, not even a single wrong
classification. This may suggests over-fitting of the data. K-Fold
cross validation (Section 7.1) reveals that the classifier results are
not perfect as shown in Table 1.

7.3 Decision Boundaries



Table 1: Results of K-Fold Cross Validation with k = 20

Classifier Chair_All | Chair_Mean | Chair_Median | Neck_All | Neck_Mean | Neck_Median | Classifier Average
Random Forest 0.70 0.86 0.79 0.85 0.73 0.73 0.78
Decision Tree 0.66 0.86 0.67 0.75 0.69 0.67 0.72
Gaussian Naive Bayes 0.45 0.88 0.65 0.49 0.68 0.55 0.62
Average 0.60 0.87 0.70 0.70 0.70 0.65

10

True label

]
Predicted label

Figure 6: Confusion Matrix for Decision Tree for Chair Mean
Data

10

1 0 0
1 3 0 8
0 0 0
]
T
o
= o o o
:
£
4
w 0 0 1 0 1 1 0
W 0 1 0 0 1 3 0 R
’ ‘ ’ ’ ’ ’ ’ -
1]
A B [ D E F G

Predicted label

Figure 7: Confusion Matrix for Gaussian Naive Bayes for Chair
Mean Data

A classifier divides the feature space into multiple decision re-
gions and all points in one region will have the same output label.
Decision Boundaries are formed at the intersection of these deci-
sion regions [11] and classification of any point lying on the deci-
sion boundary is always ambiguous. Figures 9, 10 and 11 show the
decision regions and the decision boundaries of the classification
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Figure 8: Confusion Matrix for Random Forest for Chair Mean
Data

when we use Decision Tree, Gaussian Naive Bayes and Random
Forest Classifiers on the Chair Mean data respectively (for the two
more important features for each classifier). Both the Decision tree
and the Random Forest classifiers make sequential optimal splits
on the data, one feature at a time and hence it divides the feature
space into multiple rectangular regions. Additionally, these plots
show that the features show some relationship to each other, as the
data points are not randomly or evenly scattered.
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Figure 9: Decision Boundary using Decision Tree for Chair
Mean Data



Gaussian Naive Bayes Classification of Mean Chair Data
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Mean Data

7.4 Analysis

Random Forest clearly performs the best of all the classifiers.
This is not surprising, since random forest is more sophisticated
than decision trees, and unlike the Gaussian Naive Bayes classifier,
does not assume anything about the nature of the features. Random
forest usually does best since the use of multitudes of trees and
averaging helps to prevent over-fitting of the data. Additionally,
we did not do significant research on the nature of our features,
which may be detrimental for some classifiers such as the Naive
Bayes Classifier. However, random forest classifiers typically per-
form better with more features fed to the classifier, regardless of
what characteristics these features may have.

Gaussian Naive Bayes performs decently, but it assumes inde-
pendence amongst the features, and also assumes a normal distri-
bution. Based on the visualization of the decision boundaries, it
seems that some of our features may be correlated to each other,
weakening the Gaussian Naive Bayes classification.

Surprisingly, the chair data performs better than the neck data,
and of the chair data, the mean data performs the best. We believe

that the chair data performs better than the neck data due to the
fact that the neck data was not collected in a standardized way;
each person would hold the accelerometer to their neck. This in-
troduces the potential for much experimental error, as the user can
hold the accelerometer in a different manner throughout the exper-
imental runs. This inconsistency can cause errors in the signal, and
cause complications in the classification of the individual from the
extracted features.

In addition, because the Chair_Mean data performs better than
the Chair_All data, this would imply that although there may be
some outliers in the feature samples, 30-second average of the fea-
ture samples gives a good consistent features for identification of
the individuals.

8. CONCLUSION

This paper demonstrates that the use human cardiac rhythm mea-
sured using an accelerometer-based sensing system can be used as
a tool for unique user identification. For the eight individuals tested
in this paper, it was observed that the use of appropriate filtering
and feature extraction methods from chair signals generated suc-
cessful results. The randomized 20 fold validation was performed
on the classifier models to evaluate their performance. Of the dif-
ferent classifiers used, the random forest method yielded the best
results and maximum accuracy of 86% was obtained when Chair
Mean data was used.

9. FUTURE WORK

Because we were able to prove good initial accuracy in identifi-
cation of users through heart-induced chair vibrations picked up by
the accelerometer, we would like to continue making improvements
in our model to continue to boost our accuracy.

First, we would like to take cleaner data. From the chair, we
would like to take data in a less noisy environment such that we
have less disruptions from external vibrations other than the heart-
beat. Additionally, we would like to take data from the neck in
a more standardized manner, with either a flexible band or collar
around the neck attached to the accelerometer. This would allow
for consistent data acquisition of the heartbeat pulse from the neck,
and hopefully a higher classification accuracy from the neck data.

Additionally, we would like to take a deeper dive into interpreta-
tion of the features we have extracted. We would like to analyze our
features and look at the nature of the features and whether they oc-
cur in clusters, have a linear relationship, etc. We would like to de-
termine the collinearity of our features by looking at partial depen-
dence plots. Based on a deeper understanding of the characteristics
and nature of these features, we can determine the most appropri-
ate classifier to use for our dataset, and to improve our classification
performance.

Finally, we would like to data from people under various condi-
tions. In order to test the robustness of the model and to ensure the
appropriate use of features, the data shall be collected at different
heart rates of the same individual. This can be achieved by taking
data under different conditions such as rest, running etc. A poten-
tial way to overcome this would be to use dynamic time warping to
standardize the heartbeat rate for every individual.
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