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ABSTRACT 
Devices equipped with network connectivity, are becoming 
increasingly pervasive in day-to-day life (for example. 
smart homes). The data logged in these devices is used for 
analytical purposes, like understanding human behavior 
and habits for providing better services like a smart 
thermostat. Such networked devices are colloquially 
referred to as Internet of Things (IoT). However, while 
devices that support IoT can be deployed to collect data, the 
on-board processing power may not be sufficient to 
produce results accurately and within the required time 
frame. The work in this paper does a performance, power 
and temperature analysis of performing heavy computation 
on a IoT device versus performing this computation on a 
server. The results of this analysis is also presented in this 
paper. One of the main observed insights at this point in the 
project is that the time taken, power consumption varies 
with the frequency scaling policy chosen and that server 
execution with the most conservative voltage scaling policy 
on the board takes the least time, but this communication 
consumes a lot of energy.  
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1.INTRODUCTION 
There is a tremendous growth of cyber-physical systems 
and ubiquitous sensing. Different kinds of sensors are being 
deployed everywhere to collect data. Sensor nodes are 
becoming more powerful and are able to be connected to 
the internet as well – entering the paradigm of Internet of 
Things (IoT). IoT-capable systems are extensively being 
deployed. They can collect data, perform analysis and also 
take the necessary actions based on the analysis. This 
becomes more important in the case of real time tasks 
where collecting data, transmitting it to server and getting 
the necessary response back takes more time. For example,  
the Thermal Comfort Band Maintenance (TCBM) 
algorithm [2] – that maintains a temperature band in room 
with less number of air conditioners by cycling between the 
air conditioners - uses a Raspberry Pi to collect data from 
temperature sensors and then analyses it on-board to make 
a decision when and which air conditioners to turn on. But 
this increases the processor workload and hence more 
power is consumed.  

With the on-set of IoT, sensor nodes are becoming more 
powerful and are able to do heavy processing. But this 
increases the power consumption and hence leads to a 
decrease in operating life as most of these nodes are battery 
operated. Hence the goal of this paper is to evaluate 
computation versus communication in IoT nodes. We 
achieve this by quantifying power consumption and time 
taken for executing computationally intensive tasks in 
different scenarios - on the IoT node, or on a server talking 
to the node.  
In this project, both the scenarios will be implemented and 
the results – power consumption, time taken and 
temperature during both on-board and on-server cases will 
be analyzed. This will contribute to having a better 
understanding of energy aware Internet-of-Things design. 
Section 2 describes the problem statement, Section 3 talks 
about the experimental setup and the approach that has 
been taken for this comparative study. Section 4 provides 
the results and outputs that were observed during running 
tests until Milestone 1, Section 5 contains the individual 
contributions for this project and the paper concludes with 
Section 6 that talks about future work and milestones yet to 
be reached. 

2.PROBLEM STATEMENT 
For a board that supports Internet of Things, taking into 
consideration the power consumption of the board, we will 
perform a computation versus communication analysis for 
executing image classification algorithms. The main 
requirement for a development board to support the internet 
of things is the availability of network connectivity. Results 
will include the power, performance and latency analysis 
when the image classification algorithm is executed on the 
board and when the image is sent to a server that executes it 
and sends the result back to the board.  

2.1.Image Classification 
Image classification is a processor intensive task and can be 
used to maximize the workload on the board’s processor. 
Image classification on embedded systems and IoT nodes 
also have a wide range of applications. One of them is 
occupant identification in a building and using the occupant 
information to change the environmental setting of the 
room – such as the room temperature (HVAC [3]) or 
lighting to match the user’s preference.  
This paper talks about digit classification on the MNIST 
database [4], which contains handwritten digits. It has 



60000 images in the training data set and 10000 testing 
images. Digit classification is carried out using neural 
networks. The LeNet network [10] is implemented using 
the Caffe framework [11]. 

3.EXPERIMENTAL SETUP 
3.1.Requirements 
As per our problem statement, we require a micro 
controller unit which is compact enough to serve as an IoT 
node, yet capable of performing compute-heavy exercises 
such as image classification. It should also have networking 
capabilities such as Bluetooth or Wi-Fi. in order to 
communicate with a server. We decided to use the 
Raspberry Pi 3, a powerful micro controller unit with a 
quad-core ARM processor, which comes with a built-in Wi-
Fi module. The Raspberry Pi also has enough RAM to be 
able to process 10,000 test images from the MNIST 
database. 
We decided to choose the UbuntuMate over Raspbian 
operating system for the Raspberry Pi because it is an 
Ubuntu distribution – hence it would be able to provide lot 
more support. This gives us access to more Linux tools than 
Raspbian.  As Ubuntu is also built on Debian, it gives all 
the functionalities that Raspbian could provide. This also 
provides us with a terminal for running and executing the 
code and other scripts locally on the Raspberry Pi. 

3.2.Approach 
The problem requires us to compare two situations based 
on where the process of image classification takes place: 
on-board or remote.  

To perform digit classification easily and with high 
accuracy, we chose the Caffe deep-leaning framework on 
which we ran an implementation of LeNet - a convolutional 
neural network which is known to perform well with the 
digit classification task. Caffe and its dependencies were 
installed on the Raspberry Pi. 
As a pre-processing step, before beginning any data 
collection, the neural network model to perform digit 
classification is pre-trained on a server. The model which is 
generated is then copied onto the Raspberry Pi. The on-
board and remote classification tasks which are 
subsequently described only look at the testing phase, as 
the training and verification phases are completed during 
pre-processing. The results are obtained in the form of 
accuracy and cross-entropy loss. For our trained model, the 
accuracy and loss were consistently 98.6 % and 0.043 
respectively. 

3.2.1 Onboard classification 
In the on-board implementation, image classification 
occurs on the Raspberry Pi itself. 

3.2.2 Remote classification 
In the current server implementation, the Raspberry Pi will 
send the training data and the testing data of the MNIST 
database to a server over Wi-Fi using sockets. Python 
sockets have been used to implement this data transmission 
part. The server will run the same image classification 
algorithm, which was run during the onboard 
implementation, obtain a result and transmit it back to the 
Raspberry Pi. The power measured in this case will include 
the power consumed from when the training set was sent, 
to when the result was received from the server. The time 
taken is the same duration – from sending the training set to 
receiving the image, which we obtain by time-stamping 
throughout the classification process. 
We have used a MacBook Pro laptop with high 
configurations (Core i7, 16GB RAM) as the remote server 
location for image classification.  

3.2.3 Frequency Scaling 
We also wanted to analyse the effects of frequency scaling 
on the power consumption during the on-board and remote 
classification tasks. By slowing down the frequency, we 
reduce power, but on the flip-side, the time taken to 
complete the task increases. To understand the effects of 
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Figure 2: Remote classification data flow

Figure 1: MNIST database  

Table 1: System overview

Hardware Software
Raspberry Pi 3 Caffe
Power Meter vcgencmd

Python sockets



different frequencies on the results, we modify the clock 
rate by modifying the Raspberry Pi’s system files, which 
are open to modifications provided a user has root access. 
The Raspberry Pi 3 has 2 main operating clock frequencies: 
600MHz and 1200MHz. It also comes with five different 
frequency scaling governing policies for adjusting the clock 
frequency of the Pi at a given time [8]: 

• ondemand (default): runs at 600MHz until CPU 
usage is 95% (can be configured) and then runs at 
1200MHz 

• powersave: always runs at 600MHz 
• performance: always runs at 1200MHz 
• conservative: gradual scaling of clock frequency 

from 600MHz to 1200MHz based on CPU usage 
• userspace: according to user’s settings 

Our analysis includes results with ondemand, powersave 
and performance policies. The policy can be changed by 
overwriting the content of the scaling_governor file in any 
cpu (/sys/devices/system/cpu/cpu[0-3]/scaling_governor). 

3.2.Methods of Data Collection and Analysis 
3.2.1.Power Meter 
Power meters, or electricity usage monitors, are devices 
which can be plugged into a wall socket between the socket 
and the appliance. As shown in Figure It contains an LCD 
display which gives you real-time accurate information on 
the power being consumed by your appliance in the form of 
volts, amperes and watts. The power meter is plugged in at 
all times to get this information from the Raspberry Pi, 
while it is running onboard and remote classification. We 
have used the Kill-A-Watt [6] power meter for this project. 
Due to lack of network connectivity on the meter, the data 
had to be manually recorded.  

3.2.4.vcgencmd [9] 
This is a linux tool that provides us with different system 
information like current core voltage, current core 
frequency, LED status on the Raspberry Pi amongst other 
information. We use this command to retrieve core 
temperature as well (vcgencmd measure_temp). We have 
written a shell script that runs in the background to collect 
the core temperature and write to a file every 5 seconds. 

4.RESULTS 
We tested six different scenarios, with various 
combinations of onboard and remote server execution of 
our classifier, with powersave, performance and on demand 
frequency adjustment policies.  

4.1.Power consumption 
The tables below summarize our results. We are presenting 
average power, execution time and our figures of merit - 
power delay product and energy delay product. 

The results for average power follow our expectations, 
where average power is significantly reduced during the 
remote execution. The maximum is obtained during on-
board performance mode, as expected. The average power 
table clearly shows the effects of frequency scaling, where 
on-demand and power save modes are comparable and on-
demand gives a slight edge due to higher frequency 
performance at high workload. 

Table 2: Average power consumption during execution

Frequency 
policy

Approach Average 
power (W)

On-demand Remote 1.7
On-demand On-board 4.74
Power-save Remote 1.74
Power-save On-board 2.76

Performance Remote 2
Performance On-board 4.78

Table 3: Power-delay product

Frequency 
policy

Approach Power-Delay 
Product  

(W-s)
On-demand Remote 156.2
On-demand On-board 94.86
Power-save Remote 116.9
Power-save On-board 121.24

Performance Remote 103.5
Performance On-board 95.6

Table 4: Energy-delay product

Frequency 
policy

Approach Energy-Delay 
Product  
(W-s2)

On-demand Remote 14214.2
On-demand On-board 1897.2
Power-save Remote 7715.4
Power-save On-board 5334.56

Performance Remote 5485.5
Performance On-board 191.2

Figure 3: Kill-A-Watt Power Meter



However, once we start accounting for the total execution 
time, we find that the results start to get flipped and remote-
execution of the task actually returns worse figures of-merit 
than on-board processing.  

The effects of including execution time get further 
exacerbated when taking into account energy-delay 
product. 

4.1.2.Effects of frequency and execution time 
Remote execution took tens of seconds longer than on-
board execution. The remote execution time is a large 
factor in why it consumes a lot more power.  

4.2.Temperature 
As expected, the temperature saw a spike during execution 
of the image classification model. Figure 4 plots the 
different temperature profiles during the execution period. 

It can be seen that onboard execution causes a higher 
temperature than remote execution. Executing onboard 
with performance frequency policy shows reduction in 
temperature. This could be due to very high starting 
temperature due to programs which were running 
previously.  

4.3.Sources of error 
4.3.1 Power meter results 
Due to the manual result-taking from the power meter, 
power and temperature graphs for the different scenarios 
are approximate, and may come within a few seconds of 
error.  
4.3.2 Temperature skewing with time 
The temperature also depends on the amount of time the 
Raspberry Pi is on for. The longer the testing process took, 
the likelier it was for scenarios tested later to exhibit a 
skewed increase in temperature (in the order of 0.1 degrees 
Celsius). A methodology to normalize this over time will 
contribute to more accurate results in the future.  
4.3.3 Network connectivity 
The remote classification values are highly dependent on 
the speed and congestion of the network, and will vary 
between networks. 
4.3.4 Power consumed by server 
The power consumed by the server was not counted in the 
total consumption for remote processing. The values for 
remote processing are more optimistic without this added 
value. 

5.CONTRIBUTIONS  
Most of the work was done together – set up, data 
collection, data analysis, setting up Caffe, creating 

Table 5: Execution Time

Frequency 
policy

Approach Time (s)

On-demand Remote 91
On-demand On-board 20
Power-save Remote 66
Power-save On-board 44

Performance Remote 53
Performance On-board 20

Figure 4: Temperature Profile for different scenarios



presentations and writing the final report. Nandini wrote 
the bit classification script to obtain initial Support Vector 
Machine results. Anand wrote the file and result transfer 
part from Raspberry Pi to the server and back.  

6.CONCLUSION 
As expected, temperature rose during processing of image 
classification, and the value by which it increased remained 
fairly constant throughout the different cases. 
On-board digit classification outperforms remote 
classification for all frequency modes. The direct effects of 
frequency policy on energy savings are inconclusive. The 
power consumption depended more on the execution time 
of the task, than on any frequency policy. 
From our experimental setup, we conclude that the 
Raspberry Pi is very well suited for computing tasks itself, 
rather than communicating its tasks to a server. 

7.MILESTONES 
For Milestone 2, we had done our preliminary analysis of 
temperature and power consumption while doing image 
classification with support vector machine as the learning 
algorithm. As we hadn’t used Caffe or any other 
framework, the algorithm wasn’t parallelized. The 
Raspberry Pi also ran our of memory when we were 
training and it we trained it for only 20000 images instead 
of 60000 images. Also, the support vector machine was 
performing binary classification in Python, where we 
classified numbers as 0 or not 0. We have since replaced 
this by running LeNet on Caffe for the same task, and 
recalculated our previous results. 

8.CONTRIBUTIONS 
Majority of the work was done together - beginning from 
the set up, data collection, data analysis. Nandini set up 
Caffe and wrote the bit classification using SVM  for 
MNIST dataset. Anand developed the script for sending 
images to the server from the Raspberry Pi and getting the 
response back. The poster and this report was also 
compiled together.  

9.WEBSITE 
A summary of the report is uploaded to this website: http://
www.andrew.cmu.edu/user/anandkrp/ 
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