
Power Consumption Analysis during Image Classification
for IoT Nodes

Anand Krishnan Prakash
Energy Science Technology & Policy 

anandkrp@andrew.cmu.edu

Nandini Ramakrishnan
Electrical and Computer Engineering 

nramakri@andrew.cmu.edu

ABSTRACT
Devices equipped with network connectivity, are becoming
increasingly pervasive in day-to-day life (for example.
smart homes). The data logged in these devices is used for
analytical purposes, like understanding human behavior
and habits for providing better services like a smart
thermostat. Such networked devices are colloquially
referred to as Internet of Things (IoT). However, while
devices that support IoT can be deployed to collect data, the
on-board processing power may not be sufficient to
produce results accurately and within the required time
frame. The work in this paper does a performance, power
and temperature analysis of performing heavy computation
on a IoT device versus performing this computation on a
server. The results of this analysis is also presented in this
paper. One of the main observed insights at this point in the
project is that the time taken, power consumption varies
with the frequency scaling policy chosen and that server
execution with the most conservative voltage scaling policy
on the board takes the least time, but this communication
consumes a lot of energy.

Keywords
Internet of Things; Raspberry Pi; Image Classification;
Neural Network; Power Meter; Frequency Scaling

1.INTRODUCTION
There is a tremendous growth of cyber-physical systems
and ubiquitous sensing. Different kinds of sensors are being
deployed everywhere to collect data. Sensor nodes are
becoming more powerful and are able to be connected to
the internet as well – entering the paradigm of Internet of
Things (IoT). IoT-capable systems are extensively being
deployed. They can collect data, perform analysis and also
take the necessary actions based on the analysis. This
becomes more important in the case of real time tasks
where collecting data, transmitting it to server and getting
the necessary response back takes more time. For example,
the Thermal Comfort Band Maintenance (TCBM)
algorithm [2] – that maintains a temperature band in room
with less number of air conditioners by cycling between the
air conditioners - uses a Raspberry Pi to collect data from
temperature sensors and then analyses it on-board to make
a decision when and which air conditioners to turn on. But
this increases the processor workload and hence more
power is consumed.

With the on-set of IoT, sensor nodes are becoming more
powerful and are able to do heavy processing. But this
increases the power consumption and hence leads to a
decrease in operating life as most of these nodes are battery
operated. Hence the goal of this paper is to evaluate
computation versus communication in IoT nodes. We
achieve this by quantifying power consumption and time
taken for executing computationally intensive tasks in
different scenarios - on the IoT node, or on a server talking
to the node.
In this project, both the scenarios will be implemented and
the results – power consumption, time taken and
temperature during both on-board and on-server cases will
be analyzed. This will contribute to having a better
understanding of energy aware Internet-of-Things design.
Section 2 describes the problem statement, Section 3 talks
about the experimental setup and the approach that has
been taken for this comparative study. Section 4 provides
the results and outputs that were observed during running
tests until Milestone 1, Section 5 contains the individual
contributions for this project and the paper concludes with
Section 6 that talks about future work and milestones yet to
be reached.

2.PROBLEM STATEMENT
For a board that supports Internet of Things, taking into
consideration the power consumption of the board, we will
perform a computation versus communication analysis for
executing image classification algorithms. The main
requirement for a development board to support the internet
of things is the availability of network connectivity. Results
will include the power, performance and latency analysis
when the image classification algorithm is executed on the
board and when the image is sent to a server that executes it
and sends the result back to the board.

2.1.Image Classification
Image classification is a processor intensive task and can be
used to maximize the workload on the board’s processor.
Image classification on embedded systems and IoT nodes
also have a wide range of applications. One of them is
occupant identification in a building and using the occupant
information to change the environmental setting of the
room – such as the room temperature (HVAC [3]) or
lighting to match the user’s preference.
This paper talks about digit classification on the MNIST
database [4], which contains handwritten digits. It has

60000 images in the training data set and 10000 testing
images. Digit classification is carried out using neural
networks. The LeNet network [10] is implemented using
the Caffe framework [11].

3.EXPERIMENTAL SETUP
3.1.Requirements
As per our problem statement, we require a micro
controller unit which is compact enough to serve as an IoT
node, yet capable of performing compute-heavy exercises
such as image classification. It should also have networking
capabilities such as Bluetooth or Wi-Fi. in order to
communicate with a server. We decided to use the
Raspberry Pi 3, a powerful micro controller unit with a
quad-core ARM processor, which comes with a built-in Wi-
Fi module. The Raspberry Pi also has enough RAM to be
able to process 10,000 test images from the MNIST
database.
We decided to choose the UbuntuMate over Raspbian
operating system for the Raspberry Pi because it is an
Ubuntu distribution – hence it would be able to provide lot
more support. This gives us access to more Linux tools than
Raspbian. As Ubuntu is also built on Debian, it gives all
the functionalities that Raspbian could provide. This also
provides us with a terminal for running and executing the
code and other scripts locally on the Raspberry Pi.

3.2.Approach
The problem requires us to compare two situations based
on where the process of image classification takes place:
on-board or remote.

To perform digit classification easily and with high
accuracy, we chose the Caffe deep-leaning framework on
which we ran an implementation of LeNet - a convolutional
neural network which is known to perform well with the
digit classification task. Caffe and its dependencies were
installed on the Raspberry Pi.
As a pre-processing step, before beginning any data
collection, the neural network model to perform digit
classification is pre-trained on a server. The model which is
generated is then copied onto the Raspberry Pi. The on-
board and remote classification tasks which are
subsequently described only look at the testing phase, as
the training and verification phases are completed during
pre-processing. The results are obtained in the form of
accuracy and cross-entropy loss. For our trained model, the
accuracy and loss were consistently 98.6 % and 0.043
respectively.

3.2.1 Onboard classification
In the on-board implementation, image classification
occurs on the Raspberry Pi itself.

3.2.2 Remote classification
In the current server implementation, the Raspberry Pi will
send the training data and the testing data of the MNIST
database to a server over Wi-Fi using sockets. Python
sockets have been used to implement this data transmission
part. The server will run the same image classification
algorithm, which was run during the onboard
implementation, obtain a result and transmit it back to the
Raspberry Pi. The power measured in this case will include
the power consumed from when the training set was sent,
to when the result was received from the server. The time
taken is the same duration – from sending the training set to
receiving the image, which we obtain by time-stamping
throughout the classification process.
We have used a MacBook Pro laptop with high
configurations (Core i7, 16GB RAM) as the remote server
location for image classification.

3.2.3 Frequency Scaling
We also wanted to analyse the effects of frequency scaling
on the power consumption during the on-board and remote
classification tasks. By slowing down the frequency, we
reduce power, but on the flip-side, the time taken to
complete the task increases. To understand the effects of

Caffe model

Accuracy, Loss

Figure 2: Remote classification data flow

Figure 1: MNIST database

Table 1: System overview

Hardware Software
Raspberry Pi 3 Caffe
Power Meter vcgencmd

Python sockets

different frequencies on the results, we modify the clock
rate by modifying the Raspberry Pi’s system files, which
are open to modifications provided a user has root access.
The Raspberry Pi 3 has 2 main operating clock frequencies:
600MHz and 1200MHz. It also comes with five different
frequency scaling governing policies for adjusting the clock
frequency of the Pi at a given time [8]:

• ondemand (default): runs at 600MHz until CPU
usage is 95% (can be configured) and then runs at
1200MHz

• powersave: always runs at 600MHz
• performance: always runs at 1200MHz
• conservative: gradual scaling of clock frequency

from 600MHz to 1200MHz based on CPU usage
• userspace: according to user’s settings

Our analysis includes results with ondemand, powersave
and performance policies. The policy can be changed by
overwriting the content of the scaling_governor file in any
cpu (/sys/devices/system/cpu/cpu[0-3]/scaling_governor).

3.2.Methods of Data Collection and Analysis
3.2.1.Power Meter
Power meters, or electricity usage monitors, are devices
which can be plugged into a wall socket between the socket
and the appliance. As shown in Figure It contains an LCD
display which gives you real-time accurate information on
the power being consumed by your appliance in the form of
volts, amperes and watts. The power meter is plugged in at
all times to get this information from the Raspberry Pi,
while it is running onboard and remote classification. We
have used the Kill-A-Watt [6] power meter for this project.
Due to lack of network connectivity on the meter, the data
had to be manually recorded.

3.2.4.vcgencmd [9]
This is a linux tool that provides us with different system
information like current core voltage, current core
frequency, LED status on the Raspberry Pi amongst other
information. We use this command to retrieve core
temperature as well (vcgencmd measure_temp). We have
written a shell script that runs in the background to collect
the core temperature and write to a file every 5 seconds.

4.RESULTS
We tested six different scenarios, with various
combinations of onboard and remote server execution of
our classifier, with powersave, performance and on demand
frequency adjustment policies.

4.1.Power consumption
The tables below summarize our results. We are presenting
average power, execution time and our figures of merit -
power delay product and energy delay product.

The results for average power follow our expectations,
where average power is significantly reduced during the
remote execution. The maximum is obtained during on-
board performance mode, as expected. The average power
table clearly shows the effects of frequency scaling, where
on-demand and power save modes are comparable and on-
demand gives a slight edge due to higher frequency
performance at high workload.

Table 2: Average power consumption during execution

Frequency
policy

Approach Average
power (W)

On-demand Remote 1.7
On-demand On-board 4.74
Power-save Remote 1.74
Power-save On-board 2.76

Performance Remote 2
Performance On-board 4.78

Table 3: Power-delay product

Frequency
policy

Approach Power-Delay
Product

(W-s)
On-demand Remote 156.2
On-demand On-board 94.86
Power-save Remote 116.9
Power-save On-board 121.24

Performance Remote 103.5
Performance On-board 95.6

Table 4: Energy-delay product

Frequency
policy

Approach Energy-Delay
Product
(W-s2)

On-demand Remote 14214.2
On-demand On-board 1897.2
Power-save Remote 7715.4
Power-save On-board 5334.56

Performance Remote 5485.5
Performance On-board 191.2

Figure 3: Kill-A-Watt Power Meter

However, once we start accounting for the total execution
time, we find that the results start to get flipped and remote-
execution of the task actually returns worse figures of-merit
than on-board processing.

The effects of including execution time get further
exacerbated when taking into account energy-delay
product.

4.1.2.Effects of frequency and execution time
Remote execution took tens of seconds longer than on-
board execution. The remote execution time is a large
factor in why it consumes a lot more power.

4.2.Temperature
As expected, the temperature saw a spike during execution
of the image classification model. Figure 4 plots the
different temperature profiles during the execution period.

It can be seen that onboard execution causes a higher
temperature than remote execution. Executing onboard
with performance frequency policy shows reduction in
temperature. This could be due to very high starting
temperature due to programs which were running
previously.

4.3.Sources of error
4.3.1 Power meter results
Due to the manual result-taking from the power meter,
power and temperature graphs for the different scenarios
are approximate, and may come within a few seconds of
error.
4.3.2 Temperature skewing with time
The temperature also depends on the amount of time the
Raspberry Pi is on for. The longer the testing process took,
the likelier it was for scenarios tested later to exhibit a
skewed increase in temperature (in the order of 0.1 degrees
Celsius). A methodology to normalize this over time will
contribute to more accurate results in the future.
4.3.3 Network connectivity
The remote classification values are highly dependent on
the speed and congestion of the network, and will vary
between networks.
4.3.4 Power consumed by server
The power consumed by the server was not counted in the
total consumption for remote processing. The values for
remote processing are more optimistic without this added
value.

5.CONTRIBUTIONS
Most of the work was done together – set up, data
collection, data analysis, setting up Caffe, creating

Table 5: Execution Time

Frequency
policy

Approach Time (s)

On-demand Remote 91
On-demand On-board 20
Power-save Remote 66
Power-save On-board 44

Performance Remote 53
Performance On-board 20

Figure 4: Temperature Profile for different scenarios

presentations and writing the final report. Nandini wrote
the bit classification script to obtain initial Support Vector
Machine results. Anand wrote the file and result transfer
part from Raspberry Pi to the server and back.

6.CONCLUSION
As expected, temperature rose during processing of image
classification, and the value by which it increased remained
fairly constant throughout the different cases.
On-board digit classification outperforms remote
classification for all frequency modes. The direct effects of
frequency policy on energy savings are inconclusive. The
power consumption depended more on the execution time
of the task, than on any frequency policy.
From our experimental setup, we conclude that the
Raspberry Pi is very well suited for computing tasks itself,
rather than communicating its tasks to a server.

7.MILESTONES
For Milestone 2, we had done our preliminary analysis of
temperature and power consumption while doing image
classification with support vector machine as the learning
algorithm. As we hadn’t used Caffe or any other
framework, the algorithm wasn’t parallelized. The
Raspberry Pi also ran our of memory when we were
training and it we trained it for only 20000 images instead
of 60000 images. Also, the support vector machine was
performing binary classification in Python, where we
classified numbers as 0 or not 0. We have since replaced
this by running LeNet on Caffe for the same task, and
recalculated our previous results.

8.CONTRIBUTIONS
Majority of the work was done together - beginning from
the set up, data collection, data analysis. Nandini set up
Caffe and wrote the bit classification using SVM for
MNIST dataset. Anand developed the script for sending
images to the server from the Raspberry Pi and getting the
response back. The poster and this report was also
compiled together.

9.WEBSITE
A summary of the report is uploaded to this website: http://
www.andrew.cmu.edu/user/anandkrp/

10.REFERENCES
1. G. Karmakar, A. Kabra and K. Ramamritham,

"Coordinated scheduling of thermostatically controlled
real-time systems under peak power constraint," Real-
Time and Embedded Technology and Applications
Symposium (RTAS), 2013 IEEE 19th, Philadelphia, PA,
2013, pp. 33-42.doi: 10.1109/RTAS.2013.6531077,  
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=6531077&isnumber=6531071

2. M. Feldmeier and J. Paradiso. Personalised HVAC
control system. In Internet of Things (IOT), 2010, pages
1 –8, 29 2010-dec. 1 2010.

3. LeCun, Yann, Corinna Cortes, and Christopher JC
Burges. "The MNIST database." http://yann.lecun.com/
exdb/mnist (1998).

4. Winder, S. A. (2015, July 14). Training neural nets on
MNIST digits. Retrieved from Simon Winder: http://
simonwinder.com/2015/07/training-neural-nets-on-
mnist-digits/

5. Kill A Watt: http://www.p3international.com/products/
p4400.html

6. scaling_governor: https://wiki.archlinux.org/index.php/
CPU_frequency_scaling#Scaling_governors

7. vcgencmd: http://www.elinux.org/
RPI_vcgencmd_usage

8. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE, november 1998.

9. Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff
and Karayev, Sergey and Long, Jonathan and Girshick,
Ross and Guadarrama, Sergio and Darrell, Trevor.
“Caffe: Convolutional Architecture for Fast Feature
Embedding” (2014) Retrieved from arXiv preprint
arXiv:1408.5093

http://www.andrew.cmu.edu/user/anandkrp/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6531077&isnumber=6531071
http://yann.lecun.com/exdb/mnist
http://simonwinder.com/2015/07/training-neural-nets-on-mnist-digits/
http://www.p3international.com/products/p4400.html
https://wiki.archlinux.org/index.php/CPU_frequency_scaling%23Scaling_governors
http://www.elinux.org/RPI_vcgencmd_usage

