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Markov Chain Monte Carlo Estimation of a Hierarchical Multivariate Type-2 Tobit Model

We begin by modifying our notation. We rewrite the parameters for equation (2), the expenditure equation,
T,=1" SR ¢ 8N N Similarly, we rewrite the parameters for equation (4), the patronage equation, .,
=14, 2\, P 6N, N. We also rewrite the predictor variables common to the two equations, m,, = [ 1
xN,, 24, sN, IN. We then stack (1) the dependent variables of both equations for all households 4 and time
periods #so that y*, = [ 3%, 5%, ... 7 INand 2%, = [ 2%, 2%, ... Zfur N, (2) the error terms of both
equations for all households 4 and time periods #so that§, = [ §,; Qi --- Qur WNanduw, = [, #,, ...
iy N, and finally (3) the predictor variables shared by the two equations, M, = [ m,;, m,, ... my; |\.
We allow for contemporaneous correlation of the error terms in equations (2) and (4) by adopting the SUR

forms shown below.
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where, for {i=1, ..., §}:
0,is an HT vector of disturbances such that E(g) = 0 and E@QN) = F1;;;, and
u, is an HT vector of disturbances such that E(u) = 0 and E(uul) = 21,
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Finally, for clarity we rewrite the SUR equations above as: y* = M T + §and z* = M. + u.

Now, we write the hierarchies associated with the two shopping decisions. We stack (1) the intercept
coefficients for all households 4 so that ™', =[ ", ", ... ", INand4d,=[ 4, 4, ... 4, I\, (2) the
common predictor variables for the two equations, W = [w, w, ... w;; |\, and (3) the etror terms of the
hierarchical equations for all households 4, >,=[ >, >, ... >, NandJ,=[J,; J, ... J,; I\. We allow

for contemporaneous correlation of unexplained preferences across store chains in equations (5) and (6) by



using the SUR forms below.
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where, for {/ =1, ..., §} >,is an H vector of disturbances such that E®) = 0 and EG>N) = p';,lH, and
J;is an H vector of disturbances such that EJ) = 0 and EQJJIN) = /1,
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We summarize the SUR equations above as: " = W* +>and 4 = WR + J.

Both the SUR structutes of the models above and the hierarchical specification preclude analytical
solutions of the S-model system of equations under consideration. Moreover, the high dimension of the
integral makes the use of numerical integration techniques infeasible for our systems of equations. Due to
the limitations of analytical and numerical estimation techniques for the hierarchical multivariate Tobit
specification, we use an MCMC approach to estimate the marginal distributions of the latent dependent
variables, parameters and covariances. The MCMC algorithm involves sampling sequentially from the
relevant conditional distributions over a large number of iterations. These draws can be shown to converge
to the marginal posterior distributions.

Our implementation of the MCMC algorithm has three steps that are described below.

A. Conditional distributions
The first implementation step requires that we specify conditional distributions of the relevant variables. The
solutions of these distributions follow from the normality assumption of the disturbance terms. We employ

natural conjugate priors. Specifications of the conditional distributions are as follows:

* *
1. Yhit 180 1f 9,20, otherwise Yy, is drawn from a normal distribution, truncated above at 0.
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As the notation suggests, the Y, vector and G matrix are partitioned between the store chain of interest,

7, and all other store chains, /... . Without loss of generality, we have shown the store chain of interest to
be the first. Each chain is then drawn in succession for household 4, conditioning on  Yh.j: , a vector

of latent dependent variables for all ... 7, and G.
The truncated normal variates are drawn using the inverse cdf method. Given the truncation

value of zero, the conditional expected value of the dependent variable,
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and the conditional standard deviation of the dependent variable,

G;E_l) 2D =gt~ (Si(jt_l)E }jl(t_l)c(jti_l) , we draw the truncated normal values using the following

procedure. (Note that conditioning arguments are dropped for clarity):

* Compute the upper limit for uniform interval: L = (I)[(O— E(y;i(tt)))/ O'itfl)] , where M{[fi] represents the

Normal cdf.

* Draw a uniform variate: U ~ Uniform(0,L).

« Compute the realized value of the uniform draw: y;\ = ® (U)o ;E_l) + E(y;i(tt)) .

Note that, when using this procedure, values of U approaching 0 tend toward - 4 while values of
U approaching L tend toward zero, the truncation point.
2. In a similar fashion, we draw the latent dependent variable values for the probit component of the model.
If the indicator variable g, = 1, then g%, is drawn from a normal distribution, truncated below at 0.

Otherwise, 7%, is drawn from a normal distribution, truncated above at 0.
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As in the conditional spending model, the latent probit dependent variables are drawn using the inverse

cdf method with mean and variance as follows:
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3. 'The store-level parameters in T ,; (which include 2 mean intercept term, OTI ) are drawn from a SUR

model with variance/covariance matrix of disturbances G. Individual intercepts are drawn in step 5.
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4. 'The store-level parameters in ., (which include a mean intercept term, ;) are drawn from a SUR

model with variance/covariance matrix of disturbances 7. Individual intercepts are drawn in step 6.

V10, A ~ N(P(M(A Y @ 1, )2),P)

where P = (M'I(Ail(til) ® IHT)Mi)_l

5. The vector of household intercepts ', is drawn from a SUR model with variance/covariance matrix

of disturbances G.
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6. The vector of household intercepts 4, is also drawn from a SUR model with variance/covariance

matrix of disturbances 7.
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7. The vector of hyper-parameters, *, is drawn from a SUR model with variance/covariance matrix of

disturbances, 17
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where S = (Q'(Va_l(t_l) ® 1, )Q +V5_1)_1, and Q =
D

8. 'The vector of hyper-parameters, R, is drawn from a SUR model with variance/covariance mattix of

disturbances, 17,
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9. G is drawn from an inverted Wishart distribution with H'T+<g degrees of freedom.
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10. 7 is also drawn from an inverted Wishart distribution with HT+<% degrees of freedom.
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11. 1/~is drawn from an inverted Wishart distribution with H+ <. degrees of freedom.
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12.17is drawn from an inverted Wishart distribution with H+<; degrees of freedom.
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B. Prior distributions

The second implementation step is to specify prior distributions for the parameters of interest. Note
that the priors are set to be non-informative so that inferences are driven by the data.

1. The prior distribution of * is MVN(*,17), where * = 0 and 1« = diag(10°).

2. The prior distribution of R is MVN(R,175), where R = 0 and 175 = diag(10°).

3. The prior distribution of G is Wishart: W(<g,I"g), where <g = 10 and "¢ = diag(107).

4. 'The prior distribution of 7' is Wishart: W(<,177), where <7 = 10 and 1’7 = diag(107).

5. 'The prior distribution of 17+ is Wishart: W(<w,1/%), where <» = 1 and 1 = diag(107).

6. 'The prior distribution of I/ is Wishart: W(<,,17), where <, = 1 and 1/, = diag(10°”).

C. Initial values

The third implementation step is to set initial values for the parameters of the marginal distributions.
The starting values for T, from equation (2) are computed by OLS, using In(y,,) as the dependent
variable of the regression. The individual-level intercepts, ", are computed using the residuals from the
regression model above as the dependent variable, and regressing the design vector U on those residuals

using OLS. The covariance matrix, G, is initiated by taking the residuals of the second-stage regression,



G,.» (conditioned on the initial parameter values) and using them to compute sample covariances. In a
similar fashion, the starting values for the patronage equation parameters, H, are computed by OLS,
using %), as the dependent variable. Again, the individual-level intercepts, 4, are computed using the
residuals from the first-stage regression model as the dependent variable, and regressing the design
vector U on those residuals. Again, the residuals from this second-stage regression, u,,, ate used to
compute the sample covariances, which serve as the initial value for /. Note that other initial values
were used to ensure that estimates were not dependent on a particular starting point.

The final step is to generate N, + IN, random draws from the conditional distributions. The
number of initialization iterations, IN,, is determined empirically. We use a “burn in” period of 3500
iterations. To reduce autocorrelation in the MCMC draws, we “thin the line,” using every fifth draw in
the sequence that comprises IN, for our estimation. In this way, the last IV, iterations are used to estimate
marginal posterior distributions of the parameters of interest. Note that the means and variances of

these distributions are computed directly using the means and variances of the final N, draws of each

parameter.



