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Abstract

We provide a unified and simple treatment of reduced-form implementation for gen-

eral social choice problems and extend it to environments with value interdependencies.

We employ the geometric approach developed by Goeree and Kushnir (2016) to char-

acterize the set of feasible interim agent values (agent utilities excluding transfers) by

deriving the analytical expression of its support function. As an application, we use the

reduced-form implementation to analyze second-best mechanisms in environments with

value interdependencies.
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1. Introduction

A typical problem of a mechanism designer can be expressed as a maximization of some objective

over the set of feasible and incentive compatible allocation rules and transfers. In standard

settings incentive compatibility identifies transfers from interim allocation probabilities up to

a constant (Milgrom and Segal, 2002). This reduces the problem of the mechanism designer to

an optimization over interim allocation probabilities only, i.e. reduced form problem.

To study the reduced form problem one should be able to identify the set of feasible interim

allocation probabilities. Matthews (1984) first conjectured the set of inequalities characterizing

this set in symmetric single-object auctions. These inequalities, as a necessary condition, were

first used by Maskin and Riley (1984) and Matthews (1983) to analyze single-object auctions

with risk-averse bidders. The sufficiency of these inequalities were subsequently proven by

Border (1991) who then extended the result to asymmetric auction environments (see Border,

2007).1 This characterization was used in numerous papers in the past and attracted attention

of many recent papers.2

In this paper we provide a unified and simple treatment of reduced form implementation for

general social choice problems and extend it to environments with value interdependencies. In

the presence of value interdependencies, interim allocation probabilities alone do not determine

interim agent utilities. To account for them, we characterize feasible interim agent values, i.e.

interim agent utilities excluding transfers.

To characterize the set of feasible interim agent values we use the geometric approach

developed by Goeree and Kushnir (2016) who exploit the one-to-one relation between a convex

closed set and its support function. To obtain the support function for interim agent values we

exploit the fact that they are a linear transformation of ex post allocations. For each possible

type profile, feasible ex post allocations form a simplex for which the support function is well-

known. Utilizing the rule how the support function transforms under a linear transformation

we then determine the support function for feasible interim values. Finally, we use the duality

from convex analysis to recover the inequalities characterizing the set of feasible interim values.

To illustrate our main result we apply reduced form implementation to study auction envi-

ronments with multiple agents and linear value interdependencies. Maskin (1992) and Dasgupta

1For recent developments in reduced form auctions see Vohra (2011), Mierendorff (2011), Alaei et al. (2012),
Cai et al. (2012), Che et al. (2013), Hart and Reny (2015), and Goeree and Kushnir (2016).

2See Armstrong (2000), Brusco and Lopomo (2002), Morand and Thomas (2006), Manelli and Vincent
(2010), Asker and Cantillon (2010), Belloni et. al (2010), Hörner and Samuelson (2011), Miralles (2012), Pai
and Vohra (2013, 2014ab), Pai (2014), Mierendorff (2014).
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and Maskin (2000) show that for large value interdependencies the first-best social surplus

cannot be implemented with incentive compatible mechanisms. Using the reduced-form im-

plementation results we analyze the second-best mechanism for these environments. We show

that the optimal Bayesian and dominant strategy incentive compatible mechanisms lead to the

same level of social surplus if the object has to be allocated to agents. If the object does not

have to be allocated to agents we provide a condition on the level of interdependencies when

both implementation concepts achieve the same level of social surplus.

The paper proceeds as follows. Section 2 presents a social choice model. We derive the

support function for the feasible set of interim agent values in Section 3. Section 4 analyzes

second-best mechanisms in the environments with value interdependencies. Section 5 concludes.

2. Social Choice Model

We consider an environment with a finite set I = {1, 2, ..., I} of agents and a finite set K =

{1, 2, ..., K} of social alternatives. Agent i ∈ I has a one-dimensional type xi with finite support

Xi = {x1
i , . . . , x

Ni
i } ⊂ IR+.3 We also denote the profile of all agent types as x = (x1 . . . , xI)

with support X =
∏

iXi. We allow for correlation in types and denote their joint probability

distribution as f(x). Agent values are interdependent: when alternative k is selected and the

profile of agent types is x agent i’s value equals vki (x).

A direct mechanism can be characterized by K + I functions, {qk(x)}k∈K and {ti(x)}i∈I ,
where qk(x) is the probability that alternative k is selected and ti(x) ∈ IR is agent i’s transfer.

We denote then agent i’s ex post values as vi(x) =
∑

k∈K v
k
i (x)qk(x) and interim expected

values as Vi(xi) =
∑

x−i
f−i(x−i|xi)vi(x), where f−i(x−i|xi) is the distribution of other agent

types x−i conditional on xi. When agents report their types truthfully, agent i’s ex post utility

equals ui(x) = vi(x) + ti(x), and his interim expected utility equals Ui(xi) = Vi(xi) + Ti(xi),

where Ti(xi) =
∑

x−i
f−i(x−i|xi)ti(x).

We heavily exploit the notion of the support function SC : IRn → IR ∪ {+∞} of a closed

convex set C ⊂ IRn, which is defined as

SC(w) = sup{v ·w |v ∈ C}, (1)

with the inner product v ·w =
∑n

j=1 vjwj. Support functions have three important properties

3Our main result, Theorem 1, also holds without any changes in environments with multi-dimensional types.
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Figure 1. The figure shows how the support function for 2-simplex {qk ≥ 0, k = 1, 2, 3; q1+q2+q3 = 1}
is determined. The inner product q · w =

∑3
k=1 q

kwk achieves the maximum at one of the extreme

points (0, 0, 1), (0, 1, 0), or (1, 0, 0) resulting in S2−simplex(w) = max
(
w1, w2, w3

)
.

that we outline below (for more details, see Rockafellar, 1997). First, there is the one-to-one rela-

tion between the support function and the corresponding convex set: given the support function

SC one can always recover the corresponding set as C =
{
v ∈ IRn |v·w ≤ SC(w), ∀w ∈ IRn

}
.

Second, the support function for a Cartesian product of sets C1, C2 ⊂ IRn equals the sum of

the support functions: SC1×C2(w′) = SC1(w1) + SC2(w2), where w′ = (w1,w2) ∈ IR2n, which

directly follows from definition (1). Finally, the support function straightforwardly changes

under a linear transformation. In particular, consider a linear transformation A : IRn → IRm

and a closed convex set C ⊂ IRn. Recall a basic property of the inner product Aq ·w = q ·ATw,

where q ∈ C and AT is the transpose of A. Therefore, the support function corresponding to

image AC of linear transformation A equals SAC(w) = SC(ATw), where w ∈ IRn.

3. Reduced Form Implementation

This section presents our main result that presents an analytical expression of the support

function associated with the set of feasible interim values Vi(xi). To accomplish this goal we

use the novel geometric approach developed recently by Goeree and Kushnir (2016).

For a given type profile x, let us consider allocation {qk(x)}k∈K defining a (K−1)-dimensional

simplex, i.e. qk(x) ≥ 0 and
∑

k∈K q
k(x) = 1. If we consider 2-simplex {qk ≥ 0, k =

1, 2, 3 ; q1 + q2 + q3 = 1}, depicted on Figure 1, it is straightforward to verify that the inner

product q ·w achieves the maximum at one of the extreme points (0, 0, 1), (0, 1, 0), or (1, 0, 0)

of the simplex resulting in support function S2−simplex(w) = max
(
w1, w2, w3

)
. This expression
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straightforwardly generalizes to higher dimensions: the support function Ssimplex : IRK → IR

corresponding to (K − 1)-simplex {qk(x)}k∈K for given x ∈ X equals

Ssimplex(w(x)) = max
k∈K

wk(x), (2)

where w(x) = (w1(x), ..., wK(x)). Taking into account that the support function for a Cartesian

product of sets equals the sum of support functions (see Section 2), we obtain the support

function for the set of feasible allocations for all possible type profiles x ∈ X

S(w) =
∑
x∈X

max
k∈K

wk(x), (3)

where w = {wk(x)}k∈K,x∈X .

To characterize the set of ex post values we exploit how the support function changes under

a linear transformation (see Section 2). The support function for ex post values equals then

Sex post(w) = S(ATw), where A corresponds to linear transformation vi(x) =
∑

k∈K v
k
i (x)qk(x).

Equivalently, Sex post(w) can be obtained from (3) by replacing wk(x) with
∑

i∈I v
k
i (x)wi(x):

Sex post(w) =
∑
x∈X

max
k∈K

∑
i∈I

vki (x)wi(x), (4)

where weight wi(x) corresponds to vi(x) for each i ∈ I and x ∈ X, and we denote with slight

abuse of notation w = {wi(x)}i∈I,x∈X .

Finally, we derive the support function for interim values Vi(xi) =
∑

x−i
f−i(x−i|xi)vi(x).

Since interim values are obtained from ex post values with a linear transformation, we can again

use the property how the support function changes under a linear transformation. To arrive at

an expression that is symmetric in the probabilities we define interim support functions using

the probability-weighted inner product

V ·W =
∑
i∈I

∑
xi ∈Xi

fi(xi)Vi(xi)Wi(xi).

In other words, we multiply the interim weight Wi(xi) associated with Vi(xi) by fi(xi) so that

all terms are weighted by f(x) =
∏

i fi(xi). Using the definition of the support function and
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how it allows to recover the set back, we obtain our main result.4

Theorem 1. The support function for the set of feasible interim values equals

Sinterim(W) = Ex

(
max
k∈K

∑
i∈I

vki (x)Wi(xi)
)
,

and feasible interim values V satisfy V ·W ≤ Sinterim(W) for all W ∈ IR
∑

i |Xi|.

Overall, Theorem 1 completely characterizes the set of feasible interim values and shows how

its points can be recovered using the knowledge of its support function.

4. Application: Second-Best Mechanisms

In this section we illustrate how Theorem 1 can be applied to analyze the properties of second-

best mechanisms in the environments with interdependent values.5

We consider a single-object auction with I agents. Agent i’s type xi is independently

distributed according to probability distribution fi(xi). There are I + 1 possible alternatives:

alternative i corresponds to agent i winning the object and alternative 0 to the seller keeping

the object. Agent i’s utility equals xi + α
∑

j 6=i xj if he wins the object and 0 otherwise, where

α ≥ 0 measures the degree of interdependency. Overall, agent i’s ex post value equals

vi(xi,x−i) = (xi + α
∑

j 6=i
xj)q

i(xi,x−i).

Let Qi(xi) = Ex−i
(qi(xi,x−i)) be agent i’s interim probability of winning the object. To analyze

the maximum level of social surplus that can be achieved with Bayesian incentive compatible

(BIC) or ex post incentive compatible (EPIC) mechanism we use the following characterization.

Proposition 1. An allocation rule q can be implemented with some BIC (EPIC) mechanism

if and only if Qi(xi) (qi(xi,x−i)) is non-decreasing in xi for each i (and each x−i ∈ X−i).

To introduce the above monotonicity constraint into the support function we employ the

4To clarify, if we used the standard non-probability weighted inner-product the expression for the support

function in Theorem 1 would be Sinterim(W) =
∑

x∈X maxk∈K

(∑
i∈I f−i(x−i|xi)vki (x)Wi(xi)

)
.

5For related ideas see Hernando-Veciana and Michelucci (2009, 2014).
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geometric approach developed by Goeree and Kushnir (2016). Let us first consider EPIC

constraints and the support function corresponding to ex post values (4). The support function

of the intersection of the ex post feasible set and half spaces bm · v ≥ 0 for m = 1, . . . ,M can

be calculated as (see Rockafellar, 1997)

inf
λm≥ 0

Sex post(w +
M∑

m= 1

λmbm). (5)

The EPIC constraints can be represented by half-spaces (see Proposition 1):

vi(x
n+1
i ,x−i)

xn+1
i + α

∑
j 6=i xj

− vi(x
n
i ,x−i)

xni + α
∑

j 6=i xj
≥ 0,

vi(x
n
i ,x−i)

xni + α
∑

j 6=i xj
− vi(x

n−1
i ,x−i)

xn−1
i + α

∑
j 6=i xj

≥ 0.

for n = 2, ..., Ni− 1 and i = 1, . . . , I. Let λi(x
n
i ,x−i) be associated with the first constraint and

λi(x
n−1
i ,x−i) with the second. For n = 1, ..., Ni we also define the differences ∆λi(x

n
i ,x−i) =

λi(x
n
i ,x−i)−λi(xn−1

i ,x−i) with λi(x
0
i ,x−i) = λi(x

Ni
i ,x−i) = 0. Using formula (5) we then obtain

SEPICex post(w) = inf
λi≥0

∑
x∈X

max
i∈I

(
0, (xi + α

∑
j 6=i

xj)wi(x)− ∆λi(x)

fi(xi)

)
.

Using the property how the ex post support function changes under a linear transformation

(see Section 2) we obtain the support function for interim values satisfying EPIC constraints:

SEPIC(W) = inf
λi≥0

Ex max
i∈I

(
0, (xi + α

∑
j 6=i

xi)Wi(xi)−
∆λi(x)

fi(xi)

)
. (6)

A similar procedure applies to BIC constraints

Ex−i

( vi(x
n+1
i ,x−i)

xn+1
i + α

∑
j 6=i xj

− vi(x
n
i ,x−i)

xni + α
∑

j 6=i xj

)
≥ 0, Ex−i

( vi(x
n
i ,x−i)

xni + α
∑

j 6=i xj
− vi(x

n−1
i ,x−i)

xn−1
i + α

∑
j 6=i xj

)
≥ 0.

for n = 2, ..., Ni − 1 and i = 1, . . . , I. Let Λi(x
n
i ) be associated with the first constraint

and Λi(x
n−1
i ) with the second. We also denote for n = 1, . . . , Ni the differences ∆Λi(x

n
i ) =

Λi(x
n
i )−Λi(x

n−1
i ) with Λi(x

0
i ) = Λi(x

Ni
i ) = 0. The support function for the set of interim values
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satisfying BIC constraints equals then

SBIC(W) = inf
Λi≥0

Ex max
i∈I

(
0, (xi + α

∑
j 6=i

xj)Wi(xi)−
∆Λi(xi)

fi(xi)

)
. (7)

For large degrees of value interdependencies, and in particular for α > 1, Maksin (1992)

and Dasgupta and Maskin (2000) show that the first-best social surplus cannot be implemented

with BIC (and, hence, EPIC) mechanisms. We now analyze when the second-best level of social

surplus, which equals the value of support function at unit weights SBIC(1), can be implemented

with some EPIC mechanism. We first approach this question when the object has to be always

allocated to agents, and, hence, there is no zero term in the support functions (6) and (7).

Proposition 2. If the object has to be always allocated to agents and α > 1 the second-best

level of social surplus can be implemented with some EPIC mechanism and equals

SBIC(1) = α
∑

i∈I
E(xi) + (1− α) min

i∈I
(E(xi)).

where E(xi) denotes the expected value of agent i’s type.

We now identify a condition on α when one of the agents always gets the object at the second-

best allocation, even though the auctioneer can keep the object. In this case the second-best

level of social surplus can be again implemented with some EPIC mechanism.

Proposition 3. Consider the case when the auctioneer can keep the object. The second-best

level of social surplus can be implemented with some EPIC mechanism if

1 < α ≤ max
i∈I

(
E(xi)

E(xi)−
∑

j∈I x
1
j

)
. (8)

We finally illustrate our results with a simple auction example with two symmetric bidders

and two equally likely and independently distributed types, x = 1 and x = 10. We compare

the sets of feasible outcomes that satisfy BIC and EPIC constraints respectively. Since the

bidders are ex ante symmetric, the allocation rule has no agent specific subscript and can be

represented by a matrix

q =
( q(x, x) q(x, x)

q(x, x) q(x, x)

)
,
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Figure 2. Feasible outcomes and the maximum level of social surplus. Shown are the feasible outcomes

with no incentive constraints imposed (light), Bayesian incentive compatible outcomes (medium dark),

and ex post incentive compatible outcomes (dark) for α = 0 (left panel), α = 1.2 (middle panel), and

α = 2 (right panel). The largest blue dot indicates the first-best outcome, the medium-sized blue dot

the second-best outcome under BIC, and the smallest blue dot indicates the allocation that delivers

the maximum level of social surplus under EPIC.

where the rows correspond to (say) agent 1’s type and the columns to agent 2’s type, and the

entries correspond to the probabilities that the object is assigned to agent 1. The probability

that object is assigned to agent 2 can be obtained by transposing the matrix.

Figure 2 shows the sets of interim values that result when α = 0 (left panel), α = 1.2 (middle

panel), and α = 2 (right panel). In each of the panels, the light area corresponds to the set

of feasible values without any incentive constraints imposed, the medium dark area to the BIC

values, and the dark area to the EPIC values. In case of pure private values, i.e. α = 0,

as shown by the left panel the latter two sets coincide, which corresponds to the BIC-DIC

equivalence result of Gershkov et al. (2013).6 However, the equivalence between Bayesian and

ex post implementation generally fails when α > 0 as shown by the middle and right panels.

The easiest way to describe the different sets is by their vertices.7 For instance, the set

of EPIC outcomes can be described by five vertices, which (clockwise starting at the origin)

correspond to the following allocation rules

qEPIC =
( 0 0

0 0

)
,
( 0 0

1 1
2

)
,
( 1

2
0

1 1
2

)
,
( 1

2
1
2

1
2

1
2

)
,
( 0 1

2

0 1
2

)
.

6See also Manelli and Vincent (2010), Kushnir (2015), and Kushnir and Liu (2015).
7The vertices follow from the gradient of the support function at points of differentiability. The five EPIC

vertices (0, 0), (0, 152 + 3α), ( 1
4 + 1

4α,
15
2 + 3α), ( 1

2 + 11
4 α, 5 + 11

4 α), ( 1
4 + 5

2α,
5
2 + 5

2α). The first four plus ( 3
8 +

15
4 α,

15
4 + 21

8 α), ( 1
4 + 5

2α,
5
2 + 1

4α) constitute the six BIC vertices.
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Likewise, for the BIC outcomes the six vertices correspond to the allocation rules

qBIC =
( 0 0

0 0

)
,
( 0 0

1 1
2

)
,
( 1

2
0

1 1
2

)
,
( 1

2
1
2

1
2

1
2

)
,
( 0 3

4

1
4

1
2

)
,
( 0 1

2

1
2

0

)
.

Bayesian incentive compatibility requires that the sum of entries in the top row does not exceed

the sum of entries in the bottom row. In contrast, ex post incentive compatibility requires that

the entries in the top row do not exceed the entries in the bottom row for both columns (see

Proposition 1). Notice that the final two BIC matrices violate this more stringent condition.

The blue dots in Figure 2 indicate the optimal outcomes: the largest blue dot indicates

the first-best outcome, the medium-sized blue dot indicates the second-best outcome under

BIC, and the smallest blue dot indicates the allocation that delivers the maximum level of

social surplus under EPIC. For α ≤ 1, the first-best outcome can be implemented with EPIC

mechanism and correspond to the third EPIC matrix. When 1 < α ≤ E(x)
E(x)−2x

= 11
7

the first-best

cannot be achieved, but the second-best outcome can be implemented with EPIC mechanisms

and correspond to the penultimate EPIC matrix. If α > 11
7

the second-best outcome can be

implemented only with BIC mechanism, and correspond to the penultimate BIC matrix. In

this case BIC implementation leads to more social surplus than EPIC.

5. Conclusion

Reduced-from implementation serves as a cornerstone in the developing theory of auctions with

risk-averse bidders (see Maskin and Riley, 1984) and has attracted a lot of attention of many

recent papers (e.g. Pai and Vohra, 2014ab). Moreover, some new approaches has been recently

developed to reinterpret the Masking-Riley-Matthews conditions (see Hart and Reny, 2015) to

extend them to multi-unit auctions with capacity constraints (see Che, Kim, Mierendorff, 2013)

and social choice environments (Goeree and Kushnir, 2016).

The contribution of this short paper is to provide a unified and simple treatment of reduced-

form implementation and to extend it to environments with interdependent values. As an

application, we show how reduced-form implementation can be used to analyze the level of

social surplus in the second-best mechanisms. We leave the exciting prospect of applying the

reduced-form implementation to other mechanism design problems with interdependent values

as a topic for future research.
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A. Appendix

Proof of Proposition 1. The statement for BIC mechanisms directly follows from Theorem

3.1 in Jehiel and Moldovanu (2001). The extension to EPIC mechanisms is immediate. �

Proof of Proposition 2. The second-best level of social surplus equals the value of support

function at unit weights SBIC(1). If the auctioneer has to always allocate the object (no zeros

in (7)) the support function reduces to

SBIC(1) = α
∑

i∈I
E(xi) + inf

Λi≥0
Ex max

i∈I

(
(1− α)xi −

∆Λi(xi)

fi(xi)

)
. (A.1)

Lemma A2 of Goeree and Kushnir (2016) then establishes that the minimum of the above

expression is achieved when (1− α)xi − ∆Λi(xi)
fi(xi)

= ((1− α)xi)+, where + denotes a sequence of

f -majorized values (see Goeree and Kushnir (2016) for the definition and references).8 Since

{(1 − α)xni }n=1,...,Ni
is a decreasing sequence for α > 1 its f -majorized sequence is a constant

sequence ((1− α)xni )+ = (1− α)E(xi). The second-best level of social surplus reduces then to

SBIC(1) = α
∑

i∈I
E(xi) + (1− α) min

i∈I
(E(xi)). (A.2)

The expression for SEPIC(1) can be written similarly. The only differences is that the minimiza-

tion takes place over λi(x) ≥ 0 that depends on the whole vector of agent types. Proposition

B2 of Goeree and Kushnir (2016) then establishes that support function SEPIC(1) has the same

value. Hence, the second-best allocation can be implemented with some EPIC mechanism. �

Proof of Proposition 3. If the auctioneer can keep the object the support function (7) at

unit weights equals

SBIC(1) = α
∑

j∈I
E(xj) + inf

Λi≥0
Ex max

i∈I

(
−α
∑

j∈I
xj, (1− α)xi −

∆Λi(xi)

fi(xi)

)
. (A.3)

Notice that the value of (A.3) is greater or equal to the value of (A.1) for all parameters Λ. If

condition (8) is satisfied, however, the values of both support functions coincide for Λs delivering

the minimum to (A.1), because (1 − α)E(xi) ≥ −α(
∑

j∈I xj) for at least some i. Hence, the

same Λs deliver the minimum to (A.3). The same argument applies to SEPIC(1). �

8The majorization procedure requires the calculation of the convex function that is ”the closest” to a given
one. Generally, the problem has no analytical solution. There have been developed, however, several efficient
algorithms solving this problem. See Lucet (2010) for an excellent survey.
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