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1. Introduction

Mechanism design concerns the creation of optimal social systems by maximizing well-

defined objectives taking into account resource constraints and participants’ incentives and

hidden information. It provides a framework to address questions like “what auction format

assigns goods most efficiently or yields the highest seller revenue” and “when should a

public project such as building a highway be undertaken?” The difficulty in answering

these questions stems from the fact that the designer typically does not possess detailed

information about bidders’ valuations for the goods or about voters’ preferences for the

public project. A well-designed mechanism should therefore elicit participants’ private

information in a truthful, or incentive compatible, manner and implement the corresponding

social optimum accordingly.

The constraints imposed by incentive compatibility are generally treated separately from

other more basic constraints, such as resource constraints. As a result, mechanism design

theory appears to have developed differently from classical approaches to consumer and

producer choice theory despite some obvious parallels. For example, in producer choice

theory, the firm also maximizes a well-defined objective: its profit. Given a feasible produc-

tion set it is a standard, albeit potentially tedious, exercise to compute the firm’s profit as

a function of input and output prices. In turn, given a firm’s profit function its production

set can be uniquely recovered, and the firm’s optimal production plan follows by taking the

subgradient of the profit function – Hotelling’s lemma.

In this paper, we draw a parallel with classical choice theory to provide a novel geometric

approach to mechanism design for any linear one-dimensional social choice problems.1 We

observe that the set of feasible allocations – the analogue of the production set – consists of

a collection of simplices for which the support function – the analogue of the profit function

– can be obtained “off the shelf” without doing any calculations. The relationship between

the support function and the corresponding convex set then define inequalities that clarify

the origin of the “Maskin-Riley-Matthews” conditions for reduced-form auctions (Maskin

1For recent interesting approaches to mechanism design, see Kos and Messner (2013)[35], who intro-
duced new techniques building on the concept of extremal transfers to analyze mechanism design problems
with arbitrary type spaces. Noldeke and Samuelson (2018)[53] also used the duality techniques to gain
novel insights into adverse-selection principal-agent problems and two-sided matching problems without
quasilinearity.
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and Riley, 1984 [48]; Matthews, 1984 [49]; Border, 1991, 2007 [11, 12]) and allow us to

extend reduced-form implementation to social choice settings.

As noted above, a distinguishing role in mechanism design is played by incentive com-

patibility, which we incorporate using their geometric characterization. Borrowing results

from majorization theory due to Hardy, Littlewood, and Pólya (1929) [29] we elucidate

the “ironing” procedure introduced by Mussa and Rosen (1978) [51] and Myerson (1981)

[52]. We show that the support function for the set of feasible and incentive compatible

allocations is simply the support function for the feasible set, evaluated at ironed weights.

Furthermore, we establish the equivalence of Bayesian and dominant strategy implementa-

tion (Manelli and Vincent, 2010, 2019 [44, 45]; Gershkov et al., 2013 [24]; Kushnir, 2015

[37]; Kushnir and Liu, 2019, 2020 [38] [39]) by showing that the same support function

results whether Bayesian or dominant strategy incentive constraints are imposed.

To summarize, the support function for the set of feasible and incentive compatible

allocations for any linear one-dimensional social choice problems – not just auctions – can

be obtained using off-the-shelf results from convex analysis and majorization theory that

predate any research in mechanism design. Moreover, the support function is piece-wise

linear and it is straightforward to take the subgradient and apply Hotelling’s lemma to

derive the optimal mechanism for any linear objective. Finally, we adapt our approach

to include general concave objectives that depend on both allocations and transfers and

provide a simple fixed-point condition characterizing the optimal mechanism.

This paper is organized as follows. Section 2 illustrates our approach with a simple auc-

tion example. Section 3 considers linear one-dimensional social choice problems: we derive

the support function for the set of feasible allocations (Section 3.1), discuss reduced form

implementation (Section 3.2), incorporate incentive compatibility (Section 3.3), establish

equivalence of Bayesian and dominant strategy implementation (Section 3.4), and derive

the optimal mechanism for arbitrary linear objectives (Section 3.5). Section 4 considers

concave objectives and incorporates transfers into the support function. We discuss how

the geometric approach is related to the classical Myersonian approach and some recent

advances in the mechanism design and computer science literatures in Section 5. Section 6

concludes by presenting the most promising research areas where the geometric approach

can be applied. The Appendix contains all proofs.
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p · y = π(p)

p · ŷ = π̂ < π(p)

p

y1

y2

y(p)

Y

π(p) = maxy∈Y p · y

Y = {y |p · y ≤ π(p) ∀p ∈ IR2
+}

y(p) = ∇π(p)

Figure 1. A profit-maximization example to illustrate (i) the relationship between production

set Y = {(−y1, y2) ∈ IR2
+ | y2 ≤

√
−y1} and its profit function π(p) =

p22
4p1

, and (ii) Hotelling’s

lemma.

2. A Simple Example

Consider a standard producer choice problem π(p) = maxy∈Y p ·y where the production set

is characterized by a square-root production technology Y = {(−y1, y2) ∈ IR2
+ | y2 ≤

√
−y1},

see Figure 1. It is readily verified that the optimal levels of inputs and outputs are given by

y2(p) =
√

−y1(p) =
p2
2p1

, resulting in profits π(p) =
p22
4p1

. Given a convex production set the

profit function is uniquely determined and, in turn, the profit function uniquely determines

the production set Y = {y |p · y ≤ π(p) ∀p ∈ IR2
+}. Moreover, it determines the optimal

input and output via Hotelling’s lemma, y(p) = ∇π(p). The main innovation of this paper

is to apply these well-known micro-economics tools to problems in mechanism design, e.g.

to derive optimal mechanisms using the subdifferential of the support function.

To this end, we define the support function SC : IRn → IR ∪ {+∞} of a closed convex

set C ⊂ IRn as

SC(w) = sup{v ·w |v ∈ C},

with v ·w =
∑n

j=1 vjwj the usual inner product. From the support function one can recover

the associated convex set, C =
{
v ∈ IRn |v · w ≤ SC(w) ∀w ∈ IRn

}
, and the solution

to the maximization problem supv∈C α · v as v(α) = ∇SC(α).2 Of course, this approach

would be unattractive if computing the support function was tedious or intractable. For a

2While the support function may not be everywhere differentiable, it is subdifferentiable as it is a convex
function that is the supremum of linear functions. At points of non-differentiability, any v ∈ ∇SC(α), where
∇SC denotes the subdifferential, is a solution (see Rockafellar, 1997 [54]).
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Feasibility constraints 0 ≤ qll ≤ 1
2

0 ≤ qlh, qhl, qlh + qhl ≤ 1 0 ≤ qhh ≤ 1
2

Support function 1
2
max(0, wll) max(0, wlh, whl)

1
2
max(0, whh)

Table 1. Feasibility constraints and associated support functions for a simple example.

broad class of mechanism design problems, however, the underlying feasible set is simply a

product of probability simplices for which the support function is well known.

To illustrate, consider a single-unit auction with two ex ante symmetric bidders and two

equally likely types, xl < xh. Assuming a symmetric allocation rule, the probability that

a bidder obtains the object is summarized by q = (qll, qlh, qhl, qhh) where the first (second)

subscript denotes the bidder’s (rival’s) type. The symmetry and feasibility constraints

are presented in the first line of Table 1 while the second line shows the associated support

functions. The set of feasible allocations is the Cartesian product of the three sets presented

in the first line for which the support function is simply the sum of individual support

functions

Sq(w) =
1

2
max(0, wll) + max(0, wlh, whl) +

1

2
max(0, whh) (1)

A bidder’s interim (or expected) allocations Q = (Ql, Qh) are linear transformations of the

ex post allocations: Ql =
1
2
(qll+qlh) and Qh = 1

2
(qhl+qhh), which we summarize as Q = Lq

with L being the relevant two-by-four matrix. A basic property of the inner product is that

Q ·W = Lq ·W = q ·LTW, from which it follows that the support function for the set of

feasible interim allocations is

SQ(W) = Sq(LTW) =
1

4
max(0,Wl) +

1

2
max(0,Wl,Wh) +

1

4
max(0,Wh) (2)

The set of feasible interim allocations follows from Q ·W ≤ SQ(W) for all W ∈ IR2 and is

shown in the left panel of Figure 2.3

Of course, not all feasible allocations satisfy Bayesian incentive compatibility (BIC),

which requires that interim allocations are monotonic in types: Qh ≥ Ql (see Myerson,

1981 [52]). Graphically, the set of BIC allocations can be seen as the intersection of the

3One can easily explain the maximum expected probability of winning 3
4 . Symmetry implies that a

bidder wins with probability 1
2 when facing a rival of the same type, which occurs with probability 1

2 .
Hence, the maximum expected probability of winning is 1

2 · 1
2 + 1

2 · 1 = 3
4 .
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set of feasible interim allocations and the “above the 45-degree line” half-space (see the

middle panel of Figure 2). This half-space can be written as (1,−1) ·Q ≤ 0 with associated

support function

SH(W) =

 0 if W = Λ(1,−1)

∞ if W ̸= Λ(1,−1)

for any Λ ≥ 0. The support function for the intersection follows from the convolution

SBIC(W) = inf
W1+W2 =W

SQ(W1) + SH(W2) = inf
Λ≥ 0

SQ(W − Λ(1,−1))

The solution to this minimization problem is Λ = 1
2
max(0,Wl −Wh) so that SBIC(W) =

SQ(W+) where W+ denote “ironed” weights

W+ =

 (Wl,Wh) if Wl ≤ Wh

1
2
(Wl +Wh,Wl +Wh) if Wl > Wh

(3)

Now consider maximization of a linear objective α ·Q = αlQl+αhQh over the set of feasible

BIC allocations. For example, revenue maximization corresponds to α = (2xl − xh, xh),

see equation (12) in Section 3.5, while welfare maximization correspond to α = (xl, xh).

In the revenue-maximization case, either αl < 0 < αh which yields ∇SBIC(α) = (0, 3
4
),

or 0 < αl < αh which yields ∇SBIC(α) = (1
4
, 3
4
) as indicated by the small and medium-

sized dots in Figure 2.4 These optimal interim allocations follow by using the symmetric

allocation rules q = (0, 0, 1, 1
2
) and q = (1

2
, 0, 1, 1

2
) respectively. The intuition is that the

low type is screened out (e.g. by using a reserve price) when the marginal revenue 2xl − xh

is negative while the allocation rule is efficient when this marginal revenue is positive.

The efficient allocation rule is also optimal for welfare maximization, as this is another

example when 0 < αl < αh. A new solution arises when 0 < αh < αl, e.g. when the social

objective places higher weight on the low type possibly because of redistributive or fairness

concerns. The support function in (2) reduces to 1
2
Wl +

1
2
Wh when 0 < Wh < Wl, since

the weights are replaced by their ironed versions, see (3). Hence, ∇SBIC(α) = (1
2
, 1
2
), a

solution shown by the large dot in Figure 2. This solution is implemented by the random

allocation rule q = (1
2
, 1
2
, 1
2
, 1
2
).

4Note that SBIC(W) reduces to 3
4Wh when Wl < 0 < Wh and to 1

4Wl +
3
4Wh when 0 < Wl < Wh.
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Figure 2. The set of feasible Bayesian incentive compatible interim allocations (right) can be

seen as the intersection of the feasible set (left) with the “above the 45-degree line” half-space

(middle). On the right, the dashed lines are level-surfaces for the linear objective α ·Q. The dots

indicate optimal allocations when αl < 0 < αh (small), 0 < αl < αh (medium), 0 < αh < αl

(large).

Overall, the above example illustrates how the support function for the set of feasible

and BIC interim allocations can be derived using basic techniques of convex analysis. The

optimal mechanisms for any linear objectives then follow from Hotelling’s lemma. We

generalize these insights to social choice environments and provide more novel results in

the next section.

3. Social Choice Implementation

We consider a linear one-dimensional social choice environment with independent private

values and quasi-linear utilities. There is a finite set of agents I = {1, 2, . . . , I} and a finite

set of social alternatives K = {1, 2, . . . , K}. When alternative k is selected, agent i’s payoff

equals aikx
i where aik ∈ IR is common knowledge and xi ∈ IR+ is agent i’s privately-known

type, which is distributed according to a commonly known probability distribution f i(xi)

with discrete support X i = {xi
1, . . . , x

i
N i}, where xi

j < xi
j+1 for j = 1, ..., Ni − 1.5 Let

x = (x1, ..., xI) denote the profile of agents’ types with x ∈ X =
∏

i∈I X
i. Without loss

of generality we restrict attention to direct mechanisms characterized by K + I functions,

5This formulation includes many important applications, e.g. single or multi-unit auctions, public goods
provision, bilateral trade, etc.
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{qk(x)}k∈K and {ti(x)}i∈I , where qk(x) is the probability that alternative k is selected and

ti(x) ∈ IR is agent i’s payment. We define agent i’s value as vi(x) ≡
∑

k∈K aikqk(x) so

that agent i’s utility from truthful reporting, assuming others report truthfully as well,

is ui(x) = xivi(x) − ti(x). We use capital letters to indicate interim variables: V i(xi) =

Ex−i(vi(x)), T i(xi) = Ex−i(ti(x)), and U i(xi) = xiV i(xi) − T i(xi) denote agent i’s interim

value, interim payment, and interim utility respectively.

3.1. Feasibility

The probabilities with which the alternatives occur satisfy the usual feasibility conditions:

they should be non-negative, qk(x) ≥ 0 for k ∈ K, and sum up to one,
∑

k∈K qk(x) = 1. In

other words, for each type profile, q(x) = {qk(x)}k∈K defines a K-dimensional simplex with

support function Sq(x)(w(x)) = maxk∈K wk(x) and w(x) ∈ IRK . Furthermore, the support

function for the Cartesian product of sets equals the sum of support functions (Rockafellar,

1997 [54]) so the support function for the set of all feasible allocations q = {q(x)}x∈X is

given by

Sq(w) =
∑
x∈X

max
k∈K

wk(x)

where w = {w(x)}x∈X ∈ IRK|X|.

For vector q ∈ IRK|X| and any linear transformation A, we have Aq · w = q · ATw

where AT is the transpose of A. Hence, for set of probability simplicies C, we have

SAC(w) = SC(ATw). Therefore, the support function for the set of feasible values vi(x) =∑
k∈K aikqk(x) equals

Sv(w̃) =
∑
x∈X

max
k∈K

∑
i∈I

aikw̃
i(x) (4)

where w̃ = {w̃i(x)}x∈X,i∈I ∈ IR
∑

i |Xi|. Moreover, interim values are a linear transformation

of values: V i(xi) =
∑

x−i f−i(x−i)vi(x) where f−i(x−i) =
∏

j ̸=i f
j(xj). To arrive at expres-

sions symmetric in probabilities we define the support function for interim values using a

probability-weighted inner product

V ·W =
∑
i∈I

∑
xi ∈Xi

f i(xi)V i(xi)W i(xi), (5)

where W ∈ IR
∑

i |Xi|. Under the interim transformation all terms are then multiplied by
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∏
i∈I f

i(xi) and the sum over type profiles in (4) turns into an expectation.

Theorem 1. The support function for the set of feasible interim values is

SV(W) = Ex

(
max
k∈K

∑
i∈I

aikW
i(xi)

)
(6)

and the feasible interim values V satisfy V ·W ≤ SV(W) for all W ∈ IR
∑

i |Xi|.6

The derivations of Theorem 1 readily extend to environments with continuous types, e.g.,

X = [0, 1]I , if one considers allocations to be integrable functions and the support functional

of the set of feasible interim values defined on the dual space (see Section 7.10 in Aliprantis

and Border (2006) [16]). In addition, the result of Theorem 1 holds even if agent types are

multi-dimensional or correlated. Goeree and Kushnir (2016) [28] also extend this result to

environments with non-linear utilities and interdependent values.

3.2. Reduced Form Implementation

It is insightful to work out the inequalities in Theorem 1 for single-unit auctions, which fit

the social choice framework as follows: alternative i = 1, . . . , I corresponds to the event

when bidder i wins, i.e. aii = 1 and aik = 0 for k ̸= i, and alternative I + 1 corresponds

to the event when the seller keeps the object. In this case, the reduced form value V i(xi)

is equal to a bidder i’s interim chance of winning Qi(xi) = Ex−i(qi(x)) and the support

function in Theorem 1 simplifies to

SQ(W) = Ex

(
max
i∈I

(0,W i(xi))
)
, (7)

where the zero corresponds to the alternative when the seller keeps the object. An exhaus-

tive set of inequalities follows by choosing, for each i ∈ I, a subset Si ⊆ X i and setting

W i(xi) = 1 for xi ∈ Si and 0 otherwise and then varying the set Si.

6For social choice problems, one could be interested in characterizing the set of feasible interim allocation
probabilities Qi

k(x
i) =

∑
x−i f−i(x−i)qik(x), k ∈ K, i ∈ I. The support function for this set could be derived

similarly and equals

SQ(Ŵ) = Ex

(
max
k∈K

∑
i∈I

Ŵ i
k(x

i)
)
,

for all Ŵ ∈ IRK
∑

i |X
i|.
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Corollary 1. For single-unit auctions, the set of feasible interim allocations is determined

by ∑
i∈I

∑
xi ∈Si

f i(xi)Qi(xi) ≤ 1−
∏
i∈I

∑
xi ̸∈Si

f i(xi) (8)

for any subset Si ⊆ X i, i = 1, . . . , I.

The inequalities in Corollary 1 are known as the Maskin-Riley-Matthews conditions for

reduced form auctions. They were conjectured to be necessary and sufficient by Matthews

(1984) [49] based on the following intuition: the probability that a certain bidder with

a certain type wins (left side) can be no higher than the probability that such a bidder

exists (right side). The conjecture was subsequently proven and generalized by Border

(1991, 2007) [11, 12]. Since then an extensive literature has been developed to extend the

characterization to multi-unit auctions (Alaei et al., 2019 [3]), auctions with heterogenous

objects (Cai et al., 2012ab [14, 15]), and settings with various capacity constraints (Che

et al., 2013 [17]).7 Our geometric approach (Theorem 1) provides a simple treatment

of auctions settings and further extends them to social choice environments with multi-

dimensional and possibly correltated types.

3.3. Incentive Compatibility

A mechanism (q, t) is Bayesian incentive compatible (BIC) if truthful reporting is a Bayes-

Nash equilibrium. We also say that an allocation is BIC implementable if there exist

transfers that form a BIC mechanism when coupled with the allocation. Myerson (1981)

[52] showed that an allocation q is BIC implementable if and only if for each i = 1, . . . , I

the interim values are increasing: V i(xi
j−1) ≤ V i(xi

j) for j = 2, . . . , N i.8 Let e(xi
j) denote

the unit vector of IR
∑

i |Xi| in the direction xi
j for i = 1, . . . , I and j = 1, . . . , N i. Using the

definition of the probability-weighted inner product (5) the Bayesian incentive constraints

can be written as (
e(xi

j−1)/f
i(xi

j−1)− e(xi
j)/f

i(xi
j)
)
·V ≤ 0

7See also Maskin and Riley (1984) [48], Belloni et al. (2010) [9], Hart and Reny (2015) [30], Gershkov
et al. (2019) [26], Kleiner et al. (2021) [34], Lang and Yang (2021) [40], and Zheng (2021) [58].

8An increasing sequence refers to a weakly increasing sequence throughout the paper.
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for i = 1, . . . , I and j = 2, . . . , N i. These constraints define half spaces and their intersection

with the set of feasible values defines the set of feasible BIC values. The support function

for this intersection is (e.g. Rockafellar, 1997 [54])

SBIC(W) = inf
Λ≥ 0

SV(W −
I∑

i=1

N i∑
j=2

Λi(xi
j−1)(

e(xi
j−1)

f i(xi
j−1)

−
e(xi

j)

f i(xi
j)
)) = inf

Λ≥ 0
SV(Ŵ) (9)

where Ŵ i(xi
j) = W i(xi

j)−(Λi(xi
j)−Λi(xi

j−1))/f
i(xi

j) for i = 1, . . . , I and j = 1, . . . , N i with

Λi(xi
0) = Λi(xi

N i) = 0. Since the Λ’s are non-negative it is readily verified that

l∑
j=1

f i(xi
j)Ŵ

i(xi
j) ≤

l∑
j=1

f i(xi
j)W

i(xi
j)

for l = 1, . . . , N i with equality for l = N i, which we abbreviate as Ŵi ⪯f i Wi. For two

increasing sequences, W and W′, we say that W′ f i-majorizes W if W ⪯f i W′.

The minimization problem in (9) can thus be written as infŴi⪯fiW
i SV(Ŵ). Using the

seminal Hardy, Littlewood, and Pólya’s (1929) [29] result we show that its solution Wi
+ is

the “largest” increasing sequence such that Wi
+ ⪯f i Wi, i.e. Wi

+ f i-majorizes any other

increasing sequence of weights Ŵi that satisfy Ŵi ⪯f i Wi. We note that sequence Wi
+

has to be increasing and generally depends on the distribution of agent i’s types.

Theorem 2. The support function for the set of feasible and Bayesian incentive compatible

interim values is given by

SBIC(W) = Ex

(
max
k∈K

∑
i∈I

aikW
i
+(x

i)
)

for any W ∈ IR
∑

i |Xi|.

The discrete majorization procedure thus parallels the “ironing” technique introduced by

Mussa and Rosen (1978) [51] and Myerson (1981) [52] for continuous types.9 This par-

9See Weymark (1986) [57] for the ironing for the discrete case in optimal income taxation setting.
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Figure 3. The three sequences in the leftmost panel are W1 = (1, 2, 6) (solid blue circles),

W2 = (2, 6, 1) (red squares), and W3 = (6, 1, 2) (open green circles). The rightmost panel

shows the majorized sequences: W1
+ = (1, 2, 6), W2

+ = (2, 72 ,
7
2), and W3

+ = (3, 3, 3). The two

middle panels (with rescaled y-axis) show the cumulative sequences for W (middle-left) and W+

(middle-right). The cumulative of W+ is the largest convex function below the cumulative of W.

allel establishes a convenient way to derive the ironed values. For any sequence W =

(W1, ...,WN), to compute W+ one could follow the following simple procedure. First, con-

sider sequence {ℓk}k=1,...,N of cumulative sums ℓk =
∑k

n=1Wn. Second, find the largest

convex function {ℓ̂k}k=1,...,N that lies below {ℓk}k=1,...,N . The elements of the majorized

sequence are then computed as (W+)k = ℓk − ℓk−1, k = 1, ..., N with ℓ0 = 0. Generally,

majorized sequences are characterized by a collection of intervals. Outside these intervals

W+ coincides with original sequence W, and insider each interval the majorized sequence

is constant (see Kleiner et al., 2021 [34]).

Figure 3 illustrates majorization for three equally likely types. The leftmost panel shows

sequences W1 = (1, 2, 6), W2 = (2, 6, 1), and W3 = (6, 1, 2). The rightmost panel shows

the corresponding majorized sequences W1
+ = (1, 2, 6), W2

+ = (2, 7
2
, 7
2
), and W3

+ = (3, 3, 3).

Note that W = W+ if and only if original sequence W is increasing. The middle panels

show the cumulative sequences for W (left) and W+ (right) and demonstrates that the

cumulative of W+ is the largest convex function below the cumulative of sequence W.

Alternatively, one could obtain a majorized sequence using a minimization procedure.

As we show in Appendix (Lemma A2), the majorized sequence delivers the minimum to

the sum of functions defined over sequences satisfying the majorized constraints for any

increasing convex function. In particular, one could consider a quadratic function and

minimization problem W+ = argminŴ⪯W.

∑
j Ŵ

2
j . This minimization problem could be

simply used to derive the majorized or ironed sequence for any given sequence.
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3.4. BIC-DIC Equivalence

Similar to BIC we can incorporate dominant strategy incentive compatibility (DIC) into

the support function. Surprisingly, this yields the same support function for the interim

values.

Example 1. Consider again the auction example of Section 2 but without the symmetry

assumption. The support function for the allocation rules qi = (qill, q
i
lh, q

i
hl, q

i
hh) for i = 1, 2

is max(0, w1
ll, w

2
ll)+max(0, w1

hl, w
2
lh)+max(0, w1

lh, w
2
hl)+max(0, w1

hh, w
2
hh). Imposing the DIC

constraints, qill − qihl ≤ 0 and qilh − qihh ≤ 0 for i = 1, 2, and applying the interim mapping

to derive the support function for interim allocations yields

SDIC(W) = inf
0≤λi

l ,λ
i
h

1

4
max(0,W 1

l − λ1
l ,W

2
l − λ2

l ) +
1

4
max(0,W 1

h + λ1
l ,W

2
l − λ2

h)

+
1

4
max(0,W 1

l − λ1
h,W

2
h + λ2

l ) +
1

4
max(0,W 1

h + λ1
h,W

2
h + λ2

h)

For agent i = 1, 2 there are two minimization parameters, λi
l and λi

h, while in the BIC

case there is only one, Λi. However, the above minimization problem has a solution that

sets λi
l = λi

h = 1
2
max(0,W i

l −W i
h), which is also the solution for Λi so the BIC and DIC

support functions coincide. This solution is apparent when considering the minimization

problem over one agent’s parameters ignoring the dependence on the other’s weights. The

reason we can consider each agent’s DIC constraints separately stems from their geometric

interpretation: each represents the intersection of the feasible set with a half space. ■

The next result shows that the BIC and DIC support functions coincide more generally.

Proposition 1. The support functions for the set of feasible interim values satisfying BIC

or DIC constraints coincide: SDIC(W) = SBIC(W) for any W ∈ IR
∑

i |Xi|.

This result implies that for any Bayesian incentive compatible mechanism there exists an

equivalent dominant strategy incentive compatible mechanism, a result first shown for the

auction case by Manelli and Vincent (2010) [44] and generalized to social choice settings

by Gershkov et al. (2013) [24] (see also Kushnir (2015) [37], Kushnir and Liu (2019, 2020)

[38] [39], and Manelli and Vincent (2019) [45]).
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3.5. Optimal Mechanisms for Linear Objectives

Consider maximization of the linear objective α·V over the set of feasible, incentive compat-

ible interim values. Then SBIC(α) is the optimal value and the optimal mechanism follows

from Hotelling’s lemma, i.e. V(α) = ∇SBIC(α), see Rockafellar (1997) [54]. Proposition 1

ensures this mechanism can be written as a dominant strategy incentive compatible mech-

anism.

Proposition 2. For any social choice problem and any linear objective, α ·V, an optimal

dominant strategy incentive compatible mechanism is given by the allocation rule

qk(x) =

 1/|M | if k ∈ M ≡ argmaxk∈K
∑

i∈I a
i
kα

i
+(x

i)

0 otherwise
(10)

and corresponding payment rule10

ti(x) =
∑
k∈K

aik
(
xiqk(x)−

∑
xi
j <xi

(xi
j+1 − xi

j)qk(x
i
j,x

−i)
)

(11)

Typical examples of linear objectives are expected surplus, Ex(
∑

i∈I x
iV i(xi)) = x ·V, and

expected revenue, Ex(
∑

i t
i(x)) = MR ·V, where marginal revenues are defined as

MRi(xi
j) = xi

j −
(
xi
j+1 − xi

j

)1− F i(xi
j)

f i(xi
j)

, i = 1, . . . , I, j = 1, . . . , N i, (12)

with xi
N i+1 = xi

N i and F i(xi
j) =

∑j
l=1 f

i(xi
l). These marginal values are the discrete ana-

logues of Myerson’s (1981) [52] “virtual values” for the continuous case.

4. General Concave Objectives

In many applied design problems there are distributional goals besides surplus and revenue

maximization. Federal procurement in the US, for instance, awards at least 23% of its

$500 billion annual budget to small businesses, with lower targets for businesses owned by

women, disabled veterans, and the economically disadvantaged (Athey, Coey, and Levin,

10The specified payment rule (which is not unique) ensures that the optimal mechanism (q, t) is also ex
post individually rational. See Section 4 for more details.
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2013 [4]). One way such preferential treatment can be achieved is by using “set asides,”

which constrain the allocation rule. For example, in the US, procurement contracts under

$100,000 are reserved for small businesses and around $30 billion in contracts is awarded

via set-aside programs. An alternative way is to adapt the payment rule to reflect subsidies

to favored firms. The US Federal Communications Commission, for instance, has applied

bidding credits to minority-owned firms in some of their spectrum auctions. To incorpo-

rate set asides and subsidies we consider objectives that depend on both allocations and

payments. We drop the restriction the objective is linear and instead assume it is concave.

We show that the optimal mechanism can still be derived using Hotelling’s lemma, which

now results in a fixed-point equation.

We first derive the support function for the set of interim values and payments, V and T,

that satisfy, for each i = 1, . . . , I, the Bayesian incentive compatibility (BIC) constraints11

(V i(xi
j)− V i(xi

j−1))x
i
j−1 ≤ T i(xi

j)− T i(xi
j−1) ≤ (V i(xi

j)− V i(xi
j−1))x

i
j (13)

for j = 2, . . . , N i, and the interim individually rationality (INIR) constraints: U i(xi) =

V i(xi)xi−T i(xi) ≥ 0 for xi ∈ X i. Dominant strategy incentive compatibility (DIC) and ex

post individual rationality (EXIR) are defined similarly. To include interim payments T i(xi)

into the support function we introduce weights Zi(xi) for xi ∈ X i, i = 1, ..., I and generalize

the marginal revenues in (12) to allow for different weights for each of the payments:

MRZi(xi
j) = xi

jZ
i(xi

j)−
xi
j+1 − xi

j

f i(xi
j)

∑
l>j

f i(xi
l)Z

i(xi
l) (14)

for j = 1, ..., N i with xi
N i+1 = xi

N i . This expression reduces to (12) when Zi(xi
j) ≡ 1.

Theorem 3. The support function for the set of feasible interim values and payments that

satisfy BIC (DIC) and INIR (EXIR) is given by

SDIC(W,Z) = SBIC(W,Z) = Ex

(
max
k∈K

∑
i∈I

aik(W
i +MRZi)+(x

i)
)

(15)

for any W ∈ IR
∑

i |Xi| and Z ∈ IR
∑

i |Xi|
+ .

11We consider only adjacent incentive constraints because utilities satisfy the single-crossing condition.
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O

O′ < O ∇O

(V,T) ∈ ∇S(∇O(V,T))

Figure 4. The optimal interim expected values and payments belong to the subdifferential of the

support function evaluated at the vector of weights that is equal to the gradient of the objective

function evaluated at the optimal interim expected values and payments.

Now consider a differentiable concave objective function O(V,T) that is increasing in in-

terim payments. Concave objectives have convex indifference curves and maximization

requires that, at the optimal point, the gradient ∇O is normal to the surface of the fea-

sible, incentive compatible set, see Figure 4. Moreover, the subdifferential of the support

function evaluated at this normal vector should contain the optimal point.

Proposition 3. For any social choice problem and any concave differentiable objective

O(V,T) increasing in interim payments the interim values and payments corresponding to

an optimal DIC and EXIR mechanism satisfy12

(V,T) ∈ ∇SDIC(∇O(V,T)). (16)

Fixed point equation (16) provides a characterization of optimal mechanisms maximizing

any given concave objective. This novel result follows naturally from the geometric approach

developed in this paper, but would be quite hard to derive using classical techniques.

Fixed-point condition (16) holds even if objective O is not increasing in interim payments.

However, the explicit expression (15) for SDIC(W,Z) was derived in Theorem 3 under

assumption Z ∈ IR
∑

i |Xi|
+ and it can be used only if objective O is increasing in interim

payments.

In contrast to the linear case of Proposition 2, generally it is not possible to provide

12Note that the statement of the proposition immediately extends to any differentiable quasi-concave
objective increasing in interim payments. We thank Jacques-François Thisse for pointing this out to us.
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explicit solutions for the ex post allocation and payment rules, or their interim equivalents

for that matter. Note, however, that the weights for the values and payments enter the

support function (15) as linear combinations, which implies that their subgradients are

closely related. This observation can be used to express the optimal interim payments in

terms of the optimal interim values

T i(xi) = V i(xi)xi −
∑

xi
j <xi

V i(xi
j)(x

i
j+1 − xi

j)

which is the interim version of (11).13

To illustrate Proposition 3, consider a single-unit auction with two ex ante symmetric

bidders whose private values are equally likely to be x1 or x2 with x1 < x2 < 2x1. Sup-

pose the seller wants to maximize the following objective: O = T (x1) + T (x2) + β(x2 −
x1)Q(x1)Q(x2), where β ≥ 0 and U(xj) = xjQ(xj) − T (xj) denotes agent’s interim ex-

pected utility when her type is xj (note that V (xj) = Q(xj)). The objective reflects the

desire of the seller to maximize revenue (the first two terms) while providing different types

of bidders with high and similar chances of winning (the last term). The gradient of the

objective is

∇O =


β(x2 − x1)Q(x2)

β(x2 − x1)Q(x1)

1

1

 .

The support function for the single unit auction can be written as

SDIC(W,Z) =
1

4

2∑
j,k=1

max(0, (W +MRZ)+(xj), (W +MRZ)+(xk)).

Using (16), we determine when the efficient allocation, in the sense that the higher type

is awarded the object, is optimal. From the above expression for ∇O we have (W +

MRZ)(x1) = 2x1−x2+β(x2−x1)Q(x2) and (W +MRZ)(x2) = x2+β(x2−x1)Q(x1). These

weights should be non-negative and non-decreasing in type for the efficient allocation to be

optimal, which requires β ≤ 4 (since Q(x1) =
1
4
and Q(x2) =

3
4
in an efficient allocation).

13This formula is analogous to the envelope theorem for continuous case (Milgrom and Segal, 2002 [50]).
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When β > 4, the ironed weights are equal, which implies Q(x1) =
1
2
− 1

β
and Q(x2) =

1
2
+ 1

β
,

i.e. the allocation is distorted in the direction of a lottery to raise the lower type’s chance

of winning.

5. Geometric vs. Other Approaches

In this section, we discuss how the geometric approach is compared to the classical Myer-

sonian approach and some recent advances in the mechanism design and computer science

literatures.

In a seminal paper, Myerson (1981) [52] analyzes the problem of designing a revenue-

maximizing auction when bidders have independently distributed values. Myerson shows

that if the auctioneer maximizes revenue, the auctioneer does not always want to allo-

cate the object (there is a reserve price). Moreover, the auctioneer does not necessarily

allocate the object to a bidder with the highest value. Instead, the object is allocated to

a bidder with so called highest “virtual value” in the case of regular distributed types.

For generally distributed types, the virtual values first need to be “ironed.”14 The geo-

metric approach also considers a linear maximization problem over the set of feasible and

incentive compatible interim values. In contrast to the classical approach, which uses the

standard optimization techniques, the geometric approach utilizes the algebraic properties

of support functions, and, in particular, how they change under Cartesian product, linear

transformation, and intersection. Using these properties, we derive an analytical expression

of the support function for the set of feasible and Bayesian incentive compatible interim

values.15 For any given linear objective, the subdifferential of the support function then

determines the optimal mechanisms including the allocation rule and transfer payment. For

concave objectives, the geometric approach provides a fixed-point condition characterizing

the optimal mechanisms.

Though we first to point out the connection between the ironing procedure and the

seminal concept of majorization, a more fundamental study of the majorization has been

14Musa and Rosen (1978) [51] are the first to use ironing procedure in mechanism design literature.
15Using classical Lagrangian methods, Ledyard and Palfrey (1999, 2007) [41, 42] obtain related results

characterizing incentive compatible mechanisms. Kucuksenel (2012) [36] studies interim efficient mecha-
nisms in settings with interdependent values.
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recently done by Kleiner et al. (2021) [34].16 They characterize the set of extreme points of

monotonic functions that are either majorized by or themselves majorize a given function.

For mechanism design applications, they consider an environment of ranked-item auctions

with one-dimensional independently distributed types. They provide a relation between

the implementability of symmetric and monotonic interim allocation rules and the efficient

allocation using majorization.17 Kleiner et al. (2021) [34] also show how the equivalence

between Bayesian and dominant strategy implementation for symmetric allocation rules in

ranked-items auctions follows from their main results. In contrast, the results of this paper

do not require the symmetry assumption and extend to social choice environments. For the

equivalence between Bayesian and dominant strategy implementation, we also assume one-

dimensional types, whereas for reduced-form implementation our results apply to general

multi-dimensional settings with possibly correlated types. The results of Kleiner et al.

(2021) [34] could also be extended to non-linear maximization problems with super-modular

objectives due to Fan and Lorents (1954) [22].18 The geometric approach is also applicable

to the maximization of concave objectives as Section 4 shows. At the same time, the

applications of Kleiner et al. (2021) [34] extend beyond mechanism design settings and

consider matching contests, Bayesian persuasion, optimal delegation, and decision making

under uncertainty.

There have recently appeared several analytical and computational approaches to re-

duced form implementation. Importantly, Che et al. (2013) [17] convert the problem of

identifying whether an interim allocation rule is implementable into the problem of whether

there exists a feasible flow in a certain network. Using this network-flow approach they

provide the characterization of reduced-form auctions in a multi-unit setting with bidder

capacity constraints. Zheng (2021) [58] extended their analysis to multiple heterogeneous

objects with multiple units.19 In contrast, the characterization of implementable interim

allocation rules in the current paper applies to social-choice environments beyond multi-

16The working version of this paper Goeree and Kushnir (2011) [27] preceded their analysis. See also
Gershkov and Moldovanu (2010) [25] for an earlier use of majorization in the study of dynamic assignment
of heterogeneous objects.

17The connection between reduced form implementation and majorization was originally identified by
Hart and Reny (2015) [30] for single-object auctions. See also Gershkov et al. (2019) [26] for multi-unit
auctions.

18In the paper, Kleiner et al. (2021) [34] restrict their applications only to linear objectives.
19See also Lang and Yang (2021) [40] for an alternative approach to reduced-form auctions with multiple

heterogeneous objects and capacity constraints.
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unit auctions. Our analysis also extends to settings with value-interdependence (see Goeree

and Kushnir, 2016 [28]). At the same time, we do not attempt to extend our analysis to

incorporate capacity constraints.20

For computational approaches to reduced form auctions one should first highlight Belloni

et al. (2010) [9], who developed a tractable computational way to find a revenue maximiz-

ing auction in multi-dimensional single-item auction. Their main insight is to develop an

efficient algorithm that accounts for the reduced-form implementation constraints. Alaei et

al. (2019) [3] extended their results to multi-unit auction settings and to the settings with

general matroid feasibility constraints.21 In addition, they provide an efficient procedure

how to provide a description of a mechanism for a given feasible interim allocation. Cai et al.

(2012a) [14] also provide an alternative algorithm to characterize reduced-form allocations

for auctions with multiple heterogeneous objects. They also provide an efficient algorithm

to calculate optimal revenue-maximizing auction in the setting. Cai et al. (2012b) [15]

extended their results by showing that the vertices of the interim feasible polytope can

be implemented by an ex post allocation that optimizes an appropriately defined virtual

welfare. In contrast, we pursue only analytical characterization of reduced-form allocations,

and our characterization applies to general social choice settings.

6. Conclusion

Mechanism design has been successfully applied to a variety of societal issues including

the matching of students to schools, interns to hospitals, and organ donors to patients as

well as the design of high-stakes auctions to allocate public assets. This paper provides a

new powerful perspective on some of these and many other applications by introducing a

novel approach to the analysis of optimal mechanisms maximizing given objectives.22 Our

approach is based on the one-to-one relation between a convex set and its support function.

20The main results of this paper were developed independently and contemporaneously with Che et al.
(2013) [17] (see Goeree and Kushnir, 2011 [27]).

21Vohra (2011) [56] was first to show that interim feasible allocation rules form a polymatroid.
22Hence, our paper is related, in spirit, to Bulow and Roberts (1989) [13] who gracefully reinterpret the

problem of the revenue-maximizing auction through the prism of monopolistic third-degree price discrimi-
nation. Similarly, we use basic tools of convex analysis to provide a unified and simple treatment of optimal
mechanisms.
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While we are the first to exploit this relation in mechanism design, related methods have a

long history in economics and finance and are now standardly taught in micro PhD classes

(e.g. Mas-Colell, Whinston, and Green, 1995, p.63 [47]).23

In conclusion, we present our perspective on the most promising research areas where

the geometric approach can be successfully applied. First, the geometric approach extends

the recent powerful methods in reduced form auctions (Alaei et al., 2012 [3]; Cai et al.,

2012ab [14] [15]; Che et al., 2013 [17]) to social choice environments. Hence, it provides the

characterization of interim allocation probabilities to solve for optimal mechanisms in such

settings as public good provision, matching, voting, and scheduling.24

Second, the geometric approach can be extended to characterize reduced form implemen-

tation in environments with value interdependencies (see Goeree and Kushnir, 2016 [28]).

Hence, it should be a useful tool to analyze welfare- or reveneue-maximizing mechanism in

these often complex settings.

Third, the geometric approach should be helpful in challenging multi-dimensional mech-

anism design problems. The analysis of revenue-maximizing auction in settings with sev-

eral objects and several buyers with multi-dimensional valuations is a long-standing open

problem (see Sandholm and Likhodedov, 2015 [55]; Daskalakis et al., 2017 [19]; Kleiner and

Manelli, 2019 [34]). Incorporating incentive compatibility constraints into the support func-

tion approach or understanding the set of extreme points of functions that are majorized

by a given function in multi-dimensional settings (see Bedard et al., 2020 [8], Kleiner et

al., 2021 [34]) will be an important methodological breakthrough with many useful appli-

cations in the areas of auction design, information design, matching contests, contracting,

bargaining, etc.

Fourth, the support function approach could also be applied to the analysis of equilibria

in dynamic games. The Folk theorem identifies subgame perfect equilibria for discount

factors approaching one. Abreu (1986 [1]) and Abreu et al. (1986) [2] provide an approach

to analyze the set of subgame perfect equilibria for any given discount factor (see also

23The relation between a convex closed set and its support function is an example of the duality in
convex analysis that has been previously heavily exploited in economics (see Bardsley, 2012 [7]; Makowski
and Ostroy, 2013 [43]; Baldwin and Klemperer, 2019 [5]; Daskalakis et al., 2017 [19]; and Kleiner and
Manelli, 2019 [33]).

24Theorem 1 provides the characterization of the set of feasible interim values in social choice settings.
For how this result extends to the characterization of interim allocation probabilities see footnote 6.
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Judd et al., 2003 [31]). One potential application of the geometric approach is to apply

the algebra of support functions to characterize the set of subgame perfect equilibria in

dynamic games for a given discount factor.25

Finally, the properties of support functions have been previously used in decision theory

(Dekel et al., 2001 [20]), econometrics (Beresteanu and Molinari, 2008 [10]), and mathemat-

ical finance (Ekeland et al., 2012 [21]). We believe that the analysis of this paper will further

promote these techniques in the corresponding areas. We leave these exciting opportunities

for future research.

25In an early paper, Fudenberg and Levine (1994) [23] used related ideas to characterize the equilibrium
payoffs in repeated games with long-run and short-run players for discount factors approaching one. Re-
cently, Balseiro et al. (2019) [6] and Chen et al. (2020) [18] used support function techniques in dynamic
mechanism design without transfers and principal-agent problem with costly monitoring.
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A. Appendix

Proof of Corollary 1. Necessity of the inequalities follows from the definition of the

support function. Sufficiency also follows easily from our approach by interpreting (8) in

terms of hyperplanes that bound the interim expected probability set. Any boundary point

of the interim expected probability set, i.e. any Q that satisfies Q ·W = SQ(W) for some

W, can be written as Q = ∇SQ(W) at points of differentiability of the support function

from the envelope theorem. Furthermore, if SQ(W) is not differentiable at W then the

subdifferential ∇SQ(W) produces a face on the boundary: for any Q belonging to such a

face we have

(Q−Q′) ·W = SQ(W)− SQ(W) = 0.

Each point of non-differentiability, W, therefore defines a normal vector to the face of

the polyhedron, formed by ∇SQ(W). For the support function (7) the points of non-

differentiability are weight vectors with several equal entries, and those equal entries are

the largest entries for some profile of types x. Since non-maximum entries does not change

the value of the support function we can consider only weights where these entries are 0.

Since the support function is homogeneous of degree one we can restrict ourselves to weights

with only 1 and 0 entries. Then considering all non-trivial W ∈ {0, 1}
∑

i X
i
exhausts all

hyperplanes containing one of the boundary faces of the interim expected probability set. ■

Proof of Theorem 2 and Propositions 1. The statements of the theorem and the

proposition follow from more general results established in Theorem 3 incorporating also

payments into the support function. ■

Proof of Proposition 2. Using Theorems 1, 2, Proposition 1, and the definition of the

interim support function we have

SDIC(α) = SBIC(α) = SV(α+) = max
{
Ex

(∑
k∈K

qk(x)
∑
i∈I

aikα
i
+(x

i)
)
|q is feasible

}
.

This establishes the optimality of the allocation rule in (10). To derive the payments
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consider dominant strategy incentive compatibility constraints26

(vi(xij ,x
−i)− vi(xij−1,x

−i))xij−1 ≤ ti(xij ,x
−i)− ti(xij−1,x

−i) ≤ (vi(xij ,x
−i)− vi(xij−1,x

−i))xij

for j = 2, . . . , N i. Moreover, ex post individual rationality requires that vi(x)xi− ti(x) ≥ 0

for all x ∈ X. Considering the payments binding the upward incentive constraints and the

ex post individually rationality constraint for the lowest type we recursively calculate

ti(x) = vi(x)−
∑

xi
j <xi

(
xi
j+1 − xi

j

)
vi(xi

j,x
−i)

for x ∈ X and i ∈ I. This establishes the claim of the proposition. ■

Proof of Theorem 3. For clarity, we first outline the main steps of the proof. As a

first step, we derive the support function for the set of feasible interim expected values and

payments (similarly to (6)). As a second step, we state the result from the majorization

theory and prove a useful lemma. Using this lemma we then incorporate Bayesian incentive

compatibility (13) and interim individual rationality constraints into the support function.

Finally, as a third step, we consider the dominant strategy incentive compatibility and ex

post individual rationality constraints and show that these constraints result into the same

support function.

We begin by deriving the support function for the set of feasible interim expected values

and payments. Since we do not restrict payments, the feasible set of payments (not yet

taking into account incentive constraints) is the whole space IR
∑

i |Xi|. Hence, the support

function for the feasible set equals Ex

(
δ(Zi(xi) = 0, ∀xi,∀i), where we use the standard

definition of δ-function that equals 0 if its argument is true and +∞ otherwise, and weight

Zi(xi) corresponds to T i(xi) ∈ IR for xi ∈ X i, i = 1, ..., I. Combining this expression with

the result of Theorem 1 we obtain that the support function for the set of feasible interim

expected values and payments equals

SVT(W,Z) = Ex

(
max
k∈K

(
∑
i∈I

aikW
i(xi)) + δ(Zi(xi) = 0, ∀xi, ∀i)

)
(A.1)

26We consider only adjacent incentive constraints because utilities satisfy the single-crossing condition.
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where W ∈ IR
∑

i |Xi| and Z ∈ IR
∑

i |Xi|.

We now state an important result from the majorization theory that dates back to

Hardy, Littlewood, and Pólya (1929) [29] (see Marshall et al., 2011 [46]).27 Let f1, . . . , fn

denote arbitrary non-negative numbers and consider two increasing sequences σ and ς of

length n related with the majorization order σ ⪰f ς (see the definition in Section 3.3). We

then say that sequence σ f -majorizes ς.

Lemma A1. If σ f -majorizes ς we have

n∑
j=1

fjg(σj) ≤
n∑

j=1

fjg(ςj)

for any continuous increasing convex function g : IR → IR.

We use this result to prove the following powerful lemma that will be useful for incorporating

the incentive constraints into the support function.

Lemma A2. For any sequence σ,

σ+ = argmin
σ⪰f ς

n∑
j=1

fjg(ςj) (A.2)

for any continuous increasing convex function g : IR → IR.

Proof: Let us first construct σ+. For any increasing sequence ς ∈ IRn, let us define function

hl(ς) =
∑l

j=1 fjςj and αl = supσ⪰f ς
hl(ς), l = 1, .., n, where the supremum is taken only

over increasing sequences. Define now sequence σ+ as (σ+)l = (αl−αl−1)/fl, where α0 = 0.

Clearly, we have (i) σ ⪰f σ+ and (ii) σ+ ⪰f ς for any increasing sequence ς satisfying

σ ⪰f ς. To prove that σ+ is itself increasing we notice that hl(ς)
fl

+ hl−2(ς)

fl−1
≥ ( 1

fl
+ 1

fl−1
)hl−1(ς)

for any increasing sequence ς and l = 2, ..., n. Therefore,

sup
σ⪰f ς

(hl(ς)
fl

+ hl−2(ς)

fl−1

)
≥ ( 1

fl
+ 1

fl−1
) sup
σ⪰f ς

hl−1(ς)

27This result is also closely related to Karamata’s inequality (see Karamata, 1932 [32]).

25



where the suprema are taken over only increasing sequences. Notice that the supremum

of a sum is smaller than the sum of the suprema. After a rearrangement we then obtain

(αl − αl−1)/fl ≥ (αl−1 − αl−2)/fl−1, which proves that σ+ is increasing.

We now consider minimization problem (A.2). We show that, without loss of generality,

we can restrict attention to increasing sequences ς. Consider some ς with ςl > ςk for

some l < k. Then define the sequence ς̃ with elements ς̃l = ςl − ε(ςl − ςk)/fl and ς̃k =

ςk + ε(ςl − ςk)/fk while ς̃j = ςj for j ̸= l, k. The sequence ς̃ also satisfies σ ⪰f ς̃. Since g(·)
is convex we have

flg(ς̃l) + fkg(ς̃k) ≤ flg(ςl) + fkg(ςk)

and, hence,
∑n

j=1 fjg(ς̃j) ≤
∑n

j=1 fjg(ςj). Repeatedly applying this procedure results in

a increasing sequence ς̃ that satisfies σ ⪰f ς̃. But any such sequence is f -majorized by σ+.

Hence, the statement of the lemma follows from Lemma A1. ■

Using the above result we now incorporate the Bayesian incentive compatibility and

interim individual rationality constraints into the support function. For convenience we

rewrite these constraints as follows.

T i(xi
j)− T i(xi

j−1) ≥ xi
j−1

(
V i(xi

j)− V i(xi
j−1)

)
(A.3)

T i(xi
j)− T i(xi

j−1) ≤ xi
j

(
V i(xi

j)− V i(xi
j−1)

)
(A.4)

T i(xi
j) ≤ xi

jV
i(xi

j) (A.5)

The support function of the intersection of non-empty closed convex sets is the convolution

of the support functions of these sets. When some sets are half spaces Bm · V ≤ 0 for

m = 1, . . . ,M the operation of convolution reduces to infΛm ≥ 0 SVT(W−
∑

m ΛmBm) (see

Rockafellar, 1997 [54]).

Let us denote parameters corresponding to constraints (A.3), (A.4), and (A.5) as Λi(xi
j−1),

γi(xi
j), and µi(xi

j) respectively. The support function for feasible values and payments sat-

isfying these constraints can be calculated as

SBIC(W,Z) = inf
Λ,γ,µ≥0

Ex

(
max
k∈K

(
∑
i

aikŴ
i(xi)) + δ(Ẑi(xi) = 0, ∀xi,∀i)

)
(A.6)
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where we denote

Ŵ i(xi
j) = W i(xi

j) +
1

f i(xi
j)
(−xi

j−1Λ
i(xi

j−1) + xi
jΛ

i(xi
j) + xi

jγ
i(xi

j)− xi
j+1γ

i(xi
j+1) + xi

jµ
i(xi

j))

Ẑi(xi
j) = Zi(xi

j) +
1

f i(xi
j)
(Λi(xi

j−1)− Λi(xi
j)− γi(xi

j) + γi(xi
j+1)− µi(xi

j))

Note that we use convention that Λi(xi
0) = Λi(xi

N i) = 0 and γi(xi
1) = γi(xi

N i+1) = 0.

Since agents’ utilities satisfy the single crossing condition the interim individual rationality

constraints are binding only for the lowest type, i.e. µi(xi
j) = 0 for j = 2, ..., N i. Summing

up constraints Ẑi(xi) = 0 of formula (A.6) over all types xi ∈ X i we then obtain

µi(xi
1) =

N i∑
l=1

Zi(xi
l)f

i(xi
l)

Similarly, summing up constraints Ẑi(xi) = 0 starting from xi
j, j = 2, ..., N i we obtain

γi(xi
j) =

N i∑
l=j

Zi(xi
l)f

i(xi
l) + Λi(xi

j−1)

Note that for non-negative weights Z ∈ IR
∑i |Xi|
+ inequalities µi(xi

1) ≥ 0 and γi(xi
j) ≥ 0

are automatically satisfied. With some abuse of notation we replace (xi
j+1−xi

j)Λ
i(xi

j) with

Λi(xi
j). Substituting the above expressions into formula (A.6) we obtain

SBIC(W,Z) = inf
0≤Λi(xi)

Ex

(
max
k∈K

∑
i∈I

aik
(
W i(xi) +MRZi(xi)− ∆Λi(xi)

f i(xi)

))

Let us now define shifted weights Ŵ i(xi) = W i(xi) + MRZi(xi) − ∆Λi(xi)/f i(xi). It is

straightforward to verify that Wi +MRZi ⪰f i Ŵi for all i ∈ I.28 Therefore, Lemma A2

implies that (Wi+MRZi)+ delivers the minimum to the above expression, which establishes

the claim of the theorem for support function SBIC(W,Z).

As the last step of the proof, we show that the introduction of the dominant strategy

28Note that
∑l

j=1 ∆Λi(xi
j) = Λi(xi

l)− Λi(xi
0) ≥ 0 for l = 1, . . . , N i with equality for l = N i.
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incentive compatibility constraints

ti(xi
j,x

−i)− ti(xi
j−1,x

−i) ≥ xi
j−1

(
vi(xi

j,x
−i)− vi(xi

j−1,x
−i)

)
(A.7)

ti(xi
j,x

−i)− ti(xi
j−1,x

−i) ≤ xi
j

(
vi(xi

j,x
−i)− vi(xi

j−1,x
−i)

)
, (A.8)

and ex post individual rationality constraints

ti(xi
j,x

−i) ≤ xi
jv

i(xi
j,x

−i) (A.9)

lead to the same support function. To accomplish this we use the geometric interpretation

of incentive constraints: the support function minimization problem corresponds to the

intersection of the feasible set with the corresponding incentive constraint. Hence, we can

include the constraints to support function (A.1) for one agent at a time.

We first include only agent 1’s constraints to the support function using arguments simi-

lar to ones used in the derivation of support function SBIC(W,Z). Let us denote parameters

corresponding to constraints (A.7) as λ1(x1
j−1,x

−1) with λ1(x1
0,x

−1) = λ1(x1
N1 ,x−1) = 0,

and ∆λ1(x1
j ,x

−1) = λ1(x1
j ,x

−1)− λ1(x1
j−1,x

−1). We then obtain

SDIC
agent1

(W,Z) = inf
0≤λ1(x)

Ex

(
max
k∈K

( a1k(W
1(x1) +MRZ1(x1)− ∆λ1(x)

f1(x1)
) +

∑
i ̸=1 a

i
k

(
W i(xi) +MRZi(xi)

))

We again consider the shifted weights Ŵ 1(x) = W 1(x1) + MRZ1(x1) − ∆λ1(x)
f1(x1)

. For each

x−1 vector Ŵ1(·,x−1) satisfies W1 + MRZ1 ⪰f1 Ŵ1(·,x−1) and the above minimization

problem can be rewritten as

∑
x−1

inf
W1+MRZ1 ⪰f1 Ŵ1(·,x−1)

∑
x1

f 1(x1)g1(Ŵ 1(x1,x−1))

where g1(y) = f−1(x−1)maxk∈K
(
a1ky+

∑
j ̸=1 a

j
k

(
W j(xj)+MRZj(xj)

)
is a convex function

of y. Lemma A2 asserts that Ŵ1(·,x−1) = (W1 +MRZ1)+ for each x−1 solves the above
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minimization problem.

Let us now assume that we have introduced the constraints of i− 1 agents. The mini-

mization problem that corresponds to the introduction of the constraints of agent i is

∑
x−i

inf
Wi+MRZi ⪰fi Ŵ

i(·,x−i)

∑
xi

f i(xi)gi(Ŵ i(xi,x−i))

where shifted weights equal Ŵ i(x) = W i(xi) +MRZi(xi)− ∆λi(x)
f i(xi)

and function

gi(y) = f−i(x−i)max
k∈K

(∑
j<i

ajk
(
W j(xj)+MRZj(xj)

)
+
+ aiky+

∑
j>i

ajk
(
W j(xj)+MRZj(xj)

))

is a convex function of y. Lemma A2 again asserts that Ŵi(·,x−i) = (Wi + MRZi)+ for

each x−i solves the above minimization problem. Proceeding in this way for all agents,

we finally obtain that the support function for the feasible interim expected values and

payments that satisfies constraints (A.7-A.9) coincides with SBIC(W,Z). ■

Proof of Proposition 3. Vector (V∗,T∗) belongs to ∇SDIC(∇O(V∗,T∗)) if and only if

(see Theorem 23.5 in Rockafellar, 1997)

(V∗,T∗) ∈ argmax((V,T) · ∇O(V∗,T∗) | (V,T) ∈ C)

where C is the set of dominant strategy incentive compatible and ex post individually ra-

tional agent interim values and payments. This is equivalent to ∇O(V∗,T∗) be tangent to

set C at (V∗,T∗) (see p. 15, Rockafellar, 1997 [54]). Finally, Theorem 27.4 in Rockafellar

(1997) [54] establishes that this is equivalent to (V∗,T∗) be a vector where maximum of

O(V,T) relative to C is attained. ■
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