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1 Introduction

Fundamental advances in mechanism design have found vast practical applications including auc-

tions for radio spectrum licenses, carbon emission permits, and online advertising (Siegfried, 2010).

One of the most important practical challenges facing mechanism designers is to ensure that they

propose robust mechanisms, i.e., mechanisms that are not sensitive to the fine details of the envi-

ronment such as the beliefs of the agents. As argued by Bergemann and Morris (2005), robustness

in private value settings is equivalent to dominant strategy incentive compatibility. Indeed, dom-

inant strategy implementation has the significant advantage that it does not rely on the strong

assumption that agents share a common prior, and it is resistant to deviations from rationality

that are often observed in practice.

A natural concern for insisting on mechanism robustness is that it may undermine the attain-

ability of the mechanism designer’s objectives as the implementation concept required is more re-

strictive (compared to, for example, Bayesian implementation). Nevertheless, recent seminal work

by Manelli and Vincent (2010) and Gershkov et al. (2013) has shown that the trade-off between

implementability and robustness can be immaterial: For a large class of social choice problems,

the mechanism designer can restrict herself to robust dominant strategy incentive compatible

mechanisms and gain nothing from designingpossibly more complex mechanisms with Bayes-Nash

equilibria. In particular, when agents have linear utilities and independent, one-dimensional pri-

vate types, they establish that for any Bayesian incentive compatible (BIC) mechanism there

exists an equivalent dominant strategy incentive compatible (DIC) mechanism that yields the

same interim expected utilities to all agents and generates the same expected social surplus.1

The main contribution of this paper is to extend the BIC-DIC equivalence result to environ-

ments with non-linear utilities satisfying two assumptions. The first one demands that each agent’s

utility satisfy the increasing differences over distributions property, which is a natural extension

of the standard increasing differences (or supermodularity) property to the space of lotteries. This

novel property delineates the settings where all BIC mechanisms can be conveniently described by

a monotonicity condition and an envelope formula. We also fully characterize the set of functions

satisfying the increasing differences over distributions property.

The second assumption demands that the mapping of all agents’ utilities, as a mapping from

the set of feasible allocations to the space of utilities, has a convex image for each profile of types.2

Though this condition might be restrictive in general environments, it is trivially satisfied for linear

1Goeree and Kushnir (2017) provides an alternative proof of this equivalence result using a novel geometric
approach to mechanism design. Kushnir (2015) extends the result to environments with correlated types. Kushnir
and Liu (2017) explain how the BIC-DIC equivalence problem reduces to a purely mathematical question of when
a linear transformation of intersection of two closed convex sets coincides with the intersection of their images.

2Similar convexity assumptions on the utility possibility set are also made in many seminal papers in the
literature of bargaining theory (e.g. Nash, 1950; Kalai and Smorodinsky, 1975; Crawford, 1982).

2



utilities defined on a convex set (as in Gershkov et al., 2013) and for any symmetric settings.

Assuming the increasing differences over distributions property and the mapping of all agents’

utilities being convex-valued, we establish the BIC-DIC equivalence for non-linear environments.

For settings where our main equivalence theorem does not apply, we provide further conditions on

agents’ utilities when for any given BIC mechanism one could find a DIC mechanism that yields

the same interim expected utilities to all agents and generates at least as large expected social

surplus. The latter requirement captures the economic intuition that one does not need to insert

additional money to achieve a more robust solution concept.

Finally, we demonstrate the usefulness of our results by revisiting several important applica-

tions, for which the previous works have little bite (e.g. Manelli and Vincent, 2010; Gershkov et

al., 2013). We first consider the principal-agent problem in a procurement context and illustrate

that many influential papers satisfy our main assumptions (e.g. Laffont and Martimort, 1997;

Mookherjee and Tsumagari, 2004). In the same context, we study settings with allocative exter-

nalities, when agents care not only about their own contracts, but also about contracts received

by other agents (e.g. Jehiel et al., 1996; Segal, 1999). If agents face non-decreasing convex (con-

cave) contracting costs and positive (negative) concave externalities, then for any BIC mechanism

one could find a DIC mechanism yielding the same interim expected utilities to all agents and

generating at least as large social surplus. We also establish that the above result holds for en-

vironmental mechanism design problems (Martimort and Sand-Zantman, 2013, 2015; Baliga and

Maskin, 2003) when agents have linear (concave) benefits and concave (linear) costs of pollution

reduction. We finally consider the evergreen problem of public good provision, where in addition

to incentive compatibility and individual rationality constraints the budget-balance constraint is

of huge importance (e.g. Mailath and Postlewaite, 1990; Ledyard and Palfrey, 1999; Hellwig,

2003; Norman, 2004). When agents have concave utilities and the cost of public good provision

is convex, we show that for any BIC mechanism that is ex ante budget balanced there exists an

equivalent DIC mechanism that satisfies the same requirement.

The paper is organized as follows. Section 2 presents the model. We introduce the increasing

differences over distributions property in Section 3. We prove our main equivalence results in

Section 4. Section 5 presents applications and Section 6 concludes. The Appendix contains

omitted proofs.

2 Model

We consider environments with a finite set of agents I = {1, 2, .., I} and a compact set of available

alternatives A ⊂ Rk for some natural k. Agent i’s utility when alternative a ∈ A is chosen

equals vi(a, xi) + ti, where xi is agent i’s type that is independently distributed according to some
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probability distribution λi with one-dimensional connected support Xi = [xi, xi] ⊂ R, function

vi : A ×Xi → R is continuous in a, is absolutely continuous in xi, and has a bounded derivative

with respect to xi (i.e., |vix(a, xi)| ≤ Ki, ∀a ∈ A, xi ∈ Xi, i ∈ I), and ti ∈ R is a monetary transfer.

We denote x = (x1, ..., xI), X =
∏

i∈I Xi, and λ =
∏

i∈I λi.
3

We consider only direct mechanisms (q, t), where q : X → A defines an allocation rule and

t = {ti}i∈I , with ti : X → R defines monetary transfers to agents. A mechanism (q, t) is Bayesian

incentive compatible or BIC (dominant strategy incentive compatible or DIC) if truthful reporting

by all agents constitutes a Bayes-Nash equilibrium (a dominant strategy equilibrium). We also

say that an allocation rule q is BIC (DIC) if there exists a payment rule t such that mechanism

(q, t) is Bayesian incentive compatible (dominant strategy incentive compatible).

When all agents report their types truthfully and agent i’s type is xi, we denote his utility by

ui(x) = vi(q(x), xi)+ ti(x) and his interim expected utility by Ui(xi) = Ex−i
(vi(q(x), xi)+ ti(x)).

The expected social surplus is defined as Ex

(∑
i∈I vi(q(x), xi)

)
or, equivalently, as the sum of

agents’ ex ante expected utilities minus the sum of agents’ ex ante expected transfers. As in

Gershkov et al. (2013), we employ the following notion of equivalence.

Definition 1. Two mechanisms (q, t) and (q̃, t̃) are equivalent if and only if they yield the same

interim expected utilities to all agents and generate the same expected social surplus.

3 The Increasing Difference over Distributions

In this section, we introduce and characterize the increasing differences over distributions property.

We use this novel property to characterize Bayesian incentive compatible mechanisms in terms of

a monotonicity condition and an envelope formula, which is similar to how the standard increasing

differences property is used to characterize dominant strategy incentive compatible mechanisms.

To motivate the analysis of our novel property, let us first consider the standard property of

increasing differences or supermodularity (see Topkis, 1998).

Definition 2. Function vi satisfies the increasing differences property if for any pair of alterna-

tives a, a′ ∈ A the difference vi(a, x)− vi(a′, x) is either increasing, decreasing, or constant in x.4

Assuming that vi satisfies the increasing differences property for each i ∈ I, Mookherjee and Re-

ichelstein (1992) showed that dominant strategy incentive compatibility can be characterized by

a monotone-marginal condition and an envelope formula.5

3Our main results Theorems 1 and 2 can also be extended to discrete types similar to Gershkov et al. (2013).
4Throughout the paper, “increasing” (“decreasing”) refers to a strictly increasing (decreasing) function.
5More precisely, the result below follows from Propositions 1, 2, and 3 of Mookherjee and Reichelstein (1992),

because when vi is differentiable with respect to its second argument the increasing differences property is equivalent
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Proposition 1 (Mookherjee and Reichelstein, 1992). Suppose vi satisfies the increasing

differences property for each i ∈ I. A mechanism (q, t) is DIC if and only if for each i ∈ I and

x ∈ X (i) vix(q(s,x−i), xi) is non-decreasing in s and (ii) agent i’s utility can be expressed as

ui(xi,x−i) = ui(xi,x−i) +

∫ xi

xi

vix(q(s,x−i), s)ds.
6 (1)

Proposition 1 is a powerful result as it provides a tractable analysis of incentive compatibility

constraints in many important applications (e.g., Laffont and Martimort, 1997; Segal, 2003). In

the Appendix, we further show that the increasing differences property is a necessary condition

for the characterization of Proposition 1. In particular, if some agent’s function vi does not satisfy

the increasing differences property then one can always construct a DIC mechanism that does not

have non-decreasing marginals (see Proposition A1).

To obtain a similar characterization for BIC mechanisms, we first need an appropriate extension

of the increasing differences property to Bayesian settings. Note that from the perspective of each

agent, who knows only the distribution of the types of other agents, every allocation rule induces

a probability distribution over possible outcomes. This logically leads to the following definition.

Definition 3. Function vi satisfies the increasing differences over distributions property if for

any pair of probability distributions G,F ∈ ∆(A), the difference
∫
vi(a, x)dG(a)−

∫
vi(a, x)dF (a)

is either increasing, decreasing, or constant in x.

The following proposition shows that, given the increasing differences over distributions property,

BIC mechanisms can be indeed characterized by a monotone-expected-marginal condition and an

envelope formula.

Proposition 2. Suppose vi satisfies the increasing differences over distributions property for each

i ∈ I. A mechanism (q, t) is BIC if and only if for each i ∈ I and xi ∈ Xi (i) Ex−i
vix(q(s,x−i), xi)

is non-decreasing in s and (ii) agent i’s interim expected utility can be expressed as

Ui(xi) = Ui(xi) +

∫ xi

xi

Ex−i
vix(q(s,x−i), s)ds.

7 (2)

Parallel to the result of Proposition 1, the increasing differences over distributions is a necessary

condition for the characterization of Proposition 2 (see Proposition A2 in Appendix).

Propositions 1 and 2 are connected to the literature on monotonicity and incentive compati-

bility. For general quasi-linear environments, Rochet (1987) showed that incentive compatibility

to the weak single-crossing property used in their paper.
6See also Milgrom and Segal (2002). The sufficiency part holds even without imposing the increasing differences.
7As in Proposition 1, the sufficiency part holds even without imposing increasing differences over distributions.
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constraint can be characterized by a condition called cycle-monotonicity. For convex type-spaces,

Saks and Yu (2005) advanced Rochet (1987)’s result by establishing that it is sufficient to con-

sider only two-cycle monotonicity.8 The two-cycle monotonicity condition reduces to the standard

monotonicity of the allocation rule when agents have dot product valuations (e.g., A ⊂ R and

vi(a, xi) = a · xi). When agents have non-linear differentiable valuations (and one-dimensional

types), the two-cycle monotonicity is equivalent to the monotone-marginal condition (see Proposi-

tion 1). Thus, Propositions 1 and 2, together with Propositions A1 and A2, determine the largest

set of differentiable quasi-linear utility functions that permit the characterization of incentive

compatibility with the two-cycle monotonicty condition for one-dimensional types.

The increasing differences over distributions property gives us a readily workable character-

ization of Bayesian incentive compatibility. This property is, however, novel, and we want to

understand how it restricts agents’ utilities before proceeding with further analysis. First of all,

if the feasible set A is the set of all possible lotteries over some set of alternatives, increasing

differences over distributions and increasing differences properties are equivalent, because in this

case any probability distribution over A simply defines a compound lottery over the underlying

set of alternatives. In general, however, the increasing differences over distributions property only

implies the increasing differences property. To see this, simply note that one can always consider a

pair of deterministic distributions in the definition of the increasing differences over distributions.

Finally, we provide a full characterization of utility functions that satisfy the increasing differences

over distributions property.

Proposition 3. Function vi(a, xi) satisfies increasing differences over distributions if and only if

vi(a, xi) = fi(a)Mi(xi) +mi(xi) + gi(a), (3)

where fi, gi : A→ R are continuous, Mi,mi : Xi → R, and Mi is increasing.

In a concurrent paper, Kartik, Lee, and Rappoport (2017) study a less demanding property of

the single-crossing expectational differences, which extends the standard single-crossing differences

property to the space of lotteries. They show that their novel property admits the characterization

vi(a, xi) = fi(a)Mi(xi) + gi(a)M̂i(x) + mi(xi), where fi, gi : A → R and Mi, M̂i,mi : Xi → R
with Mi and M̂i being each single crossing and ratio ordered. The ratio-ordered requirement

reduces to Mi being increasing function when M̂i ≡ 1. Celik (2015) also employs a weaker

version of increasing differences over distributions condition to analyze the implementation with

gradual-revelation. These weaker properties, however, do not allow a convenient characterization

8See also Bikhchandani et al. (2006) and Ashlagi et al. (2010) for the analysis of incentive compatibility in con-
vex domains. Mishra, Pramanik and Roy (2014) and Kushnir and Galichon (2017) analyze two-cycle monotonicity
condition in important non-convex domains.
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of Bayesian incentive compatibility as Proposition A2 in Appendix highlights.

Liu and Pei (2017) also consider a related but more demanding property of the increasing

absolute differences over distributions. They show that this property together with monotone-

supermodularity are sufficient to guarantee the monotonicity of sender’s equilibrium strategy with

respect to her type in signalling games.

The increasing differences over distributions property is also related to the aggregation of the

single-crossing property analyzed by Quah and Strulovici (2012). They consider function v(a, x, t)

that satisfies the single-crossing differences property in (a, x) for each t. They ask under what

conditions the aggregate function
∫
v(a, x, t)dF (t) will also satisfy the single-crossing differences

property for all distributions F . While this question is not trivial, the answer to the parallel

question for the increasing differences property is rather straightforward if one fixes the direction

of monotonicity: If for given a and a′ the difference v(a′, x, t)− v(a, x, t) is increasing in x for each

t, the aggregate difference has to be increasing.9 However, requiring the increasing differences

property to hold in the space of lotteries is different from requiring it to be preserved under

aggregation, as Proposition 3 shows.

Given the result of Proposition 3, we assume in the rest of the paper that agent i’s value function

vi takes the form of (3). With this specification, for each i ∈ I, the monotonicity conditions in

the characterizations of DIC and BIC mechanisms are now equivalent to fi(q(s,x−i)) being non-

decreasing in s for x−i ∈ X−i and Ex−i
fi(q(s,x−i)) being non-decreasing in s, respectively.10

4 The BIC-DIC Equivalence

We use the following logic to prove the equivalence between Bayesian and dominant strategy

implementation. The characterizations of DIC and BIC mechanisms (Propositions 1 and 2) imply

that the interim expected utilities of agents are determined by the allocation rule (up to a constant).

Therefore, to match agents’ interim expected utilities, we need to match Ex−i
fi(q(xi,x−i)) for

each xi ∈ Xi and i ∈ I. To respect the incentive compatibility, we need to satisfy the monotone-

marginal condition, i.e. fi(q(·,x−i)) is non-decreasing for each x−i ∈ X−i and i ∈ I. Finally, we

need to make sure that the equivalent mechanisms generate the same expected social surplus.

To state our main result, we introduce first the notion of convex-valued mappings. A mapping

f : A→ RI with f(a) = (f1(a), ..., fI(a)) is convex-valued if its image is convex, i.e., for any a, b ∈ A
and α ∈ [0, 1] there exists c ∈ A such that f(c) = αf(a)+(1−α)f(b). We also note a useful property

of mappings g = (g1, ..., gI) and f = (f1, ..., fI) in (3): If g is a linear transformation of f , i.e.,

9We thank Navin Kartik, SangMok Lee, and Daniel Rappoport for pointing out this connection to us.
10In specification (3) we could redefine types x̃i ∼Mi(xi) and drop function mi(xi) because it does not interact

with allocation. We cannot, however, modify gi and fi as it becomes clear from applications of Section 5.
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g ≡M f for some I × I matrix M , then f is convex-valued if and only if the mapping of all agents

utilities (v1(·, x1) + t1, ..., vI(·, xI) + tI) is convex-valued for each (x1, ..., xI) ∈ X.11

Theorem 1. Assume mapping f is convex-valued, and g is a linear transformation of f . Then

for any BIC mechanism (q̃, t̃) there exists an equivalent DIC mechanism (q, t).

The main part of the argument proving the theorem establishes that for a given BIC allocation

rule q̃ there exists a feasible allocation q that satisfies

Ex−i
fi(q(xi,x−i)) = Ex−i

fi(q̃(xi,x−i)), ∀xi ∈ Xi,∀i ∈ I, (4)

and that has non-decreasing marginals fi(q(·,x−i)) for all x−i ∈ X−i and i ∈ I. We establish

this statement for discrete and uniformly distributed types in Lemma 1 below. In particular, we

develop an algorithm that finds a feasible allocation that satisfies (4) and that has non-decreasing

marginals.12 We then extend the proof to continuous types and arbitrary distributions (see Lem-

mas A1 and A2). Finally, we construct transfers that lead to the same interim expected utilities

and generate the same expected social surplus using the envelope formula (see Proposition 1).

Lemma 1. Suppose, for all i ∈ I, Xi is a finite discrete set and λi is the uniform distribution

on Xi. For any BIC allocation q̃ there exists a feasible allocation q satisfying (4) and fi(q(·,x−i))
being non-decreasing for all x−i ∈ X−i and i ∈ I.

Proof. Consider an arbitrary BIC allocation q̃, and let us assume fj(q̃(·,x−j)) is not non-

decreasing for some j and x−j; otherwise the statement is trivial. Then, there exists some x′j > xj

such that fj(q̃(x
′
j,x−j)) < fj(q̃(xj,x−j)). Since agent j’s expected marginal Ex−j

fj(q̃(·,x−j))
is non-decreasing there also exists a set of other agents’ types X ′−j such that fj(q̃(x

′
j,x
′
−j)) >

fj(q̃(xj,x
′
−j)) for all x′−j ∈ X ′−j. Now consider a new allocation q̂ 6= q̃ such that

f(q̂(xj,x−j)) =
1

2
f(q̃(xj,x−j)) +

1

2
f(q̃(x′j,x−j)), f(q̂(xj,x

′
−j)) = (1− δ)f(q̃(xj,x

′
−j)) + δf(q̃(x′j,x

′
−j)),

f(q̂(x′j,x−j)) =
1

2
f(q̃(x′j,x−j)) +

1

2
f(q̃(xj,x−j)), f(q̂(x′j,x

′
−j)) = (1− δ)f(q̃(x′j,x

′
−j)) + δf(q̃(xj,x

′
−j)),

for all x′−j ∈ X ′−j and q̂(x) = q̃(x) for all other x ∈ X, where

11The necessity part actually holds only under an additional mild condition. If we denote the matrix transforming
f to g as A and the diagonal matrix with elements Mi(xi) as M(x) with x = (x1, ..., xI), the additional condition
states that the sum of matrices M(x) +A has a full rank.

12Gershkov et al. (2013) use a minimization problem to find a feasible allocation that satisfies (4) and that
has non-decreasing marginals. Their approach could also be adapted to our settings. We use an algorithmic proof
because of its convenience in the proofs of our Theorem 2 and the applications presented in Section 5.
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δ =
1

2
(fj(q̃(xj,x−j))− fj(q̃(x′j,x−j)))/

∑
x′−j∈X′−j

(fj(q̃(x
′
j,x
′
−j))− fj(q̃(xj,x′−j))). (5)

Since Ex−j
fj(q̃(·,x−j)) is non-decreasing we have 0 ≤ δ ≤ 1

2
. In addition, a feasible allocation

q̂ with q̂(x) ∈ A, for each x ∈ X, is guaranteed to exist, because mapping f is convex-valued.

Equation (5) guarantees that the equal expected marginal condition (4) is satisfied for agent j

having types xj and x′j. For agent j having other types, condition (4) follows trivially. For agent

i, i 6= j, condition (4) follows from f(q̂(xj,x−j)) + f(q̂(x′j,x−j)) = f(q̃(xj,x−j)) + f(q̃(x′j,x−j)) and

f(q̂(xj,x
′
−j)) + f(q̂(x′j,x

′
−j)) = f(q̃(xj,x

′
−j)) + f(q̃(x′j,x

′
−j)).

Let us now define ŝ = Ex(||f(q̂(x)||2) and s̃ = Ex(||f(q̃(x)||2), where || · || denotes the Euclidean

norm ||f(q(x))||2 =
∑

i∈I fi(q(x))2. Taking into account that λi is uniformly distributed, we have

ŝ−s̃ =
(
−1/2||f(q̃(xj,x−j))−f(q̃(x′j,x−j))||2−2δ(1−δ) ||f(q̃(x′j,x

′
−j))−f(q̃(xj,x

′
−j))||2

)
/|X| < 0.

If fj(q̂(·,x−j)) is not non-decreasing for some j and x−j, we repeat the above procedure. Iterating

the procedure, we finally obtain a sequence of allocations qn ∈ A and a sequence of values sn ≥ 0

for n = 1, 2, .... If for some n we find that fj(q
n(·,x−j)) is non-decreasing for all j and x−j, we set

qn+1 ≡ qn and sn+1 ≡ sn. By construction, sn is a weakly decreasing sequence that is bounded

below by 0. Hence, sn has a limit that we denote as s. Since set A is compact, there also exists

a convergent subsequence of qn with a limit q such that q(x) ∈ A for all x ∈ X. By construction,

s = Ex(||f(q(x)||2).

We argue for the limit allocation q that fj(q(·,x−j)) has to be non-decreasing for each j and x−j.

Suppose, in contradiction, that for some j ∈ I and x−j ∈ X−j fj(q(·,x−j)) is not non-decreasing.

Using the above construction, we can obtain an allocation q′ with s′ = Ex(||f(q′(x)||2) < s. This

contradicts to the fact that s is a limit of decreasing sequence sn constructed above.

Proof of Theorem 1. Lemmas A1 and A2 (postponed to Appendix) extend Lemma 1 to show

that, given any set Xi ⊂ R and any distribution λi, for any BIC allocation q̃ there exists a feasible

allocation q satisfying (4) with non-decreasing marginals fi(q(·,x−i)) for all i ∈ I and x−i ∈ X−i.
To complete the construction of an equivalent DIC mechanism we consider transfers t defined by

ti(xi,x−i) = ti(xi,x−i) + vi(q(xi,x−i), xi)− vi(q(xi,x−i), xi) +

∫ xi

xi

vix(q(s,x−i), s)ds, (6)

for all x ∈ X, i ∈ I, where ti(xi,x−i) = Ex−i

(
vi(q̃(xi,x−i), xi) + t̃i(xi,x−i)

)
− vi(q(xi,x−i), xi).

Proposition 1 guarantees that mechanism (q, t) is DIC. In addition, mechanism (q, t) leads to the
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same interim expected utilities as in BIC mechanism (q̃, t̃). In particular,

Ui(xi) = Ex−i
(t̃i(xi,x−i) + vi(q̃(xi,x−i), xi)) +

∫ xi

xi

Ex−i
vix(q(s, x−i), s)ds

= Ex−i
(t̃i(xi,x−i) + vi(q̃(xi,x−i), xi)) +

∫ xi

xi

Ex−i
vix(q̃(s, x−i), s)ds = Ũi(xi), (7)

where the first equality follows from (6), the second one from (4), and the third one from the char-

acterization of BIC mechanisms (Proposition 2). When mapping g is a linear transformation of f ,

the equal expected marginal conditions in (4) also imply Ex[
∑

i∈I gi(q(x))] = Ex[
∑

i∈I gi(q̃(x))].

Hence, both mechanisms also generate the same social surplus.

Theorem 1 extends the BIC-DIC equivalence result to non-linear environments where each agent’s

utility satisfies the increasing differences over distributions property and the mapping of all agents’

utilities is convex-valued. The convex-valued assumption is generally indispensable for the equiv-

alence result as Example A1 in Appendix shows. In addition, the new proof requires only that the

set of feasible allocations A is compact instead of being a simplex as in Gershkov et al. (2013).

The requirement that g is a linear transformation of f is satisfied, for example, if gi ≡ 0∀i ∈ I
as in some applications of Section 5. For general g, the constructed DIC mechanism, however,

does not necessarily match the expected social surplus of the BIC mechanism.13 We now analyze

the conditions when for any BIC mechanism one could find a DIC mechanism that produces the

same interim expected utilities and generates at least as large expected social surplus. In addition

to being more flexible than the equivalence, this way of comparing the implementation concepts

better captures the economic intuition that one does not need to insert additional money to achieve

a more robust solution concept.

For this purpose, we consider environments where the set of feasible allocations A is a convex

and compact subset of RI with q = (q1, ..., qI), where qi ∈ R for each i ∈ I. We also assume that

functions fi depend on different components of allocations, i.e., fi(q) = f̌i(qi), for all i ∈ I, q ∈ A.

Theorem 2. Assume mapping f is convex-valued. For any BIC mechanism there exists a DIC

mechanism that delivers the same interim expected utilities for all agents. In addition, the DIC

mechanism generates at least as large expected social surplus, if

(i) for each i ∈ I f̌i(qi) is non-decreasing and concave (or non-increasing and convex) and gi(q)

is continuous, non-increasing, and concave in each component, or

(ii) for each i ∈ I f̌i(qi) is non-increasing and concave (or non-decreasing and convex) and gi(q)

is continuous, non-decreasing, and concave in each component.

13For general g the constructed DIC mechanism still delivers the same interim expected utilities.
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Remark. The theorem also extends to settings where the set of feasible allocations A is compact,

mapping f is convex-valued, and the utility of each agent satisfies the following condensation

property: Functions fi and gi can be written as fi(q) = f̌i(hi(q)) and
∑

i gi(q) = G(h1(q), ..., hI(q))

for all q ∈ A, where hi : A→ R, f̌i is non-decreasing and concave (or non-increasing and convex),

and the aggregate function G : RI → R is continuous, non-increasing, and concave in each

component.14 The proof of this extension repeats the steps of the proof of Theorem 2 presented

in Appendix, and we omit it to avoid repetition. We exploit this observation when we consider

the environmental mechanism design applications in Section 5.

The requirement of Theorem 2 that the DIC mechanism produces only at least as large ex-

pected social surplus compared to the original BIC mechanism is less demanding than the one

of mechanisms equivalence (see Definition 1). Hence, it also has a broader range of meaningful

economic applications, which we illustrate in Section 5.

5 Applications

In this section, we demonstrate that Theorems 1 and 2 apply to many important environments

where previous works have little bite (e.g. Manelli and Vincent, 2010; Gershkov et al., 2013). In

addition, they produce several novel implications that are of independent interest.

5.1 Principal-Agent Problem with Allocative Externalities

Consider a standard contracting setting where a principal needs to procure I goods from I agents.

Assume the principal chooses a production plan q = (q1, ..., qI) ∈ A ≡ ΠI
i=1[q

i
, qi] ⊆ RI and a

transfer scheme (t1, ..., tI) ∈ RI . The payoff of agent i is then given by −ci(qi)xi + ti, where

ci : [q
i
, qi] → R is some continuous non-decreasing function with an interpretation of ci(qi)xi

being agent i’s cost of supplying qi units of good i. Many influential papers analyzing the optimal

procurement contracts fall into this setting (e.g. Laffont and Martimort, 1997; Mookherjee and

Tsumagari, 2004; Severinov, 2008; Duenyas, et al., 2013). In this setting, we have fi(q) = −ci(qi)
and gi(q) = 0 for each i ∈ I. Since functions ci are continuous, the Intermediate Value Theorem

implies that mapping f(·) = (−c1(·), ...,−cI(·)) is convex-valued. Thus, Theorem 1 leads to the

following corollary.

Corollary 1. Consider the standard procurement setting. If ci is continuous for i ∈ I, then for

any BIC mechanism there exists an equivalent DIC mechanism.

In many contracting situations, agents may not only care about their own contracts with the

14Similar to condition (ii) in Theorem 2, the result also extends to settings when f̌i is non-increasing and concave
(or non-decreasing and convex) and G is continuous, non-decreasing, and concave in each component.
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principal, but also have preferences about contracts received by other agents. For instance, a

country may prefer its ally rather than its enemy to receive a weapon contract (see Jehiel et

al., 1996). Similar concerns arise in the presence of downstream competition among firms (Segal,

1999). Within the current framework, type-independent allocative externalities can be captured by

incorporating an additional term into agent’s utility function, i.e., −ci(qi)xi+gi(q)+ ti. Assuming

that the cost and externality functions satisfy the conditions of Theorem 2, we establish the

following result.

Corollary 2. Consider a procurement setting with allocation externalities. If ci is continuous

for each i ∈ I, then for any BIC mechanism there exists a DIC mechanism that delivers the same

interim expected utilities for all agents. If ci is also non-decreasing and convex (concave) and gi is

continuous, non-decreasing (non-increasing), and concave in each component for each i ∈ I, then

the DIC mechanism generates at least as large expected social surplus as the BIC mechanism.

Corollary 2 identifies environments with allocative externalities where a mechanism designer

can rely on dominant strategy implementation and gains nothing from designing more complex

BIC mechanisms. This is in sharp contrast to results pertaining to environments with both

allocative and information externalities, where more robust solution concepts appear to be much

more restrictive (see Jehiel and Moldovanu (2006) for an excellent survey).

5.2 Environmental Mechanism Design

Let us first consider the environmental mechanism design model of Martimort and Sand-Zantman

(2013, 2015), who analyze feasible agreements in reducing the aggregate pollution of I countries.

Each country i can exert effort qi ∈ [q, q] ⊆ R+ that has both local benefits of size αqi (with

α ∈ [0, 1)) and global benefits of size (1 − α)qi, which accrue worldwide. The countries differ in

their costs of effort q2
i xi/2, with xi being country i’s efficiency parameter. Efficiency parameters are

drawn independently from the same cumulative distribution λ with support [x, x] ⊆ R. Overall,

country i’s payoff is given by −q2
i xi/2 +αqi + (1−α)Q+ ti, where Q =

∑I
i=1 qi is aggregate global

benefits and ti is a monetary transfer to country i. Taking into account that function −q2
i /2 is

non-increasing and concave and the externality function αqi + (1 − α)Q is non-decreasing and

linear (and, hence, concave), the following result directly follows from Theorem 2.

Corollary 3. Consider the setting of Martimort and Sand-Zantman (2013, 2015). Then, for

any BIC mechanism there exists a DIC mechanism producing the same interim expected utilities

to all agents and generating at least as large expected social surplus.

Baliga and Maskin (2003) also study feasible agreements to efficiently reduce the aggregate

pollution level, but consider a slightly different model. Although they assume that agents’ costs
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are type-independent, agents have private information about their value of the pollution reduction.

More specifically, agent i’s utility equals xiQ
1/2−qi+ ti, where xiQ

1/2 is the gross benefits to agent

i from aggregate reduction Q. Though Theorem 2 does not formally apply to this environment,

each agent i’s benefits and costs from pollution reduction satisfy the condensation property defined

in the remark after Theorem 2. In particular, agent i’s benefits equal f̌i(hi(q)) = hi(q)
1
2 and the

aggregate costs equal
∑

i∈I qi =
∑

i∈I qi = −G(h1(q), ..., hI(q)), where the condensation function

hi(q) =
∑

i∈I qi, i ∈ I, is the same for all agents. The mapping f = (f1(·), ..., fI(·)) is symmetric

and, hence, the Intermediate Value Theorem implies that it is convex-valued. In addition, f̌i is

non-decreasing and concave, and function G is non-increasing and linear (and, hence, concave).

Hence, the following result is implied by the extension discussed in the remark after Theorem 2.

Corollary 4. Consider the environmental mechanism design setting of Baliga and Maskin

(2003). Then, for any BIC mechanism there exists a DIC mechanism producing the same interim

expected utilities to all agents and generating at least as large expected social surplus.

Corollaries 3 and 4 imply that the mechanism designer would lose nothing by restricting him-

self/herself to DIC mechanisms for environmental design problems, if he/she wanted to maintain

the same level of agents’ interim expected utility without the influx of additional money into the

system. This result, however, may no longer hold when additional constraints - such as ex post

budget balance - are imposed, as thoroughly discussed in Baliga and Maskin (2003). Though

Bayesian implementation is more permissive when ex post budget balance is imposed, the mecha-

nism designer can still rely only on DIC mechanisms if the budget balance constraint needs to be

satisfied in expectations. We show this result in the next application.

5.3 Public Good Provision

Consider a standard setting of public good provision with I ≥ 2 agents. If q ∈ A = [q, q] units of

public good are provided, agent i’s utility is given by f(q)xi+ti, where f(q)xi is agent i’s valuation

of the public good and ti ∈ R is the units of private good that he receives. Many influential papers

on public good provision fall into this setting (e.g., Mailath and Postlewaite (1990), Ledyard and

Palfrey (1999), Hellwig (2003), Norman (2004)). If f : A→ R is continuous in q, it again follows

from the Intermediate Value Theorem that the mapping f(·) = (f(·), ..., f(·)) is convex-valued

and, hence, Theorem 1 can be applied here.

Corollary 5. Consider the public good provision setting. If f is continuous, then for any BIC

mechanism there exists an equivalent DIC mechanism.

While the equivalent DIC mechanism, constructed in Theorem 1, inherits interim individual
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rationality from the BIC mechanism,15 there is no guarantee that other constraints imposed on

the BIC mechanism will remain satisfied as well. For example, when designing a mechanism for

public good provision, it is typical to require that the private goods raised from the agents are

enough to cover the cost of the public good. Formally, a direct mechanism (q, t) is ex ante budget

balanced if ∫
x∈X

[
K(q(x)) +

I∑
i=1

ti(x)

]
dλ(x) ≤ 0, (8)

where K : A → R is the cost function of producing the public good. The following corollary of

Theorem 2 provides a sufficient condition under which the equivalent DIC mechanism constructed

in Theorem 1 also inherits ex ante budget balance from the original BIC mechanism.16

Corollary 6. Suppose f is continuous, non-decreasing, and concave and K is continuous, non-

decreasing, and convex. For any BIC mechanism that is ex ante budget balanced, the equivalent

DIC mechanism, constructed in Theorems 1, is also ex ante budget balanced.

Intuitively, the monotonicity and concavity of utility functions imply that the provision of public

good is more balanced across states in the equivalent DIC mechanism than that in the BIC

mechanism. Consequently, the expected cost of providing the public good is lower. Since the

expected transfers remain unchanged in the equivalent DIC mechanism constructed in Theorem

1, the property of ex ante budget balance is preserved.

Our result thus suggests that for a quite general class of public good provision problems it is

without loss of generality to insist on dominant-strategy incentive compatibility, even when the

additional ex ante budget balance constraint is imposed.17 For example, the second-best allocation

rule in Hellwig (2003) can be equivalently implemented in dominant strategies without violating

the ex ante budget balance condition if functions f and K are concave and convex respectively.

6 Conclusion

This paper extends the equivalence between Bayesian and dominant strategy implementation to

environments where each agent’s utility satisfies the increasing differences over distributions prop-

erty and the mapping of all agents’ utilities is convex-valued. These assumptions are satisfied by

many important models that are studied in the literature on principal-agent problems with alloca-

15The constructed DIC mechanism satisfies even a stronger notion of ex post individual rationality.
16The result of Corollary 6 extends without any change to non-symmetric settings with mapping f =

(f1(·), ..., fI(·)) being convex-valued and functions fi, i ∈ I, being continuous, non-decreasing, and concave.
17For some applications, it is natural to require mechanisms to be ex post budget balanced, i.e., inequality (8)

holds for each x ∈ X. Börgers and Norman (2009) show that for every ex ante budget balanced DIC mechanism
(q, t) there exist transfers t′ such that (q, t′) is (i) BIC for all agents and DIC for all but one agent and (ii) ex post
budget balanced. Agents also have the same interim expected payments in both mechanisms (see also Börgers,
2015, Ch. 3).
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tive externalities, environmental mechanism design, and public good provision. Since the results

of the previous papers (Manelli and Vincent, 2010; Gershkov et al., 2013) do not apply to these

environments, the current paper significantly enlarges the set of settings where the mechanism

designer can rely on a more robust solution concept of dominant strategy implementation.

In this paper, we also provide sufficient conditions when for a given BIC mechanism there

exists a DIC mechanism that yields the same interim expected utilities to all agents and generates

at least as large social surplus (see also Kushnir, 2015). Using this result, we provide several novel

implications for the above-mentioned environments. In addition, being less demanding than the

notion of equivalence due to Gershkov et al. (2013), this way of comparing two implementation

concepts broadens the set of environments when the mechanism designer could insist on a more

robust notion of implementation without sacrificing his/her objectives. Hence, we believe this

notion will be useful for future studies.

Our proof of the BIC-DIC equivalence result relies heavily on the characterization of incentive

compatibility using the novel increasing differences over distributions property. We show that

increasing differences over distributions is necessary and sufficient for Bayesian incentive compat-

ibility to be conveniently characterized in terms of a monotone-expected-marginal condition and

an envelope formula.18 The equivalence result could potentially hold in environments where the

above properties are not satisfied. The proof should then employ quite different techniques.

One possible approach has been discussed in our recent work. In Kushnir and Liu (2017), we

explain how the BIC-DIC equivalence reduces to a purely mathematical question when a linear

transformation of intersection of two closed convex sets coincides with the intersection of their

images. Another possible approach has been proposed by Goeree and Kushnir (2017) who develop

a novel geometric approach to mechanism design using basic tools from convex analysis. Applying

these techniques to the question of the BIC-DIC equivalence in non-linear environments without

increasing differences over distributions condition and environments with multidimensional types

is an exciting prospect for future research.

18We also establish that the standard increasing differences property is necessary for dominant strategy incentive
compatibility to be conveniently characterized in terms of a monotone-marginal condition and an envelope formula.
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Appendix

Proof of Proposition 2. Our proof essentially extends the proof of Propositions 1, 2, and 3 in

Mookherjee and Reichelstein (1992) to Bayesian settings. For the if statement, note that agent i

does not deviate from the truth-telling Bayes-Nash equilibrium if and only if

Ui(xi) ≥ Ex−i
(vi(q(x

′
i,x−i), xi) + ti(x

′
i,x−i))

= Ui(x
′
i) + Ex−i

(vi(q(x
′
i,x−i), xi)− vi(q(x′i,x−i), x′i)) (A.1)

for all xi, x
′
i ∈ Xi. Using (2), this is equivalent to require that for all xi, x

′
i ∈ Xi,∫ xi

x′i

Ex−i
(vix(q(s,x−i), s)) ds ≥ Ex−i

(vi(q(x
′
i,x−i), xi))− Ex−i

(vi(q(x
′
i,x−i), x

′
i)) ,

which is true under the condition that Ex−i
(vix(q(s,x−i), xi)) is non-decreasing in s for all xi ∈ Xi.

For the only if statement, suppose that mechanism (q, t) is BIC. We then have

Ui(xi) = max
x′i∈Xi

(
Ex−i

(vi(q(x
′
i,x−i), xi) + ti(x

′
i,x−i))).

Since vi is absolutely continuous in xi and has a bounded derivative with respect to type xi

equation (2) follows from the envelope theorem (Milgrom and Segal, 2002). It remains to show

that BIC also implies the monotone-expected-marginal condition. Suppose, in contradiction,

Ex−i
vix(q(y,x−i), z) > Ex−i

vix(q(x,x−i), z) for some agent i and x, y, z ∈ Xi, with y < x. The

increasing differences over distributions property implies that

Ex−i
(vi(q(y,x−i), x)− vi(q(y,x−i), y)) > Ex−i

(vi(q(x,x−i), x)− vi(q(x,x−i), y)) .

At the same time, the incentive compatibility implies

Ex−i
(vi(q(y,x−i), x)− vi(q(y,x−i), y)) ≤ Ui(x)− Ui(y) ≤ Ex−i

(vi(q(x,x−i), x)− vi(q(x,x−i), y)) .

We thus reach a contradiction.

Proof of Proposition 3. The sufficiency part is straightforward. Let us prove the necessity

part. Consider some x′, y′ ∈ Xi such that x′ > y′ and let a ∈ arg mina∈A (vi(a, x
′)− vi(a, y′)) and

a ∈ arg maxa∈A (vi(a, x
′)− vi(a, y′)). Given our assumption that vi(a, xi) is continuous in a, such

a and a are guaranteed to exist. For each a ∈ A we can then always find α(a, x′, y′) ∈ [0, 1] such
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that

vi(a, x
′)− vi(a, y′) = α(a, x′, y′)

(
vi(a, x

′)− vi(a, y′)
)

+ (1− α(a, x′, y′))
(
vi(a, x

′)− vi(a, y′)
)
.

Let us consider distribution G that puts the unit mass on allocation a and distribution F that

puts probability α(a, x′, y′) on a and probability 1− α(a, x′, y′) on a. By construction, we have∫
vi(a, x

′)dG−
∫
vi(a, x

′)dF =

∫
vi(a, y

′)dG−
∫
vi(a, y

′)dF,

and the increasing differences over distributions property implies that
∫
vi(a, x)dG−

∫
vi(a, x)dF

is a constant function in x, which we denote as gi(a). Hence,

vi(a, x) = α(a, x′, y′)vi(a, x) + (1− α(a, x′, y′))vi(a, x) + gi(a)

= fi(a)Mi(x) +mi(x) + gi(a)

where fi(a) = α(a, x′, y′), Mi(x) = vi(a, x) − vi(a, x), and mi(x) = vi(a, x). The increasing

differences over distributions and vi(a, x
′)− vi(a, x′) ≥ vi(a, y

′)− vi(a, y′) then implies that Mi(x)

is either an increasing or constant function. For the latter case, we redefine f̃i(a) = 0, M̃i(x) to

be any increasing function, and g̃i(a) = gi(a) + fi(a)Mi(x
′) to obtain expression (3).

Proof of Theorem 1

Lemma A1. Suppose, for all i ∈ I, Xi = [0, 1] and λi is the uniform distribution on Xi. Then,

for any BIC allocation q̃ there exists a feasible allocation q satisfying (4) with fi(q(·,x−i)) being

non-decreasing for all i ∈ I and x−i ∈ X−i.

Proof. The proof essentially repeats the proof of Lemma 2 in Gershkov et al. (2013), and we

only sketch it here. We consider a partition [0, 1]I to 2nI cubes of equal size. For each cube S in

this partition, we approximate f(q̃(x)), x ∈ S, by its average defined by

f(q̃(S)) = 2nI
∫
S

f(q̃(x))dx.

Note allocation q̃(S) ∈ A is well-defined, because mapping f is convex-valued. In addition, discrete

allocation q̃(S) inherits non-decreasing expected marginals from q̃. Lemma 1 then ensures that

there exists an allocation q(S) with non-decreasing marginals that can also be extended to piece-

wise constant functions over [0, 1]I . Taking the limit with respect to the size of partition, we obtain

the result of the lemma. For the details of the construction, we refer to Gershkov et al. (2013).
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Lemma A2. Suppose, for all i ∈ I, Xi ⊆ R and λi is some distribution on Xi. Then, for any BIC

allocation q̃ there exists a feasible allocation q satisfying (4) with fi(q(·,x−i)) being non-decreasing

for all i ∈ I and x−i ∈ X−i.

Proof. The proof repeats the proof of Lemma 3 in Gershkov et al. (2013). Its main idea is to

relate the uniform distribution covered by Lemma A1 to the case of a general distribution. In

particular, if random variable Zi is uniformly distributed, then λ−1
i (Zi) is distributed according

to λi.
19 Hence, for a given BIC allocation q̃ we use transformation λ−1

i to construct an allocation

q̃′ defined on uniformly distributed types that also has a non-decreasing expected marginals. For

allocation q̃′, we then apply the results of Lemmas 1 and A1 to obtain an allocation q′ with non-

decreasing marginals defined on uniformly distributed types. We then use transformation λi to

recover an allocation q with non-decreasing marginals defined on types distributed according to

λi. For the details of the construction, we refer to Gershkov et al. (2013).

Example A1. We now show that the assumption that mapping f being convex-valued is generally

indispensable for the BIC-DIC equivalence result of Theorem 1.

Consider a two-agent example with the set of possible allocations A = [0, 1]. Each agent i’s

type xi is drawn independently from the uniform distribution over [0, 1]. For an allocation q ∈ A
and transfers t1, t2 ∈ R, agent 1’s utility equals to qx1 + t1, and agent 2’s utility is q2x2 + t2. This

environment satisfies all conditions of Theorem 1 except for the assumption that mapping (f1, f2)

is convex-valued, where f1(q) = q and f2(q) = q2. Let us consider the following allocation rule:

q(x1, x2) =

1 if max{x1, x2} ≤ 1
2

or min{x1, x2} > 1/2,

0 otherwise.

This allocation rule is Bayesian implementable because its expected marginals
∫ 1

0
fi(xi, xj)dxj

are non-decreasing everywhere. It is, however, not dominant-strategy implementable because

marginals fi(x1, x2) are strictly decreasing for some (x1, x2) ∈ X. We now show that there does

not exist an equivalent DIC mechanism for any BIC mechanism with allocation rule q.

Suppose, in contradiction, that for some BIC mechanism (q, t) there exists an equivalent DIC

mechanism (q̂, t̂). Let Ui(xi) and Ûi(xi) be agent i’s interim expected utilities in mechanisms (q, t)

and (q̂, t̂), respectively. Since the two mechanisms are equivalent, we have Ui(xi) = Ûi(xi) for all

19Where λ−1i (zi) = inf{xi ∈ Xi|λi(xi) ≥ zi}.
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xi ∈ Xi and i = 1, 2. The envelope formula then implies that ∀xi, x′i ∈ Xi,

Ui(xi) = Ui(x
′
i) +

∫ xi

x′i

∫ 1

0

fi(q(s, xj))dxjds

= Ûi(x
′
i) +

∫ xi

x′i

∫ 1

0

fi(q̂(s, xj))dxjds = Ûi(xi).

Therefore, we must have for almost all xi ∈ [0, 1], and for all i, j ∈ {1, 2}, i 6= j,∫ 1

0

fi(q̂(xi, xj))dxj =

∫ 1

0

fi(q(xi, xj))dxj =
1

2
. (A.2)

Integrating (A.2) over xj, we have for all i ∈ {1, 2},∫ 1

0

∫ 1

0

fi(q̂(x1, x2))dx1dx2 =
1

2
, (A.3)

which further implies that

0 =

∫ 1

0

∫ 1

0

[f1(q̂(x1, x2))− f2(q̂(x1, x2))]dx1dx2 =

∫ 1

0

∫ 1

0

[
q̂(x1, x2)− (q̂(x1, x2))2

]
dx1dx2. (A.4)

Since q(x1, x2) ∈ A = [0, 1], equation (A.4) implies that q̂(x1, x2) ∈ {0, 1} for almost every type

profile (x1, x2) ∈ X. In addition, allocation q̂ being dominant strategy implementable implies that

f2(q̂(x1, x2)) = (q̂(x1, x2))2 must be non-decreasing in x2. The equal-expected-marginal condition

(A.2) for agent 1 then implies that for almost all x1 ∈ [0, 1], q̂(x1, x2) = 0 for x2 ∈ [0, 1/2] and

q̂(x1, x2) = 1 for x2 ∈ (1/2, 1].20

This allocation rule, however, does not satisfy the equal-expected-marginal condition (A.2) for

agent 2. In particular,
∫ 1

0
(q̂(x1, x2))2dx1 = 0 for all x2 ∈ [0, 1/2], and

∫ 1

0
(q̂(x1, x2))2dx2 = 1 for all

x2 ∈ (1/2, 1]. We thus reach a contradiction.

Proof of Theorem 2. Consider an arbitrary BIC mechanism (q̃, t̃) and the corresponding DIC

mechanism (q, t) constructed in Theorem 1. Since equation (7) holds for any g, the first part of

Theorem 2 immediately follows. The idea behind the proof of the second part of the theorem is

to show that if functions f̌i and gi satisfy conditions (i) or (ii), the DIC mechanism constructed

in Theorem 1 also satisfies

Ex

(∑
i
gi(q(x))

)
≥ Ex

(∑
i
gi(q̃(x))

)
. (A.5)

20Because of the monotonicity of the allocation rule and q̂ ∈ {0, 1}, the only indeterminacy in q̂(x1, x2) could
happen at x2 = 1/2.
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Suppose condition (i) is satisfied. Let us first consider the case where types are discrete and

uniformly distributed (as in Lemma 1). If the marginals of allocation q̃ are not non-decreasing,

then f̌j(q̃j(x
′
j,xj)) < f̌j(q̃j(xj,x−j)) for some j, x′j > xj, and x−j. Using the construction of

the algorithm in Lemma 1 we then obtain an allocation q̂ ∈ A satisfying the equal-marginal

conditions in (4) and delivering strictly smaller value to objective Ex||f(·)||2. Since function f̌j is

non-decreasing and concave (or non-increasing and convex), we also have

q̂j(xj,x−j) = q̂j(x
′
j,x−j) ≤

1

2
q̃j(xj,x−j) +

1

2
q̃j(x

′
j,x−j),

q̂j(xj,x
′
−j) ≤ (1− δ)q̃j(xj,x′−j) + δq̃j(x

′
j,x
′
−j),

q̂j(x
′
j, x̂−j) ≤ (1− δ)q̃j(x′j,x′−j) + δq̃j(xj,x

′
−j).

Since function gi is non-increasing and concave in each component, this further implies

gi(q̂(xj,x−j)) + gi(q̂(x
′
j,x−j)) ≥ gi(q̃(xj,x−j)) + gi(q̃(x

′
j,x−j)),

gi(q̂(xj,x
′
−j)) + gi(q̂(x

′
j,x
′
−j)) ≥ gi(q̃(xj,x

′
−j)) + gi(q̃(x

′
j,x
′
−j)),

for each i ∈ I and, hence, Ex(
∑

i gi(q̂(x))) ≥ Ex(
∑

i gi(q̃(x))). We iterate this procedure to

obtain a sequence of allocations qn ∈ A and a decreasing numerical sequence sn = Ex||f(qn(x))||2,

n = 1, 2, .... If we find that f̌j(q
n
j (·,x−j)) is non-decreasing for all j and x−j, we set qn+1 ≡ qn and

sn+1 ≡ sn. Since sn is a weakly decreasing sequence bounded below by 0, it has a limit, which

we denote as s. Since set A is compact, there also exists a convergent subsequence qn with a

limit q such that q(x) ∈ A for all x ∈ X. Clearly, s = Ex(||f(q(x)||2) and f̌j(qj(·,x−j)) is non-

decreasing for each j and x−j. Since functions gi are continuous, we also have Ex

(∑
i gi(q(x))

)
≥

Ex

(∑
i gi(q̃(x))

)
.

The result can then be further extended to continuous space with an arbitrary distribution

similar to Lemmas A1 and A2. We then use equation (6) to define payment rule t delivering

the same interim expected utilities. Finally, we derive that the social surplus in the constructed

allocation

Ex

(∑
i
vi(q(x), xi)

)
= Ex

(∑
i
fi(q(x))Mi(xi) +mi(xi) + gi(q(x))

)
≥ Ex

(∑
i
fi(q̃(x))Mi(xi) +mi(xi) + gi(q̃(x))

)
= Ex

(∑
i
vi(q̃(x), xi)

)
,

where the inequality follows from the equal-marginal conditions in (4) and inequality (A.5). This

establishes the claim of the theorem. The proof is analogous when condition (ii) is satisfied.
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Proof of Corollaries 1 and 5. The statements follow from Theorem 1.

Proof of Corollary 2, 3, and 4. The statements follow from Theorem 2.

Proof of Corollary 6. Consider any BIC mechanism (q̃, t̃) and the equivalent DIC mechanism

(q, t), constructed in Theorem 1. Since we have gi(q) = 0 for each i ∈ I in the public good provision

setting, the same ex ante expected utilities in both mechanisms implies that both mechanism yield

the same expected transfers, i.e., Ex

(∑
i∈I ti(x)

)
= Ex

(∑
i∈I t̃i(x)

)
.

To prove the claim of the corollary, we need to show that the expected costs for the DIC mech-

anism is lower than the expected costs for the BIC mechanism, i.e., Ex(K(q(x))) ≤ Ex(K(q̃(x))).

This statement follows from applying the argument of the proof of Theorem 2 to function −K
instead of functions gi, i ∈ I. In particular, consider the sequence of allocation qn constructed in

the algorithm of Theorem 1. Since function K is non-decreasing and convex, the expected cost

of allocations qn is non-increasing in n, i.e., Ex(K(qn+1(x))) ≤ Ex(K(qn(x))) ≤ Ex(K(q̃(x))).

The continuity of K then implies that the inequality holds in the limit. Finally, the result further

extends to continuous type space with an arbitrary distribution similar to Lemmas A1 and A2.

Proposition A1. If function vi violates the increasing differences property for some agent i ∈ I,

then there exists a dominant-strategy incentive compatible mechanism (q, t) that does not have

non-decreasing marginals vix(q(·,x−i), xi) for all x−i ∈ X−i and xi ∈ Xi.

Proof. Suppose vi(a, x) does not satisfy the increasing differences property. Then, there must

exist a, a′ ∈ A, and x, y, z ∈ X with x < y < z such that either

vi(a, x)− vi(a′, x) ≤ vi(a, y)− vi(a′, y) and vi(a, y)− vi(a′, y) ≥ vi(a, z)− vi(a′, z), (A.6)

with at least one inequality being strict, or

vi(a, x)− vi(a′, x) ≥ vi(a, y)− vi(a′, y) and vi(a, y)− vi(a′, y) ≤ vi(a, z)− vi(a′, z), (A.7)

with at least one strict inequality. We consider only case (A.6). Case (A.7) can be treated similarly.

Let us assume that the utility of agent i satisfies (A.6). We consider a mechanism with an

allocation rule q and a payment rule t that are functions of agent i’s reports only, i.e., q : Xi → A

and t : Xi → RI . In particular, we assign q(x) = q(z) = a′, q(y) = a, and ∀s 6= x, y, z,

q(s) =

{
a if vi(a, s)− vi(a′, s) ≥ t̄i,

a′ otherwise,

where t̄i = vi(a, y)−vi(a′, y). Agent i receives no transfers if allocation a is chosen and t̄i otherwise,
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i.e., ti(s) = 0 if q(s) = a and ti(s) = t̄i if q(s) = a′. All other agents receive no transfers, i.e.,

tj(s) ≡ 0 for all j 6= i and s ∈ Xi. It is straightforward to check that (q, t) is dominant-strategy

incentive compatible.

We now show that agent i’s marginals induced by allocation rule q cannot be all non-decreasing.

Suppose, in contradiction, that vix(q(·), s) is non-decreasing for all s ∈ Xi. Then, we have

vix(q(x), s) ≤ vix(q(y), s) ≤ vix(q(z), s), ∀s ∈ Xi

or, equivalently, vix(a
′, s) ≤ vix(a, s) ≤ vix(a

′, s), ∀s ∈ Xi. But then vix(a
′, s) = vix(a, s),∀s ∈ Xi,

and by integration over s we have

vi(a
′, y)− vi(a′, x) = vi(a, y)− vi(a, x) and vi(a

′, z)− vi(a′, y) = vi(a, z)− vi(a, y),

which contradicts (A.6).

Proposition A2. Suppose that there exist two agents whose type distributions are absolutely

continuous. If function vi violates the increasing differences over distributions property for some

agent i ∈ I, then there exists a Bayesian incentive compatible mechanism (q, t) that does not have

non-decreasing expected marginals Ex−i
[vix(q(·,x−i), xi)] for all xi ∈ Xi.

Proof. ∀G,F ∈ ∆(A) and ∀s ∈ Xi, let

∆(G,F, s) =

∫
vi(a, s)dG−

∫
vi(a, s)dF.

Suppose vi(a, x) does not satisfy the increasing differences over distributions property. Then, there

must exist G,F ∈ ∆(A), and x, y, z ∈ X with x < y < z such that either

∆(G,F, x) ≤ ∆(G,F, y) and ∆(G,F, y) ≥ ∆(G,F, z) (A.8)

with at least one inequality being strict, or

∆(G,F, x) ≥ ∆(G,F, y) and ∆(G,F, y) ≤ ∆(G,F, z) (A.9)

with at least one strict inequality. We consider only case (A.8). Case (A.9) can be treated similarly.

Assume that the utility of agent i satisfies (A.8). Let aG, a
′
G, aF , a

′
F ∈ A, and Gα (Fβ) be

the binary probability distribution that puts a weight α (β) on the allocation aG (aF ) and the

remaining weight 1− α (1− β) on the allocation a′G (a′F ), where α, β ∈ [0, 1].
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Lemma A3. There exists a pair of binary distributions Gα, Fβ such that

∆(Gα, Fβ, x) ≤ ∆(Gα, Fβ, y) and ∆(Gα, Fβ, y) ≥ ∆(Gα, Fβ, z) (A.10)

with at least one inequality being strict.

Proof. Since both Gα and Fβ can be deterministic, the claim of the lemma is clearly true if the

increasing differences property is violated. Thus, it is without loss to assume that this property is

satisfied by vi. We want to first show that ∃a, a′, a′′ ∈ A that satisfy the two following conditions

simultaneously:

(i) vi(a, x)− vi(a′′, x) 6= vi(a, y)− vi(a′′, y) 6= vi(a, z)− vi(a′′, z).21

(ii) @λ ∈ R such that

(vi(a, y)− vi(a′, y))− (vi(a, x)− vi(a′, x)) = λ[(vi(a, y)− vi(a′′, y))− (vi(a, x)− vi(a′′, x))],

(vi(a, z)− vi(a′, z))− (vi(a, y)− vi(a′, y)) = λ[(vi(a, z)− vi(a′′, z))− (vi(a, y)− vi(a′′, y))].

To see this, suppose such a tripe of allocations does not exist. Then, ∀a, a′, a′′ ∈ A, either

vi(a, x)− vi(a′′, x) = vi(a, y)− vi(a′′, y) = vi(a, z)− vi(a′′, z),

or ∃λ(a, a′, a′′) ∈ R such that

(vi(a, y)− vi(a′, y))− (vi(a, x)− vi(a′, x)) = λ(a, a′, a′′)[(vi(a, y)− vi(a′′, y))− (vi(a, x)− vi(a′′, x))],

(vi(a, z)− vi(a′, z))− (vi(a, y)− vi(a′, y)) = λ(a, a′, a′′)[(vi(a, z)− vi(a′′, z))− (vi(a, y)− vi(a′′, y))].

Fix any a′, a′′ ∈ A such that vi(a
′, x)− vi(a′′, x) 6= vi(a

′, y)− vi(a′′, y) 6= vi(a
′, z)− vi(a′′, z).22 Let

Aa′′ = {a ∈ A : vi(a, x)− vi(a′′, x) = vi(a, y)− vi(a′′, y) = vi(a, z)− vi(a′′, z)},

and Āa′′ = A \ Aa′′ . Note that ∀s, s′ ∈ Xi, we have

∆(G,F, s)−∆(G,F, s′) =

∫
Aa′′∪Āa′′

∫
[(vi(a, s)− vi(ã, s))− (vi(a, s

′)− vi(ã, s′))]dF (ã)dG(a).

21Note that because of the increasing differences property, ∀a, a′′ ∈ A we can only have either vi(a, x)−vi(a′′, x) 6=
vi(a, y)− vi(a′′, y) 6= vi(a, z)− vi(a′′, z) or vi(a, x)− vi(a′′, x) = vi(a, y)− vi(a′′, y) = vi(a, z)− vi(a′′, z).

22If such allocations do not exist, we will have ∆(G,F, x) = ∆(G,F, y) = ∆(G,F, z), which violates (A.8).
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Hence,

∆(G,F, y)−∆(G,F, x)

=

∫
Āa′′

∫
λ(a, ã, a′′)[(vi(a, y)− vi(a′′, y))− (vi(a, x)− vi(a′′, x))]dF (ã)dG(a)

+

∫
Aa′′

∫
[(vi(a

′′, y)− vi(ã, y))− (vi(a
′′, x)− vi(ã, x))]dF (ã)dG(a)

=

∫
Āa′′

∫
−λ(a, ã, a′′)λ(a′′, a, a′)[(vi(a

′′, y)− vi(a′, y))− (vi(a
′′, x)− vi(a′, x))]dF (ã)dG(a)

+

∫
Aa′′

∫
λ(a′′, ã, a′)[(vi(a

′′, y)− vi(a′, y))− (vi(a
′′, x)− vi(a′, x))]dF (ã)dG(a)

= [(vi(a
′′, x)− vi(a′, x))− (vi(a

′′, y)− vi(a′, y))]K,

where

K =

∫
Āa′′

∫
λ(a, ã, a′′)λ(a′′, a, a′)dF (ã)dG(a)−

∫
Aa′′

∫
λ(a′′, ã, a′)dF (ã)dG(a),

and, similarly,

∆(G,F, z)−∆(G,F, y)

=

∫
Āa′′

∫
λ(a, ã, a′′)[(vi(a, z)− vi(a′′, z))− (vi(a, y)− vi(a′′, y))]dF (ã)dG(a)

+

∫
Aa′′

∫
[(vi(a

′′, z)− vi(ã, z))− (vi(a
′′, y)− vi(ã, y))]dF (ã)dG(a)

=

∫
Āa′′

∫
−λ(a, ã, a′′)λ(a′′, a, a′)[(vi(a

′′, z)− vi(a′, z))− (vi(a
′′, y)− vi(a′, y))]dF (ã)dG(a)

+

∫
Aa′′

∫
λ(a′′, ã, a′)[(vi(a

′′, z)− vi(a′, z))− (vi(a
′′, y)− vi(a′, y))]dF (ã)dG(a)

= [(vi(a
′′, y)− vi(a′, y))− (vi(a

′′, z)− vi(a′, z))]K.

Since vi(a
′′, s)− vi(a′, s) is monotone in s ∀s ∈ Xi, we have

sign [∆(G,F, y)−∆(G,F, x)] = sign [∆(G,F, z)−∆(G,F, y)] ,

which violates (A.8). Hence, there must exist a, a′, a′′ ∈ A that satisfy both (i) and (ii). Note that
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for any such a triple of allocations (a, a′, a′′), we must also have

vi(a, x)− vi(a′, x) 6= vi(a, y)− vi(a′, y) 6= vi(a, z)− vi(a′, z) and

vi(a
′′, x)− vi(a′, x) 6= vi(a

′′, y)− vi(a′, y) 6= vi(a
′′, z)− vi(a′, z),

since otherwise the two equations of (ii) will hold for either λ = 0 or λ = 1. Consequently, any

triple of allocations that is a permutation of (a, a′, a′′) will also satisfy conditions (i) and (ii), which

suggests that the order of selecting a, a′ and a′′ does not matter. Hence, without loss of generality,

we can assume further that

vi(a, y)− vi(a, x) < min{vi(a′, y)− vi(a′, x), vi(a
′′, y)− vi(a′′, x)}. (A.11)

Next, for all s ∈ Xi, let us denote

∆(α, β, s) = [αvi(a
′′, s) + (1− α)vi(a, s)]− [βvi(a

′, s) + (1− β)vi(a, s)]

= α[vi(a
′′, s)− vi(a, s)] + β[vi(a, s)− vi(a′, s)]

and

∆̂(α, β, s) = [αvi(a
′, s) + (1− α)vi(a, s)]− [βvi(a

′′, s) + (1− β)vi(a, s)]

= α[vi(a
′, s)− vi(a, s)] + β[vi(a, s)− vi(a′′, s)].

Given (A.11) and the increasing differences property, ∆(α, β, y)−∆(α, β, x) ≥ 0 if and only if

α ≥ β

[
(vi(a

′, y)− vi(a, y))− (vi(a
′, x)− vi(a, x))

(vi(a′′, y)− vi(a, y))− (vi(a′′, x)− vi(a, x))

]
, (A.12)

while ∆(α, β, y)−∆(α, β, z) ≥ 0 if and only if

α ≤ β

[
(vi(a

′, y)− vi(a, y))− (vi(a
′, z)− vi(a, z))

(vi(a′′, y)− vi(a, y))− (vi(a′′, z)− vi(a, z))

]
. (A.13)

Similarly, we have ∆̂(α, β, y)− ∆̂(α, β, x) ≥ 0 if and only if

α ≥ β

[
(vi(a

′′, y)− vi(a, y))− (vi(a
′′, x)− vi(a, x))

(vi(a′, y)− vi(a, y))− (vi(a′, x)− vi(a, x))

]
, (A.14)
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while ∆̂(α, β, y)−∆(α, β, z) ≥ 0 if and only if

α ≤ β

[
(vi(a

′′, y)− vi(a, y))− (vi(a
′′, z)− vi(a, z))

(vi(a′, y)− vi(a, y))− (vi(a′, z)− vi(a, z))

]
. (A.15)

Note that again because of the increasing differences property, the R.H.S. of the inequalities (A.12),

(A.13), (A.14) and (A.15) are all positive. Hence, if

(vi(a
′, y)− vi(a, y))− (vi(a

′, x)− vi(a, x))

(vi(a′′, y)− vi(a, y))− (vi(a′′, x)− vi(a, x))
<

(vi(a
′, y)− vi(a, y))− (vi(a

′, z)− vi(a, z))
(vi(a′′, y)− vi(a, y))− (vi(a′′, z)− vi(a, z))

,

one can always find α, β ∈ [0, 1] such that both (A.12) and (A.13) are satisfied, and with at least

one of them holds strictly. Otherwise, if the above strict inequality holds the other way round,

then one can always find α, β ∈ [0, 1] such that both (A.14) and (A.15) are satisfied, and with at

least one of them holds strictly. In conclusion, we can always construct a pair of binary probability

distributions Gα, Fβ that satisfies ∆(Gα, Fβ, x) ≤ ∆(Gα, Fβ, y) and ∆(Gα, Fβ, y) ≥ ∆(Gα, Fβ, z),

with at least one inequality being strict.

Lemma A3 shows that if vi violates the property of increasing differences over distributions for

some arbitrary pair of probability distributions (G,F ), it must also violate this property for some

pair of binary probability distributions (Gα, Fβ). Given this important observation, we now turn

to construct a Bayesian incentive compatible mechanism that violates the monotone-expected-

marginal condition.

Let (Gα, Fβ) be a pair of binary distributions that satisfies (A.10). By assumption, there

must exist an agent j 6= i whose type distribution is absolutely continuous (and hence atomless).

By continuity, we can always find transfers tGj , t
F
j ∈ R, and partitions XG

j ∪ XG′
j = Xj and

XF
j ∪XF ′

j = Xj such that

(i) Pr
(
xj ∈ XG

j

)
= 1− Pr

(
xj ∈ XG′

j

)
= α, Pr

(
xj ∈ XF

j

)
= 1− Pr

(
xj ∈ XF ′

j

)
= β,

(ii) vj(aG, xj) ≥ vj(a
′
G, xj) + tGj ∀xj ∈ XG

j and vj(aG, xj) ≤ vj(a
′
G, xj) + tGj otherwise, and

(iii) vj(aF , xj) ≥ vj(a
′
F , xj) + tFj ∀xj ∈ XF

j and vj(aF , xj) ≤ vj(a
′
F , xj) + tFj otherwise.

Consider a mechanism with an allocation rule q and a payment rule t that are functions of the
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reports of agents i and j. In particular, we let

q(xi,x−i) =



aG if xi = y, and xj ∈ XG
j ,

a′G if xi = y, and xj ∈ XG′
j ,

aF if xi ∈ {x, z}, and xj ∈ XF
j ,

a′F if xi ∈ {x, z}, and xj ∈ XF ′
j ,

and ∀s 6= x, y, z,

q(s,x−i) =



aG if ∆(Gα, Fβ, s) ≥ t̄i and xj ∈ XG
j ,

a′G if ∆(Gα, Fβ, s) ≥ t̄i and xj ∈ XG′
j ,

aF if ∆(Gα, Fβ, s) < t̄i and xj ∈ XF
j ,

a′F if ∆(Gα, Fβ, s) < t̄i and xj ∈ XF ′
j ,

where t̄i = ∆(Gα, Fβ, y). Agent i receives t̄i if either allocation aF or a′F is chosen, and ti = 0

otherwise. Agent j receives tGj (tFj ) if allocation a′G (a′F ) is chosen, and tj = 0 otherwise. For all

agents k 6= i, j,, tk(x) = 0 ∀x ∈ X. It is straightforward to check that (q, t) is a Bayesian incentive

compatible mechanism.

We now show that agent i’s expected marginals induced by allocation rule q cannot be all non-

decreasing. Suppose, in contradiction, that Ex−i
vix(q(·,x−i), s) is non-decreasing for all s ∈ Xi.

Then, we have

Ex−i
[vix(q(x,x−i), s)] ≤ Ex−i

[vix(q(y,x−i), s)] ≤ Ex−i
[vix(q(z,x−i), s)], ∀s ∈ Xi

or, equivalently, ∫
vix(a, s)dFβ ≤

∫
vix(a, s)dGα ≤

∫
vix(a, s)dFβ, ∀s ∈ Xi,

which implies
∫
vix(a, s)dGα =

∫
vix(a, s)dFβ, ∀s ∈ Xi. Then, by the integration over s we have

∆(Gα, Fβ, x) = ∆(Gα, Fβ, y) and ∆(Gα, Fβ, y) = ∆(Gα, Fβ, z),

which contradicts to (A.10).
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