
Fair prediction with disparate impact:

A study of bias in recidivism prediction instruments

Abstract

Recidivism prediction instruments (RPI’s) provide
decision makers with an assessment of the likelihood
that a criminal defendant will reoffend at a future
point in time. While such instruments are gaining
increasing popularity across the country, their use
is attracting tremendous controversy. Much of the
controversy concerns potential discriminatory bias in
the risk assessments that are produced. This paper
discusses a fairness criterion originating in the field
of educational and psychological testing that has re-
cently been applied to assess the fairness of recidi-
vism prediction instruments. We demonstrate how
adherence to the criterion may lead to considerable
disparate impact when recidivism prevalence differs
across groups.

1 Introduction

Risk assessment instruments are gaining increasing
popularity within the criminal justice system, with
versions of such instruments being used or consid-
ered for use in pre-trial decision-making, parole de-
cisions, and in some states even sentencing [1, 2].
In each of these cases, a high-risk classification—
particularly a high-risk misclassification—may have
a direct adverse impact on a criminal defendant’s
outcome. If RPI’s are to continue to be used, it is
important to ensure that they do not result in uneth-
ical practices that disparately affect different groups.

Within the psychometrics literature, there exist
widely accepted and adopted standards for assessing
whether an instrument is fair in the sense of being
free of predictive bias. These standards have recently
been applied to the COMPAS [3] and PCRA [4] in-
struments, with initial findings suggesting that there
is evidence of predictive bias when it comes to gen-
der, but not when it comes to race [5, 6, 7].

In a recent widely popularized investigation of the

COMPAS RPI conducted by a team at ProPublica,
a different approach to assessing instrument bias told
what appears to be a contradictory story [8]. The au-
thors found that the likelihood of a non-recidivating
Black defendant being assessed as high-risk is nearly
twice that of White defendants. While this analysis
has met with much criticism, it has also made head-
lines. There is no doubt that it is now embedded in
the national conversation on the use of RPI’s.

In this paper we show that the differences in false
positive and false negative rates cited as evidence of
racial bias in the ProPublica article are a direct con-
sequence of applying an instrument that is free from
predictive bias1 to a population in which recidivism
prevalence differs across groups. Our main contri-
bution is twofold. (1) First, we make precise the
connection between the psychometric notion of test
fairness and error rates in classification. (2) Next,
we demonstrate how using an RPI that has differ-
ent false postive and false negative rates between
groups can lead to disparate impact when individ-
uals assessed as high risk receive stricter penalties.
Throughout our discussion we use the term disparate
impact to refer to settings where a penalty policy
has unintended disproportionate adverse impact on
a particular group.

It is important to bear in mind that fairness
itself—along with the notion of disparate impact—
is a social and ethical concept, not a statistical one.
An instrument that is free from predictive bias may
nevertheless result in disparate impact depending on
how and where it is used. In this paper we consider
hypothetical use cases in which we are able to di-
rectly connect statistically quantifiable features of
RPI’s to a measure of disparate impact.

1in the psychometric sense
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1.1 Data description and setup

The empirical results in this paper are based on
the Broward County data made publicly available
by ProPublica [9]. This data set contains COM-
PAS recidivism risk decile scores, 2-year recidi-
vism outcomes, and a number of demographic and
crime-related variables. We restrict our attention to
the subset of defendants whose race is recorded as
African-American (b) or Caucasian (w).

2 Assessing fairness

We begin by with some notation. Let S = S(x)
denote the risk score based on covariates X = x,
with higher values of S corresponding to higher levels
of assessed risk. Let R ∈ {b, w} denote the group
that the individual belongs to, which may be one of
the components of X. Lastly, let Y ∈ {0, 1} be the
outcome indicator, with 1 denoting that the given
individual recidivates. In this notation, we can think
of the psychometric test fairness condition roughly
as follows.

Definition 2.1 (Test fairness). A score S = S(x) is
test-fair2 if it reflects the same likelihood of recidi-
vism irrespective of the individual’s group member-
ship, R. That is, if for all values of s,

P(Y = 1 | S = s,R = b) = P(Y = 1 | S = s,R = w).
(2.1)

Figure 1 shows a plot of the observed recidivism
rates across all possible values of the COMPAS score.
We can see that the COMPAS RPI appears to adhere
well to the test fairness condition. In their response
to the ProPublica investigation, Flores et al. [10] fur-
ther verify this adherence using logistic regression.

2.1 Implied constraints on the false pos-
itive and false negative rates

To facilitate a simpler discussion of error rates, we
introduce the coarsened score Sc, which is obtained
by thresholding S at some cutoff sHR.

Sc(x) ≡

{
HR if S(x) > sHR

LR if S(x) ≤ sHR

(2.2)

2Depending on the context, we may further desire that
this criterion is satisfied when we condition on some of the
covariates. Our analysis extends to this case as well.
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Figure 1: Plot shows P(Y = 1 | S = s,R) for the COM-
PAS decile score, with R ∈ {Black,White}. Error bars
represent 95% confidence intervals.

The coarsened score simply assesses each defen-
dant as being at high-risk or low-risk of recidivism.
For the purpose of our discussion, we will think of
Sc as a classifier used to predict the binary outcome
Y . This allows us to summarize Sc in terms of a
confusion matrix, as shown below.

Sc = Low-Risk Sc = High-Risk

Y = 0 TN FP
Y = 1 FN TP

It is easily verified that test fairness of S implies
that the positive predictive value of the coarsened
score Sc does not depend on R. More precisely, it
implies that that the quantity

PPV(Sc | R = r) ≡ P(Y = 1 | Sc = HR, R = r)
(2.3)

does not depend on r. Equation (2.3) thus forms a
necessary condition for the test fairness of S. We
can think of this as a constraint on the values of the
confusion matrix. A second constraint—one that
we have no direct control over—is the recidivism
prevalence within groups, which we denote here by
pr ≡ P(Y = 1 | R = r).

Given values of the PPV and prevalence p, it is
straightforward to show that the false negative rate
FNR = P(Sc = LR | Y = 1) and false positive rate
FPR = P(Sc = HR | Y = 0) are related via the equa-
tion

FPR =
p

1− p

1− PPV

PPV
(1− FNR). (2.4)

A direct implication of this simple expression is that
when the recidivism prevalence differs between two

2



groups, a test-fair score Sc cannot have equal false
positive and negative rates across those groups.

This observation enables us to better understand
why the ProPublica authors observed large discrep-
ancies in FPR and FNR between Black and White
defendants.3 The recidivism rate among back defen-
dants in the data is 51%, compared to 39% for White
defendants. Since the COMPAS RPI approximately
satisfies test fairness, we know that some level of im-
balance in the error rates must exist.

3 Assessing impact

In this section we show how differences in false pos-
itive and false negative rates can result in disparate
impact under policies where a high-risk assessment
results in a stricter penalty for the defendant. Such
situations may arise when risk assessments are used
to inform bail, parole, or sentencing decisions. In
the state of Pennsylvania, for instance, statutes per-
mit the use of RPI’s in sentencing, provided that the
sentence ultimately falls within accepted guidelines.

There are notable cases where RPI’s are used for
the express purpose of informing risk reduction ef-
forts. In such settings, individuals assessed as high
risk receive what may be viewed as a benefit rather
than a penalty. The PCRA score, for instance, is
intended to support precisely this type of decision-
making at the federal courts level. Our analysis in
this section specifically addresses use cases where
high-risk individuals receive stricter penalties.

To begin, consider a setting in which guidelines
indicate that a defendant is to receive a penalty tL ≤
T ≤ tH . A very simple risk-based approach, which
we will refer to as the MinMax policy, would be to
assign penalties as follows:

TMinMax =

{
tL if Sc = Low-risk

tH if Sc = High-risk
. (3.1)

In this simple setting, we can precisely character-
ize the extent of disparate impact in terms of rec-
ognizable quantities. Define Tr,y to be the penalty
given to a defendant in group R = r with observed
outcome Y = y ∈ {0, 1}, and let ∆ = ∆(y1, y2) =
E(Tb,y1 − Tw,y2) be expected difference in sentence

3Black: FPR = 45%, FNR = 28%.
White: FPR = 23%, FNR = 48%

between defendants in different groups. ∆ is a mea-
sure of disparate impact.

Proposition 3.1. The expected difference in penalty
under the MinMax policy is given by

∆ ≡ EMinMax(Tb,y1 − Tw,y2)

= (tH − tL)
[
P(Sc = HR | R = b, Y = y1)

− P(Sc = HR | R = w, Y = y2)
]

We will discuss two immediate Corollaries of this
result.

Corollary 3.1 (Non-recidivators). Among individ-
uals who do not recidivate, the difference in average
penalty under the MinMax policy is

∆ = (tH − tL)(FPRb − FPRw) (3.2)

Corollary 3.2 (Recidivators). Among individuals
who recidivate, the difference in average penalty un-
der the MinMax policy is

∆ = (tH − tL)(FNRw − FNRb) (3.3)

When using a test-fair RPI in populations where
recidivism prevalence differs across groups, it will
generally be the case that the higher recidivism
prevalence group will have a higher FPR and lower
FNR. From equations (3.2) and (3.3), we can see
that this would result in greater penalties for defen-
dants in the higher prevalence group, both among
recidivating and non-recidivating offenders.

An interesting special case to consider is one where
tL = 0. This could arise in sentencing decisions for
offenders convicted of low-severity crimes who have
good prior records. In such cases, so-called restora-
tive sanctions may be imposed as an alternative to
a period of incarceration. If we further take tH = 1,
then ET = P(T ̸= 0), which can be interpreted as
the probability that a defendant receives a sentence
imposing some period of incarceration.

It’s easy to see that in such settings a non-
recidivating defendant in group b is FPRb/FPRw

times more likely to be incarcerated compared to
a non-recidivating defendant in group w.4 This nat-
urally raises the question of whether overall differ-
ences in error rates are observed to persist across
more granular subgroups.

4We are overloading notation in this expression: Here,
FPRr = P(HR | R = r, tL = 0), similarly for FNRr.
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Figure 2: False positive rates across prior record count
for defendants charged with a Misdemeanor offense. Plot
is based on assessing a defendant as “high-risk” if their
COMPAS decile score is > 4. Error bars represent 95%
confidence intervals.

One might expect that differences in false posi-
tive rates are largely attributable to the subset of
defendants who are charged with more serious of-
fenses and who have a larger number of prior ar-
rests/convictions. While it is true that the false posi-
tive rates within both racial groups are higher for de-
fendants with worse criminal histories, considerable
between-group differences in these error rates persist
across low prior count subgroups. Figure 2 shows
a plot of false positive rates across different ranges
of prior count for defendants charged with a misde-
meanor offense, which is the lowest severity criminal
offense category. As one can see, differences in false
positive rates between Black defendants and White
defendants persist across prior record subgroups.

3.1 Connections to measures of effect size

A natural question to ask is whether the level of dis-
parate impact, ∆, is related to some measures of ef-
fect size commonly used in scientific reporting. With
a small generalization of the % non-overlap measure,
we can answer this question in the affirmative.

The % non-overlap of two distributions is gener-
ally calculated assuming both distributions are nor-
mal, and thus has a one-to-one correspondence to
Cohen’s d [11].5 Figure 3 shows that the COMPAS
decile score is far from being normally distributed.

5d = S̄b−S̄w

SD
, where SD is a pooled estimate of standard

deviation.
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Figure 3: COMPAS decile score histograms for Black
and White defendants. Cohen’s d = 0.60, non-overlap
dTV(fb, fw) = 24.5%.

A more reasonable way to calculate % non-overlap
is to note that in the Gaussian case % non-overlap
is equivalent to the total variation distance. Letting
fr,y(s) denote the score distribution for race r and
recidivism outcome y, one can establish the following
sharp bound on ∆.

Proposition 3.2 (Percent overlap bound). Under
the MinMax policy,

∆ ≤ (tH − tL)dTV(fb,y, fw,y).

4 Discussion

The primary contribution of this paper was to show
how disparate impact can result from the use of a
recidivism prediction instrument that is known to
be free from predictive bias. Our analysis focussed
on the simple setting where a binary risk assessment
was used to inform a binary penalty policy. While
all of the formulas have natural analogs in the non-
binary score and penalty setting, we find that all of
the salient features are already present in the anal-
ysis of the simpler binary-binary problem.

In closing, we would like to note that there is a
large body of literature showing that data-driven risk
assessment instruments tend to be more accurate
than professional human judgements [12, 13], and
investigating whether human-driven decisions are
themselves prone to exhibiting racial bias [14, 15].
We should not abandon the data-driven approach
on the basis of negative headlines. Rather, we need
to work to ensure that the instruments we use are
demonstrably free from the kinds of quantifiable bi-
ases that could lead to disparate impact in the spe-
cific contexts in which they are to be applied.
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