Porting QEMU to Plan 9: Strategy

Nathaniel Wesley Filardo
August 8, 2007

Abstract

This paper discusses the difficulties which must be overcome to port the QEMU processor emulator [1] to Plan 9.
It begins with a detailed look at QEMU’s internal machinery and outlines the difficulties encountered. For each, it
discusses the currently favored approach towards a workable solution. In many cases, alternatives and mechanisms
for subsequent improvements and optimizations are also presented. It is hoped that this paper also provides useful
groundwork for other, future ports of QEMU to novel platforms and compilers.

Contents

B Compi jng the Dynamic Translatorl oo v v
B.2__Requirements of Micro-Op Control-flow Graphd,

EJJQm_pjli_n_g The Dynamic Translatofd o o v v v e e e

mwwmmm_ﬂmwxaphd

5.1 Register Calling Conventiond v v vt e e
b.2__Translation Block Program Countel
5.3__Explicit Branch Prediction Overrided
B4 Memory Managementl oo o
Eilodind D
MMMMMM
BZ UserInterfacdo

GO

© © © © 0000~ Ut U

19

21

1 Overview

Section contract: introduce QEMU, set stage for horror of section 2. In particular, I don’t even want to talk about
translation in any real way up here.

QEMU is a fast, portable emulator of many architectures, including IA-32 (X86), PPC, and SPARC. It seems worth-
while to bring it to the Plan 9 environment so that certain Linux applications (e.g., firefox) can be made available and
to provide an environment for kernel testing.

1.1 The Nature of QEMU

Bochs [] is a well-known, portable IA-32 emulator. Bochs uses simulation to emulate the guest system: it disassembles
and simulates each instruction one at a time. While straightforward and as accurate as desired by the implementors,
this approach is slow as many host instructions (function dispatch, entry, evaluation, and return) must be run for each
guest instruction.

QEMU, on the other hand, uses an on-the-fly translation technique where guest code is first translated into an
equivalent series of so-called “micro-operations,” which are then copied, modified, and concatenated to produce a block
of native code . These micro-ops range in complexity from simple simulated register transfers to integer and floating
point math to memory load and store operations (which require simulating the guest architecture’s paging mechanism).
Translation is currently done per basic block of guest code and translations are cached for reuse. In the absence of inter-
rupts, translations are chained together so that control flow stays within guest code. Interrupts arrive asynchronously
and undo these chains so that control flow returns to the main QEMU code.

As an explicit comparison, it will be useful to use the X86 ARPL instructionl]. The Intel “type” of this function is
ARPL r/m16,r16, meaning that it takes two operands, the first of which is a 16 bit register or memory location and the
second is a 16 bit register. Bochs will decode enough of the instruction to determine that it is some form of ARPL and
will call BX_CPU_C: : ARPL_EwGw, a function of 55 lines which contains calls to determine the type of operands, conditional
branches, and calls to load and store functions. QEMU, on the other hand, will decode the instruction once into a
specialized series of micro-ops:

e Move the first operand into the 0'" internal simulation register. Depending on the bits of the “ModR/M”E byte
following the ARPL instruction byte, the translator will pick either a memory fetch or a register transfer; the test
is performed by the translator, so the generated instruction stream will not include a branch.

e Fetch a 16-bit value from the host state variable which holds the indicated guest CPU register or emulate a fetch
from memory and place it in QEMU’s 1°* internal simulation register.

e Do the core of the ARPL instruction. This micro-op demands that its operands are in temporary registers 0 and 1,
as has just been set up.

e Move the result from the 0" temporary back to the original host state variable holding the indicated register or
emulate a store to memory. Again, this will be specialized either to a store or a register move.

Once the sequence of micro-ops for a basic block has been determined, the translator then converts the sequence into
host machine code and stores the result in the translation cache for subsequent use.

The core concept of QEMU, ignoring many fancy tricks and optimizations, can then be understood in terms of a
loop with this basic structure:

1. If a guest interrupt is pending, adjust the emulated machine state as appropriate to invoke the guest’s interrupt
handler.

2. If the translation cache does not contain a translation of the basic block starting with the next instruction we
wish to execute, perform the translation and store it in the cache.

3. Perform a subroutine call into the basic-block translation starting at the next instruction

The result is an execution pattern alternating between bursts of host instructions implementing one basic block of guest
instructions and a sequence of host instructions performing house-keeping and translation.

1.2 Simulated Hardware

Both Bochs and QEMU simulate hardware at a very low level. Both have software representations of buses and
peripherals such as video and network cards and disk controllers. Both Bochs and QEMU provide to the simulation
accurate models of a limited set of hardware, including interrupt controllers, bus drivers, disk controllers, disk drives,
keyboards, mice, video cards, and network cards. Over time, this set has grown to include a reasonable selection of
devices likely to be supported by guest operating systems. Both Bochs and QEMU use BIOSes run inside the simulation

1An odd instruction related to segment selector requested privilege level.
2For details, the masochistic should consult Intel’s Instruction Set Reference. Not suitable for all audiences.

to initialize certain parts of the hardware, a design decision which allows the device emulators to remain faithful to the
original hardware.

Outside the simulation, these device drivers (drivees?) make use of host features to provide the simulation and the
user with desired functionality. Some examples are

e Video frame-buffers are exposed via the user’s choice of Uls. For QEMU, options include a SDL window, a VNC
server, and no graphical output.

e Networks under QEMU can be disabled, bridged to the host kernel, created over a UNIX socket using a virtual
Ethernet protocol (allowing other QEMU and compatible simulators and virtualizers to participate), or entirely
simulated by QEMU.

1.3 Portability

QEMU is reasonably modular, with guest-specific parts of the emulator largely factored out into their own files and
directoried]. All guests speak the same interface to the core, drivers, and dynamic translator. Of the some 111,000
lines of codd] for the entire QEMU system, the guest-specific components constitute roughly a third. The X86 guest in
particular occupies under 8,000 lines of code. The relative compactness of the guest descriptions enables QEMU, unlike
Bochs, to simulate a large number of guestsﬁ.

QEMU requires that its platforms expose information about their compiled executables, for the dynamic translator’s
use. Fortunately, most of this information is desirable for more “respectable” reasons such as debuggers, dynamic
loaders, or support of separate compilation. Most modern platforms offer most of the needed infrastructure or are a
small patch away from doing so.

Further, QEMU is written almost entirely in C, creating a layer of isolation between host and guest environments.
Notably the dynamic translator is written entirely in C with some GNU extensions. This structural portability, coupled
with GCC’s large list of supported systems, endows QEMU with a large degree of portability across host systems. The
obstacles for porting to Plan 9 will be largely the use of GCC extensions, teaching Dyngen about Plan 9’s a.out format,
and some UNIXisms in the host driver code.

1.4 Roadmap

The next section gives an in-depth look at the current state of QEMU'’s universe, focusing on the dynamic translator
as both a provider of tools to other parts of QEMU and as a consumer of the larger system’s offered tools. Then, with
that groundwork, we discuss mechanisms for offering the same tools on a Plan 9 system.

FIXME

2 QEMU The Emulator

Section contract: We narrow our discussion to the heart of QEMU: the dynamic translator. For the moment, we
neglect interactions with the user, other programs, and hardware. The goal here is to explain everything from the
perspective of data structures, operators, and application thereof. The reader should come out of this section with a
good understanding of the dynamic translator and micro-ops library as consumers and producers of tools, not necessarily
with the implementation details.

QEMU uses a portable dynamic code translator [l] to achieve fast emulation of guest code. It achieves its high
degree of portability relative to other code generators by being implemented largely in C with some GNU extensions.
It does not natively know the instructions of its host architecture — instead, each guest specifies, in C, a library
of micro-operations as well as a guest-code disassembler and translator into its micro-ops vocabulary. These micro-
operations can be thought of as a kind of virtual machine, albeit one optimized for simulation of the guest system.
The operations themselves include register transfer, explicit (rather than implicit, see |1]) condition code update code,
bitwise operations, integer and floating math, and memory load and store operations.

2.1 Advanced Tricks With Translation Buffers

QEMU improves performance beyond the basic approach outlined in Section [[1l in a few key ways. First, large or
expensive host operations (such as emulating guest MMU operations) are not directly placed into the translation
buffer, but are contained in helper functions called from the micro-ops. Second, an escape hatch mechanism is provided
for synchronous faults that occur in the middle of a translation block. Third, optimizations are performed to improve the
efficiency of the instruction sequences emitted by the translator. Forth, control flow is complicated in ways which allow

3Some per-host and per-target code remains in common files, using #ifdef to select the right one
“grep -c \;
50f interest in particular to the Plan 9 community are its X86, ALPHA, MIPS, PPC, and possibly SPARC targets.

/* ADDL $0x2, Y%EBX */

env->EBX += 2;

compute_cc_z(env->EBX) ;

compute_cc_c_addl(env->EBX, 2); /* ADDL $0x2, %EBX */

env->EIP += 3; env->EBX += 2;
compute_cc_c_addl (env->EBX, 2);

/* DEC %EAX */

env->EAX -= 1; /* DEC JEAX */
compute_cc_z(env->EAX) ; env->EAX -= 1;
env->EIP += 3; compute_cc_z(env->EAX) ;
/* JINZ 11 */ /x JNZ 11 */
if (env->CC_Z != 0) if (env->CC_Z !'= 0)
env—->EIP = 11; env->EIP = 11;
11: else else

ADDL $0x2, %EBX env->EIP += 6; env->EIP += 12;

DEC %EAX

JNZ 11 return; return;

(a) A host instruction stream (b) A naive translation showing condition code (¢) A translation without unnecessary compu-

and EIP updates. tation.

Figure 1: A simplified view of translation into host code, showing optimizations on condition codes and instruction pointer
calculations. Translations are represented in C rather than micro-op names for clarity.

the execution of many basic blocks worth of code between invocations of the house-keeping, decoding, and translation
code paths.

2.1.1 Function Calls To Reduce Translation Size

The X86 instruction CPUID is remarkably complexﬁ and requires about 75 lines of C even in QEMU'’s simplistic imple-
mentatiorl]. Instead of the usual approach, where the translator would copy code to implement the CPUID instruction
into the translation buffer, in this case it generates a call to a non-specialized helper function. Rather than special-case
instructions with helper function implementations, micro-ops containing function calls are defined for these instructions
(e.g., the micro-op selected for CPUID consists only of a call to the helper function, helper_cpuid). Function calls are
also notably used to emulate guest MMU accesses — MMUs are generally complex and QEMU uses a MMU translation
cache to speed up MMU emulation. Placing all of this complexity in each translation buffer at each memory operation
site would be extremely expensive.

2.1.2 Synchronous Fault Escape Hatch

A complication induced by using translation buffers rather than instruction-by-instruction simulation is that an ex-
ception, such as an MMU fault, might arise in the middle of a buffer. QEMU has a mechanism, based on longjmp(),
to bail out from a translation buffer back to the emulation core if a fault synchronous to the instruction stream must
be issued.rEUpon dealing with the synchronous fault, a new translation buffer is created starting from the interrupted
instructiond.

2.1.3 Lazy Evaluation

Every instruction implicitly modifies the instruction pointer and almost every instruction makes updates to the proces-
sor’s condition codes (zero, overflow/carry, etc.). However, it is relatively rare that the guest code truly cares about its
instruction pointer’s value, as long as the instructions are dispatched in the right order. The condition codes are also
rarely looked at, usually by conditional jumps.

Since an entire basic block of code is translated, QEMU avoids updating the instruction pointer until the block
is finished or explicitly reads it. Similarly, QEMU targets carry out liveness analysis passes over the condition codes
and substitute in “simplified” versions of the translation to avoid unnecessary computation. Consider, as an explicit

6Doubtless introduced with only the best of intentions, it is now a fossil record of the evolution of the X86 architecture.

"The QEMU implementation is a switch statement which loads hard-coded values into CPU registers. Since QEMU does not provide the
ability to switch on and off individual CPU features and since any (reasonable) answer it provides for things like cache sizes is as good as
another, this is a reasonable approach.

8Execution cannot resume in the middle of that translation buffer as it may be gone from cache.

example, the loop in Figure LT3l running on a(n extremely simplified) X86. In addition to the arithmetic manipulation,
the processor specification requires that

e ADDL must update both the zero and carry condition codes.
e DEC must update the zero condition code.
e Both instructions must move the instruction pointer forward to the next instruction.

We can see immediately that ADDL’s updates to the zero flag are invisible to the guest: the next instruction clobbers
it. Since neither the ADDL nor DEC read the instruction pointer, the translator can also eliminate two updates to the
instruction pointer. Here, then, we can simply update the instruction pointer once, at the end of the basic block.
However, as the next instruction after the JNZ (in the not-taken path) might be anything, we must still have ADDL
compute the carry ﬂaﬁ.

This lazy evaluation interacts with the synchronous fault mechanism. Upon a synchronous fault, the emulator core
forces evaluation of the instruction pointer and condition codes so that it may emulate the guest architecture’s interrupt
mechanism. This is similar to what is done on superscalar CPUs.

2.1.4 Chaining Translation Buffers

The use of translation buffers reduces the per-instruction overhead dramatically but is, in a sense, rather unsatisfactory.
Control flow must return to the emulator’s main loop every time, even if the basic block ends with a jump to a fixed
address (as is common, for example, with basic blocks resulting from if-then-else or switch-case control flow). In the
limit, we would like to translate the entire program at once. However, this likely wouldn’t fit in cache and we’d need a
mechanism to exit an infinite loop once we’d called into one.

Instead, we can still translate on the level of basic blocks (which allows the optimizations above) but construct a
mechanism for chaining them together, so that control flow does not always need to first return to the emulator loop.
This can be achieved with a pattern of specialized micro-ops implementing the following algorithm:

1. If the successor translation block is known, jump to it. Otherwise, do nothing. QEMU calls this operation
GOTO_TB(), but from the translator’s perspective it is encapsulated in micro-op bodies.

2. Set the guest’s program counter to the next instruction we wish to execute after leaving this basic block.

3. Return to the emulator’s loop. Some housekeeping is required here, but the ultimate operation is called EXIT_TB(),
which is also provided to the translator by a micro-op.

When the main loop is invoked because no successor was defined, there is an opportunity to look up the specified
program counter in the translation cache, obtain the address of the associated translation buffer, and patch the current
translation buffer so that it will know how to jump directly to its successor next time.

This also handles the infinite loop case neatly. If QEMU enters a sequence of translation buffers chained together
in an infinite loop, eventually a SIGALARM will force QEMU into a signal handler. It can then undefine the successor
values of recently executed translation buffers and return. This will cause execution to “fall out” into the house-keeping
main loop “soon,” which will then force the guest into its timer interrupt handler.

2.1.5 Jumping Around Translation Buffers

The above mechanism for chaining works as long as each basic block has only one successor. However, conditional
jumps have two successor blocks: the one taken on condition match and the other where the conditional jump acts like
a no-op. We will call these the “branch taken” and “branch not taken” successors, respectively.

One simple approach would be to prohibit chaining translation buffers ending on conditional branches. Then, the
conditional branch micro-ops would simply set the guest instruction pointer depending on their tests. Control flow
would return to the emulator loop and the right thing would happen. However, this requires that every conditional
jump cause a return to the emulator loop, every time through — that is, even after the successor for a given path has
been translated and placed in cache.

In order to take advantage of translation block chaining in the presence of conditional jumps, there must be (at
leastﬂ) two sets of chaining meta-data, one for each arm of the jump. GOTO_TB() must be parameterized to specify
which set of chaining data is to be considered for this trip out of the translation buffer. In the case where GOTO_TB()
does not know its successor, the emulator loop needs to be told which chaining meta-data is to be updated.

These changes in and of themselves are insufficient: despite parameterization, we have not provided a way for the
translation buffer to conditionally call one path or the other. QEMU’s micro-ops libraries provide micro-ops that transfer
control to another point by jumping, using a mechanism QEMU calls GOTO_LABEL_PARAM(), which may be thought of

9A sufficiently advanced optimizer might move the carry flag update into the “else” branch of the JNZ. Such is orthogonal to the mechanisms
of QEMU, so we need not consider it now.

100ne could imagine a more sophisticated translator that could place several conditional jumps into one translation unit so long as there
were not possibility of looping.

as simply a host JMP instruction with enough room in the instruction to jump to any address. As with GOTO_TB() and
EXIT_TB(), GOTO_LABEL_PARAM() is exposed to the translator by being contained within specialized micro-ops.

Recall that the translation procedure involves disassembling guest instructions, selecting an appropriate sequence
of micro-ops, and then translating that sequence into host instructions. During the selection phase, the translator can
look up the size of each micro-op’s host code. Thus it can readily learn the which offsets into the translation buffer
are between micro-ops. It can even bind these offsets to named “labels” during translation and pass them to the code
generator.

This somewhat tortured mechanism allows us to translate guest conditional jumps into host condition testing and
unconditional jumps. Specifically, a guest conditional jump (which will be at the end of a translation buffer) now looks,
in schematic, like:

if (condition)
GOTO_LABEL_PARAM(11)
GOTO_TB(nottaken)
Write nottaken successor address to the guest instruction pointer
Write "nottaken successor" for the emulation loop
GOTO_LABEL_PARAM(12)
11:
GOTO_TB(taken)
Write taken successor information to the guest instruction pointer
Write "taken successor" for the emulation loop
12:
EXIT_TBQ)

That is, if the condition is true, we will follow the branch taken successor branch (the code after 11) and the first time
through will return to the emulator loop and get patched up for next time. If, next time through, the condition is
still true, we will directly chain to the appropriate translation block. If not, we will proceed to the branch not taken
successor and the same thing will happen.

2.1.6 Translation Buffers as Data Structures

Translation buffers (and the micro-ops that comprise them) may be thought of as data structures, generated and
consumed throughout QEMU’s execution, supporting unusual operations once constructed:

e Set/Reset the branch not taken / sole successor.
e Set/Reset the branch taken successor, if this block ends on a conditional branch.
e Execute the translation buffer.

e Bail out of execution from the middle of the translation buffer.

2.2 A Closer Look at Micro-Ops

The micro-ops are written in (GNU) C, but manipulated as largely opaque binary data (once compiled) by the dynamic
translator. That is, the dynamic translator uses as little introspection into the micro-ops compiled form as it can get
away with; in particular, it does not attempt to disassemble the generated instruction stream. There are, however,
some “charming” features of the dynamic translator’s use of these compiled functions.

2.2.1 Coring

Since C functions complete by returning, and most compilers produce code with prologues on entry and epilogues to
return, the existing dyngen design is to mechanically strip both to extract the core of the function. These cores can
then be pasted together and the entire mass given a prologue and epilogue to create a function at runtime. Assuming
that each core has a unique return point in its epilogue (that is, at its highest address), this will work exactly as desired:
instead of returning, each concatenated function will simply hand control off to the next by falling through.

2.2.2 Register Allocation

GCC has extended the C language to allow some control over the register allocator. QEMU’s targets, whenever possible,
assign host registers to hold a pointer to the emulator environment, the temporary registers, and a subset of the guest’s
registers. The goal is to reduce memory traffic and address computations for the common cases seen in the micro-ops
library.

However, as some hosts may have registers smaller than some guests, most guests provide code for the case where
registers are unavailable. This is fortunate, as it means platforms whose C compilers do not allow such fine-grained
(and non-portable) control over the compiler’s output can use these other pathways for their initial port. Section
discusses a mechanism for using register allocation on Plan 9 in more detail.

2.2.3 External References

Almost all micro-ops reference global va.]riableslg7 and some make function calls to helper functions. Examples of helpers
notably include complex things such as MMU emulation and odd things like the X86 instruction CPUID’s implementation.
Thus, whenever a micro-op core is copied around, it needs to be rewritten using relocation information so that these
references are still valid. While the linker does, indeed, do this, the function bodies are dynamically copied into
translation units at runtime, meaning that the relocation pass must be done within QEMU itself.

2.2.4 Constant Folding

An additional use of relocation meta-data is to emulate guest operations with immediate data (e.g., constants to be
loaded into registers). Consider that QEMU might be asked to simulate both movl $0x5, %eax and movl $0x2BADDOOD, %eax.
Possible approaches to this problem include having specialized micro-ops (perhaps the ability to load, byte-wise, into
T0), tabulating constants and emitting memory-to-register transfer instructions using much the same approach as above,
or perhaps (ab)using the stack to pass parameters to translation units. However, it would be ideal if guest-code im-
mediate values could, whenever possible, be host-code immediate values as well. For example, upon encountering the
X86-32 operation movl $0x5, %eax while running on an X86-64, we would like to emit movl $0x5, %ri15d into the
translation bufferd.

Constants may be folded into the instruction stream by manipulating the relocation of specially named global
variables. To separate this use of relocation from the more standard relocation done for functions, we term this
“abusive relocation.” Details may be found in Section

2.2.5 Providing Non-local Control Flow

As discussed above, there are three mechanisms provided to translation buffers by micro-ops for non-local control flow:
e EXIT_TB() for returning to the emulator loop,
e GOTO_LABEL_PARAM() for branching within a translation buffer, and
e GOTO_TB() for chaining translation buffers.

EXIT_TB() is relatively uninteresting, so we focus here on the other two.

Much as we could refer to “left” and “right” successors of translation blocks, we may refer to “left” and “right”
successors of individual micro-ops. All micro-ops (except those which exit the translation buffer) have a natural “left”
successor of the next micro-op in the translation buffer. Micro-ops involved in non-local control flow may additionally
have a “right” successor, which may be said to be either “near” if it is in the current translation buffer and “far” if it is
in another translation buffer. For simplicity (despite the capability of the mechanisms to allow this), QEMU does not
jump into non-zero offsets of other translation buffers.

GOTO_LABEL_PARAM() is implemented by handing control flow (via inline assembler) to a special class of abusive
symbol. For each instance of GOTO_LABEL_PARAM(label), the code generator calculates the actual host instruction
address corresponding to label. It then abusively sets the abusive symbol’s value to this address when copying the
micro-op body. Notice that GOTO_LABEL_PARAM() always dispatches control to the near, right successor of this micro-op.
However, micro-ops may have conditionals around their use of GOTO_LABEL_PARAM(), as was seen in the example of
translation buffers having multiple successors.

For GOTO_TB(), the situation is more complicated, as there are three separate mechanisms for implementing GOTO_TB().
The simplest makes use of a GNU C extension of goto and emits code which reads an address from the translation
buffer meta-data and jumps there. The code generator exports the address of the instruction after the jump to the
emulator. After code generation, but before running the translation, the emulator resets the recorded address to the
next instruction. This results in GOTO_TB() being an expensive no-op instruction. Later, when the emulator learns the
address of the next translation buffer, it will store it back into the appropriate slot in the previous translation buffer’s
meta-data.

2.2.6 Micro-Ops as Data Structures

Much as we could view translation buffers as odd data structures, micro-ops themselves are similarly odd data structures,
supporting a larger vocabulary of mind-bending operations statically, at run time; dynamically, at the request of the
emulator; and at execution time.

e Execution Operations Within A Micro-Op:

— Make a function call.
— Read from global store (and/or registers).

— Write to global store (and/or registers).

HEspecially in absense of QEMU’s host-register allocation.
I2Register %r15d is used on an X86-64 host to store the X86 guest %EAX register.

op.c op.0 -
GCC . Id .
Micro—ops CrUl—Spe.cmc
Library w/ relocation
i
I dyngen
opc.h translate—op.c
op.h _#include _ translate-all.c| sec g g

gen-op.h
Translator

Figure 2: Compiling the micro-ops library.

— Go to the next micro-opE (“branch not taken successor”)
— Transfer control to another micro-op in this translation buffer(“near branch taken successor”).
— Transfer control to another micro-op in another translation buffer(“far branch taken successor”).
— Exit this translation buffer.
e Static Operations:
— Extract core.
— Enumerate relocation requirements.
— Enumerate constant-folding parameters.
— Enumerate control-flow parameters and exports.
e Dynamic Operations At Translation Time:
— Copy core to target address.
— Relocate function calls.
— Fold a value in for a constant parameter.
— Set a jump’s destination label.
— Export GOTO_TB() destination patch points.
— Export GOTO_TB() labels.
e Dynamic Operations After Translation Time:
— Set a GOTO_TB() destination.

We now turn our attention to the implementation details enabling each of these operations, discussing QEMU’s
current implementation on GCC. In the next section, we will give a parallel structure for work on Plan 9.

3 Achieving Dynamic Translation on UNIX/GCC Hosts
3.1 Compiling the Dynamic Translator

The compilation phases are shown in Figurel A tool called “dyngen” takes the compiler-generated host-specific version
of the micro-op library and produces C necessary for the runtime translator to make use of these routines. The exact
details of processing are deferred briefly.

13This is not nearly as trivial as one might wish.

10

—{T0 & 3|—{T1 & 3}——{T1 = 0o}——>{"]

[T0=...}—T1=0C2}—{]

(a) Unforced control graph for op_arpl

[T &3~ &3} =0

|T0=...—{T1=CC_Z}—>{FORCERET |—{"]

(b) Corresponding forced control graph

Figure 3: Forcing to an “obviously serializable” control flow graph.

000000000049e943 <op_arpl>: 000000000049e943 <op_arpl>:
49e943: mov %r15d, %edx 49e943: mov %r15d, %edx
49e946: mov %ri2d,%eax 49e946: mov %ri2d,%eax
49e949: and $0x3, %hedx 49e949: and $0x3, %hedx
49e94c: and $0x3, eax 49e94c: and $0x3, eax
49e94f: cmp Y%eax, hedx 49e94f: cmp Y%eax, hedx
49e951: jae 49e96¢c <op_arpl+0x29> 49e951: jae 49e96d <op_arpl+0x2a>
49e953: mov %r15d, %edx 49e953: mov %r15d, %edx
49e956: mov %ri2d,%eax 49e956: mov %ri2d,%eax
49e959: mov $0x40,%r12d 49e959: mov $0x40,%r12d
49e95f: and $OxfEfffffffffffffc,%edx 49e95f: and $OxfEfffffffffffffc,edx
49e962: and $0x3, heax 49e962: and $0x3, eax
49e965: mov %edx, %ri15d 49e965: mov %edx, %r15d
49e968: or Y%eax,hr1bd 49e968: or %eax,%hr1bd
49e96b: retq 49e96b: jmp 49e970 <op_arpl+0x2d>
49e96¢c: xor Y%ri2d,%ri2d 49e96d: xor Y%ri2d,%ri2d
49e96f: retq 49e970: retq
(a) Without the use of FORCE_RET(). (b) With use of FORCE_RET().

Figure 4: GCC 4.1.3 on X86-64 compilation results for op_arpl.

3.2 Requirements of Micro-Op Control-flow Graphs

In order to support the current “coring” mechanism, micro-ops must compile into assembler such that they have a
unique epilogue that happens to be at the highest address. Some micro-ops, though, are sufficiently complex that it is
not obvious (or necessary) that all paths converge on the function’s unique epilogue. Consider the X86 guest’s micro-op
that is the core of the X86 ARPL instruction (from target-i386/op.c:1180):

void OPPROTO op_arpl(void)

{
if ((TO & 3) < (T1 & 3)) {
TO = (TO & "3) | (T1 & 3);
Tl = CC_Z;
} else {
T1 = 0;
}
FORCE_RET() ;
}

Tn and CC_Z are preprocessor macros for the temporary registers used by the translation and for the condition code zero
flag, respectively. In the absence of the mysterious FORCE_RET (), the control flow graph is as shown in Figure In
this case, there may well be a “return” instruction in the middle of the host instruction stream, rendering the micro-op
unsuitable for concatenatioﬂ, as in Figure

140ne cannot say definitively either way, as it is always at the C compiler’s discretion.

11

FORCE_RET() is, then, a hack to overcome this problem, an attempt to force all paths through the function to a
singular ending. The desired effect on the control flow graph is shown in Figure GCC’s code generator, then,
when presented with such a function, apparently always places an end at the highest address of the function (though
this is by no means strictly necessary). Specifically, FORCE_LRET() is defined (at dyngen-exec.h:197) to be

asm__ __volatile__("" : : : "memory");

This is an empty inline asm block decorated (with __volatile__) so that block motion and lifting is disabled in GCC.
FORCE_RET()s are placed only where necessary, presumably determined by intuition or debugging. However, when it
works, it works: op_arpl with FORCE_RET() compiles as in Figure having only one return instruction at its highest
address.

3.3 Register Allocation

For performance, QEMU typically binds the temporary variables and (some subset of the registers) of the guest machine
into the host’s registers while running the translated code.
This is achieved in GNU C by declaring variables with an extended syntax (in, for example, target-i386/exec.h:46):

register target_ulong TO asm(AREG1);

where AREG1 is determined by dyngen-exec.h in a host-specific way. On X86-32, for example, AREG1 is defined to be
ebx. GNU C semantics are that globals of this form reserve the register for the entire program.

Since various micro-ops either are stubs around calls to helper functions or may call helper functions or call out to
raise exceptions in certain paths, QEMU choses only callee-save registers according to typical calling conventionl].

The simplest, if slowest, mechanism for solving this particular problem is to avoid the explicit use of registers
altogether. There is extant code in QEMU (see, for example, target-1386/exec.h:38-40) for the case where the guest
registers are larger than the host’s, and so the temporaries Tn must be held in memory. The only change that would be
necessary to make this case be totally free of explicit register assignments would be to move the CPU’s state pointer
back to global store[d Some limited testing of a QEMU built on a Linux host with a global environment variable seems
to indicate that this does, indeed, work.

3.4 Relocation

QEMU makes use of the host platform’s ability to carry out dynamic loading (or separate compilation) to allow its
micro-ops to make function calls and reference global variables. Further, the mechanism is used “abusively” to load
constants and for the implementation of non-local control flow.

3.4.1 Relocation of Functions and Globals

On many architectures, including X86, the default addressing mode for subroutine calls is relative to the instruction
pointer. Since the dynamic translator is copying code, the instruction pointer will be different than the compiler
anticipated, and the offset must be corrected in order for the code to work. Concretely, the op_cpuid function in
QEMU’s binary (compiled with GCC 4.1.3 on X86-64) looks like

000000000049dbc8 <op_cpuid>:

49dbc8: 48 83 ec 08 sub $0x8,%rsp

49dbcc: e8 8f bc 00 00 callg 4a9860 <helper_cpuid>
49dbd1: 48 83 c4 08 add $0x8, %rsp

49dbd5: c3 retq

Notice that the machine representation of the callq is actually “the address of the end of this opcode (0x49dbd1) plus
0x0000bc8f” which gives 0x4a9860, or helper_cpuid. Thus the translator needs not only the compiled output from
each micro-op C function but also the information about which parts of the binary must be rewritten in which way.
This is exactly the relocation meta-data. To ensure that the compiler generates relocation records, helpers are defined
in a separate C file from the micro ops.

Explicitly, the generated C part of the dynamic translator for emitting a op_cpuid micro-op is

extern void op_cpuid();

extern char helper_cpuid;

memcpy (gen_code_ptr, (void *) ((char *)&op_cpuid+0), 13);

*(uint32_t *) (gen_code_ptr + 5) = (long) (&helper_cpuid) - (long) (gen_code_ptr + 5) + -4;
gen_code_ptr += 13;

Here, five bytes into the host instruction stream, the dynamic translator will land a computed expression such that at
runtime the call is correctly dispatched to helper_cpuid.

15This has not been thoroughly verified, but it is the case at least on X86-32, X86-64, and PPC.
16 At the moment QEMU does not support multiple processors in the guest, so while this would move the state pointer from per-CPU to
per-process storage, it is hoped that this move would not alter semantics or correctness of the program.

12

3.4.2 Relocation to Simulate Immediate Parameters

The X86 micro-op corresponding to an “immediate load long” is op-movl_TO_imu (target-i386/op.c:427), which, with
some explanatory definitions (from dyngen-exec.h) above is:

static int __op_paraml;
#define PARAM1 ((long) (&__op_paraml))
void OPPROTO op_movl_TO_imu(void)
{
TO = (uint32_t)PARAM1;
}

The code, as written, simply loads the address of a global variable, __op_paraml into the temporary T0. However, this
is not quite its use. Since this global is subject to relocation and link time, dyngen has a handle into the translation
and can control exactly the value that is loaded to the register. Explicitly, this compiles (again, with GCC 4.1.3 on
X86-64) to

0000000000497019 <op_movl_TO_imu>:
497019: 44 8d 3d 7c 3e 27 02 1lea 36126332(%rip),%rl5d # 270ae9c <__op_paraml>
497020: c3 retq

Here again we see indirection relative to the instruction pointer — “to load the value 0x270ae9c, add 0x02273e7c to
the current instruction pointer, 0x497019” — though one could imagine instead that the compiler and linker may have
emitted an absolute load. Either case would suffice, as the relocation data allows the dynamic translator to place any
value into TO. The C code generated to emit op-movl_TO_imu is

long paraml;

extern void op_movl_TO_imu();

memcpy (gen_code_ptr, (void *) ((char *)&op_movl_TO_imu+0), 7);

paraml = *opparam_ptr++;

*(uint32_t *) (gen_code_ptr + 3) = paraml - (long)(gen_code_ptr + 3) + -4;
gen_code_ptr += 7;

We see that three bytes into the host opcode stream a computed value will be landed such that at execution time the
desired value of the parameter (a scalar value, such as $0x5 or $0x2BADDOOD, not the address of any particular symbol)
will arrive in %r15d, the host register assigned to back the micro-op virtual register TO.

The same mechanism is used to fold in addresses for non-local control flow. A slight variant is used to extract offsets
into the translation buffers for switching off translation buffer chaining.

3.4.3 Relocation and Intermediate Formats of Compilation

Expanding on earlier discussion, dyngen currently takes the .o version of the micro-ops and emits C code to copy and
do the relocation patching at runtime (see Figure B). However, dyngen depends upon the intermediate format having
both the native opcodes and the relocation data.

3.5 Translation Block Structure

Currently, translation buffers are pasted together centerd] of each of the selected micro-op routines.

3.6 Micro-Op Non-local Control Flow

Despite that micro-ops are ostensibly written in C, use is made of GNU extensions to achieve non-local control flow
transfer. This is used for two ends: exiting the translation unit, and branching inside one and to another translation
unit.

3.6.1 Exiting The Translation Buffer

The first, exiting the translation unit, is comparatively simple, so we describe it first. The translator can emit code to
bail from a translation unit at any point inside the unit. The micro-op for this makes use of a macro, EXIT_TB(), which
is defined per-host-architecture to be a RET via inline assembler.

In order for this mechanism to work, it must be the case that the stack does not accumulate junk: when it comes
time to return, the return address must be at the top of the stack. This unstated dependency happens to be satisfied
by GCC’s particular choice of compilation strategies for sufficiently simple functions like those of the micro-ops library.

17Complete with cream filling...

13

3.6.2 Jumping Within A Translation Buffer

Since the size of each micro-op core is known even before code generation has taken place, the code responsible for
selecting micro-ops can keep track of the current offset into the translation buffer. This offset is captured whenever a
label is desired; the list of labels is then passed to dyngen’s emitted code and used to rewrite the instruction stream,
thanks again to relocation records. Specifically, whenever a micro-op wishes to make a non-local jump, it uses the
macro GOTO_LABEL_PARAM(N), which is simply an inline assembler jump (defined per host architecture) to another
abusive symbol, __op_gen_labelN. In response to this symbol, dyngen’s emitted code pulls the Nth label from the given
array and patches that in for the JMP’s target.

3.6.3 Chaining Translation Buffers

Non-local control transfer is further used across translation units to chain translations together to avoid having to
return to the emulation loop. Such chains are undone on an interrupt to return control to QEMU. Each translation
unit meta-data object has two patch locations for such chaining, providing up to two successors, as used by conditional
jumps.

There are three implementations of QEMU’s mechanism for translation buffer chaining, GOTO_TB():

e A X86-specific version.
e A PPC-specific version.
e A GNU C implementation making use of GNU C’s Labels as Values extension |4, Section 5.3].

While none of these implementations are suitable for use on Plan 9, it is instructive to consider at least one for
concreteness. Tragically, all of the mechanisms here are full of horrors: the host-specific versions “know” which type of
relocation records will be emitted by the linker in response to their code, and the GNU C implementation is remarkably
odd.

The X86-specific version is inline assembler but probably simpler to explain than the GNUisms in the GNU C
implementation. The inline assembler (from exec-all.h:333), with some manual preprocessing, is:

.section .data
__op_label##n#.op_goto_tb##n :
.long 1f
.section .text
jmp __op_jmp##n
1:
Here n is a parameter to GOTO_TB(); it is either 0 or 1 depending on which meta-data slot is being used for this jumpﬁ.
What this achieves is to place a jump instruction with a destination determined by relocation, using another class of
abusive symbols, __op_jmpN. Dyngen places the address of the patch location into an array for QEMU’s use. The symbol
placed in .data is yet another abusive class, __op_labelN to which dyngen responds by producing code to export the
address of the relocation (the address of the instruction after the jmp) for the emulator’s use.

After code generation, the translation block’s chains are reset, meaning that for the host-specific versions, the jump
location is patched with the address of the next instruction. After the micro-op containing GOTO_-TB(), the translator
will have placed micro-ops to store the instruction pointer and return from the translation unit back to the control
loop. Upon either finding the next translation in cache or translating it anew, the jump location will be patched to be
the head of that unit and the translation units’ meta-data will be updated to show that they are linked. Thus, the next
time this translation unit runs, it will jump directly to its successor, rather than have to involve the main loop.

4 Achieving Dynamic Translation on Plan 9 Hosts

4.1 Compiling The Dynamic Translator
FIXME

4.2 Requirements of Micro-Op Control-flow Graphs
4.2.1 kencc and Serializability

We have observed that cc — in particular the loader — apparently tends not to produce serializable routines, even
from code with “obviously serializable” control graphs such as those in Figure @ Further, it is observationally
indifferent to syntactic “suggestions.” This seems to stem from Plan 9’s relatively unique calling convention, whereby
most functions do not need prologues or epilogues. For example, with and without the label and gotos, the code of

18This example is marginally simplified; the micro-op name, here op-_goto_tbN, is also a parameter to the macro. For the moment, though,
there are no other consumers and so this example suffices.

14

int

Figure @compiles by 8c into the intermediate representation shown in Figure but is loaded by 81 into the host
code shown in Figure

Removing the statement global2 = 1; merely removes its corresponding instruction from the emitted code but
does not change the result’s structure. Thus defining FORCE_RET() to be a statement with side-effects is insufficient
under cc. Such productions are not suitable for dyngen’s use as they always end in the middle.

For 81, the relevant code motion is carried out in pass.c:/"xfol. Some investigatory effort towards modifying
this routine to produce serializiable functions, but no meaningful results have been achieved. However, it has not been
deemed impossible either, so this avenue of attack remains open. Also remaining is to investigate other loaders.

global, global2;

void quux(int a)

{ TEXT quux+0(SB),0,$0
if (a > 0) { CMPL a+0(FP),$0
global = 0; JLE ,4(PC)
goto out; MOVL $0,global+0(SB)
} else { JMP ,3(PC)
global = 1; J¥P ,3(PC) quux CMPL a+0x0(FP), $0x0
goto out; MOVL $1,global+0(SB) quux+0x5 JLE quux+0x1c(SB)
} JMP ,1(PC) quux+0x7 MOVL $0x0, global(SB)
out: JMP ,1(PC) quux+0x11 MOVL $0x2, global2(SB)
global2 = 1; MOVL $2,global2+0(SB) quux+0x1b RET
return; RET , quux+0xlc MOVL $0x1, global(SB)
} RET , quux+0x26 JMP quux+0x11(SB)
(a) Example micro-op like code. (b) Intermediate output of 8c. (c) Final output produced by 81.

Figure 5: Demonstrating cc’s charmingly unique output

4.2.2 Alternatives

Since the micro-ops are all built at once (per guest architecture), it is possible that we could add a loader flag to ensure
that all functions had only one return, placed at their highest address. This would allow us to define away FORCE_RET
and trust the loader to do the right thing, rather than scatter FORCE_RETs wherever necessary whenever the compiler
or loader changed behaviors. However, since we cannot load an already loaded program, an additional program would
have to extract the fully loaded, modulo relocation, micro-op bodies and generate C files containing the host code as
data to be compiled into QEMU.

It may also be possible to shim an intermediate program between the compiler and the loader, rewriting the
intermediate format so that the loader produces serializable routines. This would be akin to the syntactic “suggestions”
attempted with the gotos in but at the assembler level. From investigation of 81 this seems to be more difficult
than the loader flag above.

Additional discussion can be found in Section

Solution

See the discussion in Section

4.3 Register Allocation

An alternative, if registerization is indeed desiredB could be crafted from the extern register variable class offered
by cc. However, this class works correctly only when the entire program is compiled with all such declarations available
for all compilation units. If at build time, we build all of QEMU’s dependencies, such as libc and libdraw, with
a modified u.h that includes the extern register declarations, this should suffice. This may make debugging the
resulting executable more painful as the acid definitions will differ from the ones of the system library.

Solution

e The simplest solution may well be to avoid explicit register allocation altogether. There is extant code in the
QEMU code base to do this.

19Rules of optimization: don’t do it, and, for experts only, don’t do it yet.

15

e Since registerization is likely to provide some non-trivial speedup of guest code, we may avail ourselves of the cc’s
extern register storage class. However, the easiest way to meet the requirement of universal exposure to these
declarations will be to build our own libc, libdraw, and other libraries we build.

4.4 Relocation
4.4.1 Relocation and Intermediate Formats of Compilation

cc’s intermediate format (the rough correspondence of a .o file) can still be relocated, as references are still by name,
but does not contain native instructions, as those are only selected in full by the loader. Conversely, the loader generally
fully specifies the layout of an executable and so discards the relocation data. However, it is hoped that the loader’s
understanding of dynamically loaded modules (from the delayed dynld(2) projecﬂ) will be sufficient to emit the
relocation data that dyngen needs.

It seems that some small extensions to dynld(2) may be necessary. For the prurposes of constant loading, dyngen
needs to know which symbols a relocation record references. This information is as readily available as anything is in the
other executable formats dyngen understands, but dynld(2) currently does not offer any real semantic interpretation
of relocation records to its callers. We hope that a function similar to dynreloc() (and taking the same parameters)
which returned the relevant entry, if any, in the import table would suffice. Sadly, such a function would definitionally
be per-architecture, but would be very simple.

4.4.2 Plan 9’s Dynamic Load Facility
FIXME

Solution

e cc’s relocation capabilities are probably sufficient for the task at hand. If not, the changes necessary are probably
small and can be contributed.

4.5 Translation Block Structure

We have trouble coring micro-ops on on Plan 9, so it would make sense to see if we could leave the functions unaltered
as a first pass. In particular, this implies that we will have to ensure that we can move from one micro-op to the next
(the not-taken successor) by returning. One layout of a translation buffer that would do this is

CALL &op_1
CALL &op_2
CALL &op_3
RET
op_1
op_2
op_3

This will slow down the simulation a little, but may be passable as a proof of concept. We still relocate the function
bodies out but leave them containing RET instructions. Then they will return back to our chain of CALL instructions
and all will be well. However, it is not clear that this layout deals well with inter-micro-op branches: we can simulate
falling from one to the next just fine, but doing anything out of order looks hard. Instead of keeping the entire future
on the stack, we could use a structure like

push 12
op_1

12: push 13
op_2

13: push 14
op_3

which keeps only the immediate successor micro-op on the stack. From an outside perspective, all we have done is grow
the size of each micro-op by as many bytes as we need for the push. Since these bytes are a prefix to the micro-op,
generated labels will naturally point there. Out-of-order control flow is available in this design using a few possibilities:

e Overwrite the successor value on the stack before returning.
e Manually pop the successor (in assembler, for example) before jumping to the appropriate label (and push).

e A longjmp()-style call to the next label which resets the stack.

20Which seems to be present in Inferno

16

What remains is to discuss non-local control flow more fully and check that it can, indeed, work with this translation
buffer structure.

Solution

e We will (ab)use the stack to store the left successor micro-op’s address before entering a micro-op.

4.6 Micro-Op Non-local Control Flow
4.6.1 Revisiting GOTO_TB()

The GNU C version causes GCC to emit an indirect jump (e.g., JMP %EAX). It loads the target address directly from
the translation buffer meta-data. It too exports a __op_labelN symbol, but rather than being patched

4.6.2 A Return To C

All of this poses a large problem: C proper (i.e., GNU extensions and inline assembler aside) lacks any non-local control
flow transfer mechanism other than a function call. It may also be useful to note that full functions written in assembler
are available (and reasonably portable) on Plan 9; into this latter category fall setjmp and longjmp.

It should be noted that the use of jumps out of C function bodies is remarkably complex as it imposes many
requirements of the machine code at the jump site. In particular, the stack pointer must be back where it was at
function entry so as to avoid leaving trash aroundel Further, all live variables must have been committed to backing
store as there will be no future point to do so; fortunately, this is required of global state at function call sites.

The semantics of GOTO_TB() make it more complex than just the constant jumps used by GOTO_LABEL_PARAM(), as
it must be able to handle both the chained and unchained situations, and it must be easy for external code to toggle
which behavior is active. The simplest way to achieve this may be to define GOTO_TB(whichSuccessor) using a host
state in the current translation buffer meta-data structure and a host conditional, as in:

void *next = env->curr_tb->successor [whichSuccessor];
if (next)
magic_jump_to(next) ;

This mechanism is slower (incurring the cost of a conditional on all paths) but makes use of only “normal” relocation
(for env and whatever function serves the roll of magic_jump-_to).

4.6.3 Using longjmp() Everywhere

C proper and kencc do not allow us to jump to arbitrary pointers or land inline assemblerP]. This and lack of GNU
extensions rule out all current mechanisms within QEMU for achieving non-local control flow. In light of all of the
constraints above, it seems easiest to (ab)use longjmp () to achieve all our non-local control flow needs. It is a simple,
well-documented mechanism which gives us explicit control over both the stack and instruction pointers.

We may make a small modification to the CPU execution loop and enable the use of longjmp() to return from
a translation block. This will require storing a jump buffer in the host state associated with the current guest CPU.
Explicitly, the emulator loop now calls setjmp(&env->exitjbuf); before calling a translation buffer, and EXIT_TB()
becomes

longjmp (&env->exitjbuf) ;
Normal relocation will suffice to allow access to env.
We can FIXME
Both jumps to other translation units and jumps to micro-ops within this translation unit can make use of
longjmp()’s ability to reset the stack to alleviate concern over micro-ops use of stacks, as long as we first store it
on entry into a translation buffer.

4.6.4 Alternatives
STOP READING

Solution

e We can offer an immediate solution to EXIT_TB, namely longjmp().

211t is not strictly required that we not leave trash on the stack, but it is generally considered rude and would only serve to increase the cache
footprint of the translation buffer.

22While the GCC developers doubtless view the absence of these extensions as bugs, one may achieve enlightenment if one views them as
features.

17

5 Other Porting Issues
5.1 Register Calling Conventions

The software MMU code makes use of a GCC extensionPd to modify the register usage of its calling convention for
several load and store instructions. Further, the modified register convention is hard-coded in hand-written inline
assembler for their callers. However, it seems that most of this can be switched off and the C version used instead.

Solution

This is an optimization used by X86-on-X86 simulation and may be considered premature optimization for the purposes
of the initial port.

5.2 Translation Block Program Counter

Helper code for the translated micro-op stream frequently wishes to know the actual program location, and so uses
GCC’s __builtin_return_address(0) function to extract it from the stack.

Solution

It should be straightforward to replace this with getcallerpc.

5.3 Explicit Branch Prediction Overrides

Some use is made of GCC’s __builtin_expect(v,c) extension to provide hints to the processor’s branch predictor.
This may be dealt with by #define-ing away the annotation or adding branch prediction hints to cc. The latter sounds
like a project for another time, if ever a convincing case for their use is madeFJ

Solution

This may also be viewed as premature optimization for the purposes of the initial port and so removing the annotation
should suffice.

5.4 Memory Management

QEMU supports both a “softmmu” mode and a “user” mode emulation strategy. The former emulates a full memory
management unit (with translation cache), while the latter uses mmap and mprotect to host a system inside user usable
address space. This is intended for running executables compiled for one architecture on another, under the same
operating system.

The absence of mmap could be overcome by use of segattach, but no mechanism parallel to mprotect exists on Plan 9.
Fortunately, “user” mode emulation is not likely attractive to Plan 9 users and so may be considered unnecessary to
por

Solution

It seems that system emulation mode uses no advanced memory tricks and so nothing beyond 1ibc’s standard allocator
functions will be necessary.

5.5 Locking

QEMU uses some limited test-and-set locking techniques for threading support in “user” emulation mode (not yet in
“system” mode; SMP is implemented by round-robin emulation of the CPUs) and for CPU interrupt management.
Currently every architecture codes in inline asm the appropriate test-and-set mechanism for implementing locks.

Some locking is sprinkled around the code in what seems to be active development towards taking advantage of
multiple host processors. However, this code is incomplete which may pose problems; see Section

23The rather ugly __attribute((regparm(N))) which specifies that the first N parameters should be passed as registers.

24There have been discussions on GCC’s mailing list about using branch predictor hints for pointers that result from malloc(), which strikes
this author as remarkably silly. Hints also appear as decoration in Linux but this author is not aware of performance figures demonstrating a
non-decorative utility.

25While it is acknowledged that “user” mode is insecure — the guest code can modify QEMU’s host code — it is still actively developed
upstream. The previous assertion that it was deprecated therefore seems misleading.

18

Challenge Current Favored Solution

Control Flow A modified translation block structure.

Register Allocation Optimization; defer.

Register Calling Convention | Optimization; defer.

Relocation The extant dynld(2) mechanisms provide sufficient relocation meta-data.
Program Counter getcallerpc will suffice.

Branch Prediction Overrides | Optimization; defer.

Memory Management It is believed that libc’s standard allocator will suffice.
Locking Trivially reimplemented using 1ibc’s _tas.

Signals Reimplemented in terms of notes.

Asynchronous 1/0 Optimization; defer.

Table 1: Summary of identified difficulties and the proposed mechanism of solution.

Solution

Plan 9’s libc provides a _tas() function which implements test-and-set.

5.6 Interacting With The Outside World

QEMU makes use of signals and POSIX AIO on UNIX and UNIX-like hostd to deliver interrupts. Notable consumers
include the QEMU timer/clock driver (which uses SIGALARM) and the block device driver (which prefers to use
POSIX AIO). Interestingly, it seems that file descriptors from streams (e.g., the Ul connection to X or a VNC client,
emulated network sockets, emulated serial ports, etc.) are polled via select only after a timer tick.

Every code path which wishes to deliver an interrupt to the guest CPU must call cpu_interrupt(). There is a
comment (v1.c:7176) in some Windows specific code which reads

/* Note: cpu_interrupt() is currently not SMP safe, so we force
QEMU to run on a single CPU */

This is quite the understatement: currently there is no synchronization between the cpu emulator loop’s and the
interrupt delivery path’s attempts to modify translation buffer chaining. This mostly works as currently QEMU in
“system” mode is single-threaded, implicitly serializing everything including signal delivery. However, it is not clear
that the current code is immune to interrupt deferral for arbitrary amounts of time or los£21.

Plan 9’s notes also act as interrupts rather than acting in separate threads (as in Windows), so a straightforward
transform should yield code that is as correct on Plan 9 as it is on other platforms.

Solution

The Plan 9 note mechanism should suffice for timer management. The block device code appears to have some way of
avoiding use of AIO, but details are fuzzy.

5.7 User Interface

Tragically, little thought has been given to this. However, since Uriel has an SDL port to Plan 9, it is sincerely hoped
that little effort is necessary to get at least a simulated VGA display, keyboard, and mouse available.
It is further hoped that with relatively little effort QEMU can be taught about /net for user network emulation.

6 Summary

This paper presents an initial attempt at a strategy map for porting QEMU to Plan 9. From reading the QEMU paper
[1], reading of QEMU code, some reading of the compiled binaries, and some hints as to where to begin, a series of
potential issues were identified. For each, at least one solution is herein proposed for review; whenever possible, an effort
has been made to identify other possible solutions as well. It should be noted that this is by no means an exhaustive
list. For quick reference, the favored solution for each identified problem is tabulated in Table [l

26 And similarly complex mechanisms on Windows hosts
27See Appendix [Al

19

References

[1] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. USENIX, 2005. URL
http://www.usenix.org/publications/library/proceedings/usenix05/tech/freenix/full_papers/bellard/bellard.pdf.

[2] GCC 4.2 Manual. Free Software Foundation, Inc. URL http://gcc.gnu.org/onlinedocs/gcc-4.2.0/gcc/.
[3] Kevin Lawton. BOCHS, The Open-Source IA-32 Emulation Project. URL |http://bochs.sourceforge.net/|

[4] Johannes Schindelin. Porting QEMU to new CPU. 2004. URL
http://libvncserver.sourceforge.net/qgemu/gemu-porting.html.

20

http://www.usenix.org/publications/library/proceedings/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
http://gcc.gnu.org/onlinedocs/gcc-4.2.0/gcc/
http://bochs.sourceforge.net/
http://libvncserver.sourceforge.net/qemu/qemu-porting.html

A

QEMU Interrupt Bug

The CPU interrupt dispatch mechanism’s goal is to unchain whatever translation block is running and force control
flow to return to the main CPU execution loop. Its basic structure is:

1.
2.
3.
4.

Mark an interrupt-specific flag.
Fetch the current translation block.
Remove the environment’s pointer to the current translation block.

Recursively unchain the current translation block.

The main CPU execution loop, to which we are trying to ensure control flow returns, has the basic structure:

1.
2.
3.

4.
5.

Check for interrupts in the flag word and if any are set, handle them.
Find or generate the next translation block.

If we are chaining (i.e. not on an exception path and the just-executed translation block left behind patching
instructions), patch the current translation block with a chain to the next translation block.

Set the next translation block as the current.

Run the current translation block.

Note that there is a clear point, just after step Bl of the CPU execution loop, which we may call the key point, where
all of the following conditions can hold:

1.

A commitment has been made to which translation block will run next, but it is not yet considered the current
translation block.

It might be the case that the current translation block is not chained to the new translation block. (More strictly,
it might be the case that the current translation block’s transitive closure under chaining does not include the
new translation block.)

The next translation block may have extant chaining patches, if it was pulled from cache. In the worst case, it
may be part of a cyclic chain.

The first condition ensures that we have already selected our next translation block and are not able to select a different

one.

The second condition implies that the interrupt dispatch mechanism’s recursive unchaining may not affect the

already-selected translation block’s chaining. The addition of the third condition yields that there are cases where
interrupt dispatch is deferred until the next asynchronous interrupt (e.g., timer tick). If interrupts are not queued, but
merely use the flag bits to signal their pending status, then this bug may additionally imply loss of interrupts.

The fix seems to be either disabling asynchronous signals during parts of the CPU execution loop or to re-check for
interrupts after the next translation block has been set as the current. The former is slow, imposing two system calls
per pass through the CPU execution loop. The latter implies more code re-structuring than I wish to do, as the bigger
problem of the port remains.

21

	Overview
	The Nature of QEMU
	Simulated Hardware
	Portability
	Roadmap

	QEMU The Emulator
	Advanced Tricks With Translation Buffers
	Function Calls To Reduce Translation Size
	Synchronous Fault Escape Hatch
	Lazy Evaluation
	Chaining Translation Buffers
	Jumping Around Translation Buffers
	Translation Buffers as Data Structures

	A Closer Look at Micro-Ops
	Coring
	Register Allocation
	External References
	Constant Folding
	Providing Non-local Control Flow
	Micro-Ops as Data Structures

	Achieving Dynamic Translation on UNIX/GCC Hosts
	Compiling the Dynamic Translator
	Requirements of Micro-Op Control-flow Graphs
	Register Allocation
	Relocation
	Relocation of Functions and Globals
	Relocation to Simulate Immediate Parameters
	Relocation and Intermediate Formats of Compilation

	Translation Block Structure
	Micro-Op Non-local Control Flow
	Exiting The Translation Buffer
	Jumping Within A Translation Buffer
	Chaining Translation Buffers

	Achieving Dynamic Translation on Plan 9 Hosts
	Compiling The Dynamic Translator
	Requirements of Micro-Op Control-flow Graphs
	kencc and Serializability
	Alternatives

	Register Allocation
	Relocation
	Relocation and Intermediate Formats of Compilation
	Plan 9's Dynamic Load Facility

	Translation Block Structure
	Micro-Op Non-local Control Flow
	Revisiting GOTO_TB()
	A Return To C
	Using longjmp() Everywhere
	Alternatives

	Other Porting Issues
	Register Calling Conventions
	Translation Block Program Counter
	Explicit Branch Prediction Overrides
	Memory Management
	Locking
	Interacting With The Outside World
	User Interface

	Summary
	QEMU Interrupt Bug

