
Satisfiability Modulo Theories in Practice

Clark Barrett

barrett@cs.nyu.edu

New York University

CMU, April 16, 2007 – p.1/71

Motivation

Automatic analysis of computer hardware and software
requires engines capable of reasoning efficiently about large
and complex systems.

Boolean engines such as Binary Decision Diagrams and SAT
solvers are typical engines of choice for today’s industrial
verification applications.

However, systems are usually designed and modeled at a
higher level than the Boolean level and the translation to
Boolean logic can be expensive.

A primary goal of research in Satisfiability Modulo Theories
(SMT) is to create verification engines that can reason
natively at a higher level of abstraction, while still retaining the
speed and automation of today’s Boolean engines.

CMU, April 16, 2007 – p.2/71

Modeling Reactive Systems Using CVC3

Consider the following lines of code:

l0 : a[i] := a[i] + 1;

l1 : a[i+ 1] := a[i− 1] − 1;

l2 :

This can be modeled in CVC3 [BT07] as follows:

i0, i1, i2 : INT;

a0, a1, a2 : ARRAY INT OF INT;

ASSERT (a1 = a0 WITH [i0] := a0[i0]+1) AND (i1 = i0);

ASSERT (a2 = a1 WITH [i1+1] := a1[i1-1]-1) AND (i2 = i1);

CMU, April 16, 2007 – p.3/71

Modeling Reactive Systems Using CVC3

To check whether the result is equivalent when the two
statements are swapped, we can use the following CVC3
QUERY.

i0, i1, i2, i3, i4 : INT;

a0, a1, a2, a3, a4 : ARRAY INT OF INT;

ASSERT (a1 = a0 WITH [i0] := a0[i0]+1) AND (i1 = i0);

ASSERT (a2 = a1 WITH [i1+1] := a1[i1-1]-1) AND (i2 = i1);

ASSERT (a3 = a0 WITH [i0+1] := a0[i0-1]-1) AND (i3 = i0);

ASSERT (a4 = a3 WITH [i3] := a3[i3]+1) AND (i4 = i3);

QUERY (i2 = i4 AND a2 = a4);

CMU, April 16, 2007 – p.4/71

Modeling Reactive Systems Using CVC3

A more efficient encoding ignores variables that do not
change and uses the LET construct to introduce temporary
expressions.

i : INT;

a : ARRAY INT OF INT;

QUERY

(LET a1 = a WITH [i] := a[i]+1 IN

a1 WITH [i+1] := a1[i-1]-1) =

(LET a1 = a WITH [i+1] := a[i-1]-1 IN

a1 WITH [i] := a1[i]+1);

CMU, April 16, 2007 – p.5/71

Modeling Reactive Systems Using CVC3

Because CVC3 includes arrays, arithmetic, and propositional
reasoning, most of the operations found in real programs can
be modeled precisely.

Operations not supported by CVC3 can often be modeled as
uninterpreted functions.

By modeling memory as an array, pointers can also be dealt
with.

CMU, April 16, 2007 – p.6/71

Practical Issues for Combinations of Theories

Cesare Tinelli focused on a clean theoretical presentation of
theory combination.

In this talk, we will try to answer some of the questions that
arise when these procedures are implemented.

As usual, the devil is in the details.

We will focus on the quantifier-free T -satisfiability problem,
where T is made up of the union of theories whose
signatures are disjoint.

The reason for this focus is that it is still the most common
case and the lessons learned are often helpful in more
general cases.

CMU, April 16, 2007 – p.7/71

Roadmap

• Some Specific Theories
• Shostak’s Method
• Implementing Nelson-Oppen
• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.8/71

Roadmap

• Some Specific Theories
◦ Equality (with “uninterpreted” functions)
◦ Arithmetic
◦ Arrays

• Shostak’s Method
• Implementing Nelson-Oppen
• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.8/71

Roadmap

• Some Specific Theories
• Shostak’s Method
• Implementing Nelson-Oppen
• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.8/71

Roadmap

• Some Specific Theories
• Shostak’s Method

◦ What is Shostak’s method?
◦ Shostak vs Nelson-Oppen
◦ Practical lessons from Shostak

• Implementing Nelson-Oppen
• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.8/71

Roadmap

• Some Specific Theories
• Shostak’s Method
• Implementing Nelson-Oppen
• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.8/71

Roadmap

• Some Specific Theories
• Shostak’s Method
• Implementing Nelson-Oppen

◦ Eliminating the purification step
◦ Integrating rewriting
◦ Efficiently searching arrangements

• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.8/71

Roadmap

• Some Specific Theories
• Shostak’s Method
• Implementing Nelson-Oppen
• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.8/71

Roadmap

• Some Specific Theories
• Shostak’s Method
• Implementing Nelson-Oppen
• Efficient Boolean Reasoning

◦ The importance of being minimal
◦ The importance of being eager
◦ Decision heuristics
◦ SAT heuristics and completeness
◦ Non-convexity issues

• Reasoning about Quantifiers

CMU, April 16, 2007 – p.8/71

Roadmap

• Some Specific Theories
• Shostak’s Method
• Implementing Nelson-Oppen
• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.8/71

Roadmap

• Some Specific Theories
• Shostak’s Method
• Implementing Nelson-Oppen
• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.9/71

Theories

Recall that a theory is a set of first-order sentences.

For our purposes, we will define a theory as a set of
first-order sentences closed under logical implication.

Define the set Cn Γ of consequences of Γ to be {σ | Γ |= σ}.

Then T is a theory iff T is a set of sentences and T = Cn T .

The T -satisfiability problem consists of deciding whether
there exists a structure A and variable assignment α such
that (A, α) |= T ∪ ϕ for an arbitrary first-order formula ϕ.

The quantifier-free T -satisfiability problem restricts ϕ to be
quantifier-free.

CMU, April 16, 2007 – p.10/71

Theories

We will start by looking at a few specific interesting theories.

A good reference on many of these theories is [MZ03].

CMU, April 16, 2007 – p.11/71

The Theory TE of Equality

The theory TE of equality is the theory Cn ∅.

Note that the exact set of sentences in TE depends on the
signature in question.

Note also that the theory does not restrict the possible values
of the symbols in its signature in any way. For this reason, it is
sometimes called the theory of equality with uninterpreted
functions (EUF).

The satisfiability problem for TE is just the satisfiability
problem for first-order logic, which is undecidable.

The satisfiability problem for conjunctions of literals in TE is
decidable in polynomial time using congruence closure.

CMU, April 16, 2007 – p.12/71

The Theory TZ of Integers

Let ΣZ be the signature (0, 1,+,−,≤).

Let AZ be the standard model of the integers with domain Z.

Then TZ is defined to be the set of all ΣZ-sentences true in
the model AZ .

As showed by Presburger in 1929, the general satisfiability
problem for TZ is decidable, but its complexity is
triply-exponential.

The quantifier-free satisfiability problem for TZ is “only”
NP-complete.

CMU, April 16, 2007 – p.13/71

The Theory TZ of Integers

Let Σ×
Z be the same as ΣZ with the addition of the symbol ×

for multiplication, and define A×
Z and T×

Z in the obvious way.

The satisfiability problem for T×
Z is undecidable (a

consequence of Gödel’s incompleteness theorem).

In fact, even the quantifier-free satisfiability problem for T×
Z is

undecidable.

CMU, April 16, 2007 – p.14/71

The Theory TR of Reals

Let ΣR be the signature (0, 1,+,−,≤).

Let AR be the standard model of the reals with domain R.

Then TR is defined to be the set of all ΣR-sentences true in
the model AR.

The satisfiability problem for TR is decidable, but the
complexity is doubly-exponential.

The quantifier-free satisfiability problem for conjunctions of
literals (atomic formulas or their negations) in TR is solvable in
polynomial time, though exponential methods (like Simplex or
Fourier-Motzkin) tend to perform best in practice.

CMU, April 16, 2007 – p.15/71

The Theory TR of Reals

Let Σ×
R be the same as ΣR with the addition of the symbol ×

for multiplication, and define A×
R and T×

R in the obvious way.

In contrast to the theory of integers, the satisfiability problem
for T×

R is decidable though the complexity is inherently
doubly-exponential.

CMU, April 16, 2007 – p.16/71

The Theory TA of Arrays

Let ΣA be the signature (read ,write).

Let ΛA be the following axioms:

∀ a ∀ i ∀ v (read (write (a, i, v), i) = v)
∀ a ∀ i ∀ j ∀ v (i 6= j → read (write (a, i, v), j) = read (a, j))
∀ a ∀ b ((∀ i (read (a, i) = read (b, i))) → a = b)

Then TA = Cn ΛA.

The satisfiability problem for TA is undecidable, but the
quantifier-free satisfiability problem for TA is decidable (the
problem is NP-complete).

CMU, April 16, 2007 – p.17/71

Theories of Inductive Data Types

A inductive data type (IDT) defines one or more constructors,
and possibly also selectors and testers.

Example: list of int

• Constructors: cons: (int, list) → list, null: list

• Selectors: car: list → int, cdr: list → list

• Testers: is cons, is null

The first order theory of a inductive data type associates a
function symbol with each constructor and selector and a
predicate symbol with each tester.

Example: ∀x : list. (x = null ∨ ∃ y : int, z : list. x = cons(y, z))

CMU, April 16, 2007 – p.18/71

Theories of Inductive Data Types

A inductive data type (IDT) defines one or more constructors,
and possibly also selectors and testers.

Example: list of int

• Constructors: cons: (int, list) → list, null: list

• Selectors: car: list → int, cdr: list → list

• Testers: is cons, is null

For IDTs with a single constructor, a conjunction of literals is
decidable in polynomial time using an algorithm by
Oppen [Opp80].

For more general IDTs, the problem is NP complete, but
reasonbly efficient algorithms exist in practice [BST06].

CMU, April 16, 2007 – p.18/71

Other Interesting Theories

Some other interesting theories include:

• Theories of bit-
vectors [CMR97, Möl97, BDL98, BP98, EKM98, GBD05]

• Set theory [CZ00]

CMU, April 16, 2007 – p.19/71

Roadmap

• Specific Theories
• Shostak’s Method
• Implementing Nelson-Oppen
• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.20/71

Shostak’s Method

Despite much progress in our understanding in the last few
years, there is still an aura of mystique and misunderstanding
around Shostak’s method.

In this part of the talk, I hope to clear things up, focusing on
what we can learn about practical implementation of decision
procedures.

CMU, April 16, 2007 – p.21/71

Shostak’s Method

In 1984 [Sho84], Robert Shostak published a paper which
detailed a particular strategy for deciding satisfiability of
quantifier-free formulas in certain kinds of theories.

The original version promises three main things:

1. For theories T which meet the criteria (we will call these
Shostak theories), the method gives a decision procedure
for quantifier-free T -satisfiability.

2. The method has the theory TE “built-in”, so for any
Shostak theory T , the method gives a decision procedure
for quantifier-free T ∪ TE -satisfiability.

3. Any two Shostak theories T1 and T2 can be combined to
form a new Shostak theory T1 ∪ T2.

CMU, April 16, 2007 – p.22/71

Shostak’s Method

Unfortunately, the original paper contains many errors and a
number of papers have since been dedicated to correcting
them [CLS96, RS01, SR02, KC03, BDS02b, Gan02].

When the dust settled, it finally became clear that the first two
claims can be justified, but the last one is false.

Most proponents of the method now agree that any attempt to
combine theories is best understood in the context of the
Nelson-Oppen method.

However, in this context, there is much that can be learned
from Shostak’s method.

CMU, April 16, 2007 – p.23/71

Shostak’s Method

The first helpful insight is how to build a decision procedure
for a single Shostak theory.

Recall that the Nelson-Oppen method gives a decision
procedure for a combination of theories given decision
procedures for the component theories.

However, the Nelson-Oppen method provides no help on how
to build the decision procedures for the component theories.

Shostak provides one solution for the special case of Shostak
theories.

CMU, April 16, 2007 – p.24/71

Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

CMU, April 16, 2007 – p.25/71

Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

CMU, April 16, 2007 – p.25/71

Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

CMU, April 16, 2007 – p.25/71

Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.
Recall that a theory T is convex if for any conjunction of
literals ϕ and variables x1, . . . xn, y1, . . . , yn,

T ∪ φ |= x1 = y1 ∨ · · · ∨ xn = yn implies
T ∪ φ |= xi = yi for some 1 ≤ i ≤ n.

CMU, April 16, 2007 – p.25/71

Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

3. T has a solver solve.

CMU, April 16, 2007 – p.25/71

Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

3. T has a solver solve.
The solver solve must be a computable function from
Σ-equations to sets of Σ-formulas defined as follows:

(a) If T |= a 6= b, then solve(a = b) ≡ {false}.
(b) Otherwise, solve(a = b) returns a set E of equations in

solved form such that T |= [(a = b) ↔ ∃w. E], where w
are fresh variables not appearing in a or b.

CMU, April 16, 2007 – p.25/71

Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

3. T has a solver solve.
The solver solve must be a computable function from
Σ-equations to sets of Σ-formulas defined as follows:

(a) If T |= a 6= b, then solve(a = b) ≡ {false}.
(b) Otherwise, solve(a = b) returns a set E of equations in

solved form such that T |= [(a = b) ↔ ∃w. E], where w
are fresh variables not appearing in a or b.

E is in solved form iff the left-hand side of each equation
in E is a variable which appears only once in E .

CMU, April 16, 2007 – p.25/71

Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

3. T has a solver solve.
The solver solve must be a computable function from
Σ-equations to sets of Σ-formulas defined as follows:

(a) If T |= a 6= b, then solve(a = b) ≡ {false}.
(b) Otherwise, solve(a = b) returns a set E of equations in

solved form such that T |= [(a = b) ↔ ∃w. E], where w
are fresh variables not appearing in a or b.

We denote by E(X) the result of applying E as a
substitution to X.

CMU, April 16, 2007 – p.25/71

Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

3. T has a solver solve.

4. T has a canonizer canon.

CMU, April 16, 2007 – p.25/71

Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

3. T has a solver solve.

4. T has a canonizer canon.
The canonizer canon must be a computable function from
Σ-terms to Σ-terms with the property that

T |= a = b iff canon(a) ≡ canon(b).

CMU, April 16, 2007 – p.25/71

Algorithm Sh

Algorithm Sh checks the satisfiability in T of a set of
equalities, Γ, and an set of disequalities, ∆.
Sh(Γ,∆, canon, solve)
1. E := ∅;
2. while Γ 6= ∅ do begin
3. Remove some equality a = b from Γ;
4. a∗ := E(a); b∗ := E(b);
5. E∗ := solve(a∗ = b∗);
6. if E∗ = {false} then return false;
7. E := E∗(E) ∪ E∗;
8. end
9. if canon(E(a)) ≡ canon(E(b)) for some a 6= b ∈ ∆

then return false;
10. return true;

CMU, April 16, 2007 – p.26/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

−x− 3y + 2z = 1 −x− 3y + 2z = 1

x− y − 6z = 1

2x+ y − 10z = 3

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

−x− 3y + 2z = 1 −x− 3y + 2z = 1

x− y − 6z = 1

2x+ y − 10z = 3

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

x = −3y + 2z + 1 −x− 3y + 2z = 1

x− y − 6z = 1

2x+ y − 10z = 3

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

x− y − 6z = 1 x = −3y + 2z + 1

2x+ y − 10z = 3

2x+ y − 10z = 3

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

x− y − 6z = 1 x = −3y + 2z + 1

2x+ y − 10z = 3

2x+ y − 10z = 3

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

−4y − 4z + 1 = 1 x = −3y + 2z + 1

2x+ y − 10z = 3

2x+ y − 10z = 3

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

y = −z x = −3y + 2z + 1

2x+ y − 10z = 3

2x+ y − 10z = 3

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

y = −z x = 3z + 2z + 1

2x+ y − 10z = 3

2x+ y − 10z = 3 x = −3y + 2z + 1

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

2x+ y − 10z = 3 x = 5z + 1

y = −z

2x+ y − 10z = 3 x = −3y + 2z + 1

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

2x+ y − 10z = 3 x = 5z + 1

y = −z

2x+ y − 10z = 3 x = −3y + 2z + 1

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

z = −1 x = 5z + 1

y = −z

2x+ y − 10z = 3 x = −3y + 2z + 1

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

z = −1 x = 5(−1) + 1

y = −(−1)

2x+ y − 10z = 3 x = −3y + 2z + 1

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

x = −4

y = 1

2x+ y − 10z = 3 z = −1

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

x = −4

y = 1

2x+ y − 10z = 3 z = −1

Note that for this theory, the main loop of Shostak’s algorithm
is equivalent to Gaussian elimination with back-substitution.

CMU, April 16, 2007 – p.27/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

CMU, April 16, 2007 – p.28/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 x 6= 4y

y = 1 x+ w 6= w + z − 3y

z = −1 −4 + w 6= w + (−1) − 3(1)

CMU, April 16, 2007 – p.28/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 x 6= 4y

y = 1 x+ w 6= w + z − 3y

z = −1 −4 + w 6= w + (−1) − 3(1)

CMU, April 16, 2007 – p.28/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 −4 6= 4(1)

y = 1 x+ w 6= w + z − 3y

z = −1 −4 + w 6= w + (−1) − 3(1)

CMU, April 16, 2007 – p.28/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 −4 6= 4

y = 1 x+ w 6= w + z − 3y

z = −1 −4 + w 6= w + (−1) − 3(1)

CMU, April 16, 2007 – p.28/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 −4 6= 4

y = 1 x+ w 6= w + z − 3y

z = −1 −4 + w 6= w + (−1) − 3(1)

CMU, April 16, 2007 – p.28/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 −4 6= 4

y = 1 −4 + w 6= w + (−1) − 3(1)

z = −1 −4 + w 6= w + (−1) − 3(1)

CMU, April 16, 2007 – p.28/71

Example

The most obvious example of a Shostak theory is TR

(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 −4 6= 4

y = 1 w + (−4) 6= w + (−4)

z = −1 −4 + w 6= w + (−1) − 3(1)

CMU, April 16, 2007 – p.28/71

Other Shostak Theories

A few other theories can be handled using this algorithm:
• TZ (without ≤) is also a Shostak theory.
• A simple theory of lists (without the NULL list).

However, the idea of using solvers and canonizers can be
applied to help decide other theories as well:

• One component in decision procedures for TR and TZ
(with ≤).

• Partial canonizing and solving is useful in TA.
• Partial canonizing and solving is useful for the theory of

bit-vectors.

CMU, April 16, 2007 – p.29/71

Shostak and Theory Combination

As mentioned, Shostak’s second claim is that a combination
with TE can be easily achieved.

The details are a bit technical, and the easiest way to
understand it is as a special case of a Nelson-Oppen
combination.

The special part is that the abstract Nelson-Oppen is refined
in several ways that make implementation easier.

We will look at this next.

CMU, April 16, 2007 – p.30/71

Shostak’s Method: Summary

Shostak’s method provides
• a simple decision procedure for Shostak theories
• insight into the usefulness of solvers and canonizers
• insight into practical ways to refine Nelson-Oppen (next)

Shostak’s method does not provide
• a general method for combining theories

CMU, April 16, 2007 – p.31/71

Roadmap

• Specific Theories
• Shostak’s Method
• Implementing Nelson-Oppen
• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.32/71

Implementing Nelson-Oppen

Let’s review the basic Nelson-Oppen procedure.

Suppose that T1, . . . , Tn are stably-infinite theories with
disjoint signatures Σ1, . . . ,Σn and Sat i decides Ti-satisfiability
of Σi(C) literals.

We wish to determine the satisfiability of a ground conjunction
Γ of Σ(C)-literals.

1. Purify Γ to obtain an equisatisfiable set
∧
ϕi, where each

ϕi is i-pure.

2. Let S be the set of shared constants (i.e. appearing in
more than one ϕi).

3. For each arrangement ∆ of S,
Check Sat i(ϕi ∧ ∆) for each i.

CMU, April 16, 2007 – p.33/71

Example

Consider the following example in a combination of TE , TZ ,
and TA:

¬p(y) ∧ s = write (t, i, 0) ∧ x− y − z = 0 ∧
z + read (s, i) = f(x− y) ∧ p(x− f(f(z))).

After purification, we have the following:

ϕE ϕZ ϕA

¬p(y) l − z = j s = write (t, i, j)

m = f(l) j = 0 k = read (s, i)

p(v) l = x− y

n = f(f(z)) m = z + k

v = x− n

CMU, April 16, 2007 – p.34/71

Example

ϕE ϕZ ϕA

¬p(y) l − z = j s = write (t, i, j)

m = f(l) j = 0 k = read (s, i)

p(v) l = x− y

n = f(f(z)) m = z + k

v = x− n

There are 12 constants in this example:
• Shared: l, z, j, y,m, k, v, n
• Unshared: x, s, t, i

There are 21147 arrangements of {l, z, j, y,m, k, v, n}.
Clearly, a practical implementation cannot consider all of
these separately.

CMU, April 16, 2007 – p.35/71

Implementing Nelson-Oppen

In order to obtain a more practical implementation of
Nelson-Oppen, we will consider the following refinements:

• Eliminating the purification step
• Incremental processing with theory-specific rewrites
• Strategies for searching through arrangements

CMU, April 16, 2007 – p.36/71

Implementing Nelson-Oppen

As most implementers of SMT systems will tell you, the
purification step is not really necessary in practice.

In fact, a simple variation of Nelson-Oppen can be obtained
that does not require purification [BDS02b].

Given a set of mixed (impure) literals Γ, define a shared term
to be any term in Γ which is alien in some literal or sub-term
in Γ.

Note that these are exactly the terms that would have been
replaced with new constants in the purification step.

Assume also that each Sat i is modified so that it treats alien
terms as constants.

CMU, April 16, 2007 – p.37/71

Implementing Nelson-Oppen

The following is a variation of Nelson-Oppen which does not
use purification.

1. Partition Γ into sets ϕi, where each literal in ϕi is an
i-literal.

2. Let S be the set of shared terms in Γ.

3. For each arrangement ∆ of S,
Check Sat i(ϕi ∧ ∆) for each i.

CMU, April 16, 2007 – p.38/71

Example

Consider again the example from before:

¬p(y) ∧ s = write (t, i, 0) ∧ x− y − z = 0 ∧
z + read (s, i) = f(x− y) ∧ p(x− f(f(z))).

After partitioning, we have the following:

ϕE ϕZ ϕA

¬p(y) x− y − z = 0 s = write (t, i, 0)

p(x− f(f(z))) z + read (s, i) = f(x− y)

The shared terms are:

read (s, i), x− y, f(x− y), 0, y, z, f(f(z)), x− f(f(z)).

Unfortunately, there are still too many arrangements.

CMU, April 16, 2007 – p.39/71

Implementing Nelson-Oppen

The next refinement is to process Γ incrementally, allowing
theory-specific rewrites that can potentially reduce the
number of shared terms.

Examples of theory-specific rewrites include canonization or
partial canonization and simplification based on previously
seen literals.

1. For each ϕ ∈ Γ

(a) (Optionally) apply theory-specific rewrites to ϕ to get ϕ′

(b) Identify the shared terms in ϕ′ and add these to S
(c) Where ϕ′ is an i-literal, add ϕ′ to ϕi

2. For each arrangement ∆ of S,
Check Sat i(ϕi ∧ ∆) for each i.

CMU, April 16, 2007 – p.40/71

Example

Let’s see what happens if we process our example
incrementally:

¬p(y) ∧ s = write (t, i, 0) ∧ x− y − z = 0 ∧
z + read (s, i) = f(x− y) ∧ p(x− f(f(z))).

ϕE ϕZ ϕA

¬p(y) x = y + z s = write (t, i, 0)

p(y) z = f(z)

The shared terms are: 0, y, z, f(z). There are only 52
arrangements now.

More importantly, ϕE is now inconsistent in the theory TE ,
making it unnecessary to examine any arrangements.

CMU, April 16, 2007 – p.41/71

Implementing Nelson-Oppen

We have seen two ways to avoid searching through too many
arrangements:

1. Reduce the number of shared terms

2. Detect an inconsistency early

As a further example of (2), we can build arrangements
incrementally, backtracking if any theory detects an
inconsistency.

As described in part I, for convex theories, this strategy is
very efficient.

For non-convex theories, we may have to explore the entire
search space of arrangements.

CMU, April 16, 2007 – p.42/71

Implementing Nelson-Oppen

The strategies we have looked at so far do not assume any
help from the theory decision procedures (beyond the ability
to determine inconsistency).

If the theory decision procedures are able to give additional
information, it may significantly help to prune the arrangement
search.

The next refinement of our algorithm captures this.

CMU, April 16, 2007 – p.43/71

Implementing Nelson-Oppen

1. For each ϕ ∈ Γ

(a) (Optional) Apply theory-specific rewrites to ϕ to get ϕ′

(b) Identify the shared terms in ϕ′ and add these to S
(c) Where ϕ′ is an i-literal, add ϕ′ to ϕi

(d) (Optional) If ϕi |= s1 = s2 or ϕi |= s1 6= s2, s1, s2 ∈ S,
add this fact to Γ.

2. Incrementally search through arrangements ∆ of S that
are consistent with

∧
ϕi. For each arrangement, check

Sat i(ϕi ∧ ∆) for each i.

CMU, April 16, 2007 – p.44/71

Implementing Nelson-Oppen

Finally, for maximum efficiency and flexibility, we can push the
entire burden of arrangement finding onto the theory decision
procedures.

Suppose Φ =
∧
ϕi is the partition of literals from Γ that have

been processed so far and that S is the set of shared terms.

The equivalence relation R on S induced by Φ is defined as
follows: for x, y ∈ S, xRy iff x = y ∈ ϕi for some i.

The arrangement ∆(Φ) of S induced by Φ is the arrangement
induced by R.

CMU, April 16, 2007 – p.45/71

Implementing Nelson-Oppen

For each ϕ ∈ Γ:

1. (Optional) Apply theory-specific rewrites to ϕ to get ϕ′

2. Identify the shared terms in ϕ′ and add these to S

3. Where ϕ′ is an i-literal, add ϕ′ to ϕi

4. If ϕi ∧ ∆(Φ) is not satisfiable, compute some formula ψ
such that ϕi |= ψ and ψ∧∆(Φ) is inconsistent. Add ψ to Γ.

CMU, April 16, 2007 – p.46/71

Implementing Nelson-Oppen

For each ϕ ∈ Γ:

1. (Optional) Apply theory-specific rewrites to ϕ to get ϕ′

2. Identify the shared terms in ϕ′ and add these to S

3. Where ϕ′ is an i-literal, add ϕ′ to ϕi

4. If ϕi ∧ ∆(Φ) is not satisfiable, compute some formula ψ
such that ϕi |= ψ and ψ∧∆(Φ) is inconsistent. Add ψ to Γ.

Some notes:
• In general, ψ does not have to be a literal. In this case, ψ

must be processed by the SAT solver (more on this next).
• Theories can be lazy until Γ is empty.
• Termination becomes the responsibility of the theory

decision procedures.

CMU, April 16, 2007 – p.46/71

Implementing Nelson-Oppen

For each ϕ ∈ Γ:

1. (Optional) Apply theory-specific rewrites to ϕ to get ϕ′

2. Identify the shared terms in ϕ′ and add these to S

3. Where ϕ′ is an i-literal, add ϕ′ to ϕi

4. If ϕi ∧ ∆(Φ) is not satisfiable, compute some formula ψ
such that ϕi |= ψ and ψ∧∆(Φ) is inconsistent. Add ψ to Γ.

More notes:
• It is not hard to fit a Shostak-style decision procedure into

this framework.
• This is essentially the algorithm used in SVC, CVC, and

CVC3.

CMU, April 16, 2007 – p.46/71

Roadmap

• Specific Theories
• Shostak’s Method
• Implementing Nelson-Oppen
• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.47/71

Efficient Boolean Reasoning

In part I, we saw how SAT reasoning can be combined with
theory reasoning.

Let’s take a look at some of the practical issues this raises.

Assume that SatFO is an algorithm for satisfiability of
conjunctions of literals in some theory T of interest.

Assume also that we have a propositional abstraction function
Abs which replaces each atomic formula α by a propositional
variable pα.

Let’s review the “very lazy” approach.

CMU, April 16, 2007 – p.48/71

Very Lazy Approach

Suppose we wish to check the T -satisfiability of a
quantifier-free formula ϕ.

1. Check Abs(ϕ) for satisfiability using a Boolean SAT solver.

2. If Abs(ϕ) is unsatisfiable, ϕ is unsatisfiable.

3. Otherwise, let ψ be a var. assignment satisfying Abs(ϕ).

4. Let Abs−1 (ψ) be the corresponding theory literals.

5. If SatFO(Abs−1 (ψ)), then ϕ is satisfiable.

6. Otherwise, refine Abs(ϕ) by adding ¬ψ and repeat.

Since there are only a finite number of possible variable
assignments to Abs(φ), the algorithm will eventually
terminate.

CMU, April 16, 2007 – p.49/71

Improving the Very Lazy Approach

From a practical point of view, there are a number of issues to
be addressed in order to make this algorithm work [BDS02a].

• Minimizing learned clauses
• Lazy vs Eager notification
• Decision heuristics
• Sat heuristics and completeness
• Non-convexity issues

CMU, April 16, 2007 – p.50/71

Minimizing Learned Clauses

The main difficulty with the naive approach is that the clauses
added in the refinement step can be highly redundant.

Suppose the Boolean abstraction Abs(φ) contains n+ 2
propositional variables.

When a Boolean assignment is returned by the SAT solver, all
n+ 2 variables will have an assignment.

But what if only 2 of these assignments are sufficient to result
in an inconsistency in the atomic formulas associated with the
variables?

In the worst case, 2n clauses will be added when a single
clause containing the two offending variables would have
sufficed.

CMU, April 16, 2007 – p.51/71

Minimizing Learned Clauses

To avoid this kind of redundancy, the refinement must be
more precise.

In particular, when SatFO is given a set of literals to check for
consistency, an effort must be made to find the smallest
possible subset of the given set which is inconsistent.

The refinement should then add a clause derived from only
these literals.

One way to implement this is to start removing literals from
the set and repeatedly call SatFO until a minimal inconsistent
set is found.

However, this is typically too slow to be practical.

CMU, April 16, 2007 – p.52/71

Minimizing Learned Clauses

A better, but more difficult way to implement this is to
instrument SatFO to keep track of which facts are used to
derive an inconsistency.

If SatFO happens to be proof-producing, the proof can be
used to obtain this information.

This is the approach used in the CVC tools.

Other tools such as Verifun [FJOS03] use a more lightweight
approach.

CMU, April 16, 2007 – p.53/71

Lazy vs Eager Notification

The naive algorithm does not invoke SatFO until a complete
solution is obtained.

In contrast, an eager notification policy would notify SatFO

immediately of every decision made by the SAT solver.

Experimental results show that the eager approach is
significantly better.

Eager notification requires that SatFO be online: able quickly
to determine the consistency of incrementally more or fewer
literals.

Eager notification also requires that the SAT solver be
instrumented to inform SatFO every time it assigns a variable.

CMU, April 16, 2007 – p.54/71

Naive, Lazy, and Eager Implementations

Example Naive Lazy Eager
Iterations Time (s) Iterations Time (s) Time (s)

read0 77 0.14 17 0.09 0.07
pp-pc-s2i ? > 10000 82 1.36 0.10
pp-invariant ? > 10000 239 5.81 0.22
v-dlx-pc ? > 10000 6158 792 3.22
v-dlx-dmem ? > 10000 ? > 10000 4.12

CMU, April 16, 2007 – p.55/71

Decision Heuristics

SAT solvers like Chaff have sophisticated heuristics for
determining which variable to split on.

However, for some first-order examples, the structure of the
original formula is an important consideration when
determining which literal to split on.

For example, many industrial benchmarks make heavy use of
the ite (if-then-else) construct.

Suppose an ite expression of the form ite(α, t1, t2) appears in
the formula being checked.

If α is set to true , then all of the literals in t2 can be ignored
since they no longer affect the formula.

CMU, April 16, 2007 – p.56/71

Decision Heuristics

Unfortunately, the SAT solver doesn’t know the original
structure of the formula and as a result, it can waste a lot of
time choosing irrelevant variables.

We found that for such examples, it was better to use a
depth-first traversal of the original formula to choose splitters
than the built-in SAT heuristic.

Again, this requires tighter integration and communication
between the two solvers.

This is far from the final word on decision heuristics. This is
an interesting but challenging area for research.

CMU, April 16, 2007 – p.57/71

Variable Selection Results

Example SAT DFS
Decisions Time (s) Decisions Time (s)

bool-dlx1-c 1309 0.69 2522 1.14
bool-dlx2-aa 4974 2.36 792 0.81
bool-dlx2-cc-bug01 10903 11.4 573387 833
v-dlx-pc 4387 3.22 6137 6.10
v-dlx-dmem 5221 4.12 2184 3.48
v-dlx-regfile 6802 5.85 3833 6.64
dlx-pc 39833 19.0 529 1.04
dlx-dmem 34320 18.8 1276 1.90
dlx-regfile 47822 35.5 2739 4.12
pp-bloaddata-a 8695 5.47 1193 1.80

CMU, April 16, 2007 – p.58/71

SAT Heuristics and Completeness

A somewhat surprising observation is that some heuristics
used by SAT solvers must be disabled or the method will be
incomplete.

The main example of this is the pure literal rule.

This rule looks for propositional variables which are either
always (or never) negated in the CNF formula being checked.

These variables can instantly be replaced by true (or false).

However, if such a variable is an abstraction of a first-order
atomic formula, this is no longer the case.

This is because propositional literals are independent of each
other, but first-order literals may not be.

CMU, April 16, 2007 – p.59/71

Non-Convexity Issues

Consider the following set of literals in the array theory TA:

{read (write (a, i, v), j) = x, x 6= v, x 6= read (a, j)}.

One possible implementation of the array theory decision
procedure produces the following fact to “refute” the induced
arrangement.

read (write (a, i, v), j) = ite(i = j, v, read (a, j)).

This requires the SAT solver to accept new formulas in the
middle of a search.

It also complicates decision heuristics.

In this case, i = j is the best next thing to split on.

CMU, April 16, 2007 – p.60/71

Roadmap

• Specific Theories
• Shostak’s Method
• Implementing Nelson-Oppen
• Efficient Boolean Reasoning
• Reasoning about Quantifiers

CMU, April 16, 2007 – p.61/71

Quantifiers

The Abstract DPLL Modulo Theories framework can be easily
extended to include rules for quantifier instantiation [GBT07].

• First, we extend the notion of literal to that of an abstract
literal which may include quantified formulas in place of
atomic formulas.

• Add two additional rules:

Inst_∃ :

M || F =⇒ M || F, (¬∃x. P ∨ P [x/sk]) if

8

<

:

∃x. P is an abstract literal in M,

sk is a fresh constant.

Inst_∀ :

M || F =⇒ M || F, (¬∀x. P ∨ P [x/t]) if

8

<

:

∀x. P is an abstract literal in M,

t is a ground term.

CMU, April 16, 2007 – p.62/71

An Example

Suppose a and b are constant symbols and f is an
uninterpreted function symbol. We show how to prove the
validity of the following formula:

(0 ≤ b ∧ (∀x. 0 ≤ x→ f(x) = a)) → f(b) = a

We first negate the formula and put it into abstract CNF. The
result is three unit clauses:

(0 ≤ b) ∧ (∀x. (¬0 ≤ x ∨ f(x) = a)) ∧ (¬f(b) = a)

CMU, April 16, 2007 – p.63/71

An Example

Let l1, l2, l3 denote the three abstract literals in the above
clauses. Then the following is a derivation in the extended
framework:

∅ || (l1)(l2)(l3) =⇒ (UnitProp)

l1, l2, l3 || (l1)(l2)(l3) =⇒ (Inst_∀)

l1, l2, l3 || (l1)(l2)(l3)(¬(0 ≤ b) ∨ f(b) = a) =⇒ (Fail)

fail

The last transition is possible because M falsifies the last
clause in F and contains no decisions (case-splits). As a
result, we may conclude that the original set of clauses is
unsatisfiable, which implies that the original formula is valid.

CMU, April 16, 2007 – p.64/71

Conclusion: SAT vs SMT

Currently, SAT solvers are much more mature than SMT
solvers.

However, SMT solvers are starting to catch up:
• Annual SMT-COMP competition has helped spur

innovation
• New breed of solvers much faster than before: Yices,

Barcelogic Tools, CVC3, etc.

My opinion: SMT solvers will emerge as the verification
engine of choice for many applications.

CMU, April 16, 2007 – p.65/71

References

[ARR03] A. Armando, S. Ranise, and M. Rusinowitch. The rewriting approach to satisfiability
procedures. Information and Computation, 183:140–164, 2003

[BDL98] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision procedure for
bit-vector arithmetic. In Proceedings of the 35th Design Automation Conference (DAC
’98), pages 522–527. Association for Computing Machinery, June 1998. San
Francisco, California. Best paper award

[BDS02a] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of
first-order formulas by incremental translation to SAT. In Ed Brinksma and
Kim Guldstrand Larsen, editors, Proceedings of the 14th International Conference on
Computer Aided Verification (CAV ’02), volume 2404 of Lecture Notes in Computer
Science, pages 236–249. Springer-Verlag, July 2002. Copenhagen, Denmark

[BDS02b] Clark W. Barrett, David L. Dill, and Aaron Stump. A generalization of Shostak’s
method for combining decision procedures. In Alessandro Armando, editor,
Proceedings of the 4th International Workshop on Frontiers of Combining Systems
(FroCoS ’02), volume 2309 of Lecture Notes in Artificial Intelligence, pages 132–146.
Springer-Verlag, April 2002. Santa Margherita Ligure, Italy

CMU, April 16, 2007 – p.66/71

References

[BP98] Nikolaj Bjørner and Mark C. Pichora. Deciding fixed and non-fixed size bit-vectors. In
TACAS ’98: Proceedings of the 4th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, pages 376–392. Springer-Verlag, 1998

[BST06] Clark Barrett, Igor Shikanian, and Cesare Tinelli. An abstract decision procedure for
satisfiability in the theory of recursive data types. In Proceedings of the 4th Workshop
on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR ’06), August
2006. Seattle, Washington

[BT07] Clark Barrett and Cesare Tinelli. CVC3. In Proceedings of the 19th International
Conference on Computer Aided Verification (CAV ’07), Lecture Notes in Computer
Science. Springer-Verlag, July 2007. Berlin, Germany

[CLS96] D. Cyrluk, P. Lincoln, and N. Shankar. On shostak’s decision procedure for
combinations of theories. In M. McRobbie and J. Slaney, editors, 13th International
Conference on Computer Aided Deduction, volume 1104 of Lecture Notes in
Computer Science, pages 463–477. Springer-Verlag, 1996

[CMR97] David Cyrluk, M. Oliver Möller, and Harald Ruess. An efficient decision procedure
for the theory of fixed-size bit-vectors. In Proceedings of the 9th International
Conference on Computer Aided Verification (CAV ’97), pages 60–71. Springer-Verlag,
1997

CMU, April 16, 2007 – p.67/71

References

[CZ00] Domenico. Cantone and Calogero G. Zarba. A new fast tableau-based decision
procedure for an unquantified fragment of set theory. In Ricardo Caferra and Gernot
Salzer, editors, Automated Deduction in Classical and Non-Classical Logics, volume
1761 of Lecture Notes in Artificial Intelligence, pages 127–137. Springer, 2000

[EKM98] Jacob Elgaard, Nils Klarlund, and Anders Möller. Mona 1.x: New techniques for
WS1S and WS2S. In Proceedings of the 10th International Conference on Computer
Aided Verification (CAV ’98), volume 1427 of Lecture Notes in Computer Science.
Springer-Verlag, 1998

[FJOS03] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using lazy proof
explanation. In Procs. 15th Int. Conf. on Computer Aided Verification (CAV), volume
2725 of Lecture Notes in Computer Science, 2003

[Gan02] Harald Ganzinger. Shostak light. In Andrei Voronkov, editor, Automated Deduction –
CADE-18, volume 2392 of Lecture Notes in Computer Science, pages 332–346.
Springer, 2002

CMU, April 16, 2007 – p.68/71

References

[GBD02] Vijay Ganesh, Sergey Berezin, and David L. Dill. Deciding presburger arithmetic by
model checking and comparisons with other methods. In M.D. Aagaard and J.W.
O’Leary, editors, 4th International Conference FMCAD’02, volume 2517 of Lecture
Notes in Computer Science, pages 171–186, Portland OR USA, November 2002.
Springer Verlag

[GBD05] Vijay Ganesh, Sergey Berezin, and David L. Dill. A decision procedure for
fixed-width bit-vectors, January 2005. Unpublished Manuscript

[GBT07] Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verification
condisions using satisfiability modulo theories. In Proceedings of the 21st International
Conference on Automated Deduction (CADE ’07), Lecture Notes in Artificial
Intelligence. Springer-Verlag, July 2007. Bremen, Germany

[KC03] Sava Krstic and Sylvain Conchon. Canonization for disjoint union of theories. In
Proceedings of the 19th International Conference on Computer Aided Deduction
(CADE ’03), 2003

CMU, April 16, 2007 – p.69/71

References

[Lev99] Jeremy Levitt. Formal Verification Techniques for Digital Systems. PhD thesis,
Stanford University, 1999

[Möl97] M. Oliver Möller. Solving Bit-Vector Equations – a Decision Procedure for Hardware
Verification. PhD thesis, University of Ulm, 1997

[MZ03] Zohar Manna and Calogero Zarba. Combining decision procedures. In Formal
Methods at the Crossroads: from Panacea to Foundational Support, volume 2787 of
Lecture Notes in Computer Science, pages 381–422. Springer-Verlag, November 2003

[Opp80] Derek C. Oppen. Reasoning about recursively defined data structures. J. ACM,
27(3):403–411, 1980

CMU, April 16, 2007 – p.70/71

References

[RS01] H. Ruess and N. Shankar. Deconstructing shostak. In 16th Annual IEEE Symposium
on Logic in Computer Science, pages 19–28, June 2001

[SDBL01] Aaron Stump, David L. Dill, Clark W. Barrett, and Jeremy Levitt. A decision
procedure for an extensional theory of arrays. In Proceedings of the 16th IEEE
Symposium on Logic in Computer Science (LICS ’01), pages 29–37. IEEE Computer
Society, June 2001. Boston, Massachusetts

[Sho84] R. Shostak. Deciding combinations of theories. Journal of the Association for
Computing Machinery, 31(1):1–12, 1984

[SR02] Natarajan Shankar and Harald Rueß. Combining Shostak theories. In Sophie Tison,
editor, Int’l Conf. Rewriting Techniques and Applications (RTA ’02), volume 2378 of
LNCS, pages 1–18. Springer, 2002

CMU, April 16, 2007 – p.71/71

	Motivation
	Modeling Reactive Systems Using CVC3
	Modeling Reactive Systems Using CVC3
	Modeling Reactive Systems Using CVC3
	Modeling Reactive Systems Using CVC3
	Practical Issues for Combinations of Theories
	Roadmap
	Roadmap
	Theories
	Theories
	The Theory mth {T_{mathcal {E}}} of Equality
	The Theory mth {T_{zahlen }} of Integers
	The Theory mth {T_{zahlen }} of Integers
	The Theory mth {T_{
eals }} of Reals
	The Theory mth {T_{
eals }} of Reals
	The Theory mth {T_mathcal {A}} of Arrays
	Theories of Inductive Data Types
	Other Interesting Theories
	Roadmap
	Shostak's Method
	Shostak's Method
	Shostak's Method
	Shostak's Method
	Shostak Theories
	Algorithm Sh
	Example
	Example
	Other Shostak Theories
	Shostak and Theory Combination
	Shostak's Method: Summary
	Roadmap
	Implementing Nelson-Oppen
	Example
	Example
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Example
	Implementing Nelson-Oppen
	Example
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Roadmap
	Efficient Boolean Reasoning
	Very Lazy Approach
	Improving the Very Lazy Approach
	Minimizing Learned Clauses
	Minimizing Learned Clauses
	Minimizing Learned Clauses
	Lazy vs Eager Notification
	Naive, Lazy, and Eager Implementations
	Decision Heuristics
	Decision Heuristics
	Variable Selection Results
	SAT Heuristics and Completeness
	Non-Convexity Issues
	Roadmap
	Quantifiers
	An Example
	An Example
	Conclusion: SAT vs SMT
	References
	References
	References
	References
	References
	References

