
Incompleteness via the halting problem

Jeremy Avigad

February 21, 2005

On his home page, Haim Gaifman has posted a note that explains how one
can understand the Gödel sentence in terms of Cantor’s diagonal argument.
Here, I explain how it can be understood in terms of the undecidability of
the halting problem.

1 The halting problem

Let fm(x) denote the partial function from N to N computed by the Turing
machine coded by the natural number m, under some reasonable encoding
of Turing machines. Then the sequence f0, f1, f2, . . . enumerates the unary
partial computable functions, and, moreover, uniformly, in the sense that the
function g(i, x) ' fi(x) is computable.

There is no such enumeration of the unary total computable functions.
To see this, suppose k0, k1, k2 . . . is an enumeration of computable functions
such that the function l(i, x) = ki(x) is computable. Then the function
d(x) = l(x, x) + 1 = kx(x) + 1 is also computable. But d cannot be any
function ki, since for each i, d(i) = ki(i) + 1.

(Alternatively, if we define m(x) = max{k0(x), k1(x), . . . , kx(x)} + 1, we
obtain a function m with the stronger property that it “eventually domi-
nates” each function ki. To see this, note that for every i, m(x) is greater
than ki(x) for every x ≥ i.)

Let h(m,x) be defined by

h(m,x) =

{
1 if fm(x) is defined
0 otherwise

1



The function h(m,x) is a version of the “halting problem,” since it amounts
to a decision, for each m and x, as to whether Turing machine m halts on
input x.

The simple diagonalization above gives us an indirect way of seeing that
the halting problem is unsolvable, i.e. that h is not computable. For, if h
were computable, we could compute

l(m,x) =

{
fm(x) if h(m,x) = 1
0 otherwise

Defining ki(x) = l(i, x) would then yield an enumeration of all the total
computable functions, and we have showed that this is impossible.

One can prove that h is not computable more directly. Suppose h were
computable. Then we could define a a partial function s(x) by

s(x) '
{

0 if h(x, x) = 1
undefined otherwise

By our hypothesis, s(x) is a partial computable function. Let m be such
that s = fm. Then s(m) is defined, by definition, if and only if h(m,m) = 0;
but by the definition of h, this happens if and only if fm(m), i.e. s(m), is
undefined.

2 Provably total computable functions

In these notes, we will be interested in effectively axiomatized theories of
“interpret a reasonable amount of arithmetic.” In particular, if a consistent
theory T interprets Robinson’s theory Q, then it can represent the notion

s is a halting computation sequence for Turing machine m start-
ing with input x

in such a way that for every m, x, and s, s really is a halting computation
sequence for machine m on input x if and only if T proves that this is the
case.

Such a theory T is said to be Π2-sound if the following holds:

For every m, T proves “for every x, machine m halts on input x”
if and only if for every x, machine m halts on input x.

2



A computable function f from the natural numbers to the natural numbers is
said to be provably total in a theory T if there is some machine, m, computing
f such that T proves “for every x, machine m halts on input x.” Saying that
T is Π2-sound simply amounts to the assertion that whenever T proves a
statement of this form, then machine m really computes a total function.

There is a natural way of enumerating all the provably total computable
functions of such a theory: for each i, if i describes a proof of the statement
“for every x, machine m halts on input x” for some i, let ki be the function
computed by machine m; otherwise, let ki be the constant zero function.

Assuming T is effectively axiomatized, this enumeration is uniform, in
the sense that for every i and x we can compute l(i, x) = ki(x). But we know
from the preceeding section that the sequence k0, k1, k2, . . . cannot enumerate
all the computable functions. This means that there must be a computable
function s that is not on the list. If m is any Turing machine that computes
s, then m halts on every input, but T does not prove that m halts on every
input. Thus we have shown that there is a true sentence that cannot be
proved in T .

In fact, Gödel’s notion of ω-consistency implies Π2-soundness. For the
Turing machine m described in the preceding paragraph, it also implies that
T does not prove (falsely) that m doesn’t halt on some input, since for each
particular input, T can verify that machine m really does halt. Thus we have
shown:

Theorem 2.1 Let T be an ω-consistent, effectively axiomatized theory inter-
preting Q. Then there is a sentence ϕ that is neither provable nor refutable
in T .

This is a weak version of first incompleteness theorem.
It is instructive to spell out the argument in greater detail. For each i, let

ki be the ith provably total computable function in T . Let s(x) = kx(x) + 1.
We have argued that:

1. s(x) is a total computable function (since T is effectively axiomatized,
and Π2-sound), but

2. T doesn’t prove s(x) is total (by the diagonal argument).

Why is it that we can prove that s(x) is total, but T can’t? The answer is
that we have made central use of the fact that T is Π2-sound. With slightly
stronger assumptions on the amount of arithmetic one can develop in T , this
argument can formalized. Thus, we have shown:

3



Theorem 2.2 Let T be as above, and assume T interprets a sufficient amount
of arithmetic. Then T does not prove its Π2-soundness.

This is a weak version of the second incompleteness theorem.

3 The incompleteness theorems

We can obtain better versions of the incompleteness theorems using the more
direct proof of the unsolvability of the halting problem described in Section 1.
Given an effectively axiomatized theory T , consider the following attempt to
solve the halting problem: on input m and x, simultaneously do the following:

1. simulate Turing machine m on input x, to see if it halts; and

2. search for a proof in T that m doesn’t halt on input x.

In the first case, output 1 (“yes”), and in the second case, output 0 (“no”).
Clearly any “yes” answer is a correct answer to the halting problem.

Assuming T is consistent, every “no” answer has to be correct as well. But
we know that the halting problem is unsolvable, which means that something
has to go wrong. The only thing that can possibly go wrong is that there
may be a Turing machine m and an input x, such that m does not halt on
input x, but T does not prove this fact. The unsolvability of the halting
problem implies that this is, indeed, the case.

On the other hand, assuming T is ω-consistent, for m and x as above, T
cannot prove (falsely) that m does halt on input x, since for each particular
s it can verify that s is not a halting computation sequence. Letting ϕ be the
sentence “machine m does not halt on input x,” we have shown the following:

Theorem 3.1 Let T be an effectively axiomatized theory interpreting Q.
Then there is an assertion ϕ such that if T is consistent, it does not prove
ϕ, and if T is ω-consistent, it does not prove ¬ϕ.

This is essentially Gödel’s version of the first incompleteness theorem. It is
stronger than Theorem 2.1 since for one part of the independence we only
need to assume the consistency of T .

Again, it is instructive to unwrap the argument and make it more direct.
For each x, let ψ(x) be the assertion that Turing machine x does not halt on
input x. Let m be a Turing machine that, on input x, searches for a proof
of ψ(x) in T , and halts if it finds one.

4



Assuming T is consistent, it does not prove ψ(m), that is, the assertion
that machine m does not halt on input m. For, if there is such a proof, then
machine m does halt on input m, and this fact is also provable in T , making
T inconsistent.

Assuming T is ω-consistent, it does not prove ¬ψ(m), that is, the assertion
that m does halt on input m. For, we have just shown that m does not halt
on input m, and T can therefore verify, for each s, that s is not a halting
computation sequence.

The statement ψ(m), that is, the assertion that m does not halt on input
m, is a version of the Gödel sentence. The original Gödel sentence asserted “I
am not provable”; this one asserts that “the algorithm searching for a proof
of me doesn’t halt.” The only difference is that the first is cast in terms of
proofs, and the second is cast in terms of algorithms. Both arguments rely
on the relationship between provability and computability.

Note that we have described a Turing machine m such that

1. m does not halt on input m, but

2. assuming T is consistent, T does not prove that m does not halt on
input m.

With appropriate restrictions on T , T can carry out these arguments. Since
it can also show that the conlusion of T implies 1, we have:

Theorem 3.2 Assuming T is consistent, effectively axiomatized, and inter-
prets a sufficient amount of arithmetic, T does not prove its own consistency.

This is the second incompleteness theorem.
One can tell a similar story to explain Rosser’s strengthening of the first

incompleteness theorem, which lifts the assumption of ω-consistency.

5


