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Proof theory

Hilbert’s goal: Justify classical mathematics.

Hilbert’s program:

1. Devise formal systems to represent classical
mathematical reasoning.

2. Prove the consistency of these formal systems using
finitary methods.

The modified Hilbert’s program: Prove the consistency
of these formal systems using constructive methods.

Kreisel’s program: Extract constructive information from
proofs in classical theories.

Informal goals: Obtain satisfying constructive analyses of
classical methods in mathematics.
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Proof theoretic reductions

These take the following form:

For any ϕ ∈ Γ, if T proves ϕ, then T ′ proves ϕ′.

Many proof theoretic results follow this pattern:

• Equiconsistency: ϕ is just ⊥

• Ordinal analysis: e.g. Γ is Π2, and T ′ expresses some
kind of transfinite induction or recursion

• Functional interpretation: T ′ is a quantifier-free theory
axiomatizing some interesting class of functions

• Foundational reductions: e.g. T is classical, T ′ is
constructive

• Combinatorial independences: T ′ is a weak theory plus
some interesting combinatorial principle

Such results can be interesting for philosophical, logical,
mathematical, or computational reasons.
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Two approaches

Assuming both proof systems are sound and complete, the
following two statements are equivalent:

If T proves ϕ, then T ′ proves ϕ′

and

If T ′ ∪ {¬ϕ′} has a model, then T ∪ {¬ϕ} has a
model.

Despite the theoretic equivalence, the syntactic and
semantic approaches are very different:

• The proofs yield different information

• The proofs rely on different intuitions
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A range of methods

1. Semantic: given a model of T ′, construct a model of T

Examples: GB and ZFC , ACA0 and PA, nonstandard
analysis

2. Internalized semantic: in T ′, prove the existence of
models of (portions of) T

Examples: forcing arguments, nonstandard set theory

3. Semantic interpretation: interpret a model of T in
T ′

Examples: ZFC with V = L, RCA0 in IΣ1 , PA in T

4. Syntactic translation: translate proofs in T to proofs
in T ′

Examples: the double-negation intepretation, the
Dialectica interpretation

These are not sharp distinctions.
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Applications

I will survey the use of semantic methods in analyzing

• Classical theories

• Constructive theories

• Bounded arithmetic / propositional proof systems

with an eye towards obtaining

• Conservation results

• Functional interpretations

• Combinatorial independences

• Ordinal analyses
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PA and ACA0

PA is first-order arithmetic. ACA0 is a second-order
version, with an axiom of comprehension

∃X ∀y (y ∈ X ↔ ϕ(y))

for arithmetic ϕ, and induction for sets.

Theorem. ACA0 is conservative over PA for arithmetic
formulas.

Proof (semantic). If M is a model of PA ∪ {¬ϕ}, let SM
consist of the sets definable from parameters. Then
〈M, SM〉 is a model of ACA0 ∪ {¬ϕ}.

Proof (syntactic). Add “names” for the definable sets,
eliminate cuts, replace names by formulas.

Similar considerations show that GB is conservative over
ZFC .
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Some additional information

The syntactic argument shows that given a proof d in
ACA0 , there is a proof d′ in PA, with |d′| < 20

p(|d|).

Theorem (Solovay). There is no elementary bound on
the increase in the length of proofs.

Proof. “Shortening of cuts.” Show that ACA0 has short
proofs of Con(IΣ2 0

n
).

This shows that one cannot hope to interpret ACA0 in PA.
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Conservation results with speedup

GB ACA0 Π1
1 − CA0 ATR0 IΣ1

ZFC PA ID<ω ÎD<ω PRA

Credits: Solovay, Kleene, Kreisel, Feferman, Avigad,
Parsons, Mints, Takeuti, Ignatovic.
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A stronger result

Σ 1
1 -AC0 augments ACA0 with a principal of arithmetic

choice:
∀x ∃Y ϕ(x, Y )→ ∃Y ∀x ϕ(x, Yx)

Theorem (Barwise-Schlipf). Σ 1
1 -AC0 is conservative

over PA for arithmetic sentences.

Proof (semantic). Uses recursive saturation.

Proof (syntactic; Sieg). Uses cut elimination.

Proof (syntactic; Feferman). Uses the Dialectica
interpretation with a nonconstructive µ operation.
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The semantic argument

Start with a model M of PA.

• Take a saturated (or even recursively saturated)
elementary extension, M′.

• Let M̂ be have first-order part M′, and second-order
part the definable sets of M′.

Now suppose
M̂ |= ∀x ∃Y ϕ(x, Y ).

Then the diagram of M′ together with the type

{¬ϕ(c, {y | ψ(y)})}ψ

is inconsistent. Since some finite subset is inconsistent, we
see that

ϕ(c, {y | ψ1(y)}) ∨ . . . ∨ ϕ(c, {y | ψk(y)})

holds in M′, for some ψ1, . . . , ψk. As a result,

M̂ |= ∃Y ∀x ϕ(x, Y ).
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Another conservation result: RCA0 and IΣ1

RCA0 restricts the comprehension axiom in ACA0 to
recursive (∆1 definable) sets. Induction is augmented to
include Σ1 formulas.

Theorem. RCA0 is conservative over IΣ1 (without
speedup).

Proof. Interpret the sets of RCA0 with codes 〈pϕq, pψq〉
for ∆1 definable sets, and use a Σ1 truth predicate for the
membership relation.
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Weak König’s lemma

WKL0 augments RCA0 with a weak form of König’s
lemma: “every infinite binary tree has a path.”

Theorem (Friedman). WKL0 is conservative over PRA
for Π2 formulas.

Proof (semantic). Uses a nonstandard model of PRA and
semiregular cuts.

Proof (syntactic; Sieg). Use cut-elimination, and
hereditary majorizability.

Proof (syntactic; Kohlenbach). Uses the Dialectica
interpretation and hereditary majorizability for higher type
functionals.
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A stronger result

Theorem (Harrington). WKL0 is conservative over
RCA0 for Π1

1 sentences.

Proof (semantic). inspired by the Jokusch-Soare low
basis theorem, which states that every recursive binary tree
has a low path P ≤T 0′. Given a model of RCA0 :

1. Take a countable elementary submodel.

2. Iteratively add a generic path through a tree, then the
sets recursive in it.

Proof (Hájek, syntactic). Formalize a recursion
theoretic model of WKL0 , in RCA0 .

Proof (Avigad, syntactic). Internalize the (iterated,
proper-class) forcing argument in RCA0 . (This also works
for WKL+0 .)
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Conservation results

2nd-order RCA0 WKL0 ACA0 ATR0 Π1
1 − CA0

1st-order IΣ1 IΣ1 PA ÎD<ω ID<ω

Speedup? No No Yes Yes Yes
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Other subsystems of analysis

Theorem (Friedman). Σ 1
1 -AC is conservative over

(Π0
1-CA)<ε0 for arithmetic sentences.

Proof (semantic). Use a nonstandard models of
(Π0

1-CA)ωk with definable descending sequences of ordinals.

Proof (syntactic; Tait). Uses cut elimination.

Proof (syntactic; Feferman). Uses the Dialectica
interpretation.

There are corresponding results for Σn+1 -AC and
Σn+1 -AC0

Theorem (Friedman). ATR0 is conservative over
(Π0

1-CA)<Γ0 for arithmetic sentences.
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Stronger theories

Impredicative subsystems of second-order arithmetic, in
conjunction with admissible set theory, have been studied
by Arai, Buchholz, Jäger, Pohlers, Rathjen.

The methods are invariably syntactic (or “interpretive
semantic”).
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Forcing

Forcing can also be understood in a number of different
ways:

1. Given a model of set theory M and a poset P ,
construct a generic object G and M[G]

2. Construct inM a boolean valued model (Scott,Solovay)

3. Topos theory: interpret forcing as a sheaf construction
(Lawvere-Tierney)

One can usually extract syntactic translations from these.
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Reductions for intuitionistic theories

Methods:

1. Kripke models, Beth models (e.g. Smorynski)

2. Realizability, modified realizability (Kleene, Kreisel)

3. Topos theory, sheaf semantics

As an example of the latter, Moerdijk and Palmgren have
used sheaf constructions to obtain conservation results for
inutuitionistic nonstandard analysis.
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Reducing classical theories to constructive theories

The double-negation translation (syntactic: Gödel,
Gentzen) reduces PA to HA, ZF to IZF , PA2 to HA2 .

Other reductions:

• Buchholz: iterated inductive definitions, IDα

• Coquand-Hofmann: IΣ1 and S 1
2

• Avigad: admissible set theory, Σ 1
1 -AC

The methods are similar, but Buchholz and Avigad focus on
the syntactic translation, while Coquand and Hofmann
focus on the algebraic interpretation (involving a
construction due to Sambin).
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Weak and bounded fragments of arithmetic

Theorem. BΣk+1 is Πk+2-conservative over IΣk .

Original proofs by Paris and Friedman (independently) were
semantic. Sieg offered the first proof-theoretic proof.

Theorem. S 1
2 is conservative over PV for Π2 sentences.

Original proof by Buss was syntactic. Wilkie discovered a
model-theoretic version.

Various results involving (WKL) over weak theories:
Kohlenbach (syntactic), Ferreira (semantic).
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Bounded arithmetic and proof complexity

Given a natural translation of formulas ∀x ϕ(x,R), where ϕ
is bounded, to a sequence of propositional formulas ϕ̂n:

Theorem. If I∆0 (R) proves ∀x ϕ(x,R), then there are
polynomial-size constant depth-Frege proofs of ϕ̂n.

Original proof by Paris and Wilkie (semantic); easy proof
by cut elimination.

Theorem. There are no polynomial-size constant-depth
Frege proofs of the pigeonhole principle.

The original proof by Ajtai used forcing over a nonstandard
model of arithmetic. There are now syntactic proofs by
Beame, Bellantoni, Impagliazzo, Krajiĉek, Pitassi, Pudlák,
Urquhart, Woods.
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Combinatorial independences

Paris and Harrington define a predicate PH(a, b) which
says that the interval [a, b] has a certain Ramsey-theoretic
property. The assertion

∀a ∃b PH(a, b)

can be proved using the infinitary version Ramsey’s
theorem.

Theorem (Paris-Harrington). PA doesn’t prove
∀a ∃b PH(a, b).

Proof (semantic). Suppose a and b are nonstandard
elements of a model M of true arithmetic, and

M |= PH(a, b).

Show that there is an initial segment I of M containing a
but not b, such that

I |= PA.

) ) )
0 ω a I |= PA b M
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The Paris-Harrington Statement

Definition: A set X ⊂ N is large if |X| > min(X).

For example, {4, 9, 23, 46, 78} is large because it has 5
elements, the smallest of which is 4.

Definition: Say
[a, b]→∗ (m)lr

if, no matter how you r-color the l-tuples from [a, b], there
is a large homogeneous subset of size at least m.

The Paris-Harrington Statement:

∀m, l, r, a ∃b [a, b]→∗ (m)lr.

This assertion follows from the infinitary version of
Ramsey’s theorem by a short compactness argument.

PH(a, b) is the predicate

[a, b]→∗ (a)aa.
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Ordinal analysis

Theorem (Gentzen). The proof-theoretic ordinal of PA is
ε0.

Proof (syntactic). Show how to unwind the proof of a Σ1

sentence in a <ε0-recursive way.

Proof (syntactic; Schutte). Embed the proof in
infinitary logic, and eliminate cuts there.

Proof (more semantic; Ackermann-Hilbert). Assign
ordinal to epsilon terms in a <ε0-recursive way.
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Another semantic approach

For any ordinal notatation α, Ketonen and Solovay show
how to define the finitary combinatorial notion “[a, b] is
α-large.”

Theorem (K-S, Paris, Sommer): Suppose a and b are
nonstandard elements of a model M of true arithmetic, and

M |= [a, b] is ε0-large.

Then there is an initial segment I of M containing a but
not b, such that

I |= PA.

) ) )
0 ω a I |= PA b M

Suprisingly, one can extract all the consequences of a
traditional ordinal analysis from this construction.

Avigad and Sommer have extended the method to a number
of predicative subsystems of second-order arithmetic.
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Current goals

1. Develop a direct, finitary version of the semantic
approach to ordinal analysis

2. Extend semantic methods to impredicative theories

3. Understand the model-construction principles used to
obtain Friedman’s latest combinatorial independences
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