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Computability and constructivity

For most of its history, mathematics was fairly constructive:

• Euclidean geometry was based on geometric construction.

• Algebra sought explicit solutions to equations.

• Analysis, probability, etc. were focused on calculations.

Nineteenth century developments challenged this view:

• Analysis: “arbitrary” limits and functions

• Algebra: representation-free characterizations of infinitary
objects, infinitary operations.



Computability and constructivity

Reactions:

• Kronecker: focus on symbolic calculation

• Brouwer: focus on construction in intuition

• Bishop: focus on constructivity

Hilbert’s program:

• Preserves nonconstructive, infinitary methods.

• Regains explicit computation at the metalevel.

• Gives Π1 and Π2 theorems concrete meaning.



Weyl’s 1927 assessment

[Hilbert] succeeded in saving classical mathematics by a radical
reinterpretation of its meaning without reducing its inventory,
namely, by formalizing it, thus transforming it in principle from a
system of intuitive results into a game with formulas that proceeds
according to fixed rules. . . .

He asserted, first of all, that the passage through ideal propositions
is a legitimate formal device when real propositions are proved; this
even the strictest intuitionist must acknowledge. . . .

But Hilbert furthermore pointed with emphasis to the related
science of theoretical physics. Its individual assumptions and laws
have no meaning that can immediately be realized in intuition; in
principle, it is not the propositions of physics taken in isolation, but
only the theoretical system as a whole, that can be confronted
with experience.



Weyl’s 1927 assessment

If Hilbert’s view prevails over intuitionism, as appears to be the
case, then I see in this a decisive defeat of the philosophical
attitude of pure phenomenology, which thus proves to be
insufficient for the understanding of creative science even in the
area of cognition that is most primal and most readily open to
evidence—mathematics.



Computability and constructivity

Weyl’s interpretation of Hilbert’s views:

• There are rules that govern mathematical reasoning.

• Mathematics has concrete “observable” consequences.

• Mathematical theorems do not have meaning taken in
isolation; rather, the meaning is spread across the system as a
whole.

Faced with a nonconstructive development, one can:

• Seek constructive versions (constructive mathematics,
computational mathematics).

• Calibrate degree of nonconstructivity (recursion theory,
descriptive set theory, reverse mathematics).

• Seek hidden computational interpretations and consequences
(proof theory, proof mining).



Overview

We will consider

• the ergodic theorems

• measure theoretic convergence theorems

with respect to

• computability and constructivity

• reverse mathematics

• algorithmic randomness

• metastability



Dynamical systems

A discrete dynamical system consists of a structure, X , and an
map T from X to X :

• Think of the underlying set of X as the set of states of a
system.

• If x is a state, Tx gives the state after one unit of time.

These can be used to model:

• physical systems

• stochastic processes

The issues arise here:

• computation is important

• so is limiting behavior, structural properties



Ergodic theory

In ergodic theory, X is assumed to be a finite measure space
(X ,B, µ):

• B is a σ-algebra (the “measurable subsets”).

• µ is a σ-additive measure, wlog µ(X ) = 1.

T is assumed to be a measure-preserving transformation,
i.e. µ(T−1A) = µ(A) for every A ∈ B.

Call (X ,B, µ,T ) a measure-preserving system.



The ergodic theorems

Consider the orbit x ,Tx ,T 2x , . . ., and let f : X → R be some
measurement. Consider the averages

1

n
(f (x) + f (Tx) + . . .+ f (T n−1x)).

For each n ≥ 1, define Anf to be the function 1
n

∑
i<n f ◦ T i .

Theorem (Birkhoff)

For every f in L1(X ), (Anf ) converges pointwise almost
everywhere, and in the L1 norm.

A space is ergodic if for every A, T−1(A) = A implies µ(A) = 0 or
µ(A) = 1.

If X is ergodic, then (Anf ) converges to the constant function∫
f dµ.



The ergodic theorems

Recall that L2(X ) is the Hilbert space of square-integrable
functions on X modulo a.e. equivalence, with inner product

(f , g) =

∫
fg dµ

Theorem (von Neumann)

For every f in L2(X ), (Anf ) converges in the L2 norm.

A measure-preserving transformation T gives rise to an isometry T̂
on L2(X ),

T̂ f = f ◦ T .

Riesz showed that the von Neumann ergodic theorem holds, more
generally, for any nonexpansive operator T̂ on a Hilbert space
(i.e. satisfying ‖T̂ f ‖ ≤ ‖f ‖ for every f in H.)



Computability

Can we compute a bound on the rate of convergence of (Anf )
from the inital data (T and f )?

In other words: can we compute a function m : Q→ N such that
for every rational ε > 0,

‖Anf − An′f ‖ < ε

whenever n, n′ ≥ m(ε)?

Krengel (et al.): convergence can be arbitrarily slow. But
computability is a different question.

Note that the question depends on suitable notions of
computability in analysis.



Noncomputability

Observation (Bishop): the ergodic theorems imply the limited
principle of omniscience.

Theorem (V’yugin)

There is a computable shift-invariant measure µ on 2ω such that
there is no computable bound on the rate of convergence of An1[1].

Theorem (A)

There is a computable shift-invariant measure µ on 2ω such that
there is no computable bound on the complexity of limn→∞ An1[1].



Noncomputability

This is essentially a recasting of V’yugin’s result:

Theorem (A-Simic)

There are a computable measure-preserving transformation of [0, 1]
under Lebesgue measure and a computable characteristic function
f = χA, such that if f ∗ = limn Anf , then ‖f ∗‖2 is not a
computable real number.

In particular, f ∗ is not a computable element of L2(X ), and there
is no computable bound on the rate of convergence of (Anf ) in
either the L2 or L1 norm.

Theorem (A-Simic, Simic)

Over RCA0 , the mean and pointwise ergodic theorems are
equivalent to (ACA).



Computability

Theorem (A-Gerhardy-Towsner)

Let T̂ be a nonexpansive operator on a separable Hilbert space and
let f be an element of that space. Let f ∗ = limn Anf . Then f ∗,
and a bound on the rate of convergence of (Anf ) in the Hilbert
space norm, can be computed from f , T̂ , and ‖f ∗‖.

In particular, if T̂ arises from an ergodic transformation T , then f ∗

is computable from T and f .



Constructivity

Let (an) be a bounded sequence of reals. TFAE:

• (an) converges.

• For every α < β, the sequence has only finitely many
upcrossings.

Let ωα,β(x) be the number of upcrossings of (Anf (x))n∈N.

Theorem (Bishop)

For any f in L1(X ) and α < β, we have∫
X
ωα,β dµ ≤ 1

β − α

∫
X

(f − α)+ dµ.

Nuber also provided an “equal conclusion” version of the pointwise
ergodic theorem.



The mean ergodic theorem

The Riesz proof of the mean ergodic theorem shows that if H is a
Hilbert space and T̂ is nonexpansive, then H =M⊕N where

• M = {f | T̂ f = f }

• N = {T̂ g − g | g ∈ H}

If f is in M, Anf = f for every n.

If f is in N , then Anf → 0.

Thus Anf converges to PM(f ), the projection of f onto M.

It is the use of a projection that makes the proof nonconstructive.



Constructivity

Theorem (Spitters)

Constructively, for f in L1 ∩ L∞, the following are equivalent:

1. PN (f ) exists.

2. (Anf ) converges in the L2 norm.

However:

Theorem (A-Simic)

Each of the following is equivalent to (ACA) over RCA0 :

• The mean ergodic theorem (“for every f , PN (f ) exists”)

• “for every f , if PM(f ) exists then PN (f ) exists.”

• “for every f , if PM(f ) = 0 then PN (f ) exists.”



Algorithmic randomness

A Martin-Löf test, or effectively null Gδ set, is a set
⋂

n Gn where

• the Gn’s are uniformly recursively open, and

• for each n, µ(Gn) < 2−n.

ω is Martin-Löf random if it avoids (passes) every Martin-Löf test.

Theorem (V’yugin)

Let µ be a computable shift-invariant measure on 2ω, and let f be
computable. Then (Anf ) converges at every Martin-Löf random.

Hoyrup and Rojas have generalized this to effectively presented
measure spaces.



Algorithmic randomness

When the space is ergodic, the conclusion also holds when f is the
characteristic function of a recursively open set.

This is due to Franklin, Greenberg, Miller, and Ng, and,
independently, Bienvenu, Day, Hoyrup, Mezhirov and Shen.



Algorithmic randomness

(Gn) is a Schnorr test if, moreover, µ(Gn) is uniformly comptable.

A point ω of a measure preserving system (X ,B, µ,T ) is typical
(or generic) if (Anf )x converges to

∫
f for every continous f .

Theorem (Gács, Hoyrup, Rojas)

The following are equivalent:

• x is typical whenever T and µ are computable and µ is
ergodic.

• x is Schnorr random.

Theorem (A)

For every shift-invariant measure µ on 2ω, ergodic or not, there is
a computable typical point.



Metastability

If (an) is a nondecreasing sequence of real numbers in [0, 1], then

∀ε > 0 ∃m ∀n, n′ ≥ m |an − an′ | < ε

But in general m is not computable from (an) and ε.

The statement above is equivalent to

∀ε > 0,F ∃m ∀n, n′ ∈ [m,F (m)] |an − an′ | < ε.

But there is always an m ≤ F b1/εc(0) satisfying the conclusion.

Replacing convergence by “metastable convergence” provides a
computable bound that is, moreover, uniform in (an).



Metastability

Notes:

• This is an instance of Kreisel’s “no-counterexample
interpretation,” which is, in turn, a special case of the Gödel’s
Dialectica interpretation.

• Kohlenbach has developed extensive “proof mining” methods
based on these ideas.

• Instances of metastability play a role in Tao’s work in ergodic
theory and ergodic Ramsey theory, where the uniformities are
important.



Metastability

Returning to the mean ergodic theorem, the assertion that the
sequence (Anf ) converges can be represented as follows:

∀ε > 0 ∃m ∀n, n′ ≥ m (‖Anf − An′f ‖ < ε).

This is classically equivalent to the assertion that for any function
F ,

∀ε > 0 ∃m ∀n, n′ ∈ [m,F (m)] (‖Anf − An′f ‖ < ε).



A constructive mean ergodic theorem

Theorem (A-Gerhardy-Towsner)

Let T̂ be any nonexpansive operator on a Hilbert space, let f be
any element of that space, and let ε > 0, and let F be any
function. Then there is an m ≥ 1 such that for every n, n′ in
[m,F (m)], ‖Anf − An′f ‖ < ε.

In fact, we provide a bound on m expressed solely in terms of F
and ρ = ‖f ‖/ε. Notably, the bound is independent of X and T̂ .

As special cases, we have the following:

• If F (m) = mO(1), then m(f , ε) = 22O(ρ2 log log ρ)
.

• If F (m) = 2O(m), then m(f , ε) = 21
O(ρ2).

• If F (m) = O(m) and T̂ is an isometry, then
m(f , ε) = 2O(ρ2 log ρ).



A constructive pointwise ergodic theorem

The following is classically equivalent to the pointwise ergodic
theorem:

Theorem (A-Gerhardy-Towsner)

For every f in L2(X ), λ1 > 0, λ2 > 0, and F there is an m ≥ 1
satisfying

µ({x | max
m≤n≤F (m)

|Anf (x)− Amf (x)| > λ1}) ≤ λ2.

We provide explicit bounds on m in terms of f , λ1, λ2, and F .

Qualitatively different bounds can be obtained using Bishop’s
upcrossing inequality.



Overview

We will consider

• the ergodic theorems

• measure theoretic convergence theorems

with respect to

• computability and constructivity

• reverse mathematics

• algorithmic randomness

• metastability



Convergence theorems

Recall that a sequence (fn) of measurable functions

• converges pointwise a.e. if for almost every x , (fn(x))
converges.

• converges in mean if it converges in the L1 norm,

‖f ‖ =

∫
|f | dµ.

Convergence in mean does not imply pointwise convergence.



Convergence theorems

Nor does pointwise convergence imply convergence in mean.

Functions can go off to infinity along the horizontal axis:

or along the vertical axis:



The dominated convergence theorem

In subystems of second-order arithmetic, an L1 functional is
represented by a Cauchy sequence of simple functions.

One formulation of the dominated convergence theorem (DCT ):

For every (fn) and g in L1, if (fn) is pointwise Cauchy a.e.
and dominated by g, then there is an f ∈ L1 such that fn
converges to f pointwise a.e. and (

∫
fn) converges to

∫
f .

Yu showed that this is equivalent to (ACA).



The dominated convergence theorem

Another formulation, (DCT ′):

For every (fn), g , and f in L1, if (fn) converges pointwise
a.e. to f and is dominated by g, then (

∫
fn) converges to∫

f .

Simpson conjectured this is equivalent to (WWKL).

Yet another formulation (DCT ′′):

For every (fn) and g in L1, if (fn) is pointwise Cauchy a.e.
and (fn) and is dominated by g, then (

∫
fn) is Cauchy.



Reverse mathematics

Simpson and Yu defined Weak Weak König’s Lemma:

∀T (if T is an infinite binary tree and

lim
n→∞

|σ ∈ T , len(σ) = n|
2n

> 0, there is a path through T ).

It is equivalent to each of the following:

• Every closed set with positive measure has a point.

• For every X , there is a ML random relative to X (essentially
Kucera).



Reverse mathematics

Simpson and Yu showed that (WWKL) is strictly weaker than
(WKL) and not provable in (RCA0 ).

RCA0

(WWKL)

(WKL)

(ACA)

Simpson conjectured that (DCT ′) is equivalent to (WWKL).



Reverse mathematics

Ed Dean, Jason Rute, and I defined (2 -WWKL) to be the
relativization of (WWKL) to trees definable from the Turing jump
of any set.

Theorem
Over RCA0 , the following are equivalent:

• (2-WWKL)

• the statement that every Gδ set with positive measure has a
point

• (BΣ2 ) plus the assertion that 2-randoms exist relative to any
X .



Reverse mathematics

RCA0

(WWKL)

(WKL)(2 -WWKL)

(3 -WWKL)

...

(ACA)



Reverse mathematics

Theorem (A-Dean-Rute)

Over RCA0 , the following are equivalent:

• (2-WWKL)

• (DCT ′)

• (DCT ′′)

• Versions of Egorov’s theorem for test functions.

Idea: given any Gδ set with positive measure, construct a sequence
of functions that converge to 0 off that set.

Conversely: given a sequence (fn) such that (
∫

fn) doesn’t
converge to 0, construct a Gδ set where it fails to converge.



Metastability

In “Norm convergence of multiple ergodic averages for commuting
transformations,” Tao provided a quantitative version of the
dominated convergence theorem.

Theorem (Tao)

For every M(F , ε), there is an M ′(F ′, ε′) satisfying the following.
Given a probability space X = (X ,B, µ) and sequence
(fn) : X → [0, 1], if

∀ε > 0,F , x ∃m ≤ M(F , ε) ∀n ∈ [m,F (m)] fn(x) < ε,

then

∀ε′ > 0,F ′ ∃m ≤ M ′(F ′, ε′) ∀n ∈ [m,F (m)]

∫
fn < ε′.



Metastability

Tao’s proof is nonconstructive. M ′ can be computed in principle,
say, by blind search.

In practice, though, it seems remarkably hard to do; the
proof of the Lebesgue dominated convergence theorem, if
inspected carefully, relies implicitly on the infinite
pigeonhole principle, which is notoriously hard to finitize.
(Tao ’06)

Tao took results from reverse mathematics to suggest that the
dependence of M ′ on the parameters is likely to be “fantastically
poor.”



Metastability

Ed Dean, Jason Rute, and I:

• Gave a constructive proof of a key combinatorial lemma.

• Used that to derive a quantitative version of Egorov’s theorem.

• Used that to derive a (mild) strengthening and “Cauchy
version” of Tao’s theorem.

Theorem (A, Dean, Rute)

If M is in the calculus G∞Aω, then M ′ is a primitive recursive
functional (in the sense of Kleene). If M at at level n of Gödel’s T ,
then M ′ is at level n + 1.



Conclusions

Dynamical systems, ergodic theory, measure theory, and so on are
often nonconstructive.

But that does not mean that they do not have computational
content.

It only means that sometimes you have to look a little harder to
find it.


