
Proof Theory and Proof Mining I:
Computablity and Analysis

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

July 2015

Historical background

Through the nineteenth century, mathematics was essentially
computational:

• Euclid’s Elements was about geometric constructions.

• Algebra was about solving equations.

• Probability was about calculating odds.

• Analysis was about calculating volumes, trajectories,
probabilities, etc.

Historical background

This changed in the nineteenth century:

• Gauss gave a nonconstructive proof of the fundamental
theorem of algebra.

• Bolzano gave a nonconstructive proof of the
Bolzano-Weierstraß theorem.

• Dirichlet considered the “function” f (x) on reals which is 1 if
x is rational, 0 if x is irrational.

• Dedekind considered operations on ideals.

• Cantor considered transfinite operations on sets.

• Hilbert proved the Hilbert basis theorem: given any sequence
f1, f2, f3, . . . in (say) Z[~x], there is an n such that for every
m ≥ n, fm is in (f1, . . . , fn).

• Dedekind and others emphasized the importance of
“conceptual understanding” over calculation.

Historical background

Things came to a head in the early twentieth century, with the
“crisis of foundations.”

• Set-theoretic paradoxes raised the question of the consistency
of the new methods.

• A closer look at foundational debates show concerns over the
appropriateness of abstract methods – cf. Kronecker, Hilbert,
the “French analysts” (Baire, Borel, Lebesgue), Brouwer,
Weyl, . . .

Hilbert’s Beweistheorie (Proof Theory):

• Narrowly construed as an attempt to establish consistency.

• More generally, evolved into an attempt to reconcile
abstract/ideal and concrete/computational views of
mathematics, and “reduce” classical methods to finitary or
constructive methods.

Siegel to Mordell (1962)

When I first saw [Lang’s Diophantine Geometry], about a year ago,
I was disgusted with the way in which my own contributions to the
subject had been disfigured and made unintelligible. . .

The whole style of the author contradicts the sense for simplicity
and honesty which we admire in the works of the masters in
number theory — Lagrange, Gauss, or on a smaller scale, Hardy,
Landau. Just now Lang has published another book on algebraic
numbers which, in my opinion, is still worse than the former one. I
see a pig broken into a beautiful garden and rooting up all flowers
and trees. . .

I am afraid that mathematics will perish before the end of this
century if the present trend for senseless abstraction — as I call it:
theory of the empty set — cannot be blocked up. . . .

Bishop, Constructive Analysis (1967)

It appears . . . that there are certain mathematical statements that
are merely evocative, which make assertions without empirical
validity. There are also mathematical statements of immediate
empirical validity, which say that certain performable operations
will produce certain observable results, for instance, the theorem
that every positive integer is the sum of four squares. Mathematics
is a mixture of the real and the ideal, sometimes one, sometimes
the other, often so presented that it is hard to tell which is which.
The realistic component of mathematics — the desire for
pragmatic interpretation — supplies the control which determines
the course of development and keeps mathematics from lapsing
into meaningless formalism. The idealistic component permits
simplifications and opens possibilities which would otherwise be
closed. The methods of proof and objects of investigation have
been idealized to form a game, but the actual conduct of the game
is ultimately motivated by pragmatic considerations.

Proof Theory and Proof Mining

The idea:

• Represent classical methods in formal axiomatic systems.

• Study such systems with an eye towards “concrete” or
“pragmatic” content.

Twentieth century proof theory: “foundational reduction,”
e.g. classical to constructive.

Contemporary proof mining: try to find quantitative or
computational content “hidden” in everyday proofs.

Sequence of Topics

1. Computable Analysis

2. Formal Theories of Analysis

3. The Dialectica Interpretation and Applications

4. Ultraproducts and Nonstandard Analysis

Computable Analysis

Goal: understand the extent to which ordinary theorems of analysis
can be understood in computational terms.

This is a foundational study; we will not be directly concerned with
efficient computation.

Computability

Let f be a partial function from N→ N. TFAE:

• f is computable by a Turing machine

• f is partial recursive (primitive recursion and µ)

• f is representable in the λ calculus

• f is computable by a register machine

• . . .

By the Church-Turing thesis, these capture what it means to say
that f is “computable.”

Below, by computable function, I will mean a total computable
function.

Computability

Kleene’s T predicate T (e, x , s) says “s is a halting computation
sequence for Turing machine e on input x .”

The set {〈e, x〉 | ∃s T (e, x , s)} is the halting problem.

It is computably enumerable but not computable. (In fact, it is a
complete computably enumerable set.)

Computable reals

A real number r is computable if there is a computable function
α : N→ Q such that for every i , |α(i)− r | < 2−i .

Call such an α a name. So r is computable if it has a computable
name.

Specker sequences

Theorem (Specker). There is a computable, nondecreasing
sequence (an) of rationals in [0, 1] with no computable limit.

• In general, one can always compute a name for the limit with
the halting problem as an oracle.

• Conversely, there is a sequence (an) such that the halting
problem is computable from any such name.

Proof. Let Sn = {e < n | ∃s < n T (e, 0, s)}.

Let an =
∑

e∈Sn 2−e . If an is within 2e+1 of the limit and e < n
hasn’t halted by then, it never will.

Computable functions on R

Definition. A function f : R→ R is computable if there is a
computable function F (α, n), such that whenever α names a real
number x , λn F (α, n) represents the real number f (x).

Notes:

• α is given as an oracle.

• Only a finite portion of α is read by the computation.

An equivalent characterization

Let I be the set of (codes of) open intervals (a, b) with rational
endpoints, and for I ∈ I let |I | be the length of I .

Theorem. f is computable iff there is a computably enumerable
set S of pairs (I1, I2) such that:

• Whenever (I1, I2) ∈ S , f [I1] ⊆ I2.

• For every x ∈ R and ε > 0, there is an (I1, I2) ∈ S such that
I1 3 x and |I2| < ε.

Proof. ⇒: Look through Turing computations on names. ⇐: use
the information to compute f (x).

Computable functions on R

Theorem. A computable function from R to R is continuous.

Proof. Immediate from the second characterization.

Computable functions on R

Most real numbers arising “in nature” are computable:

π, e, γ, φ, . . .

Similarly, continuous functions arising in nature are computable:

• polynomials

• trigonometric functions

• exp, log

• absolute value, min, and max

• solutions to ordinary differential equations with
Lipschitz-continuous computable functions

Computable functions on R

Note that the function

f (x) =

{
1 if x ≥ 0

0 otherwise

is not computable. In other words, we cannot decide x ≥ 0.

Fix a small δ. We can do the next best thing, that is, decide

• x ≥ 0

• x ≤ δ
Note that there is a “grey area” where either answer is o.k.

(Note also that the procedure cannot be extensional.)

Computability on computable reals

Let Rc denote the computable reals. One can also consider various
notions of “computability” for functions f : Rc → Rc .

For example:

• One can restrict the previous notion of computability to Rc .

• One can consider f : Rc → Rc represented by a computable
function ϕf that take an index e of a computable real, and
return an index ϕf (e) of a computable real.

There are functions that are computable (in our sense) when
restricted to Rc , but do not extend to a continuous function on R.

Computability on computable reals

Say ϕ is extensional if whenever e1 and e2 represent the same real,
so do ϕ(e1) and ϕ(e2).

Theorem (Kreiel, Lacomb, Schoenfield). If ϕ is extensional on
all the computable reals, then ϕ is the restriction of a computable
function on all of R.

So any computable function in the second sense is computable in
the first.

There is an extension due Cĕıtin to functions with a “computable
separable domain.”

See the tutorial on computable analysis by Brattka, Hertling, and
Weihrauch.

Computable analysis

An important fact:

Theorem. Every computable function f on a compact interval
[a, b] has a computable modulus of (uniform) continuity, M(ε):

∀x , y ∈ [a, b] ∀ε > 0 |x − y | < M(ε)→ |f (x)− f (y)| < ε.

In fact, one can present a computable function by giving rational
approximations on dyadic reals and a modulus of continuity.

The proof uses the Heine-Borel theorem: any cover of [a, b] by
open intervals has a finite subcover.

Compactness

Consider the contrapositive of the Heine-Borel theorem: if
(u1, v1), (u2, v2), . . . does not cover [0, 1], then there is a point x
not in any of them.

This is not computationally true: there are computable sequences
(ui , vi) that do not cover [0, 1] but contain every computable x in
[0, 1].

Compactness

To simplify, let’s shift focus to Cantor space, 2ω with the product
topology (where 2 = {0, 1}).

Elements of 2ω are infinite binary sequences, like 0110100010

Basic open sets are of the form [σ], where σ ∈ 2<ω is a finite
binary sequence, and

[σ] = {x ∈ 2ω | x extends σ}.

A tree on {0, 1} is a set of binary sequences closed downwards.

Compactness

Trees code closed sets:

• If T is a tree, the set of paths through T is closed.

• If C is closed, {σ | [σ] ∩ C 6= ∅} is a tree.

If σ0, σ1, σ2, . . . is a computable sequence, the set of x that do not
extend any σ is given by the set of paths through a computable
tree on 0, 1.

At level n, enumerate σ0, . . . , σn, and keep all nodes that have not
been ruled out.

Compactness

Theorem (Kleene). There is a computable infinite binary tree
with no computable path.

Hint: Let S0 = {e | ϕe(0) ↓= 0}, and S1 = {e | ϕe(0) ↓= 1}.
Show

• There is no computable set separating S0 from S1,
i.e. containing S0 and disjoint from S1.

• There is a computable tree on 0, 1 such that any path
represents such a separation.

Easy: there is a path computable from the Halting problem.

The Low Basis Theorem (Jockusch, Soare): every such tree
has a low path P, i.e. P ′ = 0′.

Compactness

Consider the “forward” statement: if a binary tree has no path, it
is finite.

This is essentially Brouwer’s “fan theorem.”

It is “morally equivalent” to saying that if a sequence of intervals
(ai , bi) covers [0, 1], there is a finite subcover.

Bishop avoided it: for him, a continuous function on [0, 1] has a
modulus of uniform continuity by definition.

(This is an instance of Bishop’s “avoidance of pseudogenerality.”)

Computability in analysis

What is special about R?

• There is a countable dense subset, Q.

• With a natural encoding of Q, operations we care about,
including the distance function, are computable.

• One can construct R as the Cauchy completion of Q.

The idea generalizes to separable metric spaces, and structures
built on these.

Complete separable metric spaces

A complete separable metric space X can be presented by a
countable subset A together with a function d : A× A→ R
satisfying:

• d(x , x) = 0

• d(x , y) = d(y , x)

• d(x , z) ≤ d(x , y) + d(y , z).

X = Â is the completion of A.

The points of Â are represented by sequences (an)n∈N of elements
of A such that for every n and m ≥ n we have d(an, am) < 2−n.

(A polish space is a topological space that arises in this way.)

Computable metric spaces

Definition. A computable metric space is a triple X = (X , d ,A):

• (X , d) is a complete, separable space

• A = (ai)n∈N is a countable dense subset

• The distances d(ai , aj) are uniformly computable from i and j

Examples:

• R, C, Qp

• Infinite products, e.g. Baire Space, Cantor Space

• C (X), for X a compact computable metric space

• function spaces, L1(X), L2(X), Lp(X)

• lp, c0

Computable spaces

Note that whether an element of X is computable depends on
(ai)i∈N, i.e. on both the dense subset and the way it is enumerated.

Such a choice gives a representation of X in terms of countable
sequences of natural numbers.

More general presentations of computable analysis (“Type II
effectivity”) are phrased in terms of such representations. (Again,
see the tutorial by Brattka et al.)

For our purposes, it is enough to consider separable metric spaces.

Computable metric spaces

Fix a computable separable metric space.

The computable elements and computable functions are defined as
before.

For example, if (X , d ,A) is a computable metric space, a
computable function f from X to X is given by an algorithm that
takes names to names.

Similarly for computable functions f from X to R, etc.

Computable structures

We can extend these notions to other structures.

For example, a (real) Banach space is a vector space over R which
is complete with respect to a norm.

A norm satisfies:

• ‖ax‖ = |a| · ‖x‖ for a ∈ R
• ‖x + y‖ ≤ ‖x‖+ ‖y‖
• if ‖x‖ = 0‖, then x = 0.

Notice that d(x , y) = ‖x − y‖ is a metric.

A computable Banach space is given by a computable metric
spaces together with computable operations for scalar
multiplication, addition, and the norm.

Computable structures

Notice that is is enough to compute the operations on the dense
subset of “simple” elements.

Our examples are all Banach spaces:

• R, C, Qp

• Baire Space, Cantor Space

• C (X), for X a compact metric space

• L1(X), L2(X), Lp(X)

• lp, c0

Computable structures

A (real) Hilbert space is a (real) Banach space that arises from an
inner product:

• 〈x , y〉 = 〈y , x〉
• 〈ax , y〉 = a〈x , y〉, 〈x + y , z〉 = 〈x , z〉+ 〈y , z〉
• 〈x , x〉 ≥ 0, and 〈x , x〉 = 0 iff x = 0.

These guarantee ‖x‖ = 〈x , x〉1/2 is a norm.

In a computable Hilbert space, the inner product is computable.

Computable measure spaces

How can we handle (finite) measure spaces? Think of [0, 1] with
Lebesgue measure or {0, 1}ω with coin-flipping measure.

There are various options:

• define a countable algebra of “simple” sets C, and a
σ-additive measure µ on those, and take a completion

• define L1(X) as above, and define the measure space in terms
of that

• take a computable measure to be an element of the space of
measures under the Prokhorov metric

The approaches are equivalent, in the sense that one can translate
between representations in a computable way.

See “Computability of probability measures and Martin-Löf
randomness over metric spaces” by Hoyrup and Rojas.

Computability in mathematics

The benefit to defining notions of computable elements, objects,
and structures is that we can now consider ordinary mathematical
theorems from a computational perspective.

We have really done more:

• identified infinitary objects with countable sets of natural
numbers

• defined the object to be computable if the corresponding set is

So we can also talk about computability relative to these objects,
e.g. computable relative to a space or function.

Convergence theorems

A number of theorems of analysis assert that, under some
hypotheses, a certain sequence (an) converges.

Suppose (an) is Cauchy:

∀ε > 0 ∃m ∀n, n′ ≥ m d(an′ , an) < ε

A function r(ε) satisfying

∀n, n′ ≥ r(ε) d(an′ , an) < ε

is called a bound on the rate of convergence.

If there is a computable bound on the rate of convergence of (an),
then (an) has a computable limit.

Rates of convergence

Note that the converse need not hold.

For example, one can design a sequence of rationals (an) that
converges to 0, but there is no computable bound on the rate of
convergence.

Question: which theorems of analysis have rates of convergence
that are computable relative to the data?

Ergodic theory

A discrete dynamical system consists of a structure, X , and an
map T from X to X :

• Think of the underlying set of X as the set of states of system.

• If x is a state, Tx gives the state after one unit of time.

In ergodic theory, X is assumed to be a finite measure space
(X ,B, µ):

• B is a σ-algebra (the “measurable subsets”).

• µ is a σ-additive measure, with µ(X) = 1.

T is assumed to be a measure preserving transformation,
i.e. µ(T−1A) = µ(A) for every A ∈ B.

Ergodic theory

Call (X ,B, µ,T) a measure preserving system.

• These can model physical systems (e.g. Hamilton’s equations
preserve Lebesgue measure).

• They can model probabilistic processes.

• They have applications to number theory and combinatorics.

The metamathematics of ergodic theory

Ergodic theory emerged from seventeenth century dynamics and
nineteenth century statistical mechanics.

Since Poincaré, the emphasis has been on characterizing structural
properties of dynamical systems, especially with respect to long
term behavior (stability, recurrence).

Today, the field uses structural, infinitary, and nonconstructive
methods that are characteristic of modern mathematics.

These are often at odds with computational concerns.

The metamathematics of ergodic theory

Central questions:

• To what extent can the methods and objects of ergodic theory
be given a direct computational interpretation?

• How can we locate the “constructive content” of the
nonconstructive methods?

Computable analysis addresses the first question, proof theory and
proof mining the second.

The ergodic theorems

Consider the orbit x ,Tx ,T 2x , . . ., and let f : X → R be some
measurement. Consider the averages

1

n
(f (x) + f (Tx) + . . .+ f (T n−1x)).

For each n ≥ 1, define Anf to be the function 1
n

∑
i<n f ◦ T i .

Theorem (Birkhoff). For every f in L1(X), (Anf) converges
pointwise almost everywhere, and in the L1 norm.

A system is ergodic if for every A, T−1(A) = A implies µ(A) = 0
or µ(A) = 1.

If X is ergodic, then (Anf) converges to the constant function∫
f dµ.

The ergodic theorems

Recall that L2(X) is the Hilbert space of square-integrable
functions on X modulo a.e. equality, with inner product

〈f , g〉 =

∫
fg dµ

Theorem (von Neumann). For every f in L2(X), (Anf)
converges in the L2 norm.

A measure-preserving transformation T gives rise to an isometry T̂
on L2(X),

T̂ f = f ◦ T .

Riesz showed that the von Neumann ergodic theorem holds, more
generally, for any nonexpansive operator T̂ on a Hilbert space
(i.e. T̂ satisfies ‖T̂ f ‖ ≤ ‖f ‖ for every f in H).

Bounding the rate of convergence

Can we compute a bound on the rate of convergence of (Anf)
from the inital data (T and f)?

In other words: can we compute a function r : Q→ N such that
for every rational ε > 0,

‖Anf − An′f ‖ < ε

whenever n, n′ ≥ r(ε)?

Krengel (et al.): convergence can be arbitrarily slow.

But computability is a different question.

Noncomputability

Bishop gave a heuristic argument that shows that the ergodic
theorem is not computable.

Imagine a tank divided in two, with red liquid on one side and
white liquid on the other.

Imagine there is a (potential) leak, of size ε ≥ 0.

If ε > 0, in the limit, the liquid is pink.

Predicting the limit amounts to testing whether ε = 0.

Noncomputability

It is not hard to turn this into a theorem. Here is one way:

Theorem (V’yugin). There is a computable shift-invariant
measure µ on 2ω such that there is no computable bound on the
rate of convergence of An1[1].

Here, (2ω,T) is a familiar space, and we cook up a weird measure.

We can also consider a familiar measure, (R, µ), and cook up a
weird transformation.

Noncomputability

Theorem (Avigad and Simic). There are a computable
measure-preserving transformation of [0, 1] under Lebesgue
measure and a computable characteristic function f = χA, such
that if f ∗ = limn Anf , then ‖f ∗‖2 is not a computable real number.

In particular, f ∗ is not a computable element of L2(X), and there
is no computable bound on the rate of convergence of (Anf) in
either the L2 or L1 norm.

In general, everything is computable from 0′, and this is sharp.

A positive result

Theorem (Avigad, Gerhardy, and Towsner). Let T̂ be a
nonexpansive operator on a separable Hilbert space and let f be an
element of that space. Let f ∗ = limn Anf . Then f ∗, and a bound
on the rate of convergence of (Anf) in the Hilbert space norm, can
be computed from f , T̂ , and ‖f ∗‖.

In particular, if T̂ arises from an ergodic transformation T , then f ∗

is computable from T and f .

Later on, we will “mine” additional positive information.

A positive result

Jason Rute and I showed that the previous result generalizes to
uniformly convex Banach spaces (a much wider class).

The generalization builds on results of Kohlenbach and Leuştean,
which in turn draws on a proof of the ergodic theorem by George
Birkhoff.

Ideas:

• ‖f ∗‖ is equal to the infimum of ‖Anf ‖.
• The norms ‖Anf ‖ may oscillate, but if ‖Anf ‖ = r , then for

every ε > 0, eventually ‖Amf ‖ < r + ε, and one can bound
how long one has to wait.

So to compute a rate of convergence, wait until ‖Anf ‖ is close to
the limit, and then wait a little longer.

Classes of computable functions

Now, an interlude.

So far, we have been considering the general notion of
computability.

We will also want to consider particular classes of computable
functions.

Classes of computable functions

According to the Church-Turing thesis, Turing computability
exhausts the intuitive notion of computability.

We have to allow partial functions, and we can’t distinguish the
total ones.

There are interesting subclasses of computable functions. We will
consider two:

• The primitive recursive functions.

• The primitive recursive functionals.

Primitive recursive functions

The set of primitive recursive functions is the smallest set

• containing 0, S(x) = x + 1, pni (x1, . . . , xn) = xi

• closed under composition

• closed under primitive recursion:

f (0, ~z) = g(~z), f (x + 1, ~z) = h(f (x , ~z), x , ~z)

Can define pairing and sequencing, and then handle operations on
integers, rational numbers, lists, graphs, trees, finite sets, etc.

Anything “reasonably” computable (e.g. computable by a Turing
machine in iterated exponential time) is primitive recursive.

Higher types

The finite types are defined as follows:

• N is a finite type

• If σ and τ are finite types, so are σ × τ and σ → τ

For example, the reals can be represented as type N→ N
functionals. Functions from R to R can be represented by type
(N→ N)→ (N→ N).

Higher types

Some useful notation:

• N is “type 0”

• N→ N is “type 1”

• (N→ N)→ N is “type 2”

• . . .

An object of type n + 1 is, essentially (with currying and pairing),
a functional F (x1, . . . , xk), taking arguments of type n, and
returning a natural number.

This corresponds to Vω+n in the set-theoretic hierarchy.

Higher types

Interpretations:

• The obvious set-theoretic interpretation:

• Hereditarily recursive objects (HRO)
• HRON = N
• HROσ→τ = {e | ∀x ∈ HROσ, ϕe(x) ∈ HROτ}.

• Hereditarily extensional effective objects (HEO)
Like HRO, but operations are required to respect (hereditary)
extensional equality.

Higher type primitive recursion

The primitive recursive functionals of finite type allow:

• λ abstraction, application, pairing, projection

• Higher-type primitive recursion:

F (0) = G , F (n + 1) = H(F (n), n)

This allows us to talk about “primitive recursive real numbers” and
“primitive recursive functions from R to R.

Higher-type recursion

Ackermann’s functions can be defined using primitive recursive
functionals:

F (0) = S

F (n + 1) = Iterate(n + 2,F (n))

Iterate(0,G) = λx x

Iterate(n + 1,G) = λx (G (Iterate(n,G)(x)))

Let H(n) = F (n)(n).

Then H grows faster than any primitive recursive function.

Higher-type recursion

Once can restrict higher-type primitive recursion:

F (0, ~z) = G (~z), F (n + 1, ~z) = H(n,F (n, ~z), ~z)

where F (n, ~z) has type N.

The restricted primitive recursive functionals of type 1 are exactly
the primitive recursive functions.

