
Teaching Logic and Mechanized Reasoning
with Lean 4

Jeremy Avigad
(jww Marijn Heule and Wojciech Nawrocki)

Department of Philosophy
Department of Mathematical Sciences

Hoskinson Center for Formal Mathematics

Carnegie Mellon University

November 21, 2021

Overview

This fall, Marijn Heule and I are teaching a new course in
Computer Science at Carnegie Mellon, 15-217 Logic and
Mechanized Reasoning.

Wojciech Nawrocki is our teaching assistant.

The course number signifies that it is appropriate for second-year
students in Computer Science.

The prerequisites are 15-150 Functional Programming and 15-151
Mathematical Foundations for Computer Science.

First-year CS students also take a course in imperative
programming.

We have 11 students.

Course description

Symbolic logic is fundamental to computer science, providing a
foundation for the theory of programming languages, the theory of
databases, AI, knowledge representation, automated reasoning, and
formal verification. Formal methods based on logic complement
statistical methods and machine learning by providing rules of
inference and means of representation with precise semantics.
These methods are central to hardware and software verification,
and have also been used to solve open problems in mathematics.

Course description

This course is an introduction to symbolic logic on three levels:
theory, implementation, and application. We will present the
underlying mathematical theory, and students will develop the
mathematical skills that are needed to design and reason about
logical systems in a rigorous way. We will also show students how
to represent logical objects in a functional programming language,
Lean, and how to implement fundamental logical algorithms.
Finally, we will show students how to use contemporary automated
reasoning tools, including SAT solvers, SMT solvers, and first-order
theorem provers, to solve challenging problems, and we will show
students how to use Lean as an interactive theorem prover.

Overview

A notable feature of the course is that there are three parallel
strands:
• Theory: we explore the syntax and semantics of classical
propositional logic and first-order logic
• Implementation: we implement basic syntactic operations,
semantic evaluation, simple decision procedures
• Application: we solve interesting problems with SAT solvers,
SMT solvers, and theorem provers.

Also notable: the course is based on Lean 4, which also serves as a
front end to CaDiCaL, Z3 (or CVC4 or CVC5), and Vampire.

Mechanics

We are writing the textbook in real time:
• https://avigad.github.io/lamr
• https://avigad.github.io/lamr/logic_and_

mechanized_reasoning.pdf

There is a github repository for the course:
• https://github.com/avigad/lamr

It is set up for use with Gitpod.

Most students install Lean and VS Code and use it on their own
machines.

There is a course page:
• https://www.cs.cmu.edu/~mheule/15217-f21/

https://avigad.github.io/lamr
https://avigad.github.io/lamr/logic_and_mechanized_reasoning.pdf
https://avigad.github.io/lamr/logic_and_mechanized_reasoning.pdf
https://github.com/avigad/lamr
https://www.cs.cmu.edu/~mheule/15217-f21/

Overview

I will go over the table of contents:
• https://github.com/avigad/lamr

https://github.com/avigad/lamr

Using Lean 4

We decided to use the Lean 4 programming language and proof
assistant.

Drawbacks:
• It is in prerelease.
• The documentation is very limited.
• The library of formal theorems is very limited.

Mitigating factors:
• We didn’t come across any serious bugs.
• Homework assignments were similar to in-class examples.
• The course isn’t about formal theorem proving.

Using Lean 4

Advantages:
• As a functional programming language, it’s great for
implementing logical systems. (Note: Lean itself is
implemented in Lean.)
• It has imperative features that are good for applications, like
coding up problems for a SAT solver.
• It has mechanisms for special purpose syntax, for example, for
writing formulas and defining interpretations.
• The editor interface supports interactive exploration.
• We can also use it as a proof assistant.
• Students really like the language and syntax.

The joy of functional programming

The set of propositional formulas is generated inductively as
follows:
• Each variable p is a formula.
• > and ⊥ are formulas.
• If A is a formula, so is ¬A (“not A”).
• If A and B are formulas, so are

• A ∧ B (“A and B”),
• A ∨ B (“A or B”),
• A→ B (“A implies B”), and
• A↔ B (“A if and only if B”).

The joy of functional programming

inductive PropForm
| var : String → PropForm
| tr : PropForm
| fls : PropForm
| neg : PropForm → PropForm
| conj : PropForm → PropForm → PropForm
| disj : PropForm → PropForm → PropForm
| impl : PropForm → PropForm → PropForm
| biImpl : PropForm → PropForm → PropForm
deriving Inhabited, Repr, DecidableEq

The joy of functional programming

Substitution for terms is defined recursively:

σ x = σ(x)
σ f (t1, . . . , tn) = f (σ t1, . . . , σ tn)

partial def subst (σ : FOAssignment FOTerm) :
FOTerm → FOTerm

| var x => σ x
| app f l => app f $ l.map (subst σ)

Recursion is also great for normal form transformations.

The joy of functional programming

SemanticsM |=σ A is defined recursively:
• M |=σ t = t ′ if and only if JtKM,σ = Jt ′KM,σ.
• M |=σ R(t0, . . . , tn−1) iff RM(Jt0KM,σ, . . . , Jtn−1KM,σ).
• M |=σ > is always true.
• M |=σ ⊥ is always false.
• M |=σ A ∧ B if and only ifM |=σ A andM |=σ B.
• M |=σ A ∨ B if and only ifM |=σ A orM |=σ B.
• M |=σ A→ B if and only ifM 6|=σ A orM |=σ B.
• M |=σ A↔ B if and only ifM |=σ A andM |=σ B either
both hold or both don’t hold.
• M |=σ ∃x . A if and only if for some a ∈ |M|,M |=σ[x 7→a] A.
• M |=σ ∀x . A if and only if for every a ∈ |M|,M |=σ[x 7→a] A.

The joy of functional programming

def FOForm.eval {α} [Inhabited α] [BEq α]
(M : FOModel α) (σ : FOAssignment α) : FOForm → Bool

| eq t1 t2 => t1.eval M.fn σ == t2.eval M.fn σ
| rel r ts => M.rel r (ts.map $ FOTerm.eval M.fn σ)
| tr => true
| fls => false
| neg A => !(eval M σ A)
| conj A B => (eval M σ A) && (eval M σ B)
| disj A B => (eval M σ A) || (eval M σ B)
| impl A B => !(eval M σ A) || (eval M σ B)
| biImpl A B => (!(eval M σ A) || (eval M σ B)) &&

(!(eval M σ B) || (eval M σ A))
| ex x A => M.univ.any fun val =>

eval M (σ.update x val) A
| all x A => M.univ.all fun val =>

eval M (σ.update x val) A

Imperative features

def isPrime (n : Nat) : Bool := do
if n < 2 then false else

for i in [2:n] do
if n % i = 0 then

return false
if i * i > n then

return true
true

def mulTable : Array (Array Nat) := do
let mut table := #[]
for i in [:10] do

let mut row := #[]
for j in [:10] do

row := row.push ((i + 1) * (j + 1))
table := table.push row

table

Imperative features
/-- Encodes the given Sudoku as CNF. -/
def cnfEncode : Sudoku → CnfForm

| s@{ dim, rows : Sudoku } => do
let mut cnf : CnfForm := []
let sz := dim*dim

-- Each cell contains at least one number
for i in [:sz] do

for j in [:sz] do
cnf := (List.range sz).map (mkLit i j ·) :: cnf

-- Each number appears at most once in each row
for i in [:sz] do

for j1 in [:sz] do
for j2 in [:j1] do

for k in [:sz] do
cnf := [-(mkLit i j1 k),

-(mkLit i j2 k)] :: cnf
. . .

Syntax

#check prop!{p ∧ q → (r ∨ ¬ p) → q}

/- impl (conj (var "p") (var "q"))
(impl (disj (var "r") (neg (var "p")))

(var "q")) : PropForm -/

#check propassign!{p, -q, r}

#eval prop!{p ∧ q → (r ∨ ¬ p) → q}.eval
propassign!{p, -q, r}

#check cnf!{p, -p q -r, -p q}

#eval prop!{(p1 ∧ p2) ∨ (q1 ∧ q2)}.toCnfForm

Syntax

Note: Jt[s/x]Kσ = JtKσ[x 7→JsKσ].

def arith_ex1 := term!{ plus(times(%x, two),
plus(%y, three)) }

def arith_ex2 := term!{ plus(one, times(three, %z)) }
def arith_ex3 := term!{ plus(%z, two) }

#eval (arith_ex1.subst
assign!{ x 7→ arith_ex2, y 7→ arith_ex3 }).eval
arithFnInterp assign!{z 7→ 7}

#eval arith_ex1.eval arithFnInterp assign!{
x 7→ (arith_ex2.eval arithFnInterp assign!{z 7→ 7}),
y 7→ (arith_ex3.eval arithFnInterp assign!{z 7→ 7}) }

Lean as a proof assistant

example (h : ¬ (p ∨ q)) : ¬ p ∧ ¬ q := by
apply And.intro
. intro hp

exact h (Or.inl hp)
. intro hq

exact h (Or.inr hq)

theorem reverse_append :
reverse (as ++ bs) = reverse bs ++ reverse as := by

rw [reverse_def, reverseAux_append, reverse_def,
←reverseAux_append', nil_append,

reverse_def]

Using Lean 4

Advantages:
• As a functional programming language, it’s great for
implementing logical systems.
• It has imperative features that are good for applications.
• It has mechanisms for special purpose syntax.
• The editor interface supports interactive exploration.
• We can also use it as a proof assistant.
• Students like the language and syntax.

Overview

Remember, a notable feature of the course is that there are three
parallel strands:
• Theory: syntax and semantics of propositional logic and
first-order logic
• Implementation: implement basic syntactic operations,
evaluation, simple decision procedures
• Application: solve interesting problems with SAT solvers,
SMT solvers, and theorem provers.

I’ll provide examples of the types of problems we ask students to
solve on homework and exams.

Theory

Problem. In class, we described an algorithm to solve the tower of
Hanoi problem and proved that n disks can be moved from one
peg to another with 2n − 1 steps. Prove, as clearly as you can,
that this is optimal: it is impossible to move n disks from one peg
to another with a smaller number of steps.

Theory

Problem. Remember the recursive definition of the greatest
common divisor function:

gcd(x , y) =
{

x if y = 0
gcd(y ,mod(x , y)) otherwise

Notice that the easiest way to show that the recursion is well
founded is to notice that the second argument decreases with each
recursive call.

Show that for every nonnegative x and y , there are integers a and
b such that gcd(x , y) = ax + by . You can use the fact that for
nonzero y , we have x = div(x , y) · y + mod(x , y), where div(x , y)
denotes integer division.

Theory

Problem. Use the definition of “A is a subformula of B” in
Section 4.1 to prove that if A, B, and C are any propositional
formulas, A is a subformula of B, and B is a subformula of C , then
A is a subformula of C .

Problem. Prove that for any A, B, p, and τ ,

JA[B/p]Kτ = JAKτ [p 7→JBKτ].

In other words, we can evaluate A[B/p] at τ by evaluating B at τ ,
and then evaluating A with p replaced by that result.

Theory

Some of the most challenging problems for students involve just
unpacking definitions.

Problem. Prove the following carefully, using the semantic
definitions in Section 4.2: let Γ and Γ′ be sets of propositional
formulas and let A be a propositional formula. If Γ |= A and
Γ′ ⊇ Γ, then Γ′ |= A.

Problem. As we did for propositional logic, we can prove:

M |=σ A[t/x] if and only iff M |=σ[x 7→JtKM,σ] A.

Use this fact and the semantic definitions to show that for every
formula A, every modelM, every term t, and every assignment σ,
we have

M |=σ (∀x . A)→ A[t/x].

Theory

Problem. In Section 8.3, we outline a method for extracting a
resolution refutation of a set of clauses Γ from a failed search. The
method relies on the following claim:

If there are a resolution proof of a clause C from Γ such
that JCKτ [p 7→>] = ⊥ and a resolution proof of a clause D
from Γ such that JDKτ [p 7→⊥] = ⊥, then there is a resolution
proof of a clause E from Γ such that JEKτ = ⊥.

Prove this claim.

Implementation

Problem. A natural number n is perfect if it is equal to the sum
of the divisors less than n. Write a Lean function (with return type
Bool) that determines whether a number n is perfect. Use it to
find all the perfect numbers less than 1,000.

Other exercises involved labeled binary trees, and another involved
binary coefficients.

Implementation

Problem. Write a function in Lean that implements substitution
for propositional formulas, and test it on one or two examples.

Problem. In class and in the textbook, we discuss a Lean function
PropForm.eval that evaluates a propositional formula with
respect to a truth assignment. Define a similar function,
CnfForm.eval, that evaluates a formula in conjunctive normal
form. (Do it directly: don’t translate it to a propositional formula.)

Implementation

Problem. Write in Lean a predicate isAutarky that takes an
assignment τ : PropAssignment and a CNF formula Γ : CnfForm
and returns a Boolean that indicates whether τ is an autarky for Γ.

Problem. Write in Lean a function getPure that takes a CNF
formula Γ : CnfForm and returns a List Lit of all pure literals in
Γ. The function does not need to find all pure literals until
fixpoint, only the literals the are pure in Γ.

Implementation

Barwise and Etchemendy’s Tarski’s World is a valuable tool for
helping students understand to read and write first-order
statements.

I’ll show you our little implementation.

We also gave students a partial implementation of Fourier–Motzkin
and asked them to fill in the rest.

I’ll show you that as well.

Applications

We show students how to use SAT solvers to solve Sudoku puzzles
and graph coloring problems.

I’ll show you how that looks in Lean.

We’ll take a look at Assignment 6, which asks them to find grid
colorings that avoid monochromatic rectangles.

We’ll also take a look at Assignment 7, which asks them to solve
an instance of the NumberMind game.

Applications

We show students how to use SMT solvers to find magic squares.

I’ll show you how that looks in Lean.

We also show them how to confirm the correctness of a procedure
in Hacker’s Delight.

We’ll take a look at Assignment 11, which has them packing
almost squares into an almost square.

Applications

Finally, we show students how to write problems in Lean and send
them to Vampire.

I will show you the Aunt Agatha problem and a Smullyan asylum
problem.

We told students to verify Smullyan’s conclusion about another
asylum problem for homework, but then Vampire told us that the
hypotheses are inconsistent. There is no asylum that satisfies them.

Alexander Bentkamp followed up with a pen-and-paper proof of
this, and so did Seulkee Baek.

https://www.jstor.org/stable/3026490
https://www.jstor.org/stable/3026490

Conclusions

Lean is a great platform for teaching students about logic and its
applications.
• It’s functional programming language with imperative features.
• Customizable syntax is helpful for examples.
• The VS Code interface and continuous compilation provide
instant feedback, and support experimentation and
exploration.
• The fact that Lean, in and of itself, is a logical framework is
an added bonus.

Conclusions

The class has been very enjoyable to teach.
• Theory is most meaningful when it connects to applications.
• It becomes clear that theory is needed for the implementations
and applications.
• It is very satisfying to code things up and see instant results.
• Cool applications, even toy examples, are a strong motivation.

The materials are publicly available.

We’ll keep working on them.

Feedback is welcome.

