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Abstract

In this thesis we first review the model theory of quantifier elim-
ination and investigate the logical relations among various quantifier
elimination tests. In particular we prove the equivalence of two quanti-
fier elimination tests for countable theories. Next we give a procedure
for eliminating quantifiers for the theory of real closed ordered fields
with a predicate for the powers of two. This result was first obtained
by van den Dries [20]. His method is model-theoretic, which provides
no apparent bounds on the complexity of a decision procedure. In the
last section we give a complete axiomatization of the theory of real
closed ordered fields with a predicate for the Fibonacci numbers.

1



Acknowledgements

I thank my advisor Jeremy Avigad for the guidance he has provided me.
I am grateful to James Cummings and Rami Grossberg for many helpful
suggestions. I also thank Chris Miller for suggesting the problem considered
in the last section of this thesis.

2



1 Introduction

A “decision procedure” for mathematics is, roughly, a procedure for deter-
mining whether or not a mathematical statement is true. Of course, any
proof can be viewed as a procedure for determining that a particular theo-
rem is true; but when we talk about decision procedures, we usually mean a
procedure for deciding a class of statements. Some decision procedures have
been around for a very long time. For example, Euclid’s algorithm is such a
procedure. It provides a method to determine, among many things, whether
two integers p and q are relatively prime. Another example is Newton’s
method, following which one can approximate a real root of a polynomial
equation with real coefficients, though the result is not guaranteed to con-
verge. On the other hand, in the case of a p-adic field this method, where it
is known as Hensel’s Lemma, is guaranteed to produce a root. Yet another
example is Sturm’s Theorem which is closely related with the present thesis:
it enables one to decide how many roots a given polynomial has; that is it
determines the truth-value of sentences of the form “the polynomial p has
exactly k roots.”

These decision procedures do not deal with just one particular problem,
but rather a collection of problems that can be singled out by a formal
description, and whose solutions are uniform in the sense that the specifics
of each one of them have no influence on how to apply the logical steps of
the procedure. This feature was stressed and generalized by Hilbert, who
initiated the systematic modern study of decision problems. Since whether a
decision problem is well-defined has much to do with how to fix a collection of
problems, Hilbert’s work in axiomatics and the foundation of mathematics
led him to formulate decision problems in the most general form possible.
In the second edition of their book Principles of Mathematical Logic [11],
Hilbert and Ackermann ask:

Is it possible to determine whether or not a given statement per-
taining to a field of knowledge is a consequence of the axioms?

They proceed to demonstrate that for their predicate calculus, which is es-
sentially the first-order predicate calculus, this question can be reduced to
the question of whether a given formula of the calculus is or is not universally
valid, that is satisfied by every model of the axioms in question. The key here
is certainly Gödel’s Completeness Theorem. This is why this reduction is not
present in the the first edition of their book. However, to solve the decision
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problem, as required in both editions, one has to find a process by which the
derivablility of any given logical expression can in principle be determined.

By the year 1938, in which the second edition first appeared, Turing and
Church’s landmark papers on decidability had already been published. So
unlike the first edition, in which Hilbert and Ackermann are rather vague
about what they mean by “a process,” they write in the second edition:

We shall only remark that a general method of decision would
consist of a certain recursive procedure for the individual formu-
las which would finally yield for each formula the value truth or
the value falsehood. Church’s work proves, however, the non-
existence of such a recursive procedure; at least, the necessary
recursions would not fall under the general type of recursion set
up by Church, who has given to the somewhat vague intuition
concept of recursion a certain precise formalization.

This is essentially the same as our understanding of what a decision method
is today.

It should be noted here that Hilbert and Ackermann’s decision problem
is meant for logical calculi rather than for specific mathematical theories.
That is, given any logical calculus, their decision problem asks for a method,
which should be uniform for all mathematical systems that employ the logical
calculus, that decides which statements are logically valid. This is quite
different from asking for a decision method for determining the consequences
of a particular mathematical system that is nonlogical but axiomatized, for
example Peano Arithmetic. In [19] Tarski describes the latter problem as
follows:

By a decision method for a class K of sentences (or other expres-
sions) is meant a method by means of which, given any sentence
θ, one can always decide in a finite number of steps whether θ is
in K; by a decision problem for a class K we mean the problem of
finding a decision method for K. A decision method must be like
a recipe, which tells one what to do at each step so that no in-
telligence is required to follow it; and the method can be applied
by anyone so long as he is able to read and follow directions.

This summarizes nicely the modern concept of decidability, which we shall
discuss in the present thesis.
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All of Tarski’s decidability results used the method of quantifier elimi-
nation. This is indeed a very old method. Anyone who has been exposed
to elementary algebra knows the mechanical procedure that eliminates un-
knowns from a system of linear equations. Logically this is just quantifier
elimination for certain kinds of existential formulas in the language of alge-
bra. Of course it was the modern logical machinery that made this method
explicit. This dates back to as early as the 1910s in the work of Löwenheim
and Skolem. One of the first important results that consciously followed the
modern formulation of the method was Langford’s axiomatization of several
kinds of linear orderings in [14] and [15]. In particular he showed that the
axiom system in each of these cases proves that every first-order sentence in
the language of orderings is equivalent to a sentence with fewer quantifiers
and hence the elementary theory of each of these orderings is decidable. This
example illustrates nicely how valuable the method is: when it can be car-
ried out for a theory, it yields a tremendous amount of information about the
behaviors of all formulas in the language of the theory, relative to the theory
itself and a chosen set of well-understood formulas. Usually it also provides
an algorithm for reducing formulas to these well-understood formulas and
hence proves that the theory is decidable.

However, as far as algorithm is concerned, there is no a general theory of
quantifier elimination. This means whenever we want to apply the method
to a new theory T we must analyze T specifically so that each step of the
method can be carried out. In general, the method runs as follows. First we
fix a suitable set Σ of formulas in the language of T , called basic formulas.
This, of course, is the part that heavily depends on our analysis of T . Then
we proceed to prove that every formula in the language is T -equivalent to a
Boolean combination of basic formulas, that is T proves that every formula
in the language is equivalent to a Boolean combination of basic formulas.
Easily it is enough to show the following:

1. Every atomic formula is T -equivalent to a Boolean combination of basic
formulas.

2. If ϕ is a Boolean combination of basic formulas, then ∃x ϕ is T -equivalent
to a Boolean combination of basic formulas.

The second item justifies why the method is called “quantifier elimination.”
Also, very often in practice, Σ is chosen to be the set of quantifier-free for-
mulas.
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One well-known way to characterize the relation between Σ and the set of
all formulas is through a corollary of Stone’s Representation Theorem, since
the set of all formulas in a language can be viewed as a Boolean algebra and
a consistent complete type, which we shall define below, can be viewed as an
ultrafilter in the corresponding Boolean algebra.

Fact 1.1. Let B be a Boolean algebra and S(B) its Stone space of ultrafilters.
Let Σ ⊆ B. If the map F 7−→ F ∩ Σ from S(B) into the powerset of Σ is
injective, then Σ generates B as a Boolean algebra.

Now proving that every formula can be reduced to some formula in Σ is
equivalent to proving that the restriction map F 7−→ F ∩ Σ is injective.

If an algorithm for quantifier elimination is given, then we shall call it
“effective quantifier elimination.” This is because nowadays, that is after
Abraham Robinson’s pioneering model theoretic work in this area, people
often speak of quantifier elimination when there is no algorithm other than
the one that blindly searches all provable formulas.

Before diving into technical discussions we shall briefly describe the nota-
tions and the terminology employed in this thesis. First we shall emphasize
that ordered real closed fields and real closed ordered fields are different kinds
of things. The first is just real closed fields with a definable ordering, namely
the one defined by the formula ∃z z× z = y−x. The second is ordered fields
that are real closed.

We shall write QE for “quantifier elimination” throughout the rest of the
thesis. All basic formulas are quantifier-free. For a theory T we shall use
L(T ) to denote its language. It is convenient to let ϕ ∈ L(T ) mean that ϕ
is a formula in the language L(T ). Very often we expand a language with a
set of new constants. To avoid burdening our discussion with cumbersome
notational remarks, we do not mention these expansions in context as long
as there is no danger of confusion.

If Γ is a consistent set of formulas in a language, then sometimes we abuse
Γ to denote its deductive closure in sentences such as “The theory Γ so-and-
so.” In particular if we add Γ to a theory T , then by “T ∪Γ” we always mean
the deductive closure of T ∪ Γ.

All sequences of variables are finite, and x̄ and lh(x̄) are used to denote
a sequence of variables and its length respectively. x̄ ∈ X means that every
member in the sequence x̄ is a member of X.

For a model M we write |M | for its universe and ‖M‖ for the cardinality
of |M |. However, sometimes we shall abuse “M” slightly to mean both a
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model and its universe. In this thesis we do not use the word “substructure”
(except this one here, of course). Hence by “submodel” we always mean a
subset of some model which is also a structure of the language in question.
For two models M , N we write M ⊆ N to denote that M is a submodel of
N . If M ⊆ N and M, N |= T for some theory T then N is a T -extension of
M . Next, for any A ⊆ |M | ∩ |N | we say M can be embedded into N over
A if there is a monomorphism f : M −→ N such that f ¹ A = idA. If the
image of M under f , denoted by f [M ], is an elementary submodel of N then
we call f an elementary embedding.

The thesis is organized as follows. In the next section we review the model
theory of quantifier elimination and investigate the logical relations among
various quantifier elimination tests. In particular, we prove a new result that
establishes the equivalency of two quantifier elimination tests for countable
theories. The third section is joint work [1] with Jeremy Avigad in which
we give a procedure for eliminating quantifiers for the theory of real closed
ordered fields with a predicate for the powers of two. In the last section we
give a complete axiomatization of the theory of real closed ordered fields with
a predicate for the Fibonacci numbers.

7



2 Quantifier Elimination Tests

A very important concept in model theory is that of a type, which is a
generalization of the concept of a variety in algebraic geometry. It will play
an important role in the discussion below.

Definition 2.1. Let T be a theory. Let M be a model of T . Let A ⊆ |M |.
1. Given a finite sequence x̄ of variables we say a collection p of formulas

in L(T ) is a T -type in x̄ if all free variables in any ϕ ∈ p are in x̄ and
T ∪ {∃x̄ ∧

q} is consistent for any finite q ⊆ p. If p is a T -type in x̄
then we write p(x̄). The arity of p is lh(x̄).

2. A T -type p in x̄ is a complete type if for any ϕ(x̄) ∈ L(T ) either ϕ(x̄) ∈ p
or ¬ϕ(x̄) ∈ p.

3. For any b̄ ∈ |M | let

tp(b̄/A,M) =
{
ϕ(x̄; ā) : ϕ(x̄; ȳ) ∈ L(T ), ā ∈ A,M |= ϕ(b̄; ā)

}
.

Clearly tp(b̄/A,M) is a Th(〈M, a〉a∈A)-type. More conveniently we say
that p is an M-type over A.

4. For any b̄ ∈ |M |, sometimes we only want to collect certain kinds of
formulas with parameters from A that b̄ satisfies. This is denoted by
tpΓ(b̄/A,M), where Γ is a set of conditions. For example, tpqf (b̄/A,M)
is the collection of all quantifier-free formulas in tp(b̄/A,M).

Very often we shall investigate translations of a type from one model to
another model. This arises typically in the following situation. Let M , N
be two models, f : M −→ N a monomorphism, A ⊆ |M |, and p an M -type
over A. The translation of p from M to N via f , denoted by f(p), is the set
{ϕ(x̄; f(ā)) : ϕ(x̄; ā) ∈ p, ā ∈ A}, which is guaranteed to be an N -type over
f [A] if f is elementary.

There are many fundamental results in model theory that we shall need
below. For example, the Tarski-Vaught test:

Fact 2.2 (Tarski-Vaught Test). N ¹ M if and only if

1. N ⊆ M , and
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2. for all formulas ϕ(x; ā) with ā ∈ |N |, if M |= ∃x ϕ(x; ā) then there is
an element b ∈ |N | such that M |= ϕ(b; ā).

Definition 2.3. Let M be a model.

1. For a cardinal number λ, M is λ-saturated if and only if for every
A ⊆ |M | of cardinality less than λ any M -type p over A is realized in
M .

2. M is saturated if and only if M is ‖M‖-saturated.

Definition 2.4. Let M be a model and A ⊆ |M |. Let N be the model
〈M,a〉a∈A.

1. The theory Th(N), denoted by CD(A,M), is called the complete dia-
gram of A in M . If A = |M | we simply write CD(M).

2. The set of all quantifier-free sentences in Th(N), denoted by ED(A,M),
is called the elementary diagram of A in M . Again if A = |M | we
simply write ED(M).

Obviously if N ¹ M then CD(N, M) = CD(N) and if N ⊆ M then
ED(N, M) = ED(N).

Definition 2.5. We say a theory T is model complete if and only if, for every
pair of models N, M |= T , N ⊆ M implies N ¹ M .

Abraham Robinson showed that under certain conditions a model com-
plete theory admits QE. This was one of the first results that inaugurated
the model-theoretic method in the study of QE. However, since we are not
aiming at a thorough historical survey and Robinson’s results involve other
concepts that are not quite relevant to the present thesis, we shall not discuss
them here in details. We only note the following fact.

Theorem 2.6. Let T be any theory. The following are equivalent:

1. T is model complete.

2. For any two models N, M |= T with N ⊆ M there is an N∗ |= T such
that N ¹ N∗ and M can be embedded into N∗ over N .

3. For any M |= T the theory T ∪ ED(M) is complete.
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4. For any two models N, M |= T with N ⊆ M , every existential formula
ϕ(x̄), and every b̄ ∈ N , we have M |= ϕ(b̄) if and only if N |= ϕ(b̄).

5. For every existential formula ϕ(x̄) there is a universal formula ϕ∗(x̄)
such that T ` ϕ(x̄) ↔ ϕ∗(x̄).

6. For every formula ϕ(x̄) there is a universal formula ϕ∗(x̄) such that
T ` ϕ(x̄) ↔ ϕ∗(x̄).

Proof. 1 ⇒ 2: This is immediate.
2⇒ 3: Since every T -extension of M can be embedded into an elementary

extension of M , it follows that T ∪ED(M) is CD(M) and hence is complete.
3 ⇒ 4: This is clear since T ∪ ED(M) is complete and N is a model of

T ∪ ED(M).
4⇒ 5: Let ϕ(x̄) be an existential formula in L(T ). Let c̄ be new constants.

Let Γ be a set that contains exactly the following formulas:

• T ∪ {¬ϕ(c̄)}, and

• every formula ψ(c̄) such that ψ(c̄) is universal and T ` ∀x̄ (ϕ(x̄) →
ψ(x̄)).

Suppose for contradiction that Γ is consistent. Take any model M |= Γ.
Consider the set T ∪ ED(M) ∪ {ϕ(c̄)} of formulas. If this is not consistent,
then there is a quantifier-free formula σ(ā; c̄) ∈ ED(M) such that ā are
parameters from |M | other than c̄ and T ∪{ϕ(c̄)} ` ¬σ(ā; c̄). So T ∪{ϕ(c̄)} `
∀ȳ ¬σ(ȳ; c̄), so T ` ϕ(c̄) → ∀ȳ ¬σ(ȳ; c̄), so T ` ∀x̄ (ϕ(x̄) → ∀ȳ ¬σ(ȳ; x̄)),
so ∀ȳ ¬σ(ȳ; c̄) ∈ Γ, so M |= ∀ȳ ¬σ(ȳ; c̄). But this is clearly a contradiction
as σ(ā; c̄) ∈ ED(M). So T ∪ ED(M) ∪ {ϕ(c̄)} is consistent. Let N |=
T ∪ ED(M) ∪ {ϕ(c̄)}. So M ⊆ N , so by the assumption we have M |= ϕ(c̄)
as ϕ(x̄) is existential, which is a contradiction.

So Γ is not consistent. This means that there are finitely many uni-
versal formulas ψi(x̄) such that T ` ∀x̄ (ϕ(x̄) → ψi(x̄)) for every i and
T ` ∀x̄ (

∧
i ψi(x̄) → ϕ(x̄)). Since

∧
i ψi(x̄) is clearly equivalent to a universal

formula ρ(x̄), we conclude T ` ∀x̄ (ϕ(x̄) ↔ ρ(x̄)), as desired.
5 ⇒ 6: By an induction on the complexity of formulas clearly it is

enough to show that any formula of the form ∃x̄ ∀ȳ ψ(x̄; ȳ; z̄) with ψ(x̄; ȳ; z̄)
quantifier-free is equivalent to a universal formula. By the assumption this
can be reduced to showing that ∃x̄ ∀ȳ ψ(x̄; ȳ; z̄) is equivalent to an existential
formula. But ∃x̄ ∀ȳ ψ(x̄; ȳ; z̄) is equivalent to an existential formula if and
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only if ¬∃x̄ ∀ȳ ψ(x̄; ȳ; z̄) is equivalent to a universal formula if and only if
∀x̄ ∃ȳ ¬ψ(x̄; ȳ; z̄) is equivalent to a universal formula, which is implied by 5.

6 ⇒ 1: Let N,M |= T with N ⊆ M . For any formula ϕ(x; ā) with
ā ∈ |N | and M |= ∃x ϕ(x; ā), let ρ(ā) be a universal formula such that
T ` ∃x ϕ(x; ā) ↔ ρ(ā), then M |= ρ(ā), so N |= ρ(ā), so N |= ∃x ϕ(x; ā).
By the Tarski-Vaught Test we conclude N ¹ M .

Note that if T proves that every formula is equivalent to a universal for-
mula, then it proves that every formula is equivalent to an existential formula.
This is simply because T proves that the negation of every formula is equiva-
lent to a universal formula. So Theorem 2.6 says that if T is model complete
then both the set of all universal formulas and the set of all existential for-
mulas can serve as a set of basic formulas as we reduce L(T ) to “simple”
formulas. However this does not imply that T admits QE (recall that by
our convention we take the quantifier-free formulas as our basic formula for
QE). In fact there are theories which are model complete but do not admit
QE. A very relevant example is the theory of real closed fields which is a
complete theory and is model complete. But the formula ∃x x×x = y is not
equivalent to any quantifier-free formula in this theory. See [5] for details.
However, some of the conditions listed in Theorem 2.6 can be strengthened
to imply QE.

Definition 2.7. Let T be any theory.

1. T is submodel complete if and only if for any model M |= T and any
N ⊆ M the theory T ∪ ED(N) is complete.

2. T is submodel amalgamatable if and only if for any M1,M2 |= T and
any N ⊆ M1,M2 there is an M∗ |= T such that M1 ¹ M∗ and M2

can be embedded into M∗ over N via a monomorphism f , that is the
following diagram

N M2⊆
//

M1

N

OO

⊆

M1 M∗¹ // M∗

M2

OO

f

commutes.
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3. T has the Shoenfield property (S-property for short) if and only if for
any two models M1,M2 |= T such that M2 is ‖M1‖+-saturated and any
isomorphism f : N1 −→ N2 with N1 ⊆ M1 and N2 ⊆ M2, there is a
monomorphism f ∗ : M1 −→ M2 extending f .

4. T has the strong Shoenfield property (SS-property for short) if and only
if

(a) For every two models M1,M2 |= T and every two models N1 ⊆ M1

and N2 ⊆ M2, if f : N1 −→ N2 is an isomorphism, then there is
an isomorphism f ∗ : N∗

1 −→ N∗
2 which is an extension of f , where

N∗
1 ⊆ M1, N∗

2 ⊆ M2, and N∗
1 , N∗

2 |= T ;

(b) For every two models N, M |= T with N ⊆ M , every existential
formula ϕ(x̄), and every b̄ ∈ N , we have M |= ϕ(b̄) if and only if
N |= ϕ(b̄).

5. T has the van den Dries property (D-property for short) if and only if

(a) For any model N , if there exists a model M |= T such that N ⊆
M , then there is a T -closure N∗ of N , that is N ⊆ N∗ |= T and
N∗ can be embedded over N into any T -extension of N ;

(b) If N,M |= T and N ( M , then there is an a ∈ |M | \ |N | such
that N(a) can be embedded into an elementary extension of N
over N , where N(a) is the smallest submodel of M that contains
|N | ∪ {a} (sometimes this is also denoted by N + a below).

Notice the similarities between 2.6 2 and 2.7 2, 2.6 3 and 2.7 1. Also, the
two conditions 2.6 4 and 2.7 4 (b) are the same. In fact the proof of “4 ⇒
5” in Theorem 2.6, which establishes a crucial connection between model-
theoretic properties and syntactical properties, can be slightly modified to
show how 2.7 4 (a) achieves QE on top of model-completeness.

Proposition 2.8. Let T be a theory in a language with at least one constant
symbol. Suppose that T satisfies 2.7 4 (a). For any formula ϕ, if T proves
that ϕ is equivalent to both a universal formula and an existential formula,
then T proves that T is equivalent to a quantifier-free formula.

Proof. Let ϕ(x̄) ∈ L(T ) be such a formula. Without loss of generality we
may assume ϕ(x̄) is a universal formula. Let ϕ∗(x̄) be an existential formula
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such that T ` ϕ(x̄) ↔ ϕ∗(x̄). Let c̄ be new constants. Let Γ be a set that
contains exactly the following formulas:

• T ∪ {ϕ(c̄)}, and

• every quantifier-free ¬ψ(c̄) such that T ` ∀x̄ (ψ(x̄) → ϕ(x̄)).

Suppose for contradiction that Γ is consistent. Take any model M |= Γ. Let
N ⊆ M be the minimal submodel generated by c̄. Note that every member
in N can be written as a term that only involves c̄, the constants of L(T ),
and the functions of L(T ). Now, if T ∪ ED(N) does not prove ϕ(c̄), then
fix a model M∗ |= T ∪ ED(N) ∪ {¬ϕ(c̄)}. By the assumption we can find
an N1 |= T ∪ ED(N) in M and an N2 |= T ∪ ED(N) in M∗ such that they
are isomorphic over N . So N2 |= ϕ(c̄), so N2 |= ϕ∗(c̄), so M∗ |= ϕ∗(c̄), so
M∗ |= ϕ(c̄), contradiction. So T ∪ED(N) ` ϕ(c̄). So there is a quantifier-free
formula ψ(c̄) ∈ ED(N) such that T∪{ψ(c̄)} ` ϕ(c̄), so T ` ψ(c̄) → ϕ(c̄). But
c̄ are new constants, so T ` ∀x̄ (ψ(x̄) → ϕ(x̄)). So ¬ψ(c̄) ∈ Γ, contradiction
again.

So Γ is not consistent. This means that there are finitely many quantifier-
free formulas ψi(x̄) such that T ` ∀x̄ (ψi(x̄) → ϕ(x̄)) for every i and T `
∀x̄ (ϕ(x̄) → ∨

i ψi(x̄)). So T ` ∀x̄ (ϕ(x̄) ↔ ∨
i ψi(x̄)), as desired.

The reason that we have assumed that the language of T has at least one
constant symbol is to avoid certain pathology. That is, if ϕ is a sentence
and L(T ) has no constant symbol, then c̄ is the empty sequence and cannot
generate any submodel as we do not allow an empty model. The reader
should observe that in this case the above proof will not go through if we
simply use an arbitrary submodel. An alternative way to go around this is
to deal with ϕ∧x = x instead of ϕ if ϕ is a sentence. Of course this requires
that L(T ) has equality. Anyway, in the sequel we shall assume that one of
the solutions is applied whenever we are in a similar situation and hence
avoid mentioning these cumbersome assumptions again.

The SS-property first appeared in Shoenfield’s textbook [17]. He subse-
quently modified it into the S-property and proved its equivalency to QE
in [18]. The D-property was given by Lou van den Dries in [20], [21]. All
of these properties in the above definition can serve as a QE-test. In gen-
eral some of them are more effective than others, especially the D-property,
although this also depends on the theory that is being tested. Note that
the D-property is a direct strengthening of the SS-property, though for all
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practical purposes, in the light of some of the theorems below, its main ad-
vantage over the SS-property is its conceptual concreteness rather than its
logical strength.

Theorem 2.9. Let T be any theory. For the following statements,

1. T is submodel complete,

2. T is submodel amalgamatable,

3. T has the S-property,

4. T has the SS-property,

5. T has the D-property,

6. T admits QE,

these logical implications hold:
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where fi’s and gi’s are monomorphisms. Let M1 =
⋃

i<ω M1
i and M2 =⋃

i<ω M2
i . Let f =

⋃
i<ω fi and g =

⋃
i<ω gi. That f = g−1 is an isomorphism

between M1 and M2 is a basic fact in model theory. So

〈M1, a〉a∈|N | ≡ 〈M2, a〉a∈|N |.
So T ∪ ED(N) is complete.

1 ⇒ 6: Let ϕ(x̄) be a formula in L(T ). Let c̄ be new constants. Let Γ be
a set that contains exactly the following formulas:
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• T ∪ {ϕ(c̄)}, and

• every quantifier-free ¬ψ(c̄) such that T ` ∀x̄ (ψ(x̄) → ϕ(x̄)).

Suppose for contradiction that Γ is consistent. Take any model M |= Γ.
Let N ⊆ M be the minimal submodel generated by c̄. Note that every
member in N can be written as a term that only involves c̄, the constants
of L(T ), and the functions of L(T ). Since T is submodel complete, we have
T ∪ ED(N) ` ϕ(c̄). So there is a quantifier-free formula ψ(c̄) ∈ ED(N) such
that T ∪ {ψ(c̄)} ` ϕ(c̄). So T ` ψ(c̄) → ϕ(c̄). But c̄ are new constants, so
T ` ∀x̄ (ψ(x̄) → ϕ(x̄)). So ¬ψ(c̄) ∈ Γ. This is a contradiction.

So Γ is not consistent. This means that there are finitely many quantifier-
free formulas ψi(x̄) such that T ` ∀x̄ (ψi(x̄) → ϕ(x̄)) for every i and T `
∀x̄ (ϕ(x̄) → ∨

i ψi(x̄)). So T ` ∀x̄ (ϕ(x̄) ↔ ∨
i ψi(x̄)), as desired.

6 ⇒ 3: Without loss of generality let M1,M2 |= T , N ⊆ M1,M2, and
let M2 be ‖M1‖+-saturated. Consider the type p = tp(a/ |N | ,M1) for some
a ∈ |M1| \ |N |. Since T admits QE, any formula ∃x ϕ(x; b̄) with ϕ(x; b̄) ∈ p
is equivalent to a quantifier-free formula ϕ∗(b̄). So N |= ϕ∗(b̄). So M2 |=
∃x ϕ(x; b̄). So p is also an M2-type. So p is realized in M2, say, by d. Clearly
setting a 7−→ d induces an isomorphism between the two submodels N + a
and N + d. By iterating this procedure we see that M1 can be embedded
into M2 over N .

3 ⇒ 2: We use the fact that for any infinite model M and any cardinality
κ there is an elementary extension N of M such that N is κ-saturated. The
logical implication in question follows readily from this fact.

4 ⇒ 3: Again let M1,M2 |= T , N ⊆ M1, M2, and let M2 be ‖M1‖+-
saturated. By the first condition of the SS-property fix two T -extensions
N1, N2 of N in M1,M2 respectively that are isomorphic over N . Let the
isomorphism be f . Pick an a ∈ |M1| \ |N1| and consider any quantifier-free
formula ϕ(x; b̄) with b̄ ∈ N1 such that M1 |= ϕ(a; b̄). Since M1 |= ∃x ϕ(x; b̄),
by the second condition of the SS-property we have N1 |= ∃x ϕ(x; b̄), so
N2 |= ∃x ϕ(x; f(b̄)), so M2 |= ∃x ϕ(x; f(b̄)). Hence the quantifier-free type
f(p) is realized in M2, say, by d, where p = tpqf (a/ |N1| , M1). If we set
a 7−→ d then we get an induced isomorphism between N1 +a and N2 +d. By
iterating this procedure to exhaust all elements in M1 we see that M1 can be
embedded into M2 over N .

5 ⇒ 4: Trivially the closure property implies the first condition of the
SS-property. For the second condition of the SS-property, let N,M |= T with

15



N ⊆ M . Consider an existential formula ∃x̄ ϕ(x̄; b̄) that is satisfied in M ,
where b̄ ∈ N and ϕ(x̄; b̄) is quantifier-free. So let c̄ be such that M |= ϕ(c̄; b̄).
We construct the following diagram:

N0 N0 + a0
⊆ //N0

N∗
0

¹
ÂÂ?

??
??

??
??

??
N0 + a0 N1

⊆ //N0 + a0

N∗
0

²²

N1

N∗
0

f0

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä
N1 N1 + a1

⊆ //N1

N∗
1

¹
ÂÂ?

??
??

??
??

??
N1 + a1 N2

⊆ //N1 + a1

N∗
1

²²

N2

N∗
1

f1

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä
N2

· · ·ÂÂ?
??

??
??

??
??

?N2 M
⊆ //

where N0 = N , each Ni+1 is the T -closure of Ni + ai promised by the closure
property, each ai and N∗

i are as described in the second condition of the
D-property, all arrows are monomorphisms, and at the limit stage we simply
take the union of all previous Ni’s.

Now, let i be the least index such that c̄ ∈ Ni. Note that i cannot be
a limit ordinal. So Ni |= ∃x̄ ϕ(x̄; b̄), so N∗

i−1 |= ∃x̄ ϕ(x̄; b̄), so Ni−1 |=
∃x̄ ϕ(x̄; b̄), etc. If γ is a limit ordinal and Nγ |= ∃x̄ ϕ(x̄; b̄), then there is a
d̄ ∈ |Nγ| such that Nγ |= ϕ(d̄; b̄), so by the construction there is a j < γ such
that d̄ ∈ |Nj|, so Nj |= ϕ(d̄; b̄), so Nj |= ∃x̄ ϕ(x̄; b̄). As we trace back in the
diagram we see that N = N0 |= ∃x̄ ϕ(x̄; b̄).

The logical implications in the above theorem are all well-known. In fact
there are still more model-theoretic tests that are equivalent to QE. They are
all more or less variations of the three equivalent tests in the above theorem.
See Hodges [12] for more details about this. On the other hand, it is tempting
to ask if in the above theorem all of the statements are indeed equivalent.

Jeremy Avigad has an example which shows that QE is strictly weaker
than the SS-property. Consider the set 2ω of all binary sequences of length ω.
For each n ∈ ω let Zn be a unary predicate such that, for any η ∈ 2ω, Zn(η)
if and only if (η)n = 0. Let T = Th(〈2ω, Zn〉n∈ω). Since except equality all
predicates in the language are unary, every existential formula ∃x ϕ(x; ȳ) is
equivalent to a formula of the form

∨
i(θi(ȳ) ∧ ∃x φi(x; ȳ)), where φi(x; ȳ) is

a conjunction of literals each of which contains x. If the unary predicates in
the formula ∃x φi(x; ȳ) describe a “consistent” finite sequence, then it can
be translated into an equivalent quantifier-free formula that only involves ȳ.
So T proves that every existential formula is equivalent to a quantifier-free
formula, which means that T admits QE. So actually T can be axiomatized
with only existential and universal formulas. Now, it is easy to see that any
dense subset of 2ω is a model of T . Let S0 ⊆ 2ω be the set of those sequences
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that have only finitely many 0’s. Let S1 ⊆ 2ω be the set of those sequences
that have only finitely many 1’s and the constant sequence 1̄. So both S0 and
S1 are models of T . Notice that {1̄} is a submodel of both models as there
is no function symbol in the language. Clearly there cannot be isomorphic
T -extensions of {1̄} in S0 and S1.

What about the SS-property and the D-property then? First of all it is
trivial that if a theory T admits QE then the second condition of the D-
property holds, because, by Theorem 2.6, if N,M |= T and N ⊆ M then M
itself is an elementary extension of N . The closure property, however, is much
harder to achieve. We prove below that the arrow between (4) and (5) in
Theorem 2.9 can be reversed for countable theories. That is, the SS-property
and the D-property are equivalent for countable theories. As the question
of QE rarely arises for uncountable theories, this result means that for all
practical purposes the two properties are really the same. The argument for
this result involves some basic facts in infinitary combinatorics. Also we need
more concepts in model theory and Henkin’s Omitting Type Theorem.

Definition 2.10. Let x̄ be a sequence of variables. Let T be a theory.

1. Let p and q be two T -types in x̄. We write p ` q if the following holds:
For every model M |= T and every ā ∈ lh(x̄)|M |, if ā realizes p then ā
realizes q.

2. For a T -type p, if there exists a formula ϕ(x̄) such that ϕ(x̄) ` p, then
we say that p is isolated by ϕ(x̄) via T . In general if there exists a
T -type q such that q ` p and |q| < κ, then we say that p is κ-isolated
by q via T . If in context it is clear which theory is being discussed then
we omit T .

Note that any type p is trivially |p|+-isolated. If p is a complete T -type,
then p is κ-isolated via T if and only if there exists a q ⊆ p such that q ` p
and |q| < κ. In particular p is isolated via T if and only if there exists a
ϕ ∈ p such that ϕ ` p.

Definition 2.11. Let M be a model that satisfies a theory T and A a subset
of its universe. We say M is almost T -primary over A if there exists an
ordinal α and a sequence 〈(Ni, bi) : i < α〉 such that

1. N0 is the minimal submodel of M that contains A,
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2. bi /∈ |Ni| and Ni+1 is the minimal submodel of M that contains {bi} ∪
|Ni| for each i < α (if α = β + 1 then bβ is not defined),

3. Nβ =
⋃

i<β Ni if β is a limit ordinal and
⋃

i<α Ni = M ,

4. the type tp(bj/ |Nj| ,M) is isolated via Tj for every j < α, where Tj =
T ∪ CD(Nj,M).

The sequence 〈(Ni, bi) : i < α〉 is called an almost isolating sequence for M
over A. The ordinal α is the length of the sequence.

For convenience, if T = Th(M) then we omit T . Also, sometimes we allow
an almost isolating sequence to have repeated consecutive bi’s. Of course in
this case we no longer require bi /∈ |Ni| for the repeated occurrences. Note
that this definition is a variation of the notion of a primary model, which
plays an important role in the proof of Morley’s Theorem.

Definition 2.12. Let M be a model that satisfies a theory T and A a subset
of its universe. We say M is T -primary over A if there exists an ordinal α
and an enumeration 〈bi : i < α〉 of |M | \ A such that the type

tp(bj/A ∪ {bi : i < j} ,M)

is isolated via Tj for every j < α, where Tj = T ∪ CD(A ∪ {bi : i < j} , M).
The sequence 〈bi : i < α〉 is called an isolating sequence for M over A. The
ordinal α is the length of the sequence.

It is not hard to see that if T is submodel complete and N ⊆ M |= T
then M is almost T -primary over N if and only if M is T -primary over
N . We prefer the concept of an almost primary model below because it
is more explicit about what property is being exploited, namely submodel
completeness. For much more materials on primary models see Grossberg’s
textbook [10].

Next we state Henkin’s Omitting Type Theorem. In his textbook [16]
Gerald Sacks quotes a “not well-known” model theorist: “Any fool can realize
a type, but it takes a model theorist to omit one.” To be on the safe side
we also include a proof of Henkin’s Omitting Type Theorem below, which
is borrowed from [10]. Here we assume that the reader is familiar with the
concepts of a poset, a dense subset, a generic filter, etc. and the basic facts
about them.
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Theorem 2.13 (Henkin’s Omitting Type Theorem). Let T be a countable
theory. Let Γ be a countable collection of T -types. If p is not isolated for
every type p ∈ Γ, then there exists a countable model M |= T that omits all
the types in Γ.

Proof. Let C = {ci : i < ω} be a set of new constants that are not in L(T ).
Let L∗ = L(T ) ∪ C. Define

P = {p : p is a finite set of sentences in L∗ and T ∪ p is consistent} .

P is a poset ordered by inclusion.
For each sentence ϕ ∈ T it is easy to see that the set Eϕ = {p ∈ P : ϕ ∈ p}

is dense in P . For each formula ϕ(x) in L(T ) such that T ` ∃x ϕ(x) let

Dϕ = {p ∪ {∃x ϕ(x) → ϕ(ci)} ∈ P : ci ∈ C and ci does not appear in p}.

Dϕ is also dense in P . To see this, suppose for contradiction there is a p ∈ P
such that for no q ∈ Dϕ do we have p ⊆ q, that is for every ci ∈ C that
does not appear in p we have that {∃x ϕ(x) → ϕ(ci)}∪T ∪ p is inconsistent.
So T ∪ p ` ¬(∃x ϕ(x) → ϕ(ci)), so T ∪ p ` ∃x ϕ(x) ∧ ¬ϕ(ci). Since
ci does not appear in p, we deduce T ∪ p ` ∃x ϕ(x) ∧ ∀x ¬ϕ(x), that is
T ∪ p ` ∃x ϕ(x) ∧ ¬∃x ϕ(x), contradicting the assumption that T ∪ p is
consistent.

Next, for each function symbol f ∈ L(T ) and each tuple of constants
c̄ ∈ L∗ let

Df,c̄ = {p ∪ {f(c̄) = d} ∈ P : d does not appear in p}.

By an argument similar to the previous one we see that each Df,c̄ is dense in
P .

Now since there are only countably many dense subsets of P of the three
sorts defined in the last paragraph, we may find a generic filter G of P that
intersects them all. Clearly T ⊆ ⋃

G. Let
⋃

G ⊆ T ∗ be a complete theory
in L∗. We define a binary relation “≈” on C as follows:

ci ≈ cj iff T ∗ ` ci = cj.

It should be clear that “≈” is an equivalence relation on C. In fact the
reader should observe at this point that what we have done so far is just a
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Henkin-style construction for the theory T . So if we let [ci]≈ denote the ≈-
equivalence class of ci and interpret the relations and functions in the usual
way, we actually get a countable model of T ∗.

Of course we still need to omit all the types in Γ. Let 〈pn : n < ω〉 enu-
merate all the types in Γ. We use k(n) to denote the arity of pn. For each
n < ω and each c̄ ∈ C with lh(c̄) = k(n), define

On,c̄ = {q ∈ P : there is a ϕ(x̄) ∈ pn such that ¬ϕ(c̄) ∈ q}.

We claim that On,c̄ is dense in P . To prove it, suppose for contradiction
that there is a q ∈ P such that for every ϕ(x̄) ∈ pn the set {¬ϕ(c̄)} ∪ T ∪ q
is inconsistent. So T ∪ q ` ϕ(c̄). So T ` ∧

q → ϕ(c̄), where
∧

q is the
conjunction of all the formulas in q. Now let d̄ ∈ C be the constants in
q that are different from c̄. We have T ` ∀x̄ ∀ȳ (

∧
q → ϕ(x̄)), where

lh(x̄) = lh(c̄) and lh(ȳ) = lh(d̄). This means that the formula ∀ȳ ∧
q isolates

the type pn, contradicting the assumption.
Let G be a generic filter that intersects all the dense subsets that have

been defined so far. As above we can construct a countable model M of
the theory T ∗ which extends T . It is easy to see that all the types in Γ are
omitted in M . Hence the reduct of M to L(T ) is as desired.

Notice that the argument in the above proof runs like forcing. In fact this
theorem can be slightly generalized as follows. Let |T | = κ be any regular
cardinal. Let Γ be a collection of at most κ many T -types such that no type
in Γ is κ-isolated. Then by a transfinite version of the above argument one
easily sees that there exists a model M |= T with ‖M‖ = κ that omits all
the types in Γ.

We proceed to develop a couple of technical lemmas. We have the follow-
ing basic fact about an almost primary model satisfying a submodel complete
theory:

Lemma 2.14. Suppose T is submodel complete. Let N ⊆ M |= T . Then:
if M is almost T -primary over N , then for every model M∗ |= T ∪ ED(N)
there is an elementary embedding from M into M∗ over N .

Proof. Since T is submodel complete, the theory T ∪ ED(N) is complete.
This means that for any formula ϕ(x̄) and any ā ∈ N we have

M |= ϕ(ā) iff M∗ |= ϕ(ā).
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Let 〈(Ni, bi) : i < α〉 be an almost isolating sequence for M over N . So by
definition N0 = N . In order to prove the lemma it is enough to construct a
continuous sequence of monomorphisms gi : Ni −→ M∗ for i < α such that

1. g0 = idN ,

2. Ni |= ϕ(ā) iff M∗ |= ϕ(gi(ā)) for each formula ϕ(x̄) and each ā ∈ Ni,

3. if i < j < α then gi ⊆ gj, and

4. if β is a limit then gβ =
⋃

i<β gi.

The embedding g =
⋃

i<α gi is as desired. That g is elementary is because
submodel completeness implies model completeness (see Theorem 2.6 and
Theorem 2.9).

Now we proceed to construct the sequence. Due to the clause 4 all we have
to do is to make the successor case work. So suppose we have successfully
constructed the sequence up to the ordinal i < α. Since the complete type
pi = tp(bi/ |Ni| ,M) is isolated via Ti where Ti = T ∪CD(Ni,M), there exists
a formula ϕ(x; ā) ∈ pi isolating it. By the clause 2 we have

ϕ(x; ā) ` pi ⇒ ϕ(x; gi(ā)) ` gi(pi). (2.1)

Since M |= ϕ(bi; ā), we have M |= ∃x ϕ(x; ā), so M∗ |= ∃x ϕ(x; gi(ā)). Let
ci ∈ |M∗| such that M∗ |= ϕ(ci; gi(ā)). So by 2.1 ci realizes the type gi(pi).
Now define a function gi+1 by setting τ(bi) 7−→ τ(ci) for each term τ(x) of
L(Ti). It is easy to see that this is a well-defined monomorphism from Ni+1

into M∗ which extends gi and takes bi to ci.

In order to build almost primary models we need the next crucial lemma.

Lemma 2.15. Let T be a theory in a countable language. Suppose T has the
SS-property. Then for

1. every model M |= T ,

2. every countable submodel N ⊆ M ,

3. every formula ϕ(x; ȳ) and every ā ∈ |N | such that ∃x ϕ(x; ā) ∈ T ∪
ED(N) but M |= ¬ϕ(b; ā) for every b ∈ |N |,

there is a c ∈ |M | \ |N | such that the type tp(c/ |N | , M) is isolated and
M |= ϕ(c; ā).
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Proof. Fix an M , an N , an ā, and a ϕ(x; ȳ) as above. Since T has the SS-
property, by Theorem 2.9 the theory T ∪ED(N) is complete. This also means
that T is model complete. Fix a countable elementary submodel M∗ ¹ M
that contains N . We work in M∗. Since M∗ |= T ∪ ED(N), by the last
condition above we see that M∗ is larger than N .

Suppose for contradiction we cannot find a c in M∗ as required. Define a
collection Γ of T ∪ ED(N)-types:

Γ = {tp(c/ |N | ,M∗) : c ∈ |M∗| \ |N | and M∗ |= ϕ(c; ā)} .

Since Γ is countable, by Henkin’s Omitting Type Theorem there is a model
N∗ |= T ∪ ED(N) that omits every type in Γ. But T has the SS-property,
so we can find two models M∗∗ ⊆ M∗, N∗∗ ⊆ N∗ of T such that there
is an isomorphism h : M∗∗ ∼= N∗∗ whose restriction to N is idN . Since
∃x ϕ(x; ā) ∈ T ∪ ED(N), there must be some c ∈ |M∗∗| \ |N | such that
M∗∗ |= ϕ(c; ā). Since T is model complete, we deduce M∗ |= ϕ(c; ā). This
means that h(c) realizes the T ∪ED(N)-type tp(c,M∗) in N∗, contradicting
the choice of N∗.

Note that in the above theorem, if N is not a model of T , then there must
exist a formula ∃x ϕ(x; ā) ∈ T∪ED(N) with ā ∈ |N | such that M |= ¬ϕ(b; ā)
for every b ∈ |N |, because otherwise N would be a model of T by the Tarski-
Vaught Test as T ∪ ED(N) is complete. Now, for countable submodels, the
SS-property creates an opportunity to build almost primary models. This is
exactly what we are going to do next.

Theorem 2.16. Let T be a theory in a countable language. If T has the SS-
property then, for any model M |= T and any countable submodel N ⊆ M ,
N has a T -closure.

Proof. If T has the SS-property then T is submodel complete. Fix N ⊆ M |=
T such that N is countable. Without loss of generality we may assume that
M is countable as well. So by Lemma 2.14 all we need to do is to build an
almost T -primary model N∗ over N inside M . For this it is enough to build
an almost isolating sequence for some model of T over N . The idea here is
of course to find a suitable Skolem hull of N inside M such that the type of
each “key” new element we find is isolated over all the previous elements.

To be precise, we want to build an almost isolating sequence 〈(Ni, bi) : i < ω · ω〉
over N such that for
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• each n < ω,

• each ā ∈ Nω·n, and

• each formula ϕ(x; ȳ) such that M |= ∃x ϕ(x; ā),

there is an m < ω such that M |= ϕ(τ(bω·n+m); ā) for some term τ(x) in the
language L(T ∪ ED(Nω·n+m)). It should be clear that

⋃
i<ω·ω Ni = N∗ is an

elementary submodel of M , and hence is almost T -primary over N .
Now we carry out the construction. Start with N0 = N of course. Suppose

〈(Ni, bi) : i < ω · n〉 is defined. Let 〈ϕk(x; āk) : k < ω〉 be an enumeration
of all the formulas in T ∪ ED(Nω·n) such that for every k < ω we have
M |= ∃x ϕk(x; āk) but M |= ¬ϕk(d; āk) for every d ∈ Nω·n. Now suppose
we have extended the sequence all the way up to (Nω·n+k, bω·n+k) for some
k < ω. Let Nω·n+k+1 = Nω·n+k + bω·n+k, that is the minimal submodel of
M that contains {bω·n+k} ∪ |Nω·n+k|. If there is a d ∈ Nω·n+k+1 such that
M |= ϕk+1(d; āk+1) then let bω·n+k+1 = bω·n+k. Otherwise by Lemma 2.15 we
can pick a bω·n+k+1 ∈ |M | \ |Nω·n+k+1| such that M |= ϕk+1(bω·n+k+1; āk+1)
and the type tp(bω·n+k+1/ |Nω·n+k+1| ,M) is isolated.

The reader may ask: What is preventing us here from simply extend-
ing the above theorem to arbitrary theories and arbitrary submodels? One
difficulty is this: We do not know how to extend Henkin’s Omitting Type
Theorem to uncountable theories and hence are unable to develop an ana-
log of Lemma 2.15 for uncountable theories. In fact if we simply drop the
countability requirement in Henkin’s Omitting Type Theorem then it is false.
See [5] for discussions. However, below we will show how to circumvent this
difficulty if the language in question is countable. For this we assume the
reader is familiar with some of the basic concepts and facts in infinitary
combinatorics, in particular stationary sets and Fodor’s Lemma.

Throughout the rest of this section T is a theory in a countable lan-
guage and has the SS-property. Our strategy is to establish an analog of
Lemma 2.15 for any submodel. To simplify the discussion we shall adopt a
more concise terminology to describe the assumed situation in Lemma 2.15.
Let M |= T and N ⊆ M such that N is uncountable and is not a model of
T . So there is a formula ∃x ϕ(x; ā) ∈ T ∪ ED(N) with ā ∈ |N | such that
ϕ(M ; ā) ⊆ |M |\|N |, where ϕ(M ; ā) is the set {c ∈ M : M |= ϕ(c; ā)}. In this
case we say ϕ(x; ā) is critical for N . We have two cases to consider, namely
‖N‖ is regular and ‖N‖ is singular. By a routine transfinite induction we
prove the next two corresponding lemmas.
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Lemma 2.17. Suppose ‖N‖ = κ is regular and ϕ(x; ā) is critical for N .
Then there is a c ∈ ϕ(M ; ā) such that the type tp(c/ |N | ,M) is isolated.

Proof. Without loss of generality we may assume ‖M‖ = κ. Fix a club
C = 〈αi : i < κ〉 ⊆ κ and a continuous sequence of submodels 〈Ni : i < κ〉
such that

• for all αi, αj ∈ C and i < j we have |αi| ≤ |αj \ αi|,
• ‖Ni‖ = |αi|,
• ā ∈ N0 and if i < j < κ then Ni ⊆ Nj,

• ⋃
i<β Ni = Nβ if β is a limit ordinal and

⋃
i<κ Ni = N .

By the inductive hypothesis we construct a sequence 〈bi ∈ ϕ(M ; ā) : i < κ〉
such that each type tp(bi/ |Ni| ,M) is isolated. Fix an enumeration 〈φi : i < κ〉
of all the formulas in the language of T ∪ ED(N) such that for each αi ∈ C
we have

{i : φi is a formula in the language of T ∪ ED(Ni)} ⊆ αi.

Now define a function f : C −→ κ by letting f(αi) be the least ordinal
such that φf(αi) isolates the type tp(bi/ |Ni| ,M). Since f is a pressing-down
function on a stationary subset of κ and κ is regular, by Fodor’s Lemma, there
is a γ < κ such that f−1(γ) ⊆ C is stationary. Clearly for any αi, αj ∈ f−1(γ),
if αi < αj then tp(bi/ |Nj| ,M) = tp(bj/ |Nj| ,M) as they are both isolated
by φγ. So tp(bi/ |N | ,M) = tp(bj/ |N | ,M) for any αi, αj ∈ f−1(γ). And this
type is isolated by φγ as desired.

For the case that ‖N‖ is singular we need to work much harder:

Lemma 2.18. Suppose ‖N‖ = κ is singular and ϕ(x; ā) is critical for N .
Then there is a c ∈ ϕ(M ; ā) such that the type tp(c/ |N | ,M) is isolated.

Proof. As above we may assume ‖M‖ = κ. Let λ = cf(κ) < κ. Let
〈µi : i < λ〉 ⊆ κ be a strictly increasing sequence of cardinals such that it
is unbounded in κ. Fix an increasing sequence of submodels 〈Ni : i < λ〉
such that

• ā ∈ N0 and if i < j < λ then Ni ⊆ Nj,
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• ‖Ni‖ = µi,

• ⋃
i<λ Ni = N .

We define a good sequence F = 〈ϕi(x) : i < λ〉 of formulas for ϕ(x; ā) as
follows:

1. each ϕi(x) is a formula in the language of T ∪ ED(Ni),

2. ϕ(M ; ā) ∩ ϕi(M) 6= ∅ for each i < λ,

3. if b ∈ ϕ(M ; ā)∩ϕi(M) then the type tp(b/ |Ni| ,M) is isolated by ϕi(x).

The existence of such a good sequence is guaranteed by the inductive hy-
pothesis. Note that this definition works in general for any formula that is
critical for some submodel. Let

dom(F) = {a ∈ N : a occurs as a parameter in some ϕi(x) ∈ F} .

So |dom(F)| ≤ λ for any good sequence F.
Now, take an arbitrary good sequence F0 for ϕ(x; ā). Let K0 ⊆ N be the

submodel generated by dom(F0) ∪ {ā}. Note that ϕ(x; ā) is critical for K0.
Since ‖K0‖ ≤ λ < κ, by the inductive hypothesis there is a c0 ∈ ϕ(M ; ā) such
that tp(c0/ |K0| ,M) is isolated by some formula σ0(x) in L(T ∪ ED(K0)).
Notice that if F0 ⊆ tp(c0/ |K0| ,M) then we are done: in this case σ0(x)
isolates the entire F0 and each ϕi(x) ∈ F0 isolates the type tp(c0/ |Ni| , M),
so the type tp(c0/ |N | ,M) is isolated by σ0(x). Next, since ϕ(x; ā) ∧ σ0(x)
is critical for N (because it contains ϕ(x; ā) as a conjunct), we can construct
a good sequence F1 for ϕ(x; ā) ∧ σ0(x). Clearly F1 is also a good sequence
for ϕ(x; ā). Let K1 ⊆ N be the submodel generated by |K0| ∪ dom(F1).
Then we can similarly find c1 ∈ ϕ(M ; ā) and an isolating formula σ1(x) in
L(T ∪ ED(K1)). Continuing in this fashion we can construct a sequence of
triples 〈(Fi, ci, σi(x)) : i < λ+〉 such that

• ci ∈ ϕ(M ; ā),

• Fi+1 is a good sequence for ϕ(x; ā) ∧ σi(x),

• σi(x) is a formula in the language L(T ∪ ED(Ki)) which isolates the
type tp(ci/ |Ki| ,M), where Ki ⊆ N is the submodel generated by the
set {ā} ∪⋃

j≤i dom(Fj),
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• if i is a limit ordinal then Fi is not defined.

Let K =
⋃

j<λ+ Kj. Let

Sλ
λ+ =

{
α < λ+ : cf(α) = λ

}
,

which is a stationary subset of λ+. Fix an enumeration of all the formulas
in L(T ∪ ED(K)) such that for each α ∈ Sλ

λ+ we have

{i : φi is a formula in the language of T ∪ ED(Kα)} ⊆ α.

So again by Fodor’s Lemma there is a σj(x) and a stationary subset S ⊆ Sλ
λ+

such that for all α ∈ S the type tp(cα/ |Kα| ,M) is isolated by σj(x).
For any α, β ∈ S with α < β, consider Fα+1. Since σα(x) is σj(x), Fα+1

is a good sequence for ϕ(x; ā)∧σj(x), so M |= ∃x (ϕ(x; ā)∧σj(x)∧ϕi(x)) for
all ϕi(x) ∈ Fα+1 (this is by the second condition in the definition of a good
sequence above). Since σj(x) also isolates the complete type tp(cβ/ |Kβ| , M)
and dom(Fα+1) ⊆ |Kβ|, we must have Fα+1 ⊆ tp(cβ/ |Kβ| ,M), so σj(x)
isolates Fα+1. Since each ϕi(x) ∈ Fα+1 determines the type over Ni, we see
that σj(x) isolates the type tp(cβ/ |N | ,M).

With these two lemmas we can now simply proceed to build an almost
isolating sequence for some model of T over N much in the same way as in
Lemma 2.16, only now the length of the almost isolating sequence can go up
to ‖N‖ · ω. So we have the following theorem:

Theorem 2.19. For a countable theory T the SS-property and the D-property
are equivalent.

We end this section with the following question.

Question 2.20. What is the analog of Theorem 2.19 for uncountable theories?
That is, without any additional assumptions Theorem 2.19 is probably not
true for uncountable theories, so what “reasonable” assumptions can make
it true for uncountable theories?
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3 The Quantifier Elimination Procedure for

the Theory of Real Closed Ordered Fields

with a Predicate for the Powers of Two

It was Tarski who first found a decision procedure for the theory of real
closed ordered fields. His method was QE. However, his original proof in [19]
ran to several dozens of pages and involved a great deal of complex sym-
bolism. It is a daunting task for anyone to decipher the crucial ideas in
the proof. Fortunately many significant simplifications and improvements of
Tarski’s method have been made since the result was first published. One
that is highly recommendable is Kreisel and Krivine’s presentation in their
textbook [13], though, as far as computational efficiency is concerned, it is
really not that far away from Tarski’s version.

Here we shall quote two key lemmas from their presentation because many
claims in this section are inspired by them. The language of the theory of
real closed ordered fields has the symbols 0, 1, +, −, ×, <. In this theory
each quantifier-free formula ϕ(x) can be written in the form

∧
i<n

pi(x) = 0 ∧
∧
i<m

qi(x) > 0,

where pi(x) and qi(x) are terms in the standard form, that is, polynomials.
For any polynomial p we write deg(x, p) for the highest degree of x in p. The
degree in x of pi(x) = 0 is deg(x, pi(x)). The degree in x of qi(x) > 0 is
deg(x, qi(x)) + 1. The degree in x of ϕ(x) is the maximum of the degrees of
its atomic components.

Lemma 3.1. For any quantifier-free formula ϕ(x) of the form

∧
i<n

pi(x) = 0 ∧
∧
i<m

qi(x) > 0,

there is a quantifier-free formula ψ(x) which is equivalent to ϕ(x) such that
the degree in x of ψ(x) is less than or equal to the least of the degrees in x
of pi(x) = 0 (which we assume is not 0).

Lemma 3.2. Let ϕ(x) be a quantifier-free formula. Let a, b be two variables
that does not occur in ϕ(x). Assume a < b. Then the formula ∃x (a <
x < b ∧ ϕ(x)) is equivalent to a quantifier-free formula ψ such that ψ does
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not contain x, each variable in ψ is a, b, or a variable in ϕ, and no atomic
formula in ψ contains both a and b. (Note that the claim can be rephrased
accordingly if a, b are closed terms.)

Now extend the language of real closed ordered fields with a predicate A
which, in the intended interpretation, denotes the powers of two, 2Z. Adopt-
ing the obvious conventions and abbreviations, add the following axioms:

• ∀x (A(x) → x > 0)

• ∀x, y (A(x) → (A(y) ↔ A(xy)))

• A(2) ∧ ∀x (1 < x < 2 → ¬A(x))

• ∀x (x > 0 → ∃y (A(y) ∧ y ≤ x < 2y))

The first two imply that the A picks out a multiplicative subgroup of the
positive elements. In [20], van den Dries showed that the resulting theory
admits quantifier elimination in an expanded language. As a result, it is
complete and decidable, and, in particular, axiomatizes the real numbers
with a predicate for the powers of two.

The theory we have just described includes not only the theory of real
closed ordered fields, but also, via an interpretation of integers as exponents,
Presburger arithmetic. Thus, van den Dries’s result is particularly interesting
in that it subsumes two of the most important decidability results of the
twentieth century. In recent years, this result has been extended in various
directions (see, for example, [9] and [22]).

To establish QE, van den Dries gave a model-theoretic argument. In
particular his argument shows that the theory in question has the D-property
and QE follows from Theorem 2.9. The proof does not provide an explicit
procedure, nor does it provide a bound on the length of the resulting formula.
Here, we present a proof that makes use of nested calls to a QE procedure
for real closed ordered fields, yielding a procedure that is primitive recursive
but not elementary. In particular, it requires time 20

O(n) to eliminate a single
block of existential quantifiers, or even a single existential quantifier, where
n is the length of the input formula and 20

k denotes a stack of k exponents.
Thus, the best bound we can give on the time complexity of the full QE
procedure involves O(n) iterates of the stack-of-twos function. We leave it as
an open question as to whether one can avoid such nesting and, say, obtain
elementary bounds for the elimination of a single existential quantifier.
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In Section 3.1, we describe the extension of the theory above that admits
QE. Our method of eliminating an existential quantifier proceeds in two steps:
first, we eliminate that quantifier in favor of a multiple existential quantifiers
over powers of two (the number of which is bounded by the length of the
original formula); then we successively eliminate each of these. The first step
is described in Section 3.1. In Section 3.2, we prove a number of lemmas that
fill out the relationship between the powers of two and the underlying model
of real closed ordered fields in a model of the relevant theory; this contains
the bulk of the syntactic and algebraic work. In Section 3.3, we use these
results to carry out the second step. Finally, in Section 3.4, we show that
our procedure satisfies the complexity bounds indicated above.

3.1 The first step

Expand the language of real closed ordered fields to include a unary function
λ and a unary predicate Dn for each n ≥ 1. Let T be the theory given by
the axioms above together with the following:

• Dn(x) ↔ ∃y (A(y) ∧ yn = x)

• ∀x (x ≤ 0 → λ(x) = 0)

• ∀x (x > 0 → A(λ(x)) ∧ λ(x) ≤ x < 2λ(x))

In the standard interpretation, λ maps negative real numbers to 0 and rounds
positive reals down to the nearest power of two, and Dn holds of numbers
of the form 2i where i is an integer divisible by n.1 Note that A and D1 are
equivalent; we will treat them as the same symbol and use the two notations
interchangeably.

Our goal is to prove the following:

Theorem 3.3. T admits QE.

1For parsimony, 0 can be defined as 1− 1 and A(x) by x > 0 ∧ λ(x) = x. In the next
section, we will see that the division symbol is another inessential addition to the language.
But in contrast to QE for real closed ordered fields, one can’t eliminate − in terms of +;
for example, the quantifier-free formula A(x − y), if replaced by ∃z (z + y = x ∧ A(z)),
would have no quantifier-free equivalent.
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This is Theorem II of [20]. Henceforth, by “formula,” we mean “for-
mula in the language of T .” We will use x̄ to denote a sequence of vari-
ables x0, x1, . . . , xk−1, and we will use notation like A(x̄) to denote A(x0) ∧
A(x1) . . . ∧ A(xk−1).

To eliminate quantifiers from any formula it suffices to be able to eliminate
a single existential quantifier, that is transform a formula ∃x ϕ, where ϕ is
quantifier-free, to an equivalent quantifier-free formula. Since ∃x (ϕ ∨ ψ) is
equivalent to ∃x ϕ∨∃x ψ, we can always factor existential quantifiers through
a disjunction. In particular, since any quantifier-free formula can be put in
disjunctive normal form, it suffices to eliminate existential quantifiers from
conjunctions of atomic formulas and their negations. Also, since ∃x (ϕ∧ψ) is
equivalent to ∃x ϕ∧ψ when x is not free in ψ, we can factor out any formulas
that do not involve x. Furthermore, whenever we can prove ∀x (θ ∨ η), ∃x ϕ
is equivalent to ∃x (ϕ ∧ θ) ∨ ∃x (ϕ ∧ η); so we can “split across cases” as
necessary. We will use all of these facts freely below.

In [20], van den Dries established quantifier elimination by establishing
the D-property. The novelty of this test, as compared to more common ones
(see Definitions 2.7), lies in the prover’s right to choose an appropriate b in
the second clause (see also the discussion in [21]). This clause implies that
any existential formula with parameters from the smaller model N that is
true in the T -closure of N + b is true in N ; the test works because this clause
can be iterated in a countable model to obtain a sequence of T -extensions
N = N0 ⊆ N1 ⊆ N2 . . . ⊆ M that eventually picks up every element of M ,
so any existential formula with parameters from N true in M is true in N
(see Theorem 2.9). On the syntactic side, this iteration translates to the
simple observation that to eliminate a single existential quantifier from an
otherwise quantifier-free formula, it suffices to eliminate additional existential
quantifiers from an equivalent existential formula. Thus, our effective proof
is based on the following two lemmas:

Lemma 3.4. Every formula of the form ∃w ψ, with ψ quantifier-free, is
equivalent to a disjunction of formulas of the form ∃x̄ (A(x̄) ∧ ϕ), with ϕ
quantifier-free.

Lemma 3.5. Every formula of the form ∃x (A(x)∧ϕ), with ϕ quantifier-free,
is equivalent to a formula that is quantifier-free.

The remainder of this section is devoted to proving the first of these
two lemmas. The next lemma explains why the new existentially quantified
variables are helpful.
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Lemma 3.6. Every existential formula is equivalent, in T , to an existential
formula in which λ does not occur and the predicates Di are applied only to
variables.

Proof. First, replace . . . Di(t) . . . by ∃z (z = t ∧ . . . Di(z) . . .). Then, itera-
tively simplify terms involving λ, noting that ψ(λ(t)) is equivalent to

(t ≤ 0 ∧ ψ(0)) ∨ ∃z (A(z) ∧ z ≤ t < 2z ∧ ψ(z)),

and that the existential quantifier can be brought to the front.

Thus to prove Lemma 3.4, we are reduced to showing that when ψ is
quantifier-free, λ does not occur in ψ, and the predicates Di occurring in
ψ are applied only to variables, the formula ∃x̄ ψ is equivalent to one of
the form ∃x̄ (A(x̄) ∧ ϕ), where ϕ is quantifier-free. In general, ∃x θ(x) is
equivalent to

∃x > 0 θ(x) ∨ θ(0) ∨ ∃x > 0 θ(−x).

Moreover, assuming x > 0, any subformula of the form Di(−x) is equivalent
to falsity. So, across a disjunction, we are reduced to proving the claim for
formulas of the form ∃x̄ > 0 ψ(x̄), where ψ satisfies the criteria above.

In T we can factor out the greatest power of two from any positive x,
that is we can prove

x > 0 → ∃y ∃z (A(y) ∧ 1 ≤ z < 2 ∧ x = yz).

Since we have 1 ≤ z < 2 ↔ (z = 1 ∨ 1 < z < 2), we can transform our
formula into a disjunction of formulas of the form

∃ȳ, z̄ (A(ȳ) ∧ 1 < z̄ < 2 ∧ ψ)

where ψ once again meets the criteria above, except that the predicates Di

are applied to expressions of the form yz. When 1 < z < 2, each Di(yz) is
false, so we can rewrite the formula above as

∃ȳ (A(ȳ) ∧ θ ∧ ∃z̄ η)

where θ is a conjunction of predicates of the form Dn(y) and negations of
such, and ∃z̄ η is in the language of real closed ordered fields. We can
therefore replace ∃z̄ η by a quantifier-free formula, using any QE procedure
for real closed ordered fields.
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3.2 Reasoning about powers of two

Our goal in this section is to establish some general relationships between
the powers of two in a model of our theory, T , and the underlying real closed
field.

Definition 3.7. Let ϕ be a quantifier-free formula. We say ϕ is simple in x
if the following hold:

1. every equality or inequality occurring in ϕ is either of the form p(x) = 0
or q(x) > 0, where p(x), q(x) are polynomials in x; that is, they are of
the form

∑
i≤n six

i where each si is a term that does not involve x.

2. for every atomic formula Dn(t) occurring in ϕ, either t does not contain
x or t is of the form 2rx for some integer r such that 0 ≤ r < n.

The main goal of this section is to prove the following proposition:

Proposition 3.8. Let ϕ be any quantifier-free formula. Then there is a
quantifier-free formula ϕ′ such that ϕ′ is simple in x and T proves A(x) →
(ϕ ↔ ϕ′).

In semantic terms, this says the following: let N be any model of T , let
M ⊆ N be a model of T ∀, that is the universal fragment of T , and let x be
a power of two in N . Then the structure of M + x is completely determined
by the structure of M , the structure of M + x as an ordered ring, and the
divisibility properties of the exponent of x.

First, we need to note some easy facts about λ and the predicates Di.

Lemma 3.9. For any n, T proves

0 < u < x < 2nu ∧ A(x) → (x = 2λ(u) ∨ . . . ∨ x = 2nλ(u)).

Lemma 3.10. For any n, T proves

A(x) → Dn(x) ∨Dn(2x) ∨ . . . ∨Dn(2n−1x).

Although we have not included the division symbol in the language of
T , we can define the function r/s by making x/y = z equivalent to x =
yz ∨ (y = 0 ∧ z = 0). In the proof of Proposition 3.8, it will be useful to act
as though the division symbol is part of the language. The next few lemmas
show that if θ is any quantifier-free formula in the expanded language with
division, there is a quantifier-free formula θ′ in the language without division
such that T ` θ ↔ θ′.
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Lemma 3.11. From the hypotheses 0 < x and 0 < y, T proves

xλ(y) < yλ(x) → λ(x/y) = λ(x)/2λ(y)

and
xλ(y) ≥ yλ(x) → λ(x/y) = λ(x)/λ(y).

Proof. An easy calculation shows that if x/y < λ(x)/λ(y), then λ(x/y) =
λ(x)/2λ(y); and otherwise, λ(x/y) = λ(x)/λ(y).

Lemma 3.12. If θ is any quantifier-free formula involving the division sym-
bol, there is a quantifier-free formula θ′ in which the division symbol does not
occur in the scope of λ, such that T ` θ ↔ θ′.

Proof. This can be done by iterating the previous lemma. To measure the
nesting of λ’s and division symbols, we define the “λ-depth of the division
symbol in t,” Λ÷(t), recursively, as follows:

1. Λ÷(t) = 0 if the division symbol does not occur in the scope of λ in t;

2. if t is t1+t2, t1−t2, t1×t2, or t1/t2, then Λ÷(t) = max{Λ÷(t1), Λ
÷(t2)};

3. assuming the division symbol occurs in t, Λ÷(λ(t)) = Λ÷(t) + 1.

The previous lemma shows that, using a case disjunction over the possibilities
for the signs of the numerator and denominator, we can eliminate one term t
such that the λ-depth of the division symbol in t is maximal, in favor of terms
in which the λ-depth of the division symbol is smaller. Lemma 3.12 follows,
by a primary induction on this maximal depth, and a secondary induction
on the number of terms of this depth.

Lemma 3.13. T ` A(x) ∧ A(y) → (Dn(x/y) ↔ ∨
i<n(Dn(2ix) ∧Dn(2iy))).

Proof. The right-to-left direction is easy: if zn = 2ix and wn = 2iy then
(z/w)n = x/y. Proving the other direction is not much more difficult, using
Lemma 3.10.

Proposition 3.14. Let θ be any quantifier-free formula involving division.
Then there is a quantifier-free formula θ′ that does not involve division, such
that T ` θ ↔ θ′.
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Proof. Using Lemma 3.12, we can assume that division does not occur in the
scope of any λ in θ. So each atomic formula Dn(t) can be put in the form
Dn(r/s), where the division symbol does not occur in r and s. Across a case
disjunct, we can assume r and s are positive. Then Dn(r/s) is equivalent to

λ(r/s) = r/s ∧Dn(λ(r/s)).

Using Lemma 3.11, we can replace λ(r/s) by either λ(r)/λ(s) or λ(r)/2λ(s).
Then using Lemma 3.13 we can replace Dn(λ(r)/λ(s)) or Dn(λ(r)/2λ(s)) by
a disjunction in which the division symbol does not occur.

Once all divisibility symbols are removed from the λ’s and Dn’s, we can
clear division from the remaining equalities and inequalities by multiplying
through.

It therefore suffices to prove Proposition 3.8 where ϕ′ is a quantifier-free
formula in the expanded language with the division symbol. The next few
lemmas, then, make use of this expanded language.

Lemma 3.15. Let p(x) be the term
∑

i≤n aix
i. Then there is a sequence of

quantifier-free formulas θ0, . . . , θm−1 such that T proves

A(x) ∧ p(x) > 0 →
∨

k<m

θk,

where each θk is of one of the following forms:

• λ(p(x)) = 2rλ(ai)x
i for some −1 ≤ r ≤ n,

• xe = 2rλ(ai)
λ(−aj)

or xe =
2rλ(−aj)

λ(ai)
, for some e, i, j, and r such that 1 ≤ e ≤ n,

0 ≤ i, j ≤ n, and −(n + 1) ≤ r ≤ (n + 1).

Proof. Argue in T . Using a disjunction on all possible cases, we can write
p(x) as aix

i + ajx
j + p̂(x), where aix

i is the largest summand and ajx
j the

least summand. Note that we have aix
i > 0, i 6= j, p(x) ≤ (n + 1)aix

i, and

p(x)− aix
i = ajx

j + p̂(x) ≥ najx
j.

We now distinguish between two cases, depending on whether p(x) is roughly
the same size as aix

i or sufficiently smaller.
In the first case, suppose we have p(x) ≥ (aix

i)/2. This means we have

(ai/2)xi ≤ p(x) ≤ (n + 1)aix
i ≤ 2naix

i
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and so
(λ(ai)/2)xi ≤ λ(p(x)) ≤ 2nλ(ai)x

i.

This yields a disjunction of clauses of the first type, by Lemma 3.9.
In the second case, we have p(x) < (aix

i)/2. This means that ajx
j must

be negative and roughly comparable to aix
i in absolute value; that is aj < 0

and
(ai/2)xi < aix

i − p(x) ≤ −najx
j,

and so
0 < (ai/(−aj))x

i−j ≤ 2n ≤ 2n.

Using Lemma 3.11 and Lemma 3.9 we get a disjunction of clauses of the
second type.

Lemma 3.16. In Lemma 3.15, if the assumption is changed to A(x)∧p(x) =
0, then in the conclusion we can assume that each θk is of the second form.

Proof. This is exactly as in the second case of the previous proof.

Lemma 3.17. In the conclusion of Lemma 3.15, we may demand that each
θk is of the form λ(p(x)) = sxi for some 0 ≤ i ≤ n and some term s that
does not contain x.

Proof. The proof is by induction on the degree of x in p(x). The lemma is
trivial if the degree of x in p(x) is 0.

Now assume that the degree of x in p(x) is n and the lemma holds when-
ever the degree is less than n. By Lemma 3.15, T proves a disjunction∨

σl, with σl of one of those two forms. Each σl of the first form there is
already as required. For each σl of the second form, consider a new term
p̂(x), which is obtained by substituting the right-hand side of σl for xe in
p(x). Notice that the degree of x in p̂(x) is less than n, and clearly T proves
p(x) = p̂(x) ∧ p̂(x) > 0. By the inductive hypothesis we may replace σl in∨

σl by a disjunction
∨

θk which is of the required form.

As was the case with the division symbol, we will iterately “squeeze” x’s
out from within the λ symbols. Thus we introduce the following definitions:

Definition 3.18. Let t be a term. Define the λ-depth of x in t, Λ(x, t),
recursively, as follows:

1. Λ(x, t) = 0 if x is not in the scope of any λ;
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2. if t is t1+t2, t1−t2, t1×t2, or t1/t2, then Λ(x, t) = max{Λ(x, t1), Λ(x, t2)};
3. if t is λ(t1) and t1 contains x, then Λ(x, t) = Λ(x, t1) + 1.

Definition 3.19. Let ϕ be a formula. Define the λ-depth of x in ϕ by

Λ(x, ϕ) = max{Λ(x, t) : t is a term that contains x and occurs in ϕ}.
Lemma 3.20. Let ϕ be any quantifier-free formula. Then there is a quantifier-
free formula ϕ′ such that T ` A(x) → (ϕ ↔ ϕ′), and Λ(x, ϕ′) = 0.

Proof. The proof is by induction on the λ-depth of x in ϕ. The lemma is
trivial if Λ(x, ϕ) = 0.

Assume Λ(x, ϕ) = n > 0 and the lemma holds for every quantifier-
free formula ψ if Λ(x, ψ) < n. Let λ(p0), . . ., λ(pm−1) be all the differ-
ent terms in ϕ with Λ(x, pi) = 0 for all i < m. Across a case disjunction
we can assume pi > 0 for all i < m, since otherwise we can replace λ(pi)
by 0. By Lemma 3.12, we may assume that each pi is a polynomial in x.
By Lemma 3.17, T proves ϕ ↔ ∨

(τl ∧ σl), where each τl is of the form∧
i<m λ(pi(x)) = six

ji , and each σl is obtained by substituting six
ji for λ(pi)

in ϕ. Clearly T proves λ(pi(x)) = six
ji ↔ A(si) ∧ six

ji ≤ pi(x) < 2six
ji .

Now since Λ(x, σl) < n, we may apply the inductive hypothesis to each σl

and the lemma is proved.

Lemma 3.21. Let p be a term such that Λ(x, p) = 0. Then for any n there
is a sequence of terms pk such that

• T proves A(x) ∧ p > 0 → (Dn(p) ↔ ∨
(p = pk ∧Dn(pk))),

• each pk is of the form sxi, where s is a term that does not contain x.

Proof. Using Lemma 3.13, we can assume that p is a polynomial in x. We
can replace Dn(p) by p = λ(p) ∧Dn(λ(p)), and then by Lemma 3.17, across
a disjunction we may replace λ(p) in each disjunct by a term of the form sxi,
where s does not contain x. (Note that here no formulas like the τl’s in the
previous lemma are needed.)

Lemma 3.22. Let s be a term that does not contain x. Then for any n, i
there is a sequence of formulas θk such that T proves

A(x) → (Dn(sxi) ↔
∨

θk),

and each θk is of the form Dn(2ws) ∧Dn(2rx) for some 0 ≤ w, r < n.
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Proof. Since for each n, from the assumption A(x), T proves
∨

j<n Dn(2jx),

it is straightforward to see that Dn(sxi) is equivalent to a disjunction each
of whose disjuncts is of the specified form.

We are finally ready to prove Proposition 3.8.

Proof. Given ϕ, first use Lemma 3.20 to eliminate x from the scope of any
λ. Then use Lemma 3.21 to ensure the atomic formulas involving Dn are in
the form Dn(sxi), where s does not involve x. (This will require splitting
across cases depending on whether p > 0 or p ≤ 0; in the latter case, Dn(p)
is equivalent to ⊥.) Finally, use Lemma 3.22 to ensure that all the atomic
formulas involving Dn are in the required form.

We close with some consideration about the predicates Dn which are
analogous to considerations that arise in the context of QE for Presburger
arithmetic. Remember that when n is a positive integer and s is a non-
negative integer, Dn(2sx) asserts, in the intended interpretation, that x is
equal to 2t for some integer t, and n divides s+t; in other words, the exponent
of x is congruent to −s modulo n. Let θ be any boolean combination of
predicates of the form Dn(2sx), and let M be the least common multiple of
these various n. Then in T one can show that there is an x satisfying θ if
and only if for any w satisfying A(w) we have

θ(w) ∨ θ(2w) ∨ θ(4w) ∨ . . . ∨ θ(2M−1w),

and, in particular, if and only if

θ(1) ∨ θ(2) ∨ θ(4) ∨ . . . ∨ θ(2M−1).

Moreover, T can decide the truth or falsity of this last sentence. So we have:

Lemma 3.23. With θ and M as above, either T proves ∀x ¬θ, or it proves

∀u (0 < u → ∃x (u ≤ x < 2Mu ∧ θ)).

3.3 Eliminating a quantifier over powers of two

We are now ready to prove Lemma 3.5, which asserts that every formula of
the form ∃x (A(x) ∧ ϕ), with ϕ quantifier-free, is equivalent to a formula
that is quantifier-free. By Proposition 3.8, we can assume that ϕ is simple,
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which is to say, x does not occur in the scope of any λ and all divisibility
assertions involving x are of the form Dn(2rx). Put ϕ in disjunctive normal
form, replace negated equalities s 6= t by s < t ∨ t < s, and replace negated
inequalities s 6< t by t < s ∨ t = s. Rewrite equalities and inequalities so
that they are of the form p(x) = 0 and q(x) > 0, where p(x) and q(x) are
polynomials in x. Factoring existential quantifiers through disjunctions and
getting rid of atomic formulas that do not depend on x, we are reduced to
eliminating quantifiers of the form ∃x (A(x) ∧ ϕ) where ϕ is a conjunction
of formulas of the following types:

• p(x) = 0, where p is a polynomial,

• q(x) > 0, where q is a polynomial,

• Dn(2rx), where 0 ≤ r < n, or

• ¬Dn(2rx), where 0 ≤ r < n.

Splitting across a disjunction, we can assume that when a conjunct of the
form p(x) = 0, not all the coefficients are zero. By Lemma 3.16, we can
assume that one of the conjuncts is of the form xe = s, where x does not occur
in s. In that case, each conjunct Dn(2rx) is equivalent to Dne(2

rexe) and
hence Dne(2

res) (and A(x), in particular, is equivalent to De(s)). But now x
no longer occurs in these formulas, and so they can be brought outside the
scope of the existential quantifier. The resulting existential formula is then
essentially in the language of real closed ordered fields. By this last phrase
we mean that it is of the form ∃x α(x, t0, . . . , tk−1), where α(x, y0, . . . , yk−1)
is in the language of real closed ordered fields. Treating the terms t0, . . . , tk−1

in the expanded language as parameters, we can therefore replace it by an
equivalent quantifier-free formula using any QE procedure for real closed
ordered fields.

We are thus reduced to eliminating an existential quantifier of the form

∃x (
∧

qi(x) > 0 ∧ θ(x)) (3.1)

where θ is a conjunction of formulas of the form Dn(2rx) and negations of
such that includes at least the formula A(x). By Lemma 3.23, either T proves
that θ is false for every x, or there is a natural number M such that T proves
that for any u > 0, that θ is satisfied by some x in the interval [u, 2Mu]. In
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the first case, T proves that formula 3.1 is false. So we only have to worry
about the second case. Fix such an M for the remainder of the discussion.

Arguing in T , suppose formula (3.1) holds. There are two possibilities:
either there is a “large” interval on which

∧
qi(x) > 0, that is, an interval

of the form [u, 2Mu]; or there is an x satisfying A(x) ∧∧
qi(x) > 0 ∧ θ, but

it is trapped between a u and a v with qi(u) = 0 for some i, qj(v) = 0 for
some j, and v < 2Mu. Thus formula (3.1) is equivalent to a disjunction of
the formula

∃u > 0 ∀x (u ≤ x ≤ 2Mu →
∧

qi(x) > 0)

and the formulas

∃u > 0 (qj(u) = 0 ∧ ∃x (u < x ≤ 2Mu ∧
∧

qi(x) > 0 ∧ θ(x))

for the various j. To see this, note that if formula (3.1) holds, then by the
previous discussion one of these formulas holds; and conversely, each of these
formulas implies (3.1).

The first of these formulas is essentially in the language of real closed
ordered fields, so these quantifiers can be eliminated. The second formula is
equivalent to

∃u1, u2 (A(u1) ∧ 1 ≤ u2 < 2 ∧ qj(u1u2) = 0∧
∃x (u1 < x ≤ 2Mu1 ∧

∧
qi(x) > 0 ∧ θ(x)).

In this case, we can replace the inner existential quantifier over x by a dis-
junction, so that the entire formula is equivalent to a disjunction of formulas
of the form

∃u1, u2 (A(u1) ∧ 1 ≤ u2 < 2 ∧ qj(u1u2) = 0 ∧
∧

q̂i(u1) > 0 ∧ θ̂(u1)),

where each q̂i(u1) is qi(2
ru1) for some r, and similarly for θ̂(u1). In particular,

θ̂(u1) is a conjunction of formulas of the form Di(2
ru1), and their negations.

Think of qj(u1u2) as a polynomial in u1 with coefficients of the form sun
2 ,

where s does not involve u1 or u2. By Lemma 3.16, across a disjunction we
may add a clause of the form ue

1 = 2rλ(sun
2 )/λ(tum

2 ). Splitting on cases of
the form 2l ≤ uh

2 < 2l+1 we can simplify each of these to an expression of the
form ue

1 = 2kλ(s)/λ(t) for some integer k. By Lemma 3.23, A(u1) ∧ θ̂(u1) is
equivalent to a formula θ̄ which now involves neither u1 nor u2, and hence
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can be brought outside the existential quantifier. We are thus reduced to
eliminating quantifiers from a formula of the form

∃u1, u2 (1 ≤ u2 < 2 ∧ ue
1 = 2kλ(s)/λ(t) ∧ 2l ≤ uh

2 < 2l+1∧
qj(u1u2) = 0 ∧

∧
q̂i(u1) > 0).

We can eliminate these quantifiers using a QE procedure for real closed or-
dered fields. This completes the proof of Lemma 3.5, and hence the proof of
our main theorem, Theorem 3.3.

Note that there is nothing special about the number 2 in our quantifier
elimination procedure: inspection of the proofs shows that the arguments go
through unchanged for any real algebraic number α > 1. There are various
ways to represent the real algebraic numbers; for example, we can represent
α by providing a polynomial, p(x), of which it is a root, together by a pair
of rational numbers u and v isolating α from the other roots of p. In that
case, we simply replace 2 by a new constant, c, in the axioms, and then add
the following:

• p(c) = 0

• u < c < v

As noted in [22], this implies that the resulting theory is decidable. To see
this, it suffices to see that any quantifier-free sentence ϕ is decidable. But
we can do this using the decision procedure for real closed ordered fields to
iteratively compute the values of λ(t) for any t involving the field operations
and c, and then to determine the truth of terms of atomic formulas Dn(t).
(For explicit algorithms for computing with real algebraic numbers, see [3].)

3.4 Complexity analysis

In this section we establish an upper bound on the complexity of our elimi-
nation procedure.

For the theory of real closed ordered fields, the best known upper bound
for a QE procedure, in terms of the length of the input formula, is 22O(n)

.
This is originally due to Collins [6], and, independently, Monk and Solovay.
There are more precise bounds that depend on various parameters, such as
the number of quantifier alternations and the degrees of the polynomials in
the formula; see, for example, [2] and [3]. In particular, a block of existential
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quantifiers can be eliminated in time 2O(n). The best lower bound for the full
QE procedure is 2O(n), by Fischer and Rabin [8], and applies even to just the

additive fragment. The best upper bound for Presburger arithmetic is 2
O(n)
3

(see [7] and [23]) and is essentially sharp (see [24]).
Our bounds are far worse. Consider what our procedure does when given

a formula with a single block of existential quantifiers:

1. First, replace this by a disjunction of formulas of the form

∃ȳ (A(ȳ) ∧ ∃z̄ (1 < z̄ < 2 ∧ ψ))

where ψ is in the language of real closed ordered fields.

2. Then, use an elimination procedure for real closed ordered fields to
eliminate the quantifiers ∃z̄ .

3. Successively eliminate the innermost quantifier over a power of two, as
follows:

(a) Call the relevant formula ∃x (A(x) ∧ ϕ). Apply Proposition 3.8,
to reduce ϕ to a formula that is simple in x.

(b) Put the new ϕ in disjunctive normal form, split across a disjunc-
tion, and remove atomic formulas that do not involve x, so that
each formula is of the form

∃x (A(x) ∧
∧

pi(x) = 0 ∧
∧

qj(x) = 0 ∧ θ)

where θ is a conjunction of formulas of the form Dn(2rx) and
negations of such, and in each disjunction where a disjunct of the
form p(x) = 0 occurs, we can assume p is not identically 0.

(c) In each disjunct where a conjunct of the form p(x) = 0 occurs,
apply Lemma 3.16, factor out the divisibility predicates, Dn, and
call a QE procedure for real closed ordered fields.

(d) In the remaining disjuncts, again, split across a disjunct; in one
case, we call a QE procedure for real closed fields right away; in
another, we expand a bounded existential quantifier into a dis-
junction, and then call the elimination procedure for real closed
ordered fields.
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Note that each iteration of the inner loop, 3, requires at least one call to a
QE procedure for real closed ordered fields. Each of these calls can be carried
out in time, say, 22O(n)

, where n is the length of the relevant formula. But
then the next iteration of the loop will involve calls to the QE procedure for
real closed ordered fields on a formula that is potentially much longer. Thus,
part 3 of the procedure requires an exponential stack of Cm twos, for some
constant C, where m is the number of existential quantifiers over powers of
two that need to be eliminated.

In this section, we will confirm that such an upper bound can be ob-
tained. To that end, it is sufficient to show that each pass of the inner loop
is elementary, which is to say, it can be computed in time bounded by some
fixed stack of exponents to the base 2. Note that after the first step, the
number of quantifiers over powers of two is bounded by the length of the
original formula (in fact, it is bounded by the number of A’s and λ’s in the
original formula). Thus our procedure for eliminating a block of existential
quantifiers runs in time 20

O(n), where n is the length of the original formula.
We have been unable to eliminate this nesting of calls to a procedure

for real closed ordered fields. Efficient procedures for this latter theory avoid
putting formulas in disjunctive normal form; for example, Collins’s cylindrical
algebraic decomposition procedure obtains a description of cells, depending
on the coefficients, on which a set of polynomials have constant sign. In our
setting, suppose we are given a formula ∃x̄ (A(x̄) ∧ η ∧ θ), where η contains
only equalities and inequalities between polynomials, and θ consists of divisi-
bility conditions Dn on the exponents of the x’s. One might start by applying
Collins’s procedure to the polynomials occurring in η. Then, given a descrip-
tion of the various cells (depending on the other parameters in the formula),
one needs to determine which cells contain points with coordinates that are
powers of two, with exponents satisfying the requisite divisibility conditions.
For one dimensional cells, our procedure relies on a simple disjunction: if the
cell is large enough, one is guaranteed a solution, and otherwise one need
only test a finite number of cases. For multidimensional cells, however, the
situation is more complex, and we do not see how one can proceed except
along the lines we have described above. It is thus an interesting question
as to whether it is possible to obtain elementary bounds on a procedure for
eliminating a single block of quantifiers. Given our failure to do so, we have
not taken great pains to bound the number of exponents in the time bound
on the inner loop, which would merely improve the constant bound implicit
in the O(n).
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For the discussion which follows, we define the length of a formula in the
language of T to be the number of symbols in a reasonable formulation of
the first-order language, with the following exception: we count the length
of each symbol Dn as n, rather than, say, one plus the binary logarithm
of n. This choice is a pragmatic one in that it simplifies the analysis, and
our results below then imply the corresponding results for the alternative
definition of length. A more refined analysis might take both the length of
the formula and a bound on the n’s occurring in atomic formulas Dn(t), but
that does not seem to help much.

It seems that the most delicate part of our task is showing that one can
remove the division symbols, and “squeeze” variables ranging over powers of
two out of the λ symbols that are repeatedly introduced after the first step
of the procedure, as required in step 3(a). A priori, the procedures described
in Section 3.2 look as though they may be non-elementary. The next few
lemmas show that this is not the case, by keeping careful track of the terms
and formulas that need to be dealt with in the disjunctions.

Lemma 3.24. Let t be a term with length l. Then there is a sequence of
terms 〈tk : k < 2l〉 such that

• T ` ∨
k<2l t = tk,

• each tk is of the form r/s, where r and s are division-free terms, and

• each tk has length at most 2l.

Proof. This can be proved by a straightforward induction on terms. Suppose
t is of the form t1 + t2, where the length of t1 is l1 and the length of t2 is l2.
By the inductive hypothesis, t is equal to one of at most 2l12l2 ≤ 2l terms of
the form r1/s1 + r2/s2, where r1, s1, r2, and s2 are division-free, the length
of r1/s1 is at most 2l1 , and the length of r2/s2 is at most 2l2 . But then the
length of (r1s2 + r2s1)/s1s2 is at most 2(2l1 + 2l2) < 2l, as required.

If t is of the form λ(t1), the claim follows from the inductive hypothesis,
using Lemma 3.12. The other cases are similar.

Lemma 3.25. Let ϕ be a quantifier-free formula with length l. Then there
is a quantifier-free division-free formula ϕ′ with length 2O(l) such that T `
ϕ ↔ ϕ′.
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Proof. Enumerate all the different terms t0, . . . , tm−1 in ϕ such that, for each
i < m, si is not a proper subterm of any term in ϕ. Using the above lemma
we can have a sequence of quantifier-free formulas ϕj for j < 2l each of which
is obtained by replacing each ti with an appropriate term and therefore has
length less than 2l. Notice that for each ϕj, as indicated in Lemma 3.12, there
are some division-free atomic formulas that T used to derive the equalities
in question. Clearly for each ϕj there are less than l such atomic formulas,
each of which has length less than 2O(l). Let σj be the conjunction of them
all. Let ϕ′ be the formula

∨
j<2l(ϕj ∧ σj). The length of ϕ′ is again bounded

by 2O(l), and clearly T ` ϕ ↔ ϕ′.
Finally, we need to clear denominators from atomic formulas of the form

r/s < t/u and r/s = t/u, and deal with atomic formulas of the form Dn(r/s).
The first two require a disjunction over cases, depending on whether denom-
inators are positive, negative, or zero. The third set of atomic formulas is
handled as described in the proofs of Lemma 3.13, 3.14. But each atomic
formula occurring in a disjunct occurs to an atomic formula in the original
formula, ϕ, and there are at most l of these. It is not hard to verify that the
corresponding increase in length can be absorbed into the bound 2O(l).

Lemma 3.26. Let λ(t) be a term, where the length of t is l and x does not
occur in the scope of any division symbol in t. Then there is a sequence of
terms 〈tk : k < 28l2 log l〉 such that

• T ` A(x) ∧ t > 0 → ∨
k<28l2 log l(λ(t) = tk),

• each tk is of the form sxi, where s is a term that does not contain x
and i < l,

• each tk has length at most 224l
.

Proof. For any polynomial p in x, clearly the number of possible values of
λ(p) of the form sxi, as in Lemma 3.17, depends on the degree n of x in p. So
let f(n) denote the number of possible values of λ(p). Observe that the value
of λ(p) is determined in the first case of Lemma 3.15, and when e = 1 in the
second case. An calculation shows that there are no more than (n+1)(n+2)
possibilities in the first case, no more than 2n(2n + 2) possibilities in the
second case when e = 1, and no more than (n+1)(n−1)2(n+2) possibilities
for all the remaining values of e. Hence we have the following equation:

f(n) ≤ (n + 1)(n + 2) + 2n(2n + 2) + (n + 1)(n− 1)2(n + 2)f(n− 1).
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This can be simplified as f(n) < 10(n + 2)3f(n − 1). So we have f(n) <
28n log(n+2). Let the length of p be l. Since n+2 < l, we have f(n) < 28l log l <
28l2 log l.

Now the proof proceeds by induction on the λ-depth of x in t. If Λ(x, t) =
0, then t is a polynomial in x. So we apply the above analysis to t and obtain
no more than 28l log l possible values of λ(t) which are all of the form sxi for
some i < l. To compute the length of s, only note that each step of the
iteration produces a polynomial whose length is no more than the square of
the length of the previous polynomial. So we conclude that the length of s
is no more than l2

l
< 224l

.
Now suppose the lemma holds for each term s with Λ(x, s) < d, and

suppose Λ(x, t) = d. Enumerate all the different terms λ(s0), . . . , λ(sm−1)
in t such that λ(si) is not in the scope of any λ for each i < m. Clearly
Λ(x, si) < n for each i < m. So by the inductive hypothesis there are less
than 28l2i log li possible values for each λ(si), where li is the length of si. Since∑

i<m li < l − 1, there are no more than 28(l−1)2 log l possible values for t.

Enumerate these possibilities as 〈tk : k < 28(l−1)2 log l〉. In each tk, λ(si) is
replaced by a term of the form sxj with j < li. So tk is a polynomial in x
whose degree in x is less than l− 2. So there are 28(l−1)2 log l · 28l log l ≤ 28l2 log l

possible values for λ(t). The length of each tk is bounded by 224(l−1)
, so the

length of each possible value of λ(t) is bounded by 224(l−1) · l · l2l
< 224l

.

Lemma 3.27. Let ϕ be a quantifier-free formula with length l. Assume x
does not occur in the scope of any division symbol in ϕ. Then there is a
quantifier-free formula ϕ′ with length at most 22O(l)

such that ϕ′ is simple in
x and T ` A(x) → (ϕ ↔ ϕ′).

Proof. First we claim there is a quantifier-free formula ϕ∗ with length at
most 22O(l)

such that

• T ` A(x) → (ϕ ↔ ϕ∗),

• x does not occur in the scope of any division in ϕ∗,

• Λ(x, ϕ∗) = 0.

The proof is essentially the same as the proof of Lemma 3.25, using Lemma 3.26
instead of Lemma 3.24.

Next we need to deal with atomic formulas of the form Dn(p) in ϕ∗, as
shown in Lemma 3.21. So p is a polynomial in x whose degree in x is less
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than l. So there are at most 22O(l)
possible values for λ(p), the length of each

of which is bounded by 22O(l)
. So each Dn(p) can be replaced by a disjunction

whose length is less than 22O(l)
. So the bound does not change.

The increase in length in transforming ϕ∗ to a formula that is simple in
x, as described in the proof of Lemma 3.22, can be absorbed in the bound
22O(l)

.

Lemma 3.28. Let ϕ be a quantifier-free formula with length l. Then there
is a quantifier-free formula ϕ′ with length at most 2

O(l)
3 such that ϕ′ is simple

in x and T proves A(x) → (ϕ ↔ ϕ′).

Proof. Immediate by Lemma 3.25 and Lemma 3.27.

Lemma 3.29. Each iteration of step 3 can be performed by an elementary
function.

Proof. It is straightforward to verify that the procedure implicit in Lem-
mas 3.28 runs in time polynomial in its output. As a result, step 3(a) is
elementary. Step 3(b) is also clearly elementary. In fact, even though putting
a formula in disjunctive normal form can result in exponentially many dis-
juncts, since each disjunct only involves atomic formulas from the original
formula, the length of each disjunct is bounded in the length of the original
formula.

After step 3(a), the main increase therefore comes from the handling of
the cases in (c) and (d), each of which is easily seen to be elementary. Case
(c) involves a call to a QE procedure for real closed ordered fields, with a ∀∃
formula; case (d) involves calls to such a procedure, on existential formulas,
across a number of disjuncts that is exponential in the length of the original
formula.

Theorem 3.30. There is a procedure for eliminating a single block of ex-
istential quantifiers in theory T in time 20

O(l), where l is the length of the
original formula.

Proof. Steps 1 and 2 are clearly elementary, after which the procedure per-
forms an elementary operation for each quantifier over a power of two. As
noted above, the number of such quantifiers can even be bounded by the
number of predicates Dn and λ’s in the original formula.

Corollary 3.31. There is a procedure for eliminating quantifiers in theory
T that runs in time bounded by O(l) iterations of the stack-of-twos function,
where l is the length of the original formula.
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Proof. Put the formula in prenex form, and iteratively apply the previous
theorem to eliminate each block of quantifiers.

47



4 Real Closed Ordered Fields with a Predi-

cate for the Fibonacci Numbers

In this section we show that the theory of real closed ordered fields with a
predicate for the Fibonacci numbers is recursively axiomatizable and hence
is decidable. Moreover, the decision procedure described in the last section
can be used to decide this theory.

The Fibonacci numbers are a sequence of natural numbers Fn defined by
the recurrence relation

Fn+2 = Fn+1 + Fn

for n > 0 with F1 = F2 = 1. It is conventional to define F0 = 0. The first
few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Let φ = 1+
√

5
2

. Let A be a predicate for the multiplicative subgroup
φZ ⊆ R>0. By Binet’s Fibonacci number formula the nth Fibonacci number
can be computed as follows:

Fn =
φn − (−1)n

φn√
5

.

Therefore we can introduce a predicate F ∗ for the Fibonacci numbers with
the following defining axiom:

F ∗(x) ↔ Γe(x) ∨ Γo(x), (4.1)

where Γe(x) and Γo(x) are the formulas

∃y (
A(y) ∧ y ≥ 1 ∧ ∃z (A(z) ∧ y = z2) ∧ x =

y − 1
y√

5

)
,

∃y (
A(y) ∧ y ≥ 1 ∧ ∃z (A(z) ∧ y = φz2) ∧ x =

y + 1
y√

5

)
,

respectively.
Now we give a complete axiomatization of the theory of real closed ordered

fields with the distinguished Fibonacci numbers. We start with the theory of
real closed ordered fields and a new predicate F for the Fibonacci numbers.
Let ∆(x, y) abbreviates the formula

F (x) ∧ F (y) ∧ x < y ∧ ∀z (x < z < y → ¬F (z)).

First we add the following axioms:
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(A1) F (x) → x ≥ 0;

(A2) ∆(0, 1) ∧∆(1, 2);

(A3) x > 2 → (
F (x) ↔ ∃y, z (∆(y, z) ∧ x = y + z ∧ ∀w (z < w < x →

¬F (w)))
)
;

(A4) z ≥ 0 → ∃x, y (∆(x, y) ∧ x ≤ z < y).

Notice the following identities on the Fibonacci numbers:

F2n = Fn(2Fn+1 − Fn),

F2n+1 = F 2
n+1 + F 2

n .

Generalizing these we let Σ(e,o)(x, y) and Σ(o,e)(x, y) be the formulas

∃w, z (∆(w, z) ∧ x = w(2z − w) ∧ y = z2 + w2),

∃w, z (∆(w, z) ∧ x = z2 + w2 ∧ y = z(2w + z)),

respectively and obtain a new axiom:

(A5) ∆(x, y) ↔ Σ(e,o)(x, y) ∨ Σ(o,e)(x, y).

This actually enables us to define the predicate A: let Θe(x) and Θo(x) be
the formulas

∃y, w, z (∆(w, z) ∧ y = w(2z − w) ∧ y =
x− 1

x√
5

),

∃y, w, z (∆(w, z) ∧ y = z2 + w2 ∧ y =
x + 1

x√
5

),

respectively, then

A(x) ↔ x > 0 ∧ (Θe(x) ∨Θo(x) ∨Θe(
1

x
) ∨Θo(

1

x
)).

Now the idea is this. By the results in the last section there is a complete
axiomatization of the theory of (R, φZ) (see the last paragraph of Subsec-
tion 3.3), we may use F to define the predicate A and subsequently use A to
define the predicate F ∗ via 4.1. Finally we throw in some axioms to guarantee
that
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• A picks out a suitable multiplicative subgroup and

• F ∗ and F are the same.

This will axiomatize a complete, hence decidable, theory with a predicate for
the Fibonacci numbers.

Let K be an ordered field with a valuation v. Two nonzero elements a,
b of K are in the same Archimedean class if 1

n
< v(a

b
) < n for some positive

integer n. Let us say that a “local relation” is a relation that holds only
among elements in the same Archimedean class and a “global relation” is a
relation that is not local. Some classic identities on the Fibonacci numbers
can, when generalized, control the behaviors of the predicate A, though only
locally. For example, it is not hard to deduce the following:

∀x, y (∆(x, y) → y2 − yx− x2 = 1) ↔ ∀z (A(z) ↔ A(φz)).

But one should not think that such local identities are sufficient when el-
ements in different Archimedean classes are involved. In fact an axiom is
needed for the predicate A’s multiplicative closure:

(A6) A(x) ∧ A(y) → A(xy).

It is not hard to see that (A4) and (A6) together prove that

y > 0 → ∃x (A(x) ∧ x ≤ y < φx).

Finally we stipulate that

(A7) F (x) ↔ F ∗(x).

One may of course recast some of the axioms above into a form that
is more explicit about the Fibonacci numbers. The calculations are easy
but tedious. We shall not include them here. For example (A7) can be
transformed into

F (x) ↔ ∃a, b, c, d
(
∆(a, b) ∧∆(c, d)

∧ ((x = a(2b− a) ∧ P1(a, b, c, d)) ∨ (x = a2 + b2 ∧ P2(a, b, c, d)))
)
,

where P1(a, b, c, d) and P2(a, b, c, d) are the polynomials

(
5c4(2d− c)4 + 4c2(2d− c)2 − a2(2b− a)2

)
(
5(c2 + d2)4 − 4(c2 + d2)2 − a2(2b− a)2

)
= 0
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and

(
5c4(2d− c)4 + 4c2(2d− c)2 − 5(a2 + b2)c2(2d− c)2 + (a2 + b2 − 1)2

)
(
5(c2 + d2)4 − 4(c2 + d2)2 − 5(a2 + b2)(c2 + d2)2 + (a2 + b2 + 1)2

)
= 0,

respectively. But these do not seem to be more natural than the ones that
are listed above, even though it is rather curious why these polynomials are
sufficient to determine the complete theory.

51



References

[1] J. Avigad and Y. Yin, Quantifier elimination for the reals with a predi-
cate for the powers of two, submitted.

[2] S. Basu, New results on quantifier elimination over real closed fields and
applications to constraint databases, J. ACM 46 (1999), no. 4, 537–555.

[3] S. Basu, R. Pollack, and M. F. Roy, Algorithms in real algebraic geom-
etry, Algorithms and Computation in Mathematics, vol. 10, Springer-
Verlag, Berlin, 2003.

[4] B. F. Caviness and J. R. Johnson (eds.), Quantifier elimination and
cylindrical algebraic decomposition, Texts and Monographs in Symbolic
Computation, Springer-Verlag, Vienna, 1998.

[5] C. C. Chang and H. J. Keisler, Model theory, third ed., Studies in Logic
and the Foundations of Mathematics, vol. 73, North-Holland, Amster-
dam, 1990.

[6] G. E. Collins, Quantifier elimination for real closed fields by cylindrical
algebraic decomposition, Lecture Notes in Computer Science, vol. 33,
pp. 134–183, Springer, Berlin, 1975, reprinted in [4].

[7] J. Ferrante and C. W. Rackoff, The computational complexity of logical
theories, Lecture Notes in Mathematics, vol. 718, Springer, Berlin, 1979.

[8] M. J. Fischer and M. O. Rabin, Super-exponential complexity of Pres-
burger arithmetic, SIAM-AMS Proc., vol. VII, pp. 27–41, Amer. Math.
Soc., Providence, R.I., 1974, reprinted in [4].

[9] H. Friedman and C. Miller, Expansions of o-minimal structures by fast
sequences, Journal of Symbolic Logic 70 (2005), no. 2, 410–418.

[10] R. Grossberg, A course in model theory, unpublished manuscript.

[11] D. Hilbert and W. Ackermann, Principles of mathematical logic, second
ed., AMS Chelsea Publishing, Providence, Rhode Island, 1958, trans-
lated from the German by L. M. Hammond, G. G. Leckie, and F. Stein-
hardt.

52



[12] W. Hodges, Model theory, Cambridge University Press, Cambridge, UK,
1993.

[13] G. Kreisel and J. L. Krivine, Elements of mathematical logic, North-
Holland Publishing Company, Amsterdam, 1971.

[14] C. H. Langford, Some theorems on deducibility, Annals of Mathematics
28 (1927), 16–40.

[15] , Theorems on deducibility (second paper), Annals of Mathemat-
ics 28 (1927), 459–471.

[16] G. E. Sacks, Saturated model theory, W. A. Benjamin, Inc., Reading,
Massachusetts, 1972.

[17] J. R. Shoenfield, Mathematical logic, Addison-Wesley, Reading, 1967.

[18] , A theorem on quantifier elimination, Symposia Mathematica 5
(1971), 173–176, INDAM, Rome, 1969/1970, Academic Press, London.

[19] A. Tarski, A decision method for elementary algebra and geometry, sec-
ond ed., University of California Press, Berkeley, CA, 1951, prepared for
publication with the assistance of J. C. C. McKinsey.

[20] Lou van den Dries, The field of reals with a predicate for the powers of
two, Manuscripta Math. 54 (1985), 187–195.

[21] , Alfred Tarski’s elimination theory of real closed fields, The Jour-
nal of Symbolic Logic 53 (1988), no. 1, 7–19.

[22] Lou van den Dries and Ayhan Günaydin, The fields of real and complex
numbers with a small multiplicative group, preprint, 2005.

[23] V. Weispfenning, The complexity of almost linear Diophantine problems,
J. Symbolic Computation 10 (1990), no. 5, 395–403.

[24] , Complexity and uniformity of elimination in Presburger arith-
metic, pp. 48–53, ACM, New York, 1997, electronic.

53


