
On the Formalization of Higher Inductive
Types and Synthetic Homotopy Theory

Floris van Doorn

May 2018

Dissertation Committee:
Jeremy Avigad
Steve Awodey
Ulrik Buchholtz
Mike Shulman

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Pure and Applied Logic

Department of Philosophy
Carnegie Mellon University

Contents

1 Introduction 1

2 Preliminaries 7
2.1 Martin-Löf Type Theory . 7

2.1.1 Function Types . 8
2.1.2 Pair Types . 9
2.1.3 Universes . 9
2.1.4 Inductive Types . 10

2.2 Homotopy Type Theory . 14
2.2.1 Paths . 14
2.2.2 Equivalences . 16
2.2.3 More on paths . 17
2.2.4 Truncated Types . 22
2.2.5 Pointed Types . 25
2.2.6 Higher Inductive Types . 29

2.3 Lean . 32

3 Higher Inductive Types 36
3.1 Propositional Truncation . 37
3.2 Non-recursive 2-HITs . 42
3.3 Colimits . 49

4 Homotopy Theory 67
4.1 Computing π3(S2) . 67

4.1.1 The long exact sequence of homotopy groups 68
4.1.2 Computation of homotopy groups 74

4.2 Eilenberg-MacLane Spaces . 76
4.2.1 Construction of Eilenberg-MacLane spaces 76
4.2.2 Uniqueness . 77
4.2.3 Equivalence of categories . 78

4.3 The Smash Product . 79
4.3.1 The Category of Pointed Types 80
4.3.2 Basic Properties of the Smash Product 83
4.3.3 Adjunction . 90
4.3.4 Symmetric monoidal product 94

5 The Serre Spectral Sequence 102

ii

5.1 Spectral Sequences . 103
5.2 Exact Couples . 106
5.3 Spectra . 110
5.4 Spectral Sequences for Cohomology . 115
5.5 Spectral Sequences for Homology . 122
5.6 Applications of Spectral Sequences . 125

Conclusion 132

Acknowledgements 136

Bibliography 137

iii

Chapter 1

Introduction

The goal of this dissertation is to present synthetic homotopy theory in the setting of
homotopy type theory. We will present various results in this framework, most notably
the construction of the Atiyah-Hirzebruch and Serre spectral sequences for cohomology,
which have been fully formalized in the Lean proof assistant.

Homotopy type theory, often abbreviated HoTT, is a version of type theory. Type
theory is a language for formal mathematics, in which every object has a computational
interpretation, so that it can also function as a programming language. It can be used
as a foundation of mathematics as an alternative to set theory.

A key feature of HoTT is that the equality in a space corresponds to the path
spaces; a path between two points a and b is a proof that a = b. Two paths that are
not homotopic give different (unequal) proofs of this equality. The fact that we identify
proofs of an equality with a path means that every construction in HoTT respects
paths.

Many different researchers contributed to the homotopical interpretation of type
theory. Steve Awodey and Michael Warren gave a model of type theory in abstract
homotopy theory [AW09]. Benno van den Berg and Richard Garner published a paper
addressing the coherence issue [vG12]. Independently, Vladimir Voevodsky gave a model
of type theory without identity types in simplicial sets and formulated the univalence
axiom, which he proved consistent [Voe06, Voe09]. The univalence axiom states that
homotopy equivalences between two types (spaces) corresponds to equality between
them [Voe14]. This means that every construction done in HoTT automatically respects
homotopy equivalence, which is a very convenient property. Also, Voevodsky proved
that a consequence of the univalence axiom is function extensionality. This states that
two functions are equal when they are homotopic.

The fact that all constructions are homotopy invariant also leads to some challenges.
It is not always clear whether we can define a concept of homotopy theory in homotopy
type theory. For example, singular homology is a homotopy invariant notion, but in the
construction we use the set of all simplices in a space, which is not a homotopy invariant
notion. In this case, we can define homology in a different way (see Section 5.5).
However, for other definitions, such as the Grassmannian manifolds, it is an open

1

problem whether they can be constructed in homotopy type theory.
A new concept in homotopy type theory is the concept of higher inductive types.

These are types that generalize both cell complexes in homotopy theory, and inductively
generated types (like N) in type theory. Higher inductive types can be used to construct
many spaces and operations on spaces often encountered in homotopy theory.

Type theory is a convenient language for computer proof assistants. These are
programs that allow you to write formal proofs in a specified language, and then
the computer checks whether the proof is correct and complete. There are many
major results formalized in proof assistants, such as the four colour theorem [Gon05],
Feit-Thompson theorem [G+13] and the Kepler conjecture (Hales’ Theorem) [H+17].
HoTT is a type theory, and it has been implemented in various proof assistants, such
as Coq [BGLL+16], Agda [BHC+], cubicaltt [CCHM], Lean [vDvRB17] and various
experimental proof assistants. One disadvantage of formally verifying proofs in a proof
assistant is that it takes a lot of work spelling out all details. For example, doing
very basic homotopy theory (not using homotopy type theory) already takes a lot of
effort [Zha17]. In HoTT this effect is mitigated, because many homotopical concepts
are close to the foundations of the type theory, making formal proofs only a little more
work than a paper proof.

Various results have been proven and formalized in HoTT, such as the the Seifert–van
Kampen theorem [HS16], the Blakers–Massey theorem [HFLL16] and a development of
cellular cohomology [BH18]. Another main result (which has not been formalized) is
the computation of π4(S3) [Bru16], which relies on conjectured properties of the smash
product, which we will discuss in Section 4.3.

HoTT gives novel proof methods and new insights to homotopy theory. A basic
property of HoTT is path induction, which states that when proving something for a
path with one free endpoint, one may assume that the path is the constant path. This
corresponds to the fact that the path space with one fixed endpoint is contractible.
Another technique is the encode-decode method, for calculating the path space of
certain spaces [LS13]. Moreover, the proof of the Blakers–Massey theorem has been
translated back to homotopy theory, resulting in a new proof with novel ideas [Rez14].

Homotopy type theory has models in most model categories [AW09, vG12], which
are categorical models for homotopy theory. These models were inspired by the groupoid
model [HS98]. Other models for HoTT include the simplicial set model [Voe09, KL12,
Str14] and the cubical set model [BCH14, CCHM16]. More generally, all Grothendieck
(∞, 1)-toposes model HoTT [Cis14].1 Moreover, it is conjectured that all elementary
(∞, 1)-toposes form models of HoTT [Shu17].

1General Grothendieck (∞, 1)-toposes model HoTT with universes á la Tarski. This notion is
weaker than universes á la Russell, which are usually considered in HoTT. We explain Russell universes
in Section 2.1.3.

2

Type Theory

Homotopy type theory is based on Martin-Löf type theory (also called intuitionistic
type theory or constructive type theory) [ML75, ML84]. In this type theory there are
types, like the integers Z, vectors Rn; and complex functions C→ C. There are also
terms, which have a unique type.2 For example the number −2 has type Z (written as
−2 : Z), the vector (1, 2, 3, . . . , n) has type Rn and we have the exponential function
exp : C→ C. One can think of types as sets of objects (and indeed, there is a model of
type theory where the types are exactly sets), but there are different interpretations,
such as the types-as-spaces interpretation that homotopy type theory provides. The fact
that terms have a unique type means that the 2 : Z and the 2 : R are different objects.
It might be helpful to think of data types in a programming language, in which the int
2 is stored differently in memory than the float 2. Of course, the canonical inclusion
i : Z ↪→ R does satisfy i(2) = 2. Type theory has a primitive notion of computation, so
that for example 2 + 3 computes to 5. Every function that is explicitly defined in type
theory therefore describes an algorithm that can be executed. This means that type
theory can be used as a programming language, and many programming languages
make use of a type system. The congruence closure of this notion of computation is
called definitional equality or judgmental equality, and if two terms are judgmentally
equal, one can replace one for the other in any term.

There are several methods to construct new types out of existing ones. For example
we can form the function type A→ B for types A and B, the cartesian product type
A × B and the coproduct or sum A + B. Propositions can also be interpreted as
types by the Curry-Howard isomorphism [CF58, How80], and under this interpretation
A× B is the conjunction of A and B, the sum A + B is the disjunction and A→ B
is the implication. Furthermore, there are dependent function types ∏(x:A) P (x) and
dependent sum types ∑(x:A) P (x), which correspond to the universal quantification
∀(x : A), P (x) and existential quantification ∃(x : A), P (x), respectively. So for example
the transitivity of ≤ on N can be expressed as ∏(k,m,n:N) k ≤ m→ m ≤ n→ k ≤ n, and
a term of this type is a proof that ≤ is transitive. The P in ∏(x:A) P (x) and ∑(x:A) P (x)
is called a dependent type, since it is a type depending on a term x : A. It has type
P : A → U , where U is the universe of (small) types. The dependent function type∏

(x:A) P (x) consists of functions f that send terms a : A to a term f(a) : P (a). Note
that the type of f(a) depends on the input a. The dependent sum type ∑(x:A) P (x)
consists of dependent pairs (a, x) with a : A and x : P (a), where the type of x depends
on a.

Given two terms a, b : A, we can form the identity type which we write as a =A b or
a = b. As a proposition we view a =A b as the statement that a and b are equal. In
homotopy type theory these identity types correspond to the path space of the type A.

2To be more precise: in many type theories there are terms with multiple types, for example due to
universe cumulativity, but we will ignore these issues. Moreover, the type theory of Lean has unique
typing [Car18].

3

Homotopy Type Theory

There are various versions of dependent type theory with different rules for the identity
type. Some type theories have a reflection rule, which states that if we have a proof
p : a = b, then a and b are judgmentally equal. Type theories with this rule are often
called extensional. This is a convenient rule, but these type theories have meta-theoretic
properties that are often seen as undesirable. For example, checking whether a term t
has type A is not decidable anymore. Since this operation can be viewed as “checking
the correctness of a proof,” one often wants to work in a type theory with decidable
type-checking.

In intensional type theory, without the reflection rule, multiple approaches can be
taken for the identity type. In some versions, there is a rule that any two proofs of the
same equality are themselves equal. This rule, often called uniqueness of identity proofs
or axiom K states that if p, q : a = b, then there is a proof of p = q. In homotopy type
theory, this rule is rejected. In the types-as-spaces interpretation of homotopy type
theory, terms of the identity type a =A b are interpreted as paths in A from a to b. We
have familiar operations on paths: given two paths p : a =A b and q : b =A c, we write
p · q : a = c for the concatenation of p and q. Furthermore, we have the inverse path
p−1 : b = a and the constant path refla : a = a. We also have higher paths, the identity
type p =a=Ab q consists of homotopies from path p to q. We can form higher path types
between two homotopies, and there are also operations on these higher paths. In this
way every type comes equipped with the structure of a higher groupoid.

In 2011, higher inductive types were introduced in homotopy type theory [Shu11c,
Lum11, Shu11b, Shu11a]. With ordinary inductive types we specify constructors that
generate the type, for example the natural numbers are generated by zero 0 : N and the
successor function succ : N→ N. Higher inductive types are generated not only by these
“point constructors” but also by “path constructors,” which specify the inhabitants
of paths or higher paths in the type. For example, the circle S1 is generated by a
point ? : S1 and a loop ` : ? = ?. The rest of the structure of S1 is built from these
constructors. Using higher inductive types we can construct many other spaces in
homotopy theory, such as Eilenberg-MacLane spaces and homotopy pushouts.

As mentioned before in this introduction, we can use HoTT to do homotopy theory.
We think of types as spaces and we think of maps between types as continuous maps
between those spaces. Then we can define usual notions in homotopy theory, as long as
they are homotopy invariant: homotopy equivalences, suspensions, spheres, etcetera.
This is a synthetic way to do homotopy theory: many concepts, such as spaces and
paths are uninterpreted constants of the type theory. This is opposed to analytic
homotopy theory, where one studies topological spaces up to homotopy equivalence.
This distinction is similar to the distinction for elementary geometry, which we can do
synthetically (points and lines are undefined concepts) or analytically (we are working
in R2). Synthetic geometry limits the things one can state or prove, but these proofs
are applicable in every model of the axioms. The same is true for synthetic homotopy
theory: the proofs performed synthetically are true in all models of HoTT.

4

In this dissertation I will not be very precise about the exact rules of the type theory
we are using. We will present the constructions and proofs in such a way that they
can be performed in the “HoTT book” [Uni13]. Most of the results in this dissertation
have been formalized in the Lean proof assistant [dMKA+15]. The HoTT mode we
used in Lean has very similar rules to the HoTT book, and the differences are not
relevant for the constructions in this dissertation. A concept closely related to homotopy
type theory is univalent mathematics, a term coined by Vladimir Voevodsky for the
development of mathematics where one takes homotopy types as primitive objects, and
reasons about them using type-theoretic reasoning and the univalence axiom. This is
pursued in the proof assistant UniMath [VAG+]. There are also radically different type
theories which are studied in homotopy type theory. These are called “cubical type
theories” because they all have a primitive notion of cubes. Examples include the cubical
type theory described in [CCHM16], which was implemented in the proof assistant
cubicaltt [CCHM], and computational higher-dimensional type theory [AHW17], on
which the proof assistant RedPRL is based [The18]. These type theories are extensions
of the type theory presented in the HoTT book, which we will call book-HoTT. In
book-HoTT the univalence axiom is an axiom: an uninterpreted constant of a certain
type. This breaks the computational behavior of the type theory. For example not
every closed term of type N computes to either 0 or the successor of another number.
These cubical type theories add primitive concepts to the theory to make the univalence
axiom provable, and therefore all terms in these system do compute.

We will often want to compare homotopy type theory with ordinary homotopy
theory. We will use the adverb “classically” to refer to the concepts and theorems in
homotopy theory that do not involve HoTT.3 Conversely, we will say that something is
provable in HoTT if we can prove it in book-HoTT.

Contents

In Chapter 2 we review the basic concepts in homotopy type theory. For a more detailed
and thorough exposition, we refer to [Uni13]. Alternative introductions can be found
in [Hou17] and [Bru16]. In Section 2.1 we introduce the basic concepts of type theory:
functions, pairs, universes, and inductive types such as the identity type. In Section 2.2
we will introduce the basics of homotopy type theory. In particular we will formally
state the univalence axiom and present higher inductive types. In Section 2.3 we will
discuss the Lean proof assistant in more detail.

In Chapter 3 we will study higher inductive types internally in HoTT. The main
problem we will focus on is the interdefinability of higher inductive types. In particular,
we try to construct various higher inductive types from the homotopy pushout. We will

3This use of classically has nothing to do with the word classical in “classical logic,” involving the
law of excluded middle or the axiom of choice. In homotopy type theory one can consistently assume
the law of excluded middle or the axiom of choice, formulated in a precise way so that it corresponds
to what it usually means. However, doing so removes the computational content of all notions defined
using it.

5

define the propositional truncation in Section 3.1, nonrecursive higher inductive types
with 2-path constructors in Section 3.2 and work towards defining certain localizations
in Section 3.3.

In Chapter 4 we present some synthetic homotopy theory in HoTT. In Section 4.1
we will describe the formalization of the long exact sequence of homotopy groups and
its application to compute π3(S2). Although this construction has been described before
in HoTT in [Uni13, Section 8.4] and [Bru16, Section 2.5.1], no formally verified proof
has been given before. In Section 4.2 we will study Eilenberg-MacLane spaces, which
are spaces with only one nontrivial homotopy group. Eilenberg-MacLane spaces have
been defined in HoTT before [LF14]. Here we prove the (classically known) results that
Eilenberg-MacLane spaces are unique, and give an equivalence of categories between the
category of (abelian) groups and an appropriate class of pointed types. In Section 4.3
we will discuss the smash product. The ultimate goal is to prove that the smash product
forms a 1-coherent symmetric monoidal product on pointed types, and we will give one
approach towards proving this using a Yoneda-style argument.

In Chapter 5 we develop the theory of spectral sequences in HoTT. We give the
construction of a spectral sequence from an exact couple (in Section 5.2) and show how
to construct an exact couple from a tower of spectra (in Section 5.3). We construct
the classically-known Atiyah-Hirzebruch and Serre spectral sequences for cohomology
(in Section 5.4), and give some ideas towards doing the same for their counterparts in
homology (in Section 5.5).

6

Chapter 2

Preliminaries

In this chapter we will give a brief overview of type theory and homotopy type theory.
We cannot cover all the subtleties, so readers new to (homotopy) type theory should
consult the homotopy type theory book [Uni13].

In Section 2.3 we will discuss the proof assistant Lean. All main results in this
dissertation have been formalized in Lean.

2.1 Martin-Löf Type Theory
As mentioned in the introduction, homotopy type theory is based on a system called
Martin-Löf type theory or intuitionistic type theory. There are types and there are terms,
which have a unique type. There is a notion of computation. Two terms t and s are
considered judgmentally equal or definitionally equal, denoted t ≡ s if t and s compute
to the same term.

We are working in dependent type theory, which means that types can depend
on terms. For example, there is a type of vectors of length n : N in type A, denoted
vectorA(n). In this case vectorA is a dependent type over N. An example term in this
type family is (5, 6, 7, 8) : vectorN(4). When we say that a term has a unique type, we
mean that it has a unique type up to definitional equality. In our example, we also
have that (5, 6, 7, 8) : vectorN(2 + 2), because 2 + 2 ≡ 4. More generally, if we have
two definitionally equal types A ≡ B and if t : A, then t : B. Logically (under the
types-as-propositions interpretation) dependent types are predicates. We will explain
the topological interpretation of dependent types at the end of Section 2.1.2.

In the remainder of this section we will discuss the type formers of Martin-Löf type
theory more closely.

7

2.1.1 Function Types
Given a type A and a family of types B depending on A, we can form the dependent
function type (also called product type or pi type)

(x : A)→ B(x) or
∏
x:A

B(x).

We will use the former notation in this document. A term f : (x : A) → B(x) is a
function that sends each element a : A to an element4 f(a) : B(a). We also use the
notation fa or f a for f(a). Note that the type of f(x) depends on x. We can form
functions using lambda-abstraction. Given a term t(x) : B(x), we can form the term
λx. t(x) : (x : A)→ B(x), which is the function x 7→ t(x), i.e. the function that sends
x to t(x). We get the computation rule

(λx. t(x))a ≡ t(a)

for a : A, which is called the beta-rule or beta-reduction. We also have an eta-rule, which
states that every function is a lambda abstraction. This means that for f : (x : A)→
B(x) we have

f ≡ λx. f(x).

We will often define functions by writing f(x) :≡ t (where x may occur in t), which
formally means that we define f as λx. t.

An important special case occurs when B does not depend on A. In this case
the dependent function type (x : A) → B is written as A → B, which is the type of
functions from type A to type B.

Logically, the type A → B is interpreted as the implication A ⇒ B and the
type (x : A) → B(x) is interpreted as the universal quantification ∀(x : A), B(x).
Topologically, a function f : A → B corresponds to a continuous map from A to B.
The type A→ B is the mapping space from A to B. We will explain the topological
interpretation of (x : A)→ B(x) at the end of Section 2.1.2.

We can define the identity function

id ≡ idA :≡ λ(x :A). x : A→ A

and the composition of functions: if f : A→ B and g : B → C, then g◦f :≡ λx. g(f(x)) :
A→ C. Given b : B, we also have a constant function 0b :≡ λx. b : A→ B.

We will often write some arguments of a function implicitly. Such arguments are
written with curly braces in the type. For example, given a dependent type C over N,
we write

g : {n : N} → C(n)→ C(n+ 1)
4Formally, B(a) is the term B(x) where we substitute a for x. In Section 2.1.3 we will see that

we can treat B as a function into a universe, and that alternatively we can view B(x) and B(a) as
function applications.

8

to emphasize that the first argument of g is implicit. In this case, for c : C(n) we will
write g(c) for g applied (implicitly) to n and applied to c. The curly braces are only to
indicate how we write function application for functions with this type, for all other
purposes the types {x : A} → B(x) and (x : A)→ B(x) are the same.

2.1.2 Pair Types
Given a type family B depending on a type A, we can form the dependent pair type
(also called dependent sum type or sigma type)

(x : A)×B(x) or
∑
x:A

B(x).

We will use the former notation in this document. A term of type (x : A)×B(x) is a
pair consisting of an element a : A and an element b : B(a). Given a : A and b : B(a),
we can form the term (a, b) : (x : A)×B(x), and we have projections

p1 : (x : A)×B(x)→ A and p2 : (z : (x : A)×B(x))→ B(p1(z)).

We will sometimes write x.i for pi(x). There are beta rules p1(a, b) ≡ a and p2(a, b) ≡ b
and an eta rule stating that for any z : (x : A)×B(x) we have z ≡ (p1z, p2z). In Lean,
there is no eta rule for dependent pair types, but instead there is an induction principle,
similar to those of inductive types (see Section 2.1.4).

If B(x) does not depend on x, we write (x : A)×B simply as A×B. In this case
we retrieve the usual cartesian product of A and B.

Logically we can think of A × B as the conjunction of A and B, as described
above. Furthermore, we can think of (x : A)×B(x) as a proof-relevant version of the
existential quantifier ∃(x : A).B(x). It is proof-relevant in the sense that from a proof
of (x : A)×B(x) we can extract a witness a : A such that B(a) holds. In Section 2.2.4
we will define an existential quantifier from which the witness cannot be extracted.

Topologically, we think of A × B as the product space of A and B. The map
p1 : (x : A)×B(x)→ A corresponds to a fibration. A fibration is a map that has the
homotopy lifting property with respect to any space, which is given by transport, to be
defined in Section 2.2.1. Under this interpretation, (x : A)×B(x) is the total space of
the fibration p1, and B(a) is the fiber of p1 at point a. The type (x : A)→ B(x) is the
type of sections of p1. These observations are usually summarized as “dependent types
correspond to fibrations.” We will often call dependent functions sections.

2.1.3 Universes
In our discussions below we need one or more universes in our type theory. There are
different styles of universes in type theory [ML84], we will describe the universes á la
Russell. A universe U is a type that has types as its terms. That is to say, if A : U , then

9

A is a type. It is closed under all type-forming operations. For example, for pi-types
this means that if A : U and for a : A we have B(a) : U , then

(a : A)→ B(a) : U .

We can now interpret dependent types in U , such as B above, as functions B : A→ U .
In the proofs in this document we can often get away with assuming only a sin-

gle universe. However, it is useful to have the property that all types have a type
themselves, and we cannot do that with a single universe U , because positing U : U is
inconsistent [Gir72]. Instead, we will assume that we have a tower of universes

U0 : U1 : U2 : · · ·

such that for every type A there is an i such that A : Ui. In this case every dependent
type can be interpreted as a function A→ Ui for some i. As is customary, we usually
omit writing universe levels explicitly, and we will perform constructions polymorphic
over all universes. For example, if we write

id : {A : U} → A→ A,

we really mean that for any universe level i we have

idi : {A : Ui} → A→ A.

One rule that is sometimes assumed is universe cumulativity, which states that
if A : Ui, then A : Uj for j ≥ i. This can be problematic, and lead to violation of
nice properties of the type theory, such as subject reduction or canonicity [Luo12]. In
this document (and in Lean), we do not assume universe cumulativity. Instead, using
inductive types (see Section 2.1.4) we can construct for A : Ui a new type liftA : Uj for
j ≥ i such that A ' liftA.

2.1.4 Inductive Types
Inductive types are types that are inductively generated by some constructors. A
simple example is N, which is inductively generated by 0 and the successor function
S :≡ λx. x+ 1. In this section we will discuss some inductive types that we will need in
this dissertation. We will talk about the empty type, the unit type, the booleans, the
natural numbers and the sum type. The dependent pair type (Section 2.1.2) is also an
inductive type.

The empty type

The empty type 0 : U0 is a type without inhabitants. There are no constructors, and
we have as induction principle that if P : 0→ Ui, then

ind0 : (x : 0)→ P (x).

This conveys that 0 indeed has no inhabitants, because if we view P as a predicate, we
can prove anything about all inhabitants of 0. We can define negation ¬A :≡ A→ 0.

10

The unit type

The unit type 1 : U0 is a type with exactly one inhabitant ? : 1. The induction principle
states that if P : 1→ Ui, then

ind1 : P (?)→ (x : 1)→ P (x).

This states that ? is the only inhabitant of 1, because if we can prove something for ?,
then it holds for all inhabitants of 1. There is a computation rule

ind1(p, ?) ≡ p.

The booleans

The type of booleans 2 : U0 has exactly two inhabitants 12, 02 : 2. Its induction principle
states that if P : 2→ Ui, then

ind2 : P (12)→ P (02)→ (x : 2)→ P (x).

The computation rules are

ind2(p12 , p02 , 12) ≡ p12 and ind2(p12 , p02 , 02) ≡ p02 .

The natural numbers

A more interesting type is the type of natural numbers N : U0. It has a constructor 0 : N
and a unary constructor S : N→ N, and it is freely generated by these constructors. This
means that if P : N→ Ui and if we have p0 : P (0) and pS : (k : N)→ P (k)→ P (S k),
then

indN(p0, pS) : (n : N)→ P (n).
If we view P as a predicate, this is the usual induction principle for N: to prove
something for all numbers we need to prove it for 0 and we need to prove it for k + 1
assuming it holds for k, for an arbitrary k. However, this induction principle also allows
us to define (dependent) functions from N. These functions satisfy the computation
rules

indN(p0, pS, 0) ≡ p0 and indN(p0, pS, S n) ≡ pS(n, indN(p0, pS, n)).

Often, we will want to give a name f to indN(p0, pS), and we will instead denote the
recursive definition of f using pattern matching notation:

f(0) :≡ p0 and f(S n) :≡ pS(n, f(n)).

For example, we can define addition and multiplication +, · : N→ N→ N recursively
(in the second argument) as

n+ 0 :≡ n n · 0 :≡ 0
n+ (S m) :≡ S(n+m) n · (S m) :≡ n ·m+ n.

Note that n+ 1 ≡ S n, and we will often write n+ 1 instead of S n from now on.

11

The sum type

Given two types A and B, we can form the sum type or coproduct A + B with
constructors inl : A→ A+B and inr : B → A+B. The induction principle states that
for P : A+ B → U with maps pinl : (a : A)→ P (inl a) and pinr : (b : B)→ P (inr b) we
get a section

ind+(pinl, pinr) : (x : A+B)→ P (x)
with computation rules

ind+(pinl, pinr, inl(a)) ≡ pinl(a) and ind+(pinl, pinr, inr(b)) ≡ pinr(b)

Logically, the type A+B is the proof-relevant disjunction of A and B. It is proof-
relevant in the sense that a proof of A + B is of the form inl a or inr b. Therefore, a
proof comes with a proof of either A or B. In Section 2.2.4 we will see a disjunction
that does not have this property.

General Inductive Types

In Section 2.1.4 we saw various instances of inductive types. Also the sigma-types from
Section 2.1.2 (without eta rule) are an instance of an inductive type. We will now
explain inductive types and families of inductive types in general. For a more detailed
description, see [Car18, Section “Inductive Types”].

When defining an inductive type, we have to list its constructors. For example, we
could define the sum type as follows. Given A B : U , we define

inductive A+B : U :=
• inl : A→ A+B;
• inr : B → A+B.

This defines the type A+B with constructors inl and inr of the specified type. Each
constructor must have as target the inductive type currently being defined (in this case
A+B).5 Constructors can be recursive, meaning that the type being defined can occur
in the domain of a constructor. For example, here is the type of ω-branching trees with
leaves labeled by a type C.

inductive ω-treeC : U :=
• leaf : C → ω-treeC ;
• node : (N→ ω-treeC)→ ω-treeC .

A restriction on recursive constructors is that the inductive type being defined can only
occur in strictly positive positions, that is as the target of one of the arguments of the
constructor.

Every inductive type has an induction principle. We can algorithmically find the type
of the induction principle from the constructors. The first argument of the induction

5For higher inductive types (Section 2.2.6) the conclusion can also be a (higher) path in the type
currently being defined.

12

principle (often left implicit) is the motive, which is an arbitrary type family over the
inductive type being defined, for ω-treeC this has type P : ω-treeC → U . Then for
every constructor c there is an argument that mimics the type of c and has as target
P (c(· · ·)). For ω-treeC these arguments have type pleaf : (c : C)→ P (leaf c) and

pnode : (f : N→ ω-treeC)→ ((n : N)→ P (f n))→ P (node f).

Note that for each recursive argument f of the constructor we assume an induction
hypothesis of type P (f(· · ·)). The induction principle then gives a section of P . So for
example we get

indω-treeC (pleaf , pnode) : (x : ω-treeC)→ P (x).
Finally, the computation rules states that if the induction principle acts on a constructor,
then it will reduce to the argument corresponding to that constructor. For ω-treeC this
means (abbreviating s :≡ indω-treeC (pleaf , pnode))

s(leaf(c)) ≡ pleaf(c) and s(node(f)) ≡ pnode(f, λn. s(f n)),

where applying s to the recursive constructor leads to a recursive call of s.
One important generalization of inductive types are families of inductive types. In

this case, a family of types P is being defined simultaneously indexed over some type I.
In this case, constructors must have as target P (t) where t is a term of type I formed
by the (nonrecursive) arguments of the constructor. An example of an inductive family
of types is the type of vectors in A of some length n : N.

inductive vectorA : N→ U :=
• nil : vectorA(0);
• cons : {n : N} → A→ vectorA(n)→ vectorA(n+ 1).

Note that the parameter A remains fixed in the definition of vectorA(n), while the
index n : N is not: the constructor cons constructs a vector of length n + 1 from a
vector of length n. The induction principle can again be extracted algorithmically. It is
important that the motive also quantifies over all indices of the inductive family. For
vectors it states that given a motive

P : {n : N} → vectorA(n)→ U

and induction steps

pnil : P (nil)
pcons : (n : N)→ (a : A)→ (x : vectorA(n))→ P (x)→ P (cons(a, x)),

we get a section

indvector(pnil, pcons) : {n : N} → (x : vectorA(n))→ P (x)

with the expected computation rules.

13

A very important inductive family of types is the identity type.6 This is a family of
types with parameters A : U and a : A and is defined as

inductive IdA(a,−) : A→ U :=
• refla : IdA(a, a).

We also denote the type IdA(a1, a2) by a1 =A a2 or a1 = a2 and refla by refl, 1a or 1.
Its induction principle states that for a family P : (a′ : A)→ a = a′ → U and a term
prefl : P (a, 1a) we find a section

ind=(prefl) : (a′ : A)→ (p : a = a′)→ P (a′, p).

In words: we may assume that a path with free right endpoint (that is, the right hand
side of the equality is a variable) is reflexivity.

Logically, the identity type corresponds to equality. Under this interpretation, a
term of type a1 = a2 is a proof that a1 and a2 are equal. Homotopically, the identity
type corresponds to the path space of A, and we will explore this interpretation more
in Section 2.2.1.

2.2 Homotopy Type Theory
We will now discuss in more detail the homotopical interpretation of types, and the
basic concepts of homotopy type theory.

2.2.1 Paths
Elements of an identity type form paths in the space. We can define the usual operations
on paths.

Given a path p : a =A b, we can define the inverse p−1 : b =A a. We can do this by
path induction. Define the family

P :≡ λ(x :A). λ(q : a =A x). x =A a : (x : A)→ a =A x→ U .

We now have refla : P (a, p) ≡ a =A a, and therefore we get

p−1 :≡ ind=(refla, b, p) : b =A a.

The computation rule gives that refl−1
a ≡ refla.

We can explain the proof in words more intuitively. Path induction states that we
may assume that a path with a free endpoint is reflexivity. Since p has a free endpoint
(b is a variable), we may assume that b ≡ a and p ≡ refla. In this case, we can define

p−1 ≡ refl−1
a :≡ refla : a = a.

6also called path type, identification type or equality type.

14

The map path inversion we have defined this way has type

{a b : A} → a = b→ b = a.

We can also define path concatenation. Given p : a =A b and q : b =A c, we define
p · q : a =A c again by path induction. We will only give the intuitive argument and
leave the formal proof to the reader. Since q has free endpoint c, we may assume that
c ≡ b and q ≡ reflb. In this case, we define p · reflb :≡ p : a = b.

We can also define higher paths. For example, given p : a = b and q : b = c and
r : c = d, we have a path

p · (q · r) = (p · q) · r,

which is the associativity of path concatenation. We can prove this by path induction
on r: if r is reflexivity, then both sides reduce to p · q.

By using path induction, we can also prove the following equalities:

p · 1 = p p · p−1 = 1
1 · p = p p−1 · p = 1.

It is trickier to prove the Eckmann-Hilton property of equality, which states that given
a : A and p, q : refla = refla, we have p · q = q · p. The problem is that cannot apply
path induction to p or q directly. We omit the proof here and refer to [Uni13, Theorem
2.1.6].

Given a map f : A → B, we can prove that f respects paths. Given a path
p : a =A a′, we define apf(p) : f(a) =B f(b) by path induction: for reflexivity we
define apf (refla) :≡ reflf(a). We will sometimes abuse notation and write f(p) for apf (p).
From a logical perspective this just states that functions respect equality, but from a
homotopical perspective, this states that functions respect paths, which is in line with
our intuition that all functions are continuous in HoTT.

We can compute what ap does when our map is the identity map, a constant map
or a composition of maps:

apidA(p) = p ap0b(p) = reflb apg◦f (p) = apg(apf (p)).

All three of these properties are easily proven by path induction. Also, we can compute
ap when we apply it to inverses or concatenations of paths:

apf (p · q) = apf (p) · apf (q) apf (p−1) = (apf (p))−1.

Given a dependent type P : A → U and a path p : a =A a′, we can define the
transport function transportP (p) : P (a) → P (a′). We define it by path induction; for
reflexivity we define transportP (refla) :≡ idP (a). When P is known from context we will
write p∗(b) for transportP (p, b).

By path induction we can prove basic equalities about transports. We have

15

transportP (p · q, x) = transportP (q, transportP (p, x))
transportλa.B(p, x) = x

transportP◦f (p, x) = transportP (apf (p), x)
fa′(transportP (p, x)) = transportQ(p, fa(x)) for f : (a : A)→ P (a)→ Q(a).

2.2.2 Equivalences
In this section we talk about maps between types that have an inverse in a suitable
way. Before we can give the definition, we need to define homotopy.

Given two dependent maps f, g : (a : A)→ B(a), a homotopy h : f ∼ g is a proof
that f and g are pointwise equal:

(f ∼ g) :≡ (a : A)→ f(a) =B(a) g(a).

Recall that all maps are considered continuous, so this actually gives a continuous
deformation of f to g, which is exactly what a homotopy is in topology.

Definition 2.2.1. Suppose given a function f : A→ B.

• A left-inverse of f is an inhabitant of (g : B → A)× g ◦ f ∼ idA.

• Similarly, a right-inverse of f is an inhabitant of (h : B → A)× f ◦ h ∼ idB.

• We say that f is an equivalence or isequiv(f) if f has both a left and a right
inverse. We will denote its left-inverse by f−1. We can then show that f−1 is also
a right inverse of f .

• The type of equivalences between A and B is (A ' B) :≡ (f : A → B) →
isequiv(f). Given an element f : A ' B, we will also use f to denote the
underlying map A→ B.

It is easy to show that the identity map idA : A ' A is an equivalence. Moreover,
if g : B → C and f : A → B are both equivalences, then g ◦ f and f−1 are also
equivalences. This shows that equivalences are reflexive, symmetric and transitive.

A very important property is that any two inhabitants of isequiv(f) are equal: if
p, q : isequiv(f), then p = q. We will not prove this here, but it is shown in [Uni13,
Theorem 4.3.2]. This property is the reason that we define the notion of equivalences
this way. If we would define isequiv(f) by requiring a map that is both a left and a
right inverse of f , then this property would not hold.

Given two equivalences f, f ′ : A ' B, it does not matter whether we compare them
as functions or equivalences:

(f =A'B f
′) ' (f =A→B f

′) ' (f ∼ f ′).

16

By path induction we also get a map (A =U B) → (A ' B), because if the path
p : A = B is reflexivity, we can just take idA : A ' A as our equivalence. In plain
Martin Löf type theory one cannot characterize what the type A = B is. This is where
the univalence axiom comes in. The univalence axiom states that the map

(A = B)→ (A ' B)

is an equivalence. In particular this means that we get a map in the other direction:
given an equivalence e : A ' B, we get an equality ua(e) : A = B.

2.2.3 More on paths
In this section we will discuss dependent paths, or pathovers; higher paths, such as
squares and cubes; and paths in type formers.

Pathovers

We will often need to relate elements in two different fibers of a dependent type. Suppose
we have a family P : A→ U with x : P (a) and x′ : P (a′). If we have a path p : a = a′,
we can form the type x =P

p x
′ of dependent paths or pathovers over p. There are four

equivalent ways to define this:

(i) We can define (x =P
p x

′) :≡ (transportP (p, x) = x′)

(ii) We can define (x =P
p x

′) :≡ (x = transportP (p−1, x′))

(iii) We can define (x =P
p x′) by path induction on p. If p :≡ refla, we define

(x =P
p x

′) ≡ (x =P
refla x

′) :≡ (x =P (a) x
′).

(iv) We can define (x =P
p x′) by a family of inductive types. For fixed A : U and

P : A→ U and a : A and x : P (a) we have the following family:

inductive x =P
(−) (−) : {a′ : A} → a = a′ → P (a′)→ U :=

• refl : x =P
refla x.

It does not matter which of these definitions we pick, because we can prove that all of
them are equivalent.7

We have the following equivalences between pathovers:

(x =λa.B
p x′) ' (x =B x

′) (x =P◦f
p x′) ' (x =P

apf (p) x
′).

7In Lean, we chose option (iv). Option (i) would probably be slightly more convenient to work
with, because then this characterization becomes a definitional equality. In practice it will not matter
much, though.

17

We can do operations on pathovers, similar to the operations on paths. We have
concatenation and inversion, and we will abuse notation and denote them with the
same notation.

(−) · (−) : x1 =P
p x2 → x2 =P

q x3 → x1 =P
p·q x3

(−)−1 : x1 =P
p x2 → x2 =P

p−1 x1.

We have a dependent version of ap. Given a dependent map f : (a : A)→ P (a), we get

apdf : (p : a = a′)→ f(a) =P
p f(a′).

A variant to apd is the following. Given f : A→ B, a family P : B → U and a section
g : (a : A)→ P (f(a)), we define

ãpdg : (p : a = a′)→ g(a) =P
apf (p) g(a′). (2.2.2)

The difference between apd and ãpd is over which path they lie.
Furthermore, if we have a map f : A → B and two families P : A → U and

Q : B → U and a fiberwise map g : (a : A)→ P (a)→ Q(f(a)), then we get a fiberwise
version of ap:

apog : x =P
p x

′ → ga(x) =Q
apf (p) ga′(x

′). (2.2.3)

Squares

For higher paths, it is convenient to define a separate notion of a square in a type:

a00 a20

a02 a22

p10

p01
p12

p21

Suppose given four paths as in the diagram above, that is

p10 : a00 = a20 p01 : a00 = a02

p12 : a02 = a22 p21 : a20 = a22.

We have a type of squares square(p10, p12, p01, p21), which we can define in either of the
two following equivalent ways

(i) We can define square(p10, p12, p01, p21) :≡ (p10 · p21 = p01 · p12).

(ii) square(p10, p12, p01, p21) is defined as an inductive family of types. For a fixed
a00 : A we define the family

18

inductive square(−,−,−,−) : {a20 a02 a22 : A} → a00 = a20 → a02 = a22 →
a00 = a02 → a20 = a22 → U :=
• refl : square(refla00 , refla00 , refla00 , refla00).

We will usually write squares using diagrams as above. There are various operations on
squares. For example, we can horizontally concatenate them. If we can fill each of the
individual squares below, we can fill the outer rectangle (which has as top p10 · p30 and
as bottom p12 · p32).

a00

a02

a20

a22

a40

a42

p10

p01
p12

p30

p21
p32

p41

We can also vertically concatenate squares, and horizontally or vertically invert squares.
Given a homotopy h : f ∼ g between nondependent functions f, g : A→ B and a

path p : a =A a
′, we get the following naturality square.

f(a) g(a)

f(a′) g(a′)

h(a)

apf (p)
h(a′)

apg(p)

Squareovers and cubes

Going up further, we have the type of squareovers. A squareover is a square in a
dependent type over a square. Suppose that we have a dependent type P : A → U ,
a square s in A and a dependent path over each of the sides of the square, as in the
following diagram.

x00 x20

x02 x22

q10

q01
q12

q21

a00 a20

a02 a22

s

p10

p01
p12

p21

19

We have the type of squareovers or dependent squares, which fill the top square and lie
over the bottom square. We can again define this using multiple methods, but the most
convenient method here is to define it as an inductive family. We take as parameters
the type A, the family P and the points a00 and x00 and let all the other arguments be
indices. We have a “reflexivity squareover” when the square s is the reflexivity square
and each of the four pathovers are reflexivity pathovers.

We can also define a type of cubes. Given six squares in a type with twelve paths
as sides, fitting together in a cube, we can define the type of fillers of the cube. This is
again done using a family of inductive types, where we give a cube filler when all the
six sides are reflexivity squares. Of course, we could continue by defining cubeovers and
4-cubes, but we will not need them in this dissertation.

Paths in type formers
In each of the type formers of Section 2.1 we can compute what the paths in that type
are, and what the operations of paths are in that type.

As a simple example, consider the cartesian product type A × B. A path in the
cartesian product is just a pair of paths.

(x =A×B y) ' (p1x =A p1y)× (p2x =B p2y)

In particular, given paths r : p1x = p1y and s : p2x = p2y, we get a path x = y,
which we will denote (r, s). Given maps f : A→ A′ and g : B → B′, we get the map
f × g : A×B → A′ ×B′ and we can compute

apf×g(r, s) = (apf (r), apg(s))

. Given families P,Q : A→ U , we can compute transport:

transportλa. P (a)×Q(a)(p, (x, y)) = (transportP (p, x), transportQ(p, y))

Pathovers in a family of cartesian products are also pairs of pathovers:

(x, y) =λa. P (a)×Q(a)
p (x′, y′) ' (x =P

p x
′)× (y =Q

p y
′).

In sigma-types the relations are a bit more difficult, since the second component
depends on the first. In the type (a : A)×B(a) paths are pairs of a path and a path
over that path:

(x =(a:A)×B(a) y) ' (r : p1x =A p1y)× (p2x =B
r p2y)

We will also denote in this case the map from right to left by (−,−). Given a map
f : A → A′ and a fiberwise map g : (a : A) → B(a) → B′(f(a)), we get a functorial
action of the sigma type: f × g : ((a : A)× B(a))→ ((a′ : A′)× B(a′)). In this case,
we can compute

apf×g(r, s) = (apf (r), apog(s)),

20

where apo is defined in (2.2.3). We leave the rule for transports as an exercise to the
reader, but the rule for pathovers in a family of sigma-types is the following. For
B : A→ U and C : (a : A)→ B(a)→ U we get:8

((a, b) =λa. (b:B(a))×C(a,b)
p (a′, b′)) ' (q : a =P

p a
′)× (y =λ(x : (a:A)×B(a)). Q(p1x,p2x)

(p,q) y′).

For dependent function types the situation is a bit more complicated. Given
f, g : (a : A)→ B(a), by path induction we get a map

happly : (f = g)→ f ∼ g.

However, we cannot show in plain Martin-Löf type theory that this map gives rise
to an equivalence. In homotopy type theory we can use the univalence axiom (see
Section 2.2.2) to show that happly is an equivalence. We skip the proof here, but
refer the reader to [Uni13, Section 4.9]. Using univalence we can also prove the other
properties. The general rule for pathovers in a dependent function type is complicated,
but two important special cases are the following. In the first case, the domain does
not depend on the path. We have types A and B and a family C : A→ B → U and
then we can prove:

(f =λa. (b:B)→C(a,b)
p g) ' (b : B)→ f(b) =C(−,b)

p g(b).

The second case is for nondependent functions. Given a type A and two families
B,C : A→ U , we have

(f =λa.B(a)→C(a)
p g) ' (b : B(a))→ f(b) =C

p g(p∗(b)).

We characterized paths in the universe in Section 2.2.2 using the univalence axiom.
We will not need to do much path algebra in inductive types, except for the identity
type, pathover type and square type. A pathover in a family of identity types is a
square. Suppose given types A and B and functions f, g : A→ B, a path p : a =A a

′

and paths q : f(a) = g(a) and r : f(a′) = g(a′). Then the pathover type becomes
equivalent to the square type shown below.

(q =λa. f(a)=g(a)
p r) '

f(a) g(a)

f(a′) g(a′)

q

apf (p)
r

apg(p)

We also sometimes encounter a pathover in a dependent family of pathovers. In
that case we get a squareover. Suppose we are given functions f, g : A → B, and a
homotopy h : f ∼ g, a dependent family C : B → U and sections c : (a : A)→ C(f(a))

8We could define a new notion “path over a pathover,” but the rule given here suffices for all the
cases we considered.

21

and c′ : (a : A) → C(g(a)). We want to characterize a pathover in the family
P :≡ λa. c(a) =C

h(a) c
′(a) : A → U . If we are also given a path p : a =A a′ and two

pathovers q : c(a) =C
h(a) c

′(a) and q′ : c(a′) =C
h(a′) c

′(a′), then the pathover q =P
p q′ is

equivalent to the following squareover, where ãpd is defined in (2.2.2), and the bottom
square is a naturality square.

c(a) c′(a)

c(a′) c′(a′)

q

ãpdb(p)
q′

ãpdb′(p)

f(a) g(a)

f(a′) g(a′)

nat.

h(a)

apf (p)

h(a′)

apg(p)

Lastly, we will mention that a pathover in a family of squares is a cube, but we will not
explain the details here.

2.2.4 Truncated Types
In HoTT we can define iterated path spaces in any type. In certain types, if we iterate
path spaces enough times, these path spaces do not contain any information. These
types are called truncated. The notion of an n-truncated type, was introduced in 2009
by Vladimir Voevodsky under the name “a type of h-level n+ 2.”

We define the notion that A is n-truncated, or that A is an n-type or is-n-type(A)
recursively for n ≥ −2. We say that a type A is (−2)-truncated or contractible if it has
exactly one inhabitant, i.e. if we can prove

(a0 : A)× (a : A)→ a = a0.

A type A is (n+ 1)-truncated if for all a a′ : A the type a =A a
′ is n-truncated.

We can show that 1 is contractible and that every contractible type is equivalent to
1.

The (−1)-truncated types are called mere propositions or propositions for short. A
type A is a proposition precisely when any two of its inhabitants are equal, i.e. if we
can prove

(a a′ : A)→ a = a′.

We call these types propositions because these types correspond to truth values, and do
not contain any further information. In particular, if a proposition is inhabited, then it

22

is contractible. It is easy to see that 0 and 1 are mere propositions, and in Section 2.2.2
we saw that the statement isequiv(f) is a mere proposition.

One level up, the 0-types are called sets. These are the types for which uniqueness
of identity proofs holds. Examples of sets are N and 2.

On the next level we have the 1-types or groupoids. Below we list some properties
of truncated types, see [Uni13, Section 7.1] for their proofs.
Lemma 2.2.4.
• If A is n-truncated, then A is m-truncated for all m ≥ n.

• If A is n-truncated and A ' B, then B is n-truncated.

• If A and B are n-truncated types, then A × B and A ' B are n-truncated. If
n ≥ 0, then A+B is also n-truncated.

• If B : A → U is a family of n-truncated types (i.e. (a : A) → is-n-type(B(a))),
then (a : A) → B(a) is n-truncated. If moreover A is also n-truncated, then
(a : A)×B(a) is also n-truncated.

• Given a0 : A, the type (a : A)× (a0 = a) is contractible.

• The type is-n-typeA is a mere proposition.
We define the subuniverse of n-types as U≤n :≡ (X : U)× is-n-type(X). For X : U≤n

we will also write X for the underlying type of X. We write Prop :≡ U≤−1 and
Set :≡ U≤0.

We can do set-level mathematics in the subuniverse of sets. For example, we can
define a group to be a set with operations satisfying the following axiomatization:9

Group :≡ (G : Set)× (m : G→ G→ G)× (i : G→ G)× (e : G)× ((x y z : G)→
m(x,m(y, z)) = m(m(x, y), z)×m(x, e) = x×m(x, i(x)) = e).

A group G is abelian if it moreover satisfies m(x, y) = m(y, x) for all x, y : G. This gives
the usual notion of groups, and we can perform all basic group theory in this setting.

Truncations

We can turn every type A into an n-type ‖A‖n in a universal way, which is called
the n-truncation of A. It comes with a map |−|n : A → ‖A‖n and has the following
induction principle. Suppose given P : ‖A‖n → U such that P (x) is n-truncated for all
x : ‖A‖n. If we are given a dependent map f : (a : A)→ P (|a|n), we get a section

ind‖−‖(f) : (x : ‖A‖n)→ P (x)
such that ind‖−‖(f, |a|n) ≡ f(a).

We will now state some properties of the n-truncation, for the proofs we refer
to [Uni13, Section 7.3].

9From these equalities the fact that e is a left-identity and i is a left-inverse can be derived.

23

Lemma 2.2.5.

• The truncation is functorial. Given f : A → B, we get a map ‖f‖n : ‖A‖n →
‖B‖n. This map respects composition and identities: ‖g ◦ f‖n ∼ ‖g‖n ◦ ‖f‖n and
‖ idA ‖n ∼ id‖A‖n.

• A is an n-type iff |−|n : A→ ‖A‖n is an equivalence.

• The equality type in the truncation is truncated equality, but shifted:

(|a|n+1 =‖A‖n+1= |a′|n+1) ' ‖a =A a
′‖n.

• Truncating twice is the same as truncating once:

‖‖A‖n‖k ' ‖A‖min(n,k).

In particular the propositional truncation ‖A‖ :≡ ‖A‖−1 of A is a proposition stating
that A is merely inhabited [AB04]. We can use it to define proof irrelevant versions of
the disjunction or existential quantifier. We have the mere disjunction

(P ∨Q) :≡ ‖P +Q‖

and the mere existential

(∃(x : A).P (x)) :≡ ‖(x : A)× P (x)‖.

We say that there merely exists x : A such that P (x) holds if ∃(x : A).P (x) is inhabited,
to contrast with constructing an element in the untrucated dependent pair type. If we
construct an element of (x : A)× P (x), we will sometimes say that there purely exists
an x such that P (x) holds, but often we will drop the adverb purely.

Connected types

A type is truncated if the type contains no interesting information in a high enough
dimension. Dually, a type is connected if it contains no interesting information in a low
enough dimension.

We say that a type A is n-connected for n ≥ −2 if ‖A‖n is contractible. From the
definition we see that every type is (−2)-connected. A type is (−1)-connected precisely
when it is merely inhabited. A type is called 0-connected when A has exactly one
connected component. A 1-connected type is called simply connected.

24

Fibers

We can extend the notion of truncated types and connected types to functions. Given
a function f : A→ B and a point b : B, we define the fiber of f at b to be

fibf (b) :≡ (a : A)× f(a) = b.

The fiber of the projection p1 : ((a : A) × B(a)) → A at a : A is equivalent to B(a),
which explains the terminology that B(a) is the fiber of B over a.

We say that a function f : A → B is n-truncated (n-connected) when for all
b : B the type fibf(b) is n-truncated (n-connected). The function f is (−2)-truncated
precisely when it is an equivalence. The function f is (−1)-truncated, or an embedding,
if for all a a′ : A the map apf : a =A a′ → f(a) =B f(a′) is an equivalence. A map
f : A → B between sets is an embedding iff it is injective, i.e. if we have a map
f(a) = f(a′) → a = a′ for all a a′ : A. On the other hand, a (−1)-connected map is
called a surjection, which means that for every b : B there merely exists an a : A such
that f(a) = b.

Every map can be factorized as an n-connected map followed by an n-truncated
map in a unique way, which means that these classes form an orthogonal factorization
system [RSS17].

Similar to the universe of n-truncated types, we have a universe of n-connected
types:

U>n :≡ (A : U)× is-n-connected(A).

2.2.5 Pointed Types
A lot of homotopy theory is done in the (∞, 1)-category of pointed types where the
morphisms are maps that preserve the basepoints of the types. Below are the basic
definitions for pointed types.

Definition 2.2.6.

(i) A type A is pointed if A has a distinguished basepoint a0 : A. For example, 1 is
pointed by ? and 2 is pointed with 02. We will also write S0 for the pointed type
2. A×B is pointed if both A and B are pointed,10 (a : A)→ B(a) is pointed if
B is a family of pointed types, and (a : A)×B(a) is pointed if A is pointed and
B(a0) is pointed.

(ii) The type of pointed types is U∗ :≡ (A : U)× A. Given a pointed type A : U∗, we
will also write A for its underlying type.

10More formally, we have to specify the basepoint of A×B, because being pointed is structure on a
type, not a property of the type, but there is only one choice of basepoint in this example and other
examples where we leave the basepoint implicit.

25

(iii) Given two pointed types A,B : U∗, a pointed map f : A→∗ B is a pair consisting
of a map f : A→ B and a path f0 stating that f preserves the basepoint, that
is f0 : f(a0) = b0. The type A →∗ B is pointed with basepoint 0 ≡ 0A,B :≡
(λa. b0, reflb0).

(iv) We have an identity pointed map id ≡ idA : A→∗ A defined as (λx. x, refla0) and
if g : B →∗ C and f : A →∗ B we have a composite g ◦ f : A →∗ C defined as
(λx. g(f(x)), apg(f0) · g0).

(v) More generally, Given a pointed type A : U∗ and a family of types B : A → U
with a basepoint b0 : B(a0), a pointed dependent map f : (a : A)→∗ B(a) is a pair
consisting of a dependent map f : (a : A)→ B(a) and a path f0 : f(a0) = b0. If we
require that B is a family of pointed types, i.e. B : A→ U∗, then (a : A)→∗ B(a)
is pointed with basepoint (λa. b0(a), reflb0(a0)).

(vi) Given two pointed dependent maps f, g : (a : A) →∗ B(a), a pointed homotopy
h : f ∼∗ g is a pointed dependent map (a : A) →∗ f(a) = g(a). This is well-
defined, since the type f(a0) = g(a0) is pointed by f0 · g−1

0 . Expanding the
definition, this means that h is a pair of a homotopy h : f ∼ g and a 2-path
stating that h relates the basepoint-preserving paths of f and g. This means that
we have h0 : h(a0) = f0 · g−1

0 , or equivalently, h0 : h(a0) · g0 = f0. We say that a
diagram of pointed types commutes if there are pointed homotopies between the
corresponding composites of pointed maps.

(vii) A pointed map e : A→∗ B is a pointed equivalence if it has a left-inverse and a
right-inverse. That is, there is ` : B →∗ A such that ` ◦ e ∼∗ idA and r : B →∗ A
such that e ◦ r ∼∗ idB. The type of pointed equivalences between A and B
is denoted A '∗ B. The identity map is a pointed equivalence and pointed
equivalences are closed under composition.

(viii) Given A : U∗, we define its loop space ΩA : U∗ :≡ (a0 = a0, refla0). We define the
iterated loop space ΩnA by iteration as Ω0A :≡ A and Ωn+1A :≡ Ω(ΩnA).

(ix) We define the n-th homotopy group of A as the set-truncation of the iterated loop
space, i.e. πn(A) :≡ ‖ΩnA‖0. This is a group for n ≥ 1 that is abelian for n ≥ 2.

(x) Given a pointed map f : A →∗ B, we define the pointed fiber of f fibf : U∗ as
fibf(b0) ≡ (x : A) × f(a) = b0 with basepoint (a0, f0). There is a pointed map
p1 : fibf →∗ A defined as (λx. p1(x), refla0).

Here are some basic properties of pointed types. We omit the proofs.

Lemma 2.2.7.

(i) Suppose given a pointed map f : A →∗ B. The type of proofs that f is an
equivalence is equivalent to the type that f is a pointed equivalence. In particular,

26

being a pointed equivalence is a property. Also, we can define a pointed equivalence
X '∗ Y by giving a map e : X → Y that is both an equivalence and pointed.

(ii) Suppose given A,B : U∗. Univalence implies univalence for pointed types: the
canonical map (A = B)→ (A '∗ B) is an equivalence.

(iii) Suppose given pointed maps f, g : (a : A)→∗ B(a). Function extensionality implies
function extensionality for pointed maps: the canonical map (f = g)→ (f ∼∗ g)
is an equivalence.

(iv) We have the usual categorical laws:

f ◦ id ∼∗ f id ◦f ∼∗ f (h ◦ g) ◦ f ∼∗ h ◦ (g ◦ f)
f ◦ 0 ∼∗ 0 0 ◦ f ∼∗ 0

The two homotopies showing 0 ◦ id ∼∗ 0 are equal. This is also true for the two
homotopies of id ◦0 ∼∗ 0 and of id ◦ id ∼∗ id and of 0 ◦ 0 ∼∗ 0.

(v) We can form iterated pointed maps (A →∗ B →∗ C) :≡ (A →∗ (B →∗ C)).
To show that such a map preserves the basepoint, we need to give an equality
between pointed maps, or equivalently, we can give a pointed homotopy between
pointed maps. For example, the above homotopies involving 0 imply that we have
precomposition and postcomposition maps. For f : A →∗ B we have a pointed
map (−) ◦ f : (B →∗ C)→∗ A→∗ C and for g : B →∗ C we have a pointed map
g ◦ (−) : (A →∗ B) →∗ A →∗ C. We will also write f → C resp. A → g for
these maps. Precomposition and postcomposition commute, which means that the
following square commutes.

(A→∗ B) (A→∗ B)

(A′ →∗ B) (A′ →∗ B′)

g ◦ (−)

(−) ◦ f
g ◦ (−)

(−) ◦ f

Moreover, if f or g are constant, then these maps are pointed homotopic to
constant maps, which gives a pointed map

(−) ◦ (−) : (B →∗ C)→∗ (A→∗ B)→∗ A→∗ C.

(vi) There are also dependent versions of these composition maps. In particular, if
g : (a : A)→ B(a)→∗ C(a), then we have a map

g ◦ (−) : ((a : A)→∗ B(a))→∗ (a : A)→∗ C(a).

We have an equivalence

fibg◦(−) '∗ ((a : A)→∗ fibga).

27

(vii) Ω and Ωn are pointed functors. For Ω this means that given a pointed map
f : A→∗ B, we can define Ωf : ΩA→∗ ΩB, with pointed homotopies Ω(g ◦ f) ∼∗
Ωg ◦ Ωf and Ω id ∼∗ id and Ω1 '∗ 1. This also implies that Ω0 ∼∗ 0 and that if
e : A '∗ B then Ωe : ΩA '∗ ΩB.

(viii) There is a pointed version of function extensionality for pointed types. If B is a
family of pointed types, we have a pointed equivalence

eB : Ω((a : A)→∗ B(a)) '∗ ((a : A)→∗ ΩB(a)).

This equivalence is natural in B. This means that given a fiberwise pointed map
f : (a : A)→ B(a)→∗ C(a), the following square commutes.

Ω((a : A)→∗ B(a)) ((a : A)→∗ ΩB(a))

Ω((a : A)→∗ C(a)) ((a : A)→∗ ΩC(a))

eB

Ω(f ◦ (−))
eC

Ωf ◦ (−)

(ix) The fiber of a pointed map is functorial. This means that given a commuting
square, we get a pointed map from the fiber of the top map to the fiber of the
bottom map.

fibf A B

fibf ′ A′ B′

p1 f

g

p1 f ′
h

Moreover, if the left and the right sides of the squares are equivalences, then the
functorial action is an equivalence. Lastly, p1 is natural, which means that the
left square commutes.

(x) Given a pointed map f : A →∗ B, we have a equivalence Ω fibf '∗ fibΩf that is
natural in f . This means that if we have a commuting square with top f and
bottom f ′, then the following square commutes (the left and the right side come
from the functorial action of fib).

Ω fibf fibΩf

Ω fibf ′ fibΩf ′

∼

∼

28

(xi) We have a pointed equivalence (S0 →∗ X) '∗ X natural in X.

(xii) A pointed type A is n-connected iff πk(A) is trivial (contractible) for all k ≤ n. If
a type A is n-truncated, then πk(A) is trivial for k > n (however, the converse is
not true in general).

2.2.6 Higher Inductive Types
Higher inductive types are a generalization of inductive types where we specify not only
the generating points in the type by constructors, but also the generating paths and
higher paths. The idea is that the type together with its (higher) path spaces are freely
generated by these constructors.

A simple example is the interval. The interval I is generated by two points 0, 1 : I
and a path seg : 0 = 1. Using a syntax similar to that of inductive types, we could write

HIT I : U :=
• 0, 1 : I;
• seg : 0 =I 1.

Note that this is not an inductive type, since the last constructor does not specify an
element in I, but an element in the path space of I. We get an induction principle
for higher inductive types, similar to the induction principle for inductive types. We
first give a special case, the nondependent induction principle, also called the recursion
principle. For the interval this states the following. Given a type X, if we have points
x0 x1 : X and a path p : x0 =X x1, then we get a map recI(x0, x1, p) : I → X. On the
points this has the expected computation rules:

recI(x0, x1, p, 0) ≡ x0 and recI(x0, x1, p, 1) ≡ x1.

We want a similar computation rule on paths. We can apply the induction principle to
seg using ap. The resulting computation rule is

aprecI(x0,x1,p)(seg) = p.

Note that for this case we postulate a member of the identity type instead of making
this a definitional equality. There are various reasons for this. Firstly, in this type
theory, there is no justification for this equality to be definitional. There are various
ways to define ap, and there is no good reason for the computation rules to favor this
definition. Secondly, in the early proof assistants for HoTT there was no support for
definitional computation rules on path constructors, but there was a trick to get it
for the point constructors [Lic11]. In fact, calling this rule a “computation rule” is
not quite accurate, since there is no computation going on. We will still keep using
this terminology, so that we have the same terminology as for inductive types. In the
cubical type theories mentioned in the introduction we can make these terms reduce
judgmentally, making them convenient for working with higher inductive types.

29

The induction principle for the interval is the following. Suppose given a family
P : I → U with elements x0 : P (0) and x1 : P (1). We need to relate x0 and x1 in
some way, but we cannot ask that they are equal, since they live in different types.
Instead, we require a pathover p : x0 =P

seg x1. In this case we get a dependent map
indI(x0, x1, p) : (i : I)→ P (i) with computation rules on points

indI(x0, x1, p, 0) ≡ x0 and indI(x0, x1, p, 1) ≡ x1.

For the computation rule on paths, we need to use apd to apply the induction principle
to seg, and we get

apdindI(x0,x1,p)(seg) = p.

A more interesting example of a higher inductive type is the (graph) quotient which
we will call a quotient in this dissertation. Given A : U and R : A → A → U , the
quotient is the following higher inductive type.

HIT quotientA(R) :=
• i : A→ quotientA(R);
• glue : (a a′ : A)→ R(a, a′)→ i(a) = i(a′).

We will sometimes use the notation [−]0 for i and [−]1 for glue.
A very similar higher inductive type is the homotopy pushout, or pushout for short.

Given two maps f : A→ B and g : A→ C, their pushout is the following HIT.
HIT pushout(f, g) :=
• inl : B → pushout(f, g)
• inr : C → pushout(f, g)
• glue : (a : A)→ inl(f(a)) = inr(g(a))

We denote pushout(f, g) by B+AC if f and g are clear from the context. In this section,
we will define other higher inductive types in terms of the pushout. However, we could
also start with the quotient, by the following lemma.

Lemma 2.2.8. The pushout and quotient are interdefinable in MLTT.

Proof. We will only give the definitions of the pushout and the quotient in terms of the
other. Showing that these definitions are correct is easy, and we omit it here.

If we have quotients, we can define the pushout of f : A→ B and g : B → C as the
quotient of B + C under the relation R : B + C → B + C → U , which is inductively
generated by mk : (a : A)→ R(f(a), g(a)).

On the other hand, if we have pushouts, we can define the quotient of A under R as
follows. Let T :≡ (a a′ : A)×R(a, a′) be the total space of R. Then the quotient of A
under R is the pushout of f :≡ 〈π1, π2〉 : T + T → A and g :≡ 〈id, id〉 : T + T → T .

Many higher inductive types can be defined in terms of the homotopy pushout (or
equivalently, the quotient):

• The cofiber of a map f : A→ B is defined as Cf :≡ B +A 1. The maps are f and
!.

30

• The suspension ΣA of type A is defined as ΣA :≡ 1 +A 1, i.e. as the cofiber of
the map A→ 1. The points are called N and S and glue is called merid.

• The wedge sum of a family of pointed types A : I → U∗ is defined as the cofiber
of the map I → (i : I) × A(i), which sends i to the pair (i, ptA(i)). The binary
wedge A ∨B of two pointed types A B : U∗ can equivalently be described as the
pushout of A+1 B where the maps come from the basepoints of A and B.

• The smash product A ∧B of A and B can be defined as the cofiber of the map
A ∨B → A×B, which sends inl(a) to (a, b0) and inr(b) to (a0, b) and glue(?) to
refl(a0,b0). We will discuss the smash product in Section 4.3.

• The n-sphere Sn is defined inductively for n ≥ 0: S0 :≡ 2 and Sn+1 :≡ ΣSn. The
n-sphere is pointed with point N for n ≥ 1 and with 02 for n = 0. We could also
start counting at n = −1, defining S−1 = 0, but we often only want to consider
the pointed spheres.

Another higher inductive type that we will study is the sequential colimit or colimit
for short. This is the following HIT for A : N→ U and f : (n : N)→ A(n)→ A(n+ 1):

HIT colim(A, f) :=
• ι : (n : N)→ A(n)→ colim(A, f);
• κ : (n : N)→ (a : A(n))→ in+1(fn(a)) = in(a).
We can define colim(A, f) using quotients, namely as quotient(B,R) where B =

(n : N) × A(n) is the total space of A and R : B → B → U is inductively generated
by mk : (n : N) → (a : A(n)) → R(fn(a), a). We will discuss the colimit more in
Section 3.3

We will use the following properties of these higher inductive types. For the proof
we refer to [Uni13, Chapter 8]

Lemma 2.2.9.

• If A is n-connected, then ΣA is (n+ 1)-connected.

• The suspension is left-adjoint to the loop space: Σ a Ω. That means that for any
two pointed types A and B there is a pointed equivalence

(ΣA→∗ B) '∗ (A→∗ ΩB)

that is natural in A and B.

• We have the following equivalence: ΩS1 ' Z. Therefore S1 is1-truncated and
π1(S1) ' Z.

In particular, by the above lemma we know that Sn is (n− 1)-connected, and hence
that πk(Sn) is trivial for k < n.

Another higher inductive type is the torus, which is the following higher inductive
type

31

HIT T 2 :=
• ? : T 2;
• `1 `2 : ? = ?;
• `1 · `2 = `2 · `1.

The last constructor of the torus is a 2-path constructor. In general, HITs can have
as constructor any higher path. We say that a HIT is an n-HIT if its highest path
constructor has dimension n. So the torus is a 2-HIT and all the other HITs we have
seen are 1-HITs.

Higher inductive types can also have recursive constructors. If a higher inductive
type has at least one recursive constructor, we will call it a recursive HIT. For example,
we can encode the propositional truncation as a HIT with a recursive path constructor:

HIT ‖A‖ :=
• |−| : A→ ‖A‖;
• (x1 x2 : ‖A‖)→ x1 = x2.

Higher truncations can also be encoded using HITs [Uni13, Section 7.3].

2.3 Lean
Lean [dMKA+15] is an interactive theorem prover that is mainly developed at Microsoft
Research and Carnegie Mellon University.11 The project was started in 2013 by Leonardo
de Moura to bridge the gap between interactive theorem proving and automated theorem
proving. Lean is an open-source program released under the Apache License 2.0.

In its short history, Lean has undergone several major changes. The second version
(Lean 2) supports two kernel modes. The standard mode is for proof irrelevant reasoning,
in which Prop, the bottom universe, contains types whose objects are considered to
be judgmentally equal. This is incompatible with homotopy type theory, so there is a
second HoTT mode without Prop. In 2016, the third major version of Lean (Lean 3) was
released [EUR+17]. In this version, many components of Lean have been rewritten. Of
note, the unification procedure has been restricted, since the full higher-order unification
that is available in Lean 2 can lead to timeouts and error messages that are unrelated
to the actual mistakes. Due to certain design decisions, such as proof erasure in the
virtual machine and a function definition package that requires axiom K [GMM06], the
homotopy type theory mode is currently not natively supported in Lean 3. However,
a trick found by Gabriel Ebner allows us to build a homotopy type theory library in
Lean 3. In this library, we do not use singleton elimination, which is the feature of
Prop that is inconsistent with univalence. Singleton elimination is the property that
some Prop-valued inductive types can eliminate to all universe levels. Gabriel Ebner
also wrote a piece of code that no definition in this library uses singleton elimination in
its definition. Porting the HoTT library from Lean 2 to Lean 3 is a lot of work, because

11The contents of this section are based on [vDvRB17], which was written with Jakob von Raumer
and Ulrik Buchholtz.

32

of the changes in the elaborator and in the syntax. All major results in this dissertation
are only formalized in Lean 2 and not yet in Lean 3. The HoTT 3 library can be found
at https://github.com/gebner/hott3.

The HoTT kernel of Lean 2 provides the following primitive notions:

• Type universes Type.{u} : Type.{u + 1} for each universe level u ∈ N. In
Lean, this chain of universes is non-cumulative, and all universes are predicative.

• Function types A → B : Type.{max u v} for types A : Type.{u} and B :
Type.{v} as well as dependent function types Πa, B a : Type.{max u v} for
each type A : Type.{u} and type family B : A → Type.{v}. These come with
the usual β and η rules.

• inductive types and inductive type families, as proposed by Peter Dybjer [Dyb94].
Every inductive definition adds its constructors and dependent recursors to the
environment. Pattern matching is not part of the kernel

• two kinds of higher inductive types: n-truncation and (typal) quotients.

Outside the kernel, Lean’s elaborator uses backtracking search to infer implicit
information. It does the following simultaneously.

• The elaborator fills in implicit arguments that can be inferred from the context,
such as the type of the term to be constructed and the given explicit arguments.
Users mark implicit arguments with curly braces. For example, the type of
equality is eq : Π{A : Type}, A → A → Type, which allows the user to write
eq a1 a2 or a1 = a2 instead of @eq A a1 a2. The symbol @ allows the user to
fill in implicit arguments explicitly. The elaborator supports both first-order
unification and higher-order unification.

• We can mark functions as coercions, which are then “silently” applied when
needed. For example, we have the type of equivalences A ' B, which is a structure
consisting of a function A → B with a proof that the function is an equivalence.
The map (A ' B) → (A → B) is marked as a coercion. This means that we can
write f a for f : A ' B and a : A, and the coercion is inserted automatically.

• Lean was designed with type classes in mind, which can provide canonical inhabi-
tants of certain types. This is especially useful for algebraic structures and for
type properties like truncatedness and connectedness. Type class instances can
refer to other type classes, so that we can chain them together. This makes it
possible for Lean to automatically infer why types are n-truncated if our reasoning
requires this, for example when we are eliminating out of a truncated type. For
example we show that the type of functors between categories C and D is equivalent
to an iterated sigma type.

33

https://github.com/gebner/hott3

(Σ (F0 : C → D) (F1 : Π {a b}, hom a b → hom (F0 a) (F0 b)),
(Π (a), F1 (ID a) = ID (F0 a)) ×
(Π {a b c} (g : hom b c) (f : hom a b),

F1 (g ◦ f) = F1 g ◦ F1 f)) ' functor C D

Note the use of coercions here: F0 : C → D really means a function from the
objects of C to the objects of D. From this equivalence, Lean’s type class inference
can automatically infer that functor C D is a set if the objects of D form a set.
Type class inference will repeatedly apply the rules when sigma-types and pi-types
are sets, and use the facts that hom-sets are sets and that equalities in sets are
sets (in total 20 rules are applied for this example).

• Instead of giving constructions by explicit terms, we can also make use of Lean’s
tactics, which give us an alternative way to construct terms step by step. This is
especially useful if the proof term is large, or if the elaboration relies heavily on
higher-order unification.

• We can define custom syntax, including syntax with binding. In the following
example we declare two custom notations.
infix · := concat
notation 8Σ8 binders 8, 8 r:(scoped P, sigma P) := r

The first line allows us to write p · q for path concatenation concat p q. The
second line allows us to write Σ x, P x instead of sigma P. This notation
can also be chained: Σ (A : Type) (a : A), a = a means sigma (λ(A :
Type), sigma (λ(a : A), a = a)).

All main results in this dissertation have been formalized in Lean. Some corollaries
or examples have not been formalized, in which case we will explicitly mention this.
The formalizations are separated in two Github repositories: the Lean-HoTT library12
and the “spectral” repository, which was originally a repository to formalize spectral
sequences, but now also contain many other results in synthetic homotopy theory.13

12https://github.com/leanprover/lean2/blob/master/hott/hott.md
13https://github.com/cmu-phil/Spectral/

34

https://github.com/leanprover/lean2/blob/master/hott/hott.md
https://github.com/cmu-phil/Spectral/

Below is a table with the locations of the formal results in the libraries.
Theorem File Name

Theorem 3.1.8 hott/hit/prop_trunc.hlean ptrunc_equiv_trunc
Theorem 3.2.2 hott/hit/two_quotient.hlean simple_two_quotient.rec
Theorem 3.3.26 Spectral/colimit/seq_colim.hlean sigma_seq_colim_over_equiv
Corollary 3.3.28 Spectral/colimit/seq_colim.hlean seq_colim_eq_equiv
Theorem 4.1.1 hott/homotopy/LES_of_homotopy_groups.hlean is_exact_LES_of_homotopy_groups
Corollary 4.1.11 hott/homotopy/sphere2.hlean π2S2 and πnS3_eq_πnS2
Corollary 4.1.13 hott/homotopy/sphere2.hlean πnSn and π3S2
Theorem 4.2.7 Spectral/homotopy/EM.hlean AbGrp_equivalence_cptruncconntype′

Theorem 4.3.28 Spectral/homotopy/smash_adjoint.hlean smash_adjoint_pmap
Theorem 5.2.6 Spectral/algebra/spectral_sequence.hlean is_built_from_infpage
Theorem 5.3.7 Spectral/algebra/spectral_sequence.hlean converges_to_sequence
Theorem 5.4.10 Spectral/cohomology/serre.hlean atiyah_hirzebruch_convergence
Theorem 5.4.12 Spectral/cohomology/serre.hlean serre_convergence

35

Chapter 3

Higher Inductive Types

In this chapter we will study properties of Higher Inductive Types (HITs), which we
introduced in Section 2.2.6. There is no uniformly accepted scheme of which HITs
are allowed, and the semantics of HITs is a topic of current research. There are
semantic interpretations of a large class of Higher Inductive Types [LS17], but there are
still open questions. Firstly, a general scheme for higher inductive types is unknown,
although [ACD+16] is a step in the right direction. Secondly, it is unknown whether
universes can be closed under higher inductive types. This is unknown even in the
case for homotopy pushouts. In this chapter, we do not study the semantics of higher
inductive types. Instead, we will work internally in a type theory that has some specific
HITs, and construct other HITs from the ones we started with.

In particular, we are interested in the case where we start with the quotient, or
equivalently, the homotopy pushout.

One HIT from Section 2.2.6 that we have not yet defined using quotients is the
n-truncation. In Section 3.1 we will define the propositional truncation using quotients.
A construction of the n-truncations is given by the join construction [Rij17]. This shows
that we can define certain recursive HITs using quotients. We will make a start on
defining a bigger class of recursive HITs using quotients in Section 3.3.

Another class of HITs we want to construct is HITs with higher path constructors.
We construct nonrecursive 2-HITs in Section 3.2, using a method very similar to the
hubs and spokes method [Uni13, Section 6.7].

One might wonder after these examples whether all HITs can be reduced to quotients.
This turns out to be false. In [LS17, Section 9] the authors describe a specific recursive
1-HITs that cannot be reduced to quotients. Still, it is worthwhile to see which higher
inductive types can be constructed from quotients, for example if one is interested in a
model of HoTT with homotopy pushouts, but without the extra structure to model all
HITs.

36

3.1 Propositional Truncation
In this section we will construct the propositional truncation from quotients.14

Given a type A, define {A} as the quotient of A by the indiscrete relation R :≡
λ(a a′ : A),1. We will call the type {A} the one-step truncation, since repeating it will
give the propositional truncation. We will denote its point constructor by f : A→ {A}
and its path constructor by e : (x y : A)→ f(x) = f(y). We call a function g : A→ B
weakly constant if (x y : A) → g(x) = g(y) is inhabited. Note that maps {A} → B
correspond exactly to weakly constant maps A→ B.

Given a type A, we define a sequence {A}− : N→ U by

{A}0 :≡ A

{A}n+1 :≡ {{A}n}
(3.1.1)

We have map fn :≡ f : {A}n → {A}n+1, which is the constructor of the one-step
truncation. This gives the sequence

A
f−→ {A} f−→ {{A}} f−→ · · · (3.1.2)

We define {A}∞ = colim({A}−, f−). We will prove that {A}∞ is the propositional
truncation of A, in the sense that the construction A 7→ {A}∞ has the same formation,
introduction, elimination and computation rules for the propositional truncation.

We have already shown the formation rule of the propositional truncation (note
that {A}∞ lives in the same universe as A).

We also easily get the point constructor of the propositional truncation, because
that is just the map i0 : A→ {A}∞. The path constructor (x, y : {A}∞)→ x = y, i.e.
the statement that {A}∞ is a mere proposition, is harder to define. We will postpone
this until after we have defined the elimination and computation rules.

The elimination principle — or induction principle — for the propositional truncation
is the following statement. Suppose we are given a family of propositions P : {A}∞ →
Prop with a section h : (a : A) → P (i0(a)). We then have to construct a map
k : (x : {A}∞)→ P (x). To construct k, take an x : {A}∞. Since x is in a colimit, we
can apply induction on x. Notice that we construct an element in P (x), which is a mere
proposition, so we only have to define k on the point constructors. This means that we
can assume that x ≡ in(a) for some n : N and a : {A}n. Now we apply induction on n.

If n ≡ 0, then we can choose k(i0(a)) :≡ h(a) : P (i0(a)).
If n ≡ `+ 1 for some ` : N, we know that a : {{A}`}, so we can induct on a. The

path constructor of this induction is again automatic. For the point constructor, we
can assume that a ≡ f(b). In this case we need to define k(i`+1(f(b))) : P (i`+1(f(b))).
By induction hypothesis, we have an element y : P (i`(b)). Now we can transport x
along the equality (g`(b))−1 : i`(b) = i`+1(f(b)). This gives the desired element in
P (i`+1(f(b))).

We can write the proof in pattern matching notation:
14The contents of this section have been published in [vD16]. However, Corollary 3.1.10 is new.

37

• k(i0(a)) :≡ h(a)

• k(in+1(fn(a))) :≡ (gn(b))−1
∗ (k(in(b)))

The definition k (i0 a) :≡ h a is also the judgmental computation rule for the point
constructors of the propositional truncation.

For the remainder of this section we will prove that {A}∞ is a mere proposition.
We will need the following two lemmas.

Lemma 3.1.3. Let X be a type with x : X. Then the type (y : X)→ x = y is a mere
proposition.

Proof. To prove that (y : X) → x = y is a mere proposition, we assume that it is
inhabited and show that it is contractible. Let f : (y : X) → x = y. From this, we
conclude that X is contractible with center x. Now given any g : (y : X)→ x = y, we
know that f and g are pointwise equal, because their codomain is contractible. By
function extensionality we conclude that f = g, finishing the proof.

Lemma 3.1.4. If g : X → Y is weakly constant, then for every x, x′ : X, the function
apg : x = x′ → g(x) = g(x′) is weakly constant. That is, g(p) = g(q) for all p, q : x = x′.

Proof. Let q : (x, y : X)→ g(x) = g(y) be the proof that g is weakly constant, and fix
x : X. We first prove that for all y : X and p : x = y we have

g(p) = q(x, x)−1 · q(x, y). (3.1.5)

This follows from path induction, because if p is reflexivity, then g(reflx) ≡ reflg(x) =
q(x, x)−1 · q(x, x). The right hand side of (3.1.5) does not depend on p, hence apg is
weakly constant.

To prove that {A}∞ is a mere proposition, we need to show (x, y : {A}∞)→ x = y.
Since (y : {A}∞)→ x = y is a mere proposition, we can use the induction principle for
the propositional truncation on x, which we have just proven for {A}∞. This means we
only have to show that for all a : A we have (y : {A}∞)→ i0(a) = y. We do not know
that i0(a) = y is a mere proposition,15 so we will just use the regular induction principle
for colimits on y. We then have to construct two inhabitants of the following two types:

(i) For the point constructor we need p(a, b) : i0(a) = in(b) for all a : A and b : {A}n.

(ii) We have to show that p respects path constructors:

p(a, f(b)) · g(b) = p(a, b). (3.1.6)

We have a map fn : A→ {A}n defined by induction on n, which repeatedly applies
f . We also have a path gn(a) : in(fn(a)) = i0(a), which is a concatenation of instances
of g.

15Of course, we do know that it is a mere proposition after we have finished the proof that {A}∞ is
a mere proposition.

38

•a

•fn(a)

•fn+1(a)

• b

• f(b) {A}n+1

{A}n

A

gn

g

gn+1

e

g

Figure 3.1: The definition of p. The applications of i and the arguments of the paths
are implicit.

We can now define p(a, b) as displayed in Figure 3.1, which is the concatenation

i0(a) = in+1(fn+1(a)) (using gn+1)
≡ in+1(f(fn(a)))
= in+1(f(b)) (using e)
= in(b) (using g)

Note that by definition gn+1(a) ≡ g(fn(a)) · gn(a), so the triangle on the left of
Figure 3.1 is a definitional equality.

Now we have to show that this definition of p respects the path constructor of the
colimit, which means that we need to show (3.1.6). This is displayed in Figure 3.2.
We only need to fill the square in Figure 3.2. To do this, we first need to generalize
the statement, because we want to apply path induction. Note that if we give the
applications of i explicitly, the bottom and the top of this square are

i
(
e(fn+1(a), f(b))

)
and

i
(
e(fn+2(a), f(f(b)))

)
,

respectively. This means we can apply the following lemma to prove this equality.
Lemma 3.1.7. Suppose we are given x y : {A}n, p : x = y and p′ : f(x) = f(y). Then
we can fill the outer square in Figure 3.3, i.e.

g(x) · i(p) = i(p′) · g(y).

39

•a

•fn(a)

•fn+1(a)

•fn+2(a)

• b

• f(b)

• f(f(b)) {A}n+2

{A}n+1

{A}n

A

gn

g

e

g

gg

e

Figure 3.2: The coherence condition for p. The applications of i and the arguments of
the paths are implicit.

•i(x)

•i(f(x))

• i(y)

• i(f(y)) {A}n+1

{A}n

i(p)

g

i(p′)

i(f(p))

g

Figure 3.3: The situation in Lemma 3.1.7.

40

Proof. We can fill the inner square of the diagram by induction on p, because if p is
reflexivity, then the inner square reduces to

g(x) · refli(x) = refli(f(x)) · g(x).

To show that the two paths in the top are equal, first note that ik : {A}k → {A}∞ is
weakly constant. To see this, look at Figure 3.1. The path from fn(a) to b in that
figure gives a proof of in(fn(a)) = in(b) that does not use the form of fn(a), so we also
have ik(u) = ik(v) for u, v : {A}k. Since in+1 is weakly constant, by Lemma 3.1.4 the
function

apin+1
: f(x) = f(y)→ in+1(f(x)) = in+1(f(y))

is also weakly constant. This means that the two paths in the top are equal, proving
the Lemma.

We have now given the proof of the following theorem:

Theorem 3.1.8. The map A 7→ {A}∞ satisfies all the properties of the propositional
truncation ‖−‖, including the universe level and judgmental computation rule on point
constructors.

We will mention two corollaries of this result. An alternate proof of the first one is
given in [KECA14].

Corollary 3.1.9. Given a weakly constant function h : A → A, there is a function
‖A‖ → A.

Proof. The weakly constant function h gives a function h̃ : {A} → A. The HIT
{−} is functorial (just like all other HITs), so by its functorial action we get a map
{h̃} : {{A}} → {A}, which we can compose with h̃ to get a map {{A}} → A. By
induction on n we get a map kn : {A}n → A. Formally, we define

k0(a) :≡ a

kn+1(x) :≡ h̃({kn}(x))

However, this sequence of maps does not form a cocone, because the triangles do
not commute. (For example for the first triangle we have to show h(a) = a for
all a.) But we can easily modify the definition by postcomposing with h. Define
hn :≡ h ◦ kn : {A}n → A. Now we get a cocone; all triangles commute because h is
weakly constant. By the universal property of the sequential colimit we get a map
‖A‖ → A.

We can also construct maps out of the propositional truncation into a set by giving
a weakly constant function. An alternate proof was given in [Kra15].

Corollary 3.1.10. Suppose given a weakly constant function g : A→ B where B is a
set. Then there is a map g̃ : ‖A‖ → B such that g̃(|a|) = g(a).

41

Proof. First note that given any map h : {X} → B, we get a map h′ : {{X}} → B such
that h′ ◦ f ∼ h. Namely, on point constructors we define h′(f(x)) :≡ h(x) for x : {X}.
Now given x′, y′ : {X}, we want to define h′ on e(x′, y′). We perform induction on both
x and y. In the case that both x and y are point constructors, x′ ≡ f(x) and y′ ≡ f(y)
we can define

aph′(e(x′, y′)) := aph(e(x, y)) : h′(f(x′)) ≡ h(f(x)) = h(f(y)) ≡ h′(f(y′)).

In the other three cases, we are constructing a 2-path (or 3-path) in B, which is
automatically filled because B is a set. This finishes the construction of h′, which
satisfies h′ ◦ f ∼ h by definition.

Now we can define a cocone gn : {A}n → B as follows. g0 and g1 are given by g.
We now define gn+2 :≡ g′n+1. These g’s form a cocone because g′n+2 ◦ f ∼ gn+1. This
gives a map g̃ : ‖A‖ → B such that g̃(|a|) = g(a).

An alternative construction of the propositional truncation using non-recursive HITs
has been given in [Kra16]. All results in this section have been fully formalized.

3.2 Non-recursive 2-HITs
We can also define nonrecursive 2-HITs using quotients.16 There are various 2-HITs we
would like to construct, such as the torus (as formulated in Section 2.2.6), groupoid
quotients, and Eilenberg-MacLane spaces K(G, 1). The construction of 2-HITS uses a
method similar to the hubs-and-spokes method described in [Uni13, Sect. 6.7].

The idea behind the hubs-and-spokes method is that for any path p : x =A x we can
define a map f : S1 → A with apf(loop) = p by circle induction. Then we can prove
the equivalence

(p = 1) ' (x0 : A)× (z : S1)→ f(z) = x0.

This equivalence informally states that filling in a loop is the same as adding a new point
x0, the hub, and spokes f(z) = x0 for every z : S1, similar to the spokes in a wheel. This
means that in a higher inductive type, we can replace a 2-path constructor p = 1x by a
new point constructor x0 : A and a family of 1-path constructors (z : S1)→ f(z) = x0.
2-path constructors of the form p = q can be replaced by the equivalent path constructor
p · q−1 = 1.

This construction reduces certain 2-HITs to 1-HITs. However, this reduction is not
a quotient, since this family of path constructors refers to other path constructors (in
the definition of f), which is not allowed in quotients. If we use quotients, we need
to take the quotient twice. We first define a quotient with only the 1-paths (and the
hubs), and then use another quotient to add the spokes. In this section we will describe
this construction of 2-HITs from quotients.

To be more formal, let us first prove a slightly more general version of the above
equivalence.

16A summary of this section also appeared in [vDvRB17].

42

Lemma 3.2.1. Given a path p : a =A a and f : A→ B, we have an equivalence

e : ((b0 : B)× (z : S1)→ f(S1.rec(a, p, z)) = b0) ' (apf (p) = 1),

where S1.rec : (y : P)→ y = y → S1 → P is the nondependent eliminator of the circle
S1.

Proof. This follows from the following chain of equivalences.

(b0 : B)× (z : S1)→ f(S1.rec(a, p, z)) = b0

' (b0 : B)× (q : f(a) = b0)× q =f(S1.rec(a,p,−))=b0
loop q

' 1f(a) =f(S1.rec(a,p,−))=f(a)
loop 1f(a)

' apf◦S1.rec(a,p)(loop) = ap0f(a)
(loop)

' apf (p) = 1.

More formally, for A : U and R : A→ A→ U we will define words in R to be the
following inductive family of types:

inductive wordsR : A→ A→ U :=
• [−] : {a a′ : A} → R(a, a′)→ wordsR(a, a′);
• 〈−〉 : {a a′ : A} → a = a′ → wordsR(a, a′);
• −−1 : {a a′ : A} → wordsR(a, a′)→ wordsR(a′, a);;
• − · − : {a1 a2 a3 : A} → wordsR(a1, a2)→ wordsR(a2, a3)→ wordsR(a1, a3).

A specification for a (nonrecursive) 2-HIT consists of a type A and two families
R : A → A → U and S : {a a′ : A} → wordsR(a, a′) → wordsR(a, a′) → U . Using this,
we define the 2-HIT two-quotient(A,R, S) with constructors

HIT two-quotient(A,R, S) :=
• [−]0 : A→ two-quotient(A,R, S);
• [−]1 : {a a′ : A} → R(a, a′)→ [a]0 = [a′]0;
• [−]2 : {a a′ : A} → {t t′ : wordsR(a, a′)} → S(t, t′)→ [t]1 = [t′]1.

where [t]1 is the action of [−]1 on words in R. So if t : wordsR(a, a′), then [t]1 : [a]0 = [a′]0
is defined by recursion over t. For example, the recursive steps for concatenation of
words is

[t1 · t2]1 :≡ [t1]1 · [t2]1.

Before we define two-quotient(A,R, S), we first define a special case with only
reflexivities on the right hand side of 2-path constructors. This is the following HIT,
where Q has type {a : A} → wordsR(a, a)→ U .

HIT simple-two-quotient(A,R,Q) :=
• [−]0 : A→ simple-two-quotient(A,R,Q);
• [−]1 : {a a′ : A} → R(a, a′)→ [a]0 = [a′]0;
• [−]2 : {a : A} → {t : wordsR(a, a)} → Q(t)→ [t]1 = 1.

43

To define this, we first define a new type where we add a hub to A for every path
specified by Q.

B :≡ A+ (a : A)× (t : wordsR(a, a))×Qt.
Then we quotient this as specified by R, to obtain the 1-paths.

C :≡ quotientB(RB),

where the inductive family of types RB is defined as follows.
inductive RB : B → B → U :=
• {a a′ : A} → R(a, a′)→ RB(inl a, inl a′).

We now defineD :≡ simple-two-quotient(A,R,Q′) :≡ quotientC(RC) where RC is defined
as the following inductive family of types (we write ut :≡ S1.rec([inl a]0, [t]1) : S1 → C)

inductive RC : C → C → U :=
• {a : A} → {t : wordsR(a, a)} → (q : Q(t))→ (x : S1)→ RC(ut(x), [inr(a, t, q)]0).

We will now define the expected constructors, eliminators, and computation rules for
this two-quotient.

Theorem 3.2.2. The type D :≡ simple-two-quotient(A,R,Q) is the HIT as specified
above. This means that

• There is a 0-path constructor 〈−〉0 : A→ D;

• There is a 1-path constructor 〈−〉1 : {a a′ : A} → R(a, a′)→ 〈a〉0 = 〈a′〉0;

• There is a 2-path constructor 〈−〉2 : {a : A} → {t : wordsR(a, a)} → Q(t) →
〈t〉1 = 1;

• There is an induction principle that states the following: given a family P : D → U
with s0 : (a : A)→ P 〈a〉0 and

s1 : {a a′ : A} → (r : R(a, a′))→ s0(a) =P
〈r〉1 s0(a′)

s2 : {a : A} → {t : wordsR(a, a)} → (q : Q(t))→ s1(t) =〈q〉2 1,
then P has a section f : (d : D)→ P (d) that computes on the point and 1-path
constructors: f〈a〉0 ≡ s0(a) and apdf〈r〉1 = s1(r).

• There is a recursion principle that states the following: given P : U with p0 : A→
P and

p1 : {a a′ : A} → R(a, a′)→ p0(a) = p0(a′)
p2 : {a : A} → {t : wordsR(a, a)} → Q(t)→ p1(t) = 1,

then there is a map g : D → P that computes on the point 1-path and 2-path
constructors. This means that g〈a〉0 ≡ p0(a) for a : A, and that there is a path
ι1 : apg〈r〉1 = p1(r) for r : R(a, a′) and a filler of the following square for q : Q(t).

44

apg〈t〉1 1

p1(t) 1

apapg〈q〉2

ι1 1
p2(q)

Remark 3.2.3.

• We do not prove a computation rule for the induction principle on 2-paths. Alt-
hough we strongly expect this to be true, it will involve an elaborate computation.
This computation rule is not necessary to define simple-two-quotient(A,R,Q) up
to equivalence. If we had another type with these exact constructors, eliminators
and computation rules, we can prove that it is equivalent to this one. Further-
more, in many examples of two-quotients we will 1-truncate the result, such as
for Eilenberg-MacLane spaces and groupoid quotients (see Section 4.2). After
the 1-truncation, the computation rules on the 2-paths are automatic, since these
3-paths can be constructed just from the assumption that the type family is
truncated.

• We do not define the recursion principle as a special case of the induction principle.
We can define it is a much simpler way, so that we can compute its action on
2-paths more easily.

• We use overlines to denote elimination out of the inductive type wordsR. The
exact type and definition of the overline depends on the type of the object we
overline. For example

〈−〉1 : wordsR(a, a′)→ 〈a〉0 = 〈a′〉0

is defined recursively by path concatenation and path inversion. In contrast

s1 : (t : wordsR(a, a′))→ s0(a) =P
〈t〉1

s0(a′)

is defined recursively by pathover concatenation and pathover inversion and

ι1 : (t : wordsR(a, a′))→ apg〈t〉1 = p1(t)

is defined recursively by horizontal concatenation and horizontal inversion and by
using the rules apg(p · q) = apg(p) · apg(q) and apg(p−1) = (apg(p))−1.

Proof. Constructors.
We define for a : A the point constructor

〈a〉0 :≡ [[inl a]0]0 : D

45

and for r : R(a, a′) the 1-path constructor

〈r〉1 :≡ ap[−]0 [r]1 : 〈a〉0 = 〈a′〉0

from the path constructors of C.
The 2-path constructor 〈q〉2 : 〈t〉1 = 1 for q : Q(t) is defined as the concatenation

〈t〉1 = ap[−]0 [t]1 = 1. Here the first equality is by a general lemma about wordsR that
states that apf (h(r)) = apf (h(r)). The second path uses Lemma 3.2.1 and is defined as
e([[inr(a, t, q)]0]0, [q,−]), where

[q,−] : [S1.rec([inl a]0, [t]1, x)]0 ≡ [ut(x)]0 = [[inr(a, t, q)]0]0

is the path constructor [q, x]1 of D.

Induction Principle.
For the induction principle, suppose given P , s0, s1 and s2 as in the theorem statement.
We first define f0 : (c : C)→ P [c]0 by induction on c : C. We define

f0[inl a] :≡ s0(a)

and (denoting b :≡ base : S1)

f0[inr(a, t, q)] :≡ transportP ([q, b]1, s0(a)).

For the path constructor, we need to construct for r : R(a, a′) the pathover

apdf0 [r]1 : s0(a) =P [−]0
[r]1 s0(a′).

Here we can use s1, and then apply the equivalence

y =P
apf (p) y

′ ' y =P◦f
p y′.

Note that this equivalence holds by reflexivity in a cubical type theory. In the remainder
of this proof we will denote any occurrence of this and similar by a tilde for readability.
So we define

apdf0 [r]1 := s̃1(r).

This defines f0, which is f applied to the point constructor of D, that is, f [c]0 :≡ f0(c).
Now we need to define for x : S1 the pathover

apf [q, x]1 : f0(ut(x)) =P
[q,x]1 ([q, b]1)∗(s0a).

We will fill this pathover by induction to x. For x ≡ b we can constructor the resulting
pathover by

1[q,b]1 : apf [q, b]1 : s0a =P
[q,b]1 ([q, b]1)∗(s0a),

46

where in general 1p : y =P
p p∗(y) can be easily defined by induction on p. When x

varies along loop, we need to construct a pathover between two pathovers and this
corresponds to the following squareover. The bottom square is a square in D, namely
the naturality square of

[(q,−)]1 : (x : S1)→ [ut(x)]0 = [[inr(a, t, q)]0]0

applied to the path loop, and the top square is the squareover we need to fill.

s0(a) [q, b]1∗(s0(a))

s0(a) [q, b]1∗(s0(a))

1[q,b]1

ãpdf0◦ut(loop) ãpd0[q,b]1∗(s0(a))
(loop)

1[q,b]1

〈a〉0 [[inr(a, t, q)]0]0

〈a〉0 [[inr(a, t, q)]0]0

[q, b]1

ap[ut(−)]0(loop) ap0[[inr(q)]0]0
(loop)

[q, b]1

We will first focus on the left side of the squareover. We compute

ãpdf0◦ut(loop) = ãpdf0(aput(loop))
= ãpdf0([t]1)

= ˜̃s1(t)

= s̃1(t)

= ˜(〈q〉−1
2)∗1 (using s2)

≡: 1̃.

Here with 1̃ we mean the pathover 1 : s0(a) =P
1〈a〉0

s0(a) but transported along the path

1〈a〉0
〈q〉2= 〈t〉1 = ap[−]0 [t]1 = ap[−]0(aput(loop)) = ap[ut(−)]0(loop).

By unfolding the definition of 〈q〉2 this can be simplified to the following concatenation:

1〈a〉0
e= ap[−]0 [t]1 = ap[−]0(aput(loop)) = ap[ut(−)]0(loop).

The right side of the squareover is easier to manipulate:

ãpd0[q,b]1∗(s0(a))
(loop) = 1̃,

47

where in this case we mean the pathover 1 : s0(a) =P
1〈a〉0

s0(a) transported along the
path

1〈a〉0 = ap0[[inr(q)]0]0
(loop).

Now in both the left and the right side these transports only act on the path they lie
over. This means that we can “push them down” to the base square.

After we do that, we have a vertically degenerate squareover, and we only have
to show that the square over which it lies is also vertically degenerate, which is a
straightforward calculation.

This finishes the definition of f . The computation rule f〈a〉0 ≡ s0(a) follows directly
from the computation rule for the quotient. Furthermore, we have

apdf〈r〉1 ≡ apdfap[−]0 [r]1 = ãpdf◦[−]0 [r]1 ≡ ãpdf0 [r]1 = s1(r).

Recursion Principle.
For the recursion principle, suppose given P, p0, p1, p2 as in the theorem statement. We
first define g0 : C → P by

g0[inl a]0 :≡ p0(a)
g0[inr(a, t, q)]0 :≡ p0(a)

apg0 [r]1 := p1(r).

We define g : D → P by g[c]0 :≡ g0(c) and then we need to define apg[q, x]1 : g0(ut(x)) =
p0(a), which we do by induction to x. For x ≡ b, this can be done by reflexivity, so
apg[q, b]1 := 1p0(a). When x varies over loop, we need to fill the following square.

p0(a) p0(a)

p0(a) p0(a)

1

apg0◦ut(loop) ap0p0(a)
(loop)

1

This can be done by the following calculation.

apg0◦ut(loop) = apg0aput(loop) = apg0 [t]1 = p1(t) p2= 1 = ap0p0(a)
(loop).

This completes the definition of g. The computation rule g〈a〉0 ≡ p0(a) follows from
the computation rule for quotients on points. We can define the computation rule on
paths as the composite

ι1 : apg〈r〉1 ≡ apgap[−]0 [r]1 = apg0 [r]1 = p1(r).

The fact that g has the correct computation rule for 2-paths requires some complicated
path algebra, which we will omit here.

48

We can now define the general version of the 2-quotient, two-quotient(A,R, S), to
be equal to simple-two-quotient(A,R,Q) where Q is the inductive family

inductive Q : {a : A} → wordsR(a, a)→ U :=
• (a a′ : A)→ (t t′ : wordsR(a, a′))→ (s : S(t, t′))→ Q(t · t−1).

We then show that two-quotient(A,R, S) and ‖ two-quotient(A,R, S)‖n have the right
elimination principles and computation rules (it requires some work to show that the
eliminator of the truncated 2-quotient has the right computation rules on 2-paths).

This allows us to define all nonrecursive HITs with point, 1-path and 2-path
constructors. For example, we define the torus T 2 := two-quotient(1, R, S) where
R(?, ?) = 2 (giving two path constructors p and q from the basepoint to itself) and
Q is generated by the constructor s0 : S(02 · 12)(12 · 02), which determines a path
p · q = q · p. We also define the groupoid quotient: For a groupoid G we define its
quotient as ‖ two-quotient(G, homG, S)‖1 where:

inductive S :=
• (a b c : G)→ (g : hom(b, c))→ (f : hom(a, b))→ S(g ◦ f)(f · g)

If G is just a group (considered as a groupoid with a single object), then the groupoid
quotient of G is exactly the Eilenberg-MacLane space K(G, 1). For more information,
see Section 4.2.

3.3 Colimits
We can ask whether we can use the construction of Section 3.1 can be generalized to
construct other higher inductive types.17 The general idea is that we can construct
a recursive higher inductive type as a sequential colimit of repeatedly applying a
nonrecursive version of the HIT. This does not work in general: if a constructor is
infinitary, there is no reason why the type after ω many steps is the desired type.
However, this does work for a general class of higher inductive types, the ω-compact
localizations. In this section we will show various properties of colimits that are used in
the proof of this fact. The full proof will appear in an upcoming preprint.

Definition 3.3.1. Suppose given a type A, families P,Q : A→ U and F : {a : A} →
P (a)→ Q(a).

A type X is F -local if for all a : A the map

ψX(a) :≡ λf. f ◦ F (a) : (Q(a)→ X)→ (P (a)→ X)

is an equivalence.
The F -localization LFX or LX of X turns X into a F -local type in a universal way.

This means there is a map `X : X → LX such that for any F -local type Y there is an
equivalence of maps (LX → Y)→ (X → Y) given by precomposition with `X . LFX
can be given as a higher inductive type with the following constructors:

17The work in this section is joint work with Egbert Rijke and Kristina Sojakova.

49

HIT L F X : Type :=
| incl : X → L X
| rinv : Π{a} (f : P a → L X), Q a → L X
| isri : Π{a} (f : P a → L X) (x : P a), rinv f (F x) = f x
| linv : Π{a} (f : P a → L X), Q a → L X
| isli : Π{a} (f : Q a → L X) (x : Q a), linv (f ◦ F) x = f x.

For a sequence (An, fn)n we denote the colimit by colim(A) or A∞. Also, for any
type X, we can define a new sequence (X → An, fn ◦ (−))n. Note that there is a
canonical map

ξX : colim(X → An)→ (X → A∞).
It is defined by ξX(in(f)) :≡ in ◦ f and ξX(κ(f)) :≡ κn ◦ f , where κ is the path
constructor of the colimit.

Definition 3.3.2. A type X is said to be ω-compact if the map ξX is an equivalence
for all sequences (An, fn)n.

Examples of ω-compact types are the finite types. Moreover, the ω-compact types
are closed under dependent pair types and pushouts. A non-example of an ω-compact
type is N. We will omit the details here.

Theorem 3.3.3. Assume that for all a : A the types P (a) and Q(a) are ω-compact.
Then we can construct the F -localization in MLTT+quotients.

We will not prove this theorem here, but defer it to an upcoming preprint. However,
we will develop machinery here that is crucial to prove this theorem. In particular we
prove that sigma-types commute with sequential colimits.

Type Sequences

Definition 3.3.4. A type sequence (A, f) consists of a diagram of the form

A0 A1 A2 · · ·f0 f1 f2

Thus, the type of all sequences of types is

Seq :≡ (A : N→ U)× (n : N)→ An → An+1

Recall that the relation ≤ on the natural numbers is defined as an inductive family
of types ≤ :N→ N→ U with

r : (n : N)→ n ≤ n

s : (n,m : N)→ n ≤ m→ n ≤ m+ 1.

It follows that n ≤ m is a a mere proposition for each n,m : N.

50

Definition 3.3.5. Let (A, f) be a type sequence. For any n,m : N, we define

fn≤m : An → Am.

where we leave the proof that n ≤ m implicit.

Construction. We define fn≤m by induction on the proof that n ≤ m by taking

fn≤n :≡ idAn
fn≤m+1 :≡ fm ◦ fn≤m

Definition 3.3.6. Let (A, f) be a type sequence. For any n, k : N, we define fkn : An →
An+k to be fn≤n+k(p), where p is the canonical proof that n ≤ n+ k.

Definition 3.3.7. A sequence (B, g) of types over (A, f) consists of a diagram of the
form

B0 B1 B2 · · ·

A0 A1 A2 · · ·

g0 g1 g2

f0 f1 f2

where each gn has type (a : An) → Bn(x) → Bn+1(fn(a)), implicitly rendering the
squares commutative.

We say that a sequence (B, g) over (A, f) is equifibered if each gn is a family of
equivalences.

Definition 3.3.8. Let (A, f) and (A′, f ′) be type sequences. A natural transformation
(A, f)→ (A′, f ′) is a pair (τ,H) consisting of a family of maps

τ : (n : N)→ An → A′n

and a family Hn of homotopies witnessing that the diagram

A0 A1 A2 · · ·

A′0 A′1 A′2 · · ·

f0

τ0

f1

τ1

f2

τ2
f ′0 f ′1 f ′2

commutes.

Definition 3.3.9. A natural equivalence is a natural transformation (τ,H) such that
each τn is an equivalence. The type of natural equivalences from (A, f) to (A′, f ′) is
called NatEq((A, f), (A′, f ′)).

Lemma 3.3.10. The canonical dependent function idtonateq

((A, f) = (A′, f ′))→ NatEq((A, f), (A′, f ′))

that sends refl(A,f) to the identity natural transformation, is an equivalence.

51

Proof. Straightforward application of univalence.

Every type sequence (B, g) over (A, f) gives rise to a natural transformation, by
the following definition.

Definition 3.3.11. Let (B, g) be a sequence over (A, f). Then we define the sequence
Σ((A, f), (B, g)) to consist of the diagram

(a : A0)×B0(a) (a : A1)×B1(a) (a : A2)×B2(a) · · ·(f0,g0) (f1,g1) (f2,g2)

where we take the usual definition

(fn, gn) :≡ λ(a, b). (fn(a), gn(a, b)).

Furthermore, we define a natural transformation

(π, θ) : Σ((A, f), (B, g))→ (A, f)

by taking

πn :≡ pr1 : ((a : An)×Bn(a))→ An

θn(a, b) :≡ reflfn(a) : fn(pr1(a, b)) = pr1(fn(a), gn(b)).

We will now look at the shift operation on type sequences, in particular to bring up
subtleties that come up in the formalization of mathematics in homotopy type theory.
The issue we face is that equality in the natural numbers is not always strict. For
instance, when addition is defined by induction on the second argument, then n + 0
is judgmentally equal to n, while 0 + n is not. This implies that sometimes we might
have to transport along the equalities in the natural numbers (such as n = 0 + n), and
this complicates the formalization process.

We define the shift operation.

Definition 3.3.12. For any type sequence (A, f) we define a new type sequence
(S(A), S(f)) by taking

S(A)n :≡ An+1

S(f)n :≡ fn+1.

Of course we can iterated the shift operation, defining a type sequence (Sk(A), Sk(f))
for every k : N. However, while the type Sk(A)n is An+k, the function Sk(f)n is some
function An+k → A(n+1)+k that is not judgmentally equal to a function of the form
fm for some m : N. Therefore, we make an alternative definition of the k-shift that is
different from Sk, the type sequence obtained from iterating the shift S.

52

Definition 3.3.13. Given a type sequence (A, f), we define Sk(A, f) ≡ (Sk(A), Sk(f))
to be the type sequence given by

Sk(A)n :≡ Ak+n

Sk(f)n :≡ fk+n.

Given a dependent sequence (B, g) over (A, f), we also define Sk(B, g) ≡ (Sk(B), Sk(g))
by

Sk(B)n :≡ Bk+n

Sk(g)n :≡ gk+n.

Note that the sequence (Sk+1(A), Sk+1(f)) is not judgmentally equal to the sequence
S(Sk(A), Sk(f)), since in general we do not have (k + 1) + n ≡ (k + n) + 1. Therefore
we have the following lemma.

Lemma 3.3.14. For any k, n : N and a : Ak, one has qk,n(a) : fn+1
k (a) =A

p(k,n)
fnk+1(fk(a)) where p(k, n) : (k + n) + 1 = (k + 1) + n is the canonical path in N.

Proof. By induction on n : N.

Corollary 3.3.15. For any type sequence (A, f), the type sequence (Sk+1(A), Sk+1(f))
is naturally equivalent to the type sequence (S(Sk(A)), S(Sk(f))).

Sequential Colimits

Remark 3.3.16. The induction principle for sequential colimits tells us how to construct
a dependent function f : (a : A∞)→ P (a) for a type family P : A∞ → U .

Given s : (a : A∞)→ P (a), we get

λn. λa. s(ιn(a)) : (n : N)(a : An)→ P (ιn(a))
λn. λa. apdsκn(a) : (n : N)(a : An)→ s(ιn(a)) =P

κn(a) s(ιn+1(fn(a)))

In other words, we have a canonical map(
(a : A∞)→ P (a)

)
→(

(h : (n : N)(a : An)→ P (ιn(a)))× (n : N)(a : An)→ hn(a) =P
κn(a) hn+1(fn(a))

)
Now we can state the induction principle and computation rule concisely: the cano-
nical map described above comes equipped with a section. We assume that that the
computation rule is strict on the point constructors.

The universal property of sequential colimits is a straightforward consequence of
the induction principle.

53

Theorem 3.3.17. Let (A, f) be a type sequence, and let X be a type. Then the canonical
map

(A∞ → X)→ (h : (n : N)→ An → X)× (n : N)→ hn ∼ hn+1 ◦ fn
is an equivalence.

The following theorem is a descent theorem for sequential colimits.

Theorem 3.3.18. Consider a sequence (A, f). The type A∞ → U is equivalent to the
type of equifibered type sequences over (A, f).

Proof. By the universal property of A∞ and by univalence we have

(A∞ → U) ' (B : (n : N)→ An → U)× (n : N)→ Bn ∼ Bn+1 ◦ fn
' (B : (n : N)→ An → U)× (n : N)(x : An)→ Bn(x) ' Bn+1(fn(x))

Lemma 3.3.19. Suppose given a natural transformation (τ,H) : (A, f)→ (A′, f ′).

(i) We get a function colim(τ,H) or τ∞ : A∞ → A′∞.

(ii) The sequential colimit is 1-functorial. This means the following three things. If
(σ,K) : (A′, f ′)→ (A′′, f ′′), then (τ ◦ σ)∞ ∼ τ∞ ◦ σ∞. Moreover, 1∞ ∼ id, where
1 is the identity natural transformation. Lastly, if (τ ′, H ′) : (A, f)→ (A′, f ′) and
q : (n : N)→ τn ∼ τ ′n and we can fill the following square for all a : An

τn+1(fna) τ ′n+1(fna)

f ′n(τn(a)) f ′n(τ ′n(a))

qn+1(fna)

Hn(a) H′n(a)
apf ′n (qn(a))

then τ∞ ∼ τ ′∞.

(iii) If τ is a natural equivalence, then τ∞ is an equivalence.

Proof.

(i) We define τ∞(ιn(a)) :≡ ιn(τn(a)) and

apτ∞(κn(a)) := apιn+1(H(a)) · κn(τn(a)) : ιn+1(τn+1(fna)) = ιn(τn(a)).

(ii) All three parts are by induction on the element of A∞, and all parts are straight-
forward.

54

(iii) We define (τ∞)−1 :≡ (τ−1)∞ where τ−1 is the natural transformation by inverting
τn for each n. Now we can check that this is really the inverse by using all three
parts of the 1-functoriality.

τ−1
∞ ◦ τ∞ ∼ (τ−1 ◦ τ)∞ ∼ 1∞ ∼ idA∞ .

For the second homotopy we need to show that we can fill a certain square, which
is straightforward. The other composite is homotopic to the identity by a similar
argument.

The following lemma states that ι0 is an equivalence if all maps in the sequence are
an equivalence. We will have a more general result in Corollary 3.3.30(v), but in that
proof we will use some special cases of this lemma.

Lemma 3.3.20. Suppose given a sequence (A, f) where fn is an equivalence for all n.
Then ι0 : A0 → A∞ is an equivalence.

Proof. First note that the map f 0≤n : A0 → An is an equivalence, which is an easy
induction on the proof that 0 ≤ n, because f 0≤0 ≡ id is an equivalence and f 0≤n+1 ≡
fn ◦ f 0≤n is a composition of two equivalences.

Also note that we have paths κn≤m(a) : ιm(fn≤m(a)) = ιn(a) for a : An.
Now we define ι−1

0 : A∞ → A0 as

ι−1
0 (ιn(a)) :≡ (f 0≤n)−1(a)

and we define

apι−1
0

(κn(a)) : (f 0≤n)−1(f−1
n (fn(a))) = (f 0≤n)−1(a)

as ap(f0≤n)−1(`n(a)), where `n(a) : f−1
n (fn(a)) is the canonical path.

Now ι−1
0 ◦ ι0 ∼ id is true by definition. To show that for x : A∞ we have p(x) :

ι0(ι−1
0 (x)) = x, we use induction on x. If x ≡ ιn(a), we have

ι0(ι−1
0 (ιn(a))) ≡ ι0((f 0≤n)−1(a))

= ιn(f 0≤n((f 0≤n)−1(a)))
= ιn(a).

If we write r0≤n : f 0≤n ◦ (f 0≤n)−1 ∼ id for the canonical homotopy, then we explicitly
define p(ιn(a)) as

p(ιn(a)) :≡ (κ0≤n((f 0≤n)−1(a)))−1 · apιn(r0≤n(a)).

If x varies over κn(a), then we need to fill the following square.

ι0(ι−1
0 (ιn+1(fna))) ιn+1(fna)

ι0(ι−1
0 (ιn(a))) ιn(a)

p(ιn+1(fna))

ap
ι0◦ι
−1
0

(κn(a)) κn(a)
p(ιn(a))

55

If we unfold the definitions of ι−1
0 and p, we can fill this as the horizontal concatenation

of the following two squares (where we have left out some arguments to the paths)

ι0((f 0≤n)−1(f−1
n (fna))) ιn(f 0≤n((f 0≤n)−1(f−1

n (fna))))

ι0((f 0≤n)−1(a)) ιn(f 0≤n((f 0≤n)−1(a)))

(κ0≤n)−1

ap
ι0◦(f0≤n)−1 (`) ap

ιn◦f0≤n◦(f0≤n)−1 (`)
(κ0≤n)−1

ιn(f 0≤n((f 0≤n)−1(f−1
n (fna)))) ιn+1(fna)

ι0(f−1
n (fna))

ιn(f 0≤n((f 0≤n)−1(a))) ιn(a)

κ−1·apιn+1 (apf (r0≤n)·r)

ap
ιn◦f0≤n◦(f0≤n)−1 (`)

apιn (r0≤n)

κ

apιn (`)

apιn (r0≤n)

The first square is a naturality square, as is the bottom-left part of the second square.
We can use the triangle equalities of f to rewrite the r in the top part to apf (`). After
doing that, the top-right square becomes the following naturality square.

ιn(fn(f 0≤n((f 0≤n)−1(f−1
n (fna))))) ιn+1(fna)

ι0(f−1
n (fna)) ιn(a)

apιn+1◦f (r0≤n·`)

κ κ

apιn (r0≤n·`)

Lemma 3.3.21. For any type sequence (A, f), the colimits of (A, f) and S(A, f) are
equivalent.

Proof. We construct a map ϕ : A∞ → S(A)∞ by induction on A∞, by taking

(x : An) 7→ ιS(A),S(f)
n (fn(x))

(x : An) 7→ κS(A),S(f)
n (fn(x)).

Next, we construct a map ψ : S(A)∞ → A∞ by induction on S(A)∞, by taking

(x : S(A)n) 7→ ιA,fn+1(x)
(x : S(A)n) 7→ κA,fn+1(x).

Then we prove that ψ ◦ ϕ ∼ id by induction on A∞, by taking

(x : An) 7→ κA,fn (x)

56

Now we compute

apψ◦ϕ(κA,fn (x))) = apψ(apϕ(κA,fn (x)))
= apψ(κS(A),S(f)

n (fn(x)))
= κA,fn+1(fn(x))

from the computation rules of A∞ and S(A)∞.
We construct the homotopy ϕ ◦ ψ ∼ id by induction on A∞, by taking

(x : S(A)n) 7→ κn+1(S(f)n(x))

Now we compute

apϕ◦ψ(κS(A),S(f)
n (x)) = apϕ(apψ(κS(A),S(f)

n (x)))
= apϕ(κA,fn+1(x))
= κ

S(A),S(f)
n+1 (fn+1(x)).

Lemma 3.3.22. For any type sequence (A, f), we have an equivalence

kshift equivk : colim(A, f) ' colim(Sk(A, f)).

The shift operations and the corresponding equivalences on the sequential colimits
can be used to turn an arbitrary sequence (B, g) over (A, f) into an equifibered sequence
over (A, f).
Definition 3.3.23. Given a dependent sequence (B, g) over (A, f) and x : A0, we
define a type sequence (B[x], g[x]) by

B[x]n :≡ Bn(fn(x))
g[x]n :≡ gn(fn(x), –).

Definition 3.3.24. Given any sequence (B, g) over (A, f), we define an equifibered
sequence (�B,�g) over the sequence (A, f).
Construction. For x : An we define

(�B)n(x) :≡ Sn(B)[x]∞ ≡ colimm(Bn+m(fm(x))).

Now note that

(�B)n+1(f(x)) ≡ colimm(B(n+1)+m(fm(f(x)))
' colimm(Bn+(m+1)(fm+1(x))
' colimm(Bn+m(fm(x))
≡ (�B)n(x)

The first equivalence un,m is given by transporting along the dependent path in
Lemma 3.3.14 in the family B. This forms a natural equivalence, because transport
is natural. The second equivalence is given by applying Lemma 3.3.21. We call the
composite equivalence F , which shows that �B is an equifibered sequence.

57

Definition 3.3.25. Let (B, g) be a sequence over (A, f). Then we define

B∞ : A∞ → U

to be the family over A∞ associated to the equifibered sequence (�B,�g) via the
equivalence of Theorem 3.3.18.

By construction of B∞ we get the equality

r(y) : transportB∞(κn(x), y) = F (y)

for y : B∞(ιn+1(fn(x))) witnessing that B∞ is defined by the equivalence F on the path
constructor.

We now state our main result, which could be seen as a flattening lemma for
sequential colimits, with the added generality that the sequence (B, g) over (A, f) is
not required to be equifibered.

Theorem 3.3.26. Let P :≡ (P, f) be a sequence over A :≡ (A, a). Then we have a
commuting triangle

colim(Σ(A,P)) (x : A∞)× P∞(x)

A∞

α

p:≡rec(ιn◦pr1,–) pr1

in which α is an equivalence.

The strategy of the proof is to first show that (x : A∞)× P∞(x) has the induction
principle of colim((x : An) × Pn(x), (an, fn))n. This simplifies giving the equivalence,
because (x : A∞) × P∞(x) is a 2-HIT, being a sigma-type of two 1-HITs, while
colim((x : An)× Pn(x), (an, fn))n is a 1-HIT. Before we continue, we first define α.

The map α is defined by induction on colim(Σ(A,P)). On the point constructors
we define

α(ιn(x, y)) :≡ (ιn(x), ι0(y)).
For the path constructor we need to define

κ′n(x, y) : (ιn+1(anx), ι0(fn(x, y))) = (ιn(x), ι0(y))

The first components are equal by κn(x). By the definition of P∞, transporting along
κn(x) takes ι0(fn(x, y)) to ι1(fn(x, y)), which is equal to ι0(y) by κ0(y). Explicitly, we
define

apα(κn(x, y)) := κ′n(x, y) :≡ (κn(x), r(ι0(fn(x, y))) · κ0(y)).

Theorem 3.3.27. Let E : (x : A∞)→ P∞(x)→ U such that

(i) For each n : N, x : An, y : Pn(x), a term en(x, y) : E(ιn(x), ι0(y)).

58

(ii) For each n : N, x : An, y : Pn(x), a path

wn(x, y) : en+1(anx, fn(x, y)) =E
κ′n(x,y) en(x, y).

Then there exists a function s : (x : A∞)(y : P∞(x))→ E(y).

Proof. We define the function s by induction on both x and y. We need to consider four
cases, since both x and y can be a point constructor or vary over a path constructor.

(point-point) Fix x : An, we first define g(n, x) : (p : P∞(ιn(x)))→ E(ιn(x), p). To
obtain g(n, x), we do induction on p : P∞(ιn(x)). Fix y : Pn+k(akn(x)), we need to
construct a term of type g∗(k, n, x, y) : E(ιn(x), ιk(y)). Proceed by induction on k. We
can define

g∗(0, n, x, y) :≡ en(x, y) : E(ιn(x), ι0(y)).
Assume that g∗(k) is defined. We need to define g∗(k + 1, n, x, y) : E(ιn(x), ιk+1(y)),
where y : P (n + (k + 1), ak+1

n (x)). However, the type of y is equivalent to the type
P ((n+ 1) + k, akn+1(an(x))) via the equivalence un,k. Therefore, it suffices to define for
z : P(n+1)+k(akn+1(an(x)))

g∗(k + 1, n, x, un,k(z)) : E(ιn(x), ιk+1(un,k(z))).

By induction hypothesis we have g∗(k, n+ 1, an(x), z) : E(ιn+1(an(x)), ιk(z)), so it
suffices to show that

κ∗n,k(x, z) : (ιn+1(an(x)), ιk(z)) = (ιn(x), ιk+1(un,k(z))).
This construction is similar to that of κ′n(x, y). The first components are equal by
κn(x), and for the second components we need to show that transportP∞(κn(x), ιk(z)) =
ιk+1(un,k(z)). This follows from the computation rule of P∞ on paths, since the
equivalence used to define P∞ sends ιk(z) to ιk+1(un,k(z)). Specifically,

κ∗n,k(x, z) :≡ (κn(x), r(ιk(y))).

This finishes the construction of g∗, hence also of g on points. By construction, we get
the following equation:

µn,k(x, z) : g∗(k, n+ 1, an(x), z) =E
κ∗
n,k

(x,z) g∗(k + 1, n, x, un,k(z))

(point-path) To define g on paths κk(y) : ιk+1(f(y)) = ιk(y), we need to give a
dependent path

ν(k, n, x, y) : g∗(k + 1, n, x, f(y)) =E(ιn(x))
κk(y) g∗(k, n, x, y).

We do this by induction on k. For k = 0 note that un,0 is the identity function, and the
goal definitionally reduces to

ν(k, n, x, y) : transportE(κ∗n,0(x, fn(x, y), en+1(an(x), fn(x, y)) =E(ιn(x))
κ0(y) en(x, y).

59

Note that κ′n(x, y) = κ∗n,0(fn(x, y) · (1, κ0(y)), which means we get this from wn(x, y).
Now suppose that ν(k) is defined. We need to define for y : P (n+ (k + 1), ak+1

n (x))

ν(k + 1, n, x, y) : g∗(k + 2, n, x, f(y)) =E(ιn(x))
κk(y) g∗(k + 1, n, x, y).

Now we again write y = un,k(z) for z : P ((n+ 1) + k, akn+1(an(x))) and we equivalently
need to give

ν(k + 1, n, x, un,k(z)) : g∗(k + 2, n, x, f(un,k(z))) =E
(1,κk(y)) g∗(k + 1, n, x, un,kz).

We will define this as the composition of a square that we will give later in the proof.
(path-point) We have defined s on points constructors of A∞. To define it on the

path κn(x) : ιn+1(an(x)) = ιn(x) we need a path g(n + 1, an(x)) = g(n, x) over κn(x).
By function extensionality, we can characterize dependent paths in a function type,
which means we need to show:

(p : P∞(ιn+1(an(x))))→ g(n+ 1, an(x), p) =E
(κn(x),1) g(n, x, transportP∞(κn(x), p)).

Now for p : P∞(ιn+1(an(x))), we can apply the path r(p), which means we need to
construct the following path (note that r(p) is added to the path, since g is a dependent
function):

g(n+ 1, an(x), p) =E
(κn(x),r(p)) g(n, x, F (p)).

We proceed by induction on p. If p ≡ ιk(y) for k : N, y : P(n+1)+k(akn+1(an(x))), then
F (p) ≡ ιk+1(un,k(y)) and we need a path

g∗(k, n+ 1, an(x), y) =E
(κn(x),r(ιk(y)))) g∗(k + 1, n, x, un,k(y)).

Now the path (κn(x), r(ιk(y))) ≡ κ∗n,k(x, y), hence this dependent path is given by
µn,k(x, y).

(path-path) If p varies over κk(y), we need to give a dependent path in a family of
dependent paths. This is equivalent to filling the following dependent square in the
family E, which lies over the naturality square form by applying λp. (κn(x), r(p)) to

60

the path κk(y).18

g∗(k + 1, n+ 1, an(x), f(n+1)+k)(y)) g∗(k + 2, n, x, un,(k+1)(f(n+1)+k(y)))

g∗(k, n+ 1, an(x), y) g∗(k + 1, n, x, un,k(y))

µn,k+1(x,f(n+1)+k(y))

κ∗n,k+1(x,fn+k(y))
apdg(n+1,an(x))(κk(y))))(1,κk(y) apdg(n,x)◦F (κk(y))))(1,κk(y)

µn,k(x,y)

κ∗n,k(x,y)

Below and to the left of each equal sign we give the path in (x : A∞)× P∞(x) over
which the pathover lie. Above and to the right of each equal sign we give the value of
the dependent path.

Now apdg(n+1,an(x))(κk(y)) (occurring in the left pathover) is equal to ν(k, n +
1, an(x), y) by definition of g. On the right, we have (δ is the naturality of un,k)

apdg(n,x)◦F (κk(y)) = apdg(n,x)(F (κk(y)))
= apdg(n,x)(ιk+2(δ(y)) · κk+1(un,k(y)))
= apdg∗(k+2,n,x)(δ(y)) · apdg(n,x)(κk+1(un,k(y)))
= apdg∗(k+2,n,x)(δ(y)) · ν(k + 1, n, x, un,k(y))

Now we can move the first part of the expression to the top of the square, which means
we need to fill the following squareover (where we made some arguments implicit).

g∗(f(y)) g∗(u(f(y))) g∗(f(u(y)))

g∗(y) g∗(un,k(y))

µ(f(y))

κ∗(f(y))
ν(k,n+1,an(x),y)(1,κ(y))

apdg∗(k+2,n,x)(δ(y))

(1,δ(y))
ν(k+1,n,x,un,k(y))(1,κ(un,k(y)))

µ(y)

κ∗(y)

Note that in this squareover g does not occur, and ν only occurs on the left side (applied
to k) and on the right side (applied to k + 1). Therefore, the top, bottom and left side
form a valid open box, and we define ν(k+ 1, n, x, un,k(y)) to be the composition of this
open box. This inductively defines ν, and makes the filler for this square automatic.
This finishes the proof.

18The left and right sides of the square are not quite correct, the dependent function applied to
κk(y) are pathovers lying over κk(y), and not (1, κk(y)). However, pathovers lying over κk(y) in the
family E(ιn(x)) are equivalent to pathovers lying over (1, κk(y)) in the family E, and this equivalence
commutes with all operations we perform, therefore we omit them in this proof. The following
calculations are only type correct when these equivalences are inserted back. Furthermore, we omit
some other details. For example, if p = q, then apdg(p) and apdg(q) have different types: the former is
a dependent path over p and the latter one over q. However, if you modify the path over which they
lie, they become equal. These “modifications” can be pushed down to the square in (x : A∞)× P∞(x),
and the proof still goes through. For the full details, consult the formal proof.

61

Proof (of Theorem 3.3.26). We first define a map

β :
(
(x : A∞)× P∞(x)

)
→ colim(Σ(A,P)).

We do this by induction on x : A∞ and p : P∞(x) individually, so we get four cases
again (we do not use our newly defined induction principle, because we have not proven
a computation rule for it).

(point-point) Suppose x : An and y : Pn+k(akn(x)). We define

β(ιn(x), ιk(y)) :≡ ιn+k(akn(x), y).

(point-path) To show that the second argument respects κk(y), we define

apβ(ιn(x))(κk(y)) := κn+k(akn(x), y) : ιn+(k+1)(ak+1
n (x), f(y)) = ιn+k(akn(x), y).

(path-point) To show that the first argument respects κn(x), we need to give a dependent
path

β(ιn+1(an(x))) =P∞(−)→colim(Σ(A,P))
κn(x) β(ιn(x)).

By function extensionality, this is equivalent to showing for p : P∞(ιn+1(an(x))) that

β(ιn+1(an(x)), p) = β(ιn(x), transportP∞(κn(x), p)).

We apply ap−1
β(ιn(x))(r(p)) on the right, so that we have to show

β(ιn+1(an(x)), p) = β(ιn(x), F (p)).

Now we apply induction on p. If p ≡ ιk(y), then F (p) ≡ ιk+1(un,k(y)) and we need to
show

µn,k(x, y) : ι(n+1)+k(akn+1(an(x)), y) = ιn+(k+1)(ak+1
n , un,k(y)).

But the triples ((n+ 1) + k, akn+1(an(x)), y) and (n+ (k + 1), ak+1
n , un,k(y)) are equal:

the first two components by Lemma 3.3.14 and the last component because un,k was
defined by transporting along the equality of the first components. Let us call this
equality s. So we define µn,k(x, y) by applying ι to s.

(path-path) Suppose p varies along κk(y), we need to construct a proof of a pathover
in an equality type. This is equivalent to filling the following square.

β(ιn+1(an(x)), ιk+1(f(y))) β(ιn(x), ιk+2(un,k+1(f(y))))

β(ιn+1(an(x)), ιk(y)) β(ιn(x), ιk+1(un,k(y)))

µn,k+1(x,f(y))

apβ(ιn+1(anx))(κk(y)) apβ(ιn(x))◦F (κk(y))
µn,k(x,y)

By simplifying the left and right path, this reduces to

β(ι(a(x)), ι(f(y))) β(ι(x), ι(u(f(y)))) β(ι(x), ι(f(u(y))))

β(ι(a(x)), ιk(y)) β(ι(x), ι(u(y)))

µ(f(y))

κ(ak(a(x)),y)

apβ(ι(a(x)),ι(−))(κ(y))

κ(ak(x),u(y))
µ(y)

62

Now the concatenation of the two paths on the top reduces to the function i :≡
λn. λx. λy. ιn+1(a(x), f(y)) applied to s. Then the square is exactly the naturality
square of the homotopy κ : i ∼ ι applied to the path s. This finishes the definition of β.

Now we need to show that β ◦ α ∼ id. Take p : colim(Σ(A,P)), we apply induction
to p. If p ≡ ιn(x, y), then the equality holds by reflexivity:

β(α(p)) ≡ β(ιn(x), ι0(y)) ≡ ιn(x, y) ≡ p.

If p varies over κn(x, y), we need to fill a square with two degenerate sides, so we need
to prove that apβ◦α(κn(x, y)) = κn(x, y). We can show this as follows.

apβ◦α(κn(x, y))
= apβ(κn(x), r(ι0(f(y))) · κ0(y))
= apβ(κ′n(x, y))
= µn,1(x, f(y)) · ap−1

β(ιn(x))(r(ι0(f(y)))) · apβ(ιn(x))(r(ι0(f(y))) · κ0(y))
= µn,1(x, f(y)) · apβ(ιn(x))(κ0(y))
= apβ(ιn(x))(κ0(y))
= κn(x, y)

In the third step we use that apβ(p, q) = apdβ(p)(f(y)) · apβιn(x)(q) and in the fifth step
that µn,k(x, y) = 1 for any numeral k.

Finally we need to show that α ◦ β ∼ id. Take p : (x : A∞) × P∞(x). We apply
the induction principle proven in Theorem 3.3.27 to p. Suppose that p ≡ (ιn(x), ι0(y)).
Then the equality holds by reflexivity:

α(β(p)) ≡ α(ιn(x, y)) ≡ (ιn(x), ι0(y)) ≡ p.

If p varies over κ′n(x, y), then we have to show (similar to the proof β ◦ α ∼ id) that

apα◦β(κ′n(x, y))κ′n(x, y).

But by the previous computation, apβ(κ′n(x, y)) = κn(x, y), so we have

apα◦β(κ′n(x, y)) = apα(κn(x, y)) = κ′n(x, y).

This finishes the proof.

Corollary 3.3.28. Consider a sequence (An, fn)n. Then for any a, a′ : An there is an
equivalence

(ιn(a) =A∞ ιn(a′)) ' colim(fk(a) =An+k f
k(a′)).

Proof. We first prove this for n ≡ 0. Note that for any a : A0, we have the diagram

λ(a′ :A0). a = a′ λ(a′ :A1). f(a) = a′ λ(a′ :A2). f 2(a) = a′ · · ·

A0 A1 A2 · · ·f0 f1 f2

63

This defines a type family P : A∞ → U with

P (ιn(a′)) :≡ colimk(f 0≤n+k(a) =An+k f
k(a′)).

Now we use Theorem 3.3.26 to see that the total space of P is contractible.

(a′ : A∞)× P (a′) ' colimn((a′ : An)× fn(a) = a′)
' colimn(1)
' 1.

Since ι0(refl a) : P (ι0(a)) and noting that f 0≤0+k(a) ≡ fk(a) we can now conclude by
the total space method to characterize the identity type that

(ι0(a) =A∞ ι0(a′)) ' P (ι0(a′)) ≡ colim(fk(a) =A0+k f
k(a′)).

For general n, we use Lemma 3.3.22, which gives us an equivalence kshift equivn :
A∞ ' colim(Sn(A, f)). For a, a′ : An we can now compute:

(ιn(a) =A∞ ιn(a′)) ' (kshift equivn(ιn(a)) =colim(Sn(A,f)) kshift equivn(ιn(a′)))
' (ι0(a) =colim(Sn(A,f)) ι0(a′))
' colim(Sn(f)k(a) =Sn(A)0+k Sn(f)k(a′))
' colim(fk(a) =An+k f

k(a′))..

The last equivalence comes from a natural equivalences of the sequences, because
there is a dependent path between Sn(f)k(a) and fk(a) over the canonical path that
n+ (0 + k) = n+ k.

Corollary 3.3.29. Suppose given a natural transformation τ : (A′, f ′)→ (A, f) and a
point a : An. Then

fibτ∞(ιn(a)) ' colim(�fibτ [a]) ≡ colimk(fibτn+k(fk(a))).

Proof. Consider the following diagram, where the equivalences on the top are given
by Theorem 3.3.26 and the fact that the total space of the fiber of a function is the
domain of that function.

(x : A∞)× (fibτ)∞(x) colimk((x : An))× fibτn(x)) A′∞

A∞

∼

π1

∼

p
τ∞

This diagram commutes: the left triangle commutes by Theorem 3.3.26 and the right
triangle commutes by the 1-functoriality of the colimit, Lemma 3.3.19. Therefore,

fibτ∞(ιn(a)) ' fibπ1(ιn(a)) ' (fibτ)∞(ιn(a)) ≡ colim(�fibτ [a]).

64

Corollary 3.3.30. Consider a sequence (A, f) and some k ≥ −2.

(i) If An is k-truncated for all n : N, then A∞ is k-truncated.

(ii) We have an equivalence

‖A∞‖k ' colim(‖An‖k, ‖fn‖k)n.

(iii) If An is k-connected for all n : N, then A∞ is k-connected.

(iv) Given a natural transformation (τ,H) : (A, f) → (A′, f ′) such that τn is k-
truncated (k-connected) for all n, then τ∞ is k-truncated (k-connected).

(v) If fn is k-truncated (k-connected) for all n, then ι0 is k-truncated (k-connected).

Remark 3.3.31. By Lemma 3.3.22 we can generalize the quantification “for all n : N” in
this Corollary to the weaker “there exists an m : N such that for all n ≥ m”. In part
(v) the conclusion then becomes that ιm is k-truncated (k-connected).

Proof.

(i) We prove this by induction on k. Suppose k = −2, then fn is an equivalence for
all n. Therefore A∞ ' A0 by Lemma 3.3.20, hence A∞ is contractible.
Now suppose k ≡ k′ + 1. Take x, x′ : A∞, we need to show that x = x′ is k′-
truncated. Since being truncated is a mere proposition, by induction on x and x′ we
may assume that x ≡ ιn(a) and x′ ≡ ιm(a′). Now ιn(a) = ιmax(n,m)(fn≤max(n,m)(a))
and ιm(a′) = ιmax(n,m)(fm≤max(n,m)(a′)), therefore the type ιn(a) = ιm(a′) is equi-
valent to

ιmax(n,m)(fn≤max(n,m)(a)) = ιmax(n,m)(fm≤max(n,m)(a′)).
Therefore it suffices to show that the latter equality type is k′-truncated. By
Corollary 3.3.28 we need to show that

colim(f `(fn≤max(n,m)(a)) = f `(fm≤max(n,m)(a′)))`

is k′-truncated, which follows from the induction principle and the fact that
Amax(n,m)+` is (k′ + 1)-truncated.

(ii) From the functoriality of the sequential colimit, we get a function

A∞ → colimn(‖An‖k, ‖fn‖k).

Because the right hand side is k-truncated, this induces a map

g : ‖A∞‖k → colim(‖An‖k, ‖fn‖k)n.

For the other direction, we define the function

h : colim(‖An‖k, ‖fn‖k)n → ‖A∞‖k

65

by
h(ιn(|a|k)) :≡ |ιn(a)|k

and
aph(κn(|a|k)) := ap|– |

k
(κn(a)).

It is straightforward to show that both h ◦ g and g ◦ h are homotopic to the
identity.

(iii) Since An is k-connected, ‖An‖k is contractible, and therefore colimn(‖An‖k) '
‖A∞‖k is contractible.

(iv) A function is k-truncated (k-connected) whenever its fibers are k-truncated (k-
connected). Let x : A∞. We need to show a proposition, so we may assume that
x ≡ ιn(a) for some a : An. Now fibτ∞(ιn(a)) ' colim(�fibτ [a]) by Corollary 3.3.29.
Since fibτn(x) is k-truncated (k-connected) for all n, we know that colim(�fibτ [a])
is k-truncated (k-connected) for all n, by part (i) or (iii).

(v) Consider the natural transformation

A0 A0 A0 A0 · · · colim(A0)n

A0 A1 A2 A3 · · · A∞

f f0≤2 f0≤3

The maps f 0≤n : A0 → An are k-truncated (k-connected) and form a natural
transformation. Therefore, by part (iv) the map f 0≤∞ : colimn(A0) → A∞ is
k-truncated (k-connected). The fiber of ι0 over x : A∞ is the same as the fiber of
f 0≤∞ over x, and therefore ι0 is k-truncated (k-connected).

We can use this machinery, in particular Theorem 3.3.26, to define the localization
for maps between ω-compact types. We will omit the construction here, but this will
be published in an upcoming preprint.

66

Chapter 4

Homotopy Theory

As discussed in the introduction, one very useful application of HoTT is synthetic
homotopy theory. Many results in homotopy theory have been stated and proven
in HoTT in a synthetic way. Most of these results have also been formalized in a
proof assistant. This is important, because one of the advantages of HoTT is to make
verification of proofs by a proof assistant practically possible. Formalizing results that
have been proved internally in HoTT provides more evidence for this.

In this chapter we will look at various topics in homotopy theory and give proofs for
them in HoTT that are fully checked by the Lean proof assistant. In Section 4.1 we will
describe a formalization of the proof that π3(S2) = Z. This was already known to be
provable in HoTT, but no fully formalized proof has been given before. We will discuss
some new properties proven about Eilenberg-MacLane spaces in HoTT in Section 4.2,
namely that the Eilenberg-MacLane space functor induces an equivalence of categories.
In Section 4.3 we prove the adjunction of the smash product and pointed maps, from
which we can conclude that the smash product is associative.

None of these results have been formalized before, even including formalization in
foundations other than HoTT. In fact, not much homotopy theory has been formalized
in other foundations. The most notable examples of formalizations are the formalization
of basic properties of the fundamental group [Zha17] and the formalization of singular
homology theory [H+, Multivariate/homology.ml].

4.1 Computing π3(S2)
Computing that π3(S2) = Z has been done before in Homotopy Type Theory, but it
has not been formalized in a proof assistant before. In this section we will discuss
some considerations of formalizing the proof that π3(S2) = Z. The Hopf fibration was
formalized in Lean by Ulrik Buchholtz and was formalized before in Agda by Guillaume
Brunerie. The remaining results are formalized by the author.

67

4.1.1 The long exact sequence of homotopy groups
We start with an important result in homotopy theory, the long exact sequence of
homotopy groups.

This has been proven before in HoTT. Two different proofs are given in [Uni13,
Section 8.4] and [Bru16, Section 2.5.1], although these proofs have not been formalized.
There have been previous formalizations of parts of this result [AKL15, Voe15, VAG+];
however none of these formalizations are complete in the sense that they can be used
to deduce the results in this section.

The statement is as follows.

Theorem 4.1.1 (Long exact sequence of homotopy groups). Suppose f : X → Y is a
pointed map. Then the following is an exact sequence

π0(Y)π0(X)π0(F)

π1(Y)π1(X)π1(F)

π2(Y)π2(X)π2(F)

...

π0(f)

π0(p1)

π0(δ)

π1(f)

π1(p1)

π1(δ)

π2(f)

π2(p1)

Here F :≡ fibf is the fiber of f , p1 : F → X is the first projection, and δ : ΩY → F is
defined in the proof.

First of all, we have to carefully formulate the statement of this theorem in type
theory. The naive thing to do is to say that there is a sequence A : N→ Set∗ and maps
f : (n : N)→ An+1 → An such that

A0 :≡ π0(Y), A1 :≡ π0(X), A2 :≡ π0(F),

and so forth. Continuing, this means that

A3n = πn(Y), A3n+1 = πn(X), A3n+2 = πn(F).

However, there is no way to make these equalities definitional, the elimination principle
for the natural numbers does not allow for computation rules like that. This means that
the map f3n : A3n+1 → A3n cannot be compared directly to πn(f) since the domain
and codomain are note definitionally equal. Setting things up this way is possible, but
makes reasoning about it unnecessarily complicated. Instead, we change the indexing
set, using N× fin3 instead of N. We will work with a general notion of sequences with a
flexible choice of indexing set.

68

Definition 4.1.2. A successor structure is a type I with endomap S : I → I called
the successor. We will write i+ n for i : I and n : N to mean iterated application of the
successor function, i+ n :≡ Sn(i).

A chain complex indexed by a successor structure I is a family of pointed sets
A : I → Set∗ and maps f : (i : I) → Ai+1 → Ai with the property that (i : I) → (a :
Ai+2) → fi(fi+1(a)) = ai0 where ai0 is the basepoint of Ai. We call a chain complex
exact or a long exact sequence if

(i : I)→ (a : Ai+1)→ fi(a) = ai0 → ‖(a′ : Ai+2)× fi+1(a′) = a‖.

A type-valued chain complex is the same, except that Ai is only required to be a pointed
type (not a pointed set). A type-valued chain complex is exact or a type-valued exact
sequence if the above property holds without any propositional truncation, i.e. if

(i : I)→ (a : Ai+1)→ fi(a) = ai0 → (a′ : Ai+2)× fi+1(a′) = a.

Remark 4.1.3. Note that a type-valued exact sequence gives part of the structure of a
fiber sequence. A fiber sequence is a sequence where Ai+2 “is” the fiber of fi. This means
that (Ai+2, fi+1) = (fibfi , p1) for all i. Using univalence this can be unpacked in an
equivalence and a commuting triangle. In a type-valued exact sequence we just require
two maps back and forth Ai+2 ↔ fibfi such that the corresponding triangles commute,
but we do not require that these maps are mutual inverses. In the text below we will
have sequences that are not fiber sequences, so we require this additional generality.
Example 4.1.4. Some useful examples of successor structures are (N, λn. n + 1) and
(Z, λn. n+ 1). Sequences over these successor structures correspond to one-sided and
two-sided infinite sequences. We can also mimic one-sided infinite sequences in the
other direction using the successor structure (N, λn. n− 1) (with the convention that
0− 1 = 0). This has the disadvantage that there is one extra map A0 → A0. Whenever
we use N as successor structure in this section, we use λn. n+ 1 as its successor.

Furthermore, if N is a successor structure and k : N, then we define a successor
structure on N × fink+1 by defining

S(n, i) :≡

(n+ 1, 0) if i = k

(n, i+ 1) otherwise

Note that n+ 1 is addition in the successor structure N .
We now build the long exact sequence of homotopy groups in five steps. The order

of these steps is somewhat arbitrary and can be altered. We perform the 0-truncation
of the sequence as the last step, so that the intermediate sequences contain as much
information as possible.

(1) First we define the fiber sequence of f .

(2) Then we show that this sequence is equivalent to a sequence involving iterated loop
spaces.

69

(3) We fix some negation signs in the exact sequence.

(4) We index the sequence over N× fin3.

(5) We 0-truncate the sequence to obtain the sequence in Theorem 4.1.1.

We first need some lemmas about fibers.

Lemma 4.1.5. Suppose given a pointed map f : A →∗ B. Let p1 : fibf →∗ A be the
first projection. Then there is a pointed natural equivalence ef : fibp1 '∗ ΩB.

Furthermore, if q1 : fibp1 → fibf is the first projection, we get a commuting square

ΩA ΩB

fibq1 fibp1

−Ωf

ep1 ef

r1

where r1 is (also) the first projection. We write −Ωf for the map Ωf ◦ (−)−1.

Proof. The underlying equivalence is the following composite

fibp1 ' ((a, p) : fibf)× a = a0

' (a : A)× a = a0 × f(a) = b0

' f(a0) = b0

' b0 = b0 ≡ ΩB

This equivalence sends ((a, p), q) : fibp1 (with p : fa = b0 and q : a = a0) to f−1
0 · f(q) · p.

So there is a path
r(a, p, q) : ef ((a, p), q) = f−1

0 · f(q−1) · p.
This path satisfies r(a0, f0, 1) = 1 (equality is type correct since ef ((a0, f0), q) ≡ f−1

0 · q).
We also have e−1

f (p) = ((a0, f0 · p), 1) for p : ΩB.
Now e respects the basepoint, because

e(a0, f0, 1) = f−1
0 · f0 = 1.

We will not prove naturality here, since it is not required for the results in this section.
For the commuting square, we will prove that

h : ef ◦ r1 ◦ e−1
p1 ∼

∗ −Ωf

For the underlying homotopy, we compute for p : ΩA

ef (r1(e−1
p1 p)) = ef (r1(((a0, f0), 1 · p), 1))

= ef ((a0, f0), p)
= f−1

0 · f(p−1) · f0 ≡ −Ωf(p).

70

To show that h respects the basepoint, suppose that p ≡ 1. In that case, the first
two steps of the above equation becomes definitional equalities. Since we know that
r(a0, f0, 1) = 1, the last equality is also reflexivity. Since the maps ef ◦ r ◦ e−1

p1 and −Ωf
respect the basepoints using the same path, this shows that h is a pointed homotopy,
which finishes the proof.

4.1.1.1 Step 1

Denote arrow∗ :≡ (X Y : U∗i) × (X →∗ Y). We define F : arrow∗ → arrow∗ by
F (X, Y, f) :≡ (fibf , X, p1). Given a pointed map f : X →∗ Y , we define its fiber
sequence A : N → U by An :≡ p2(F n(X, Y, f)), and we define fn : An+1 → An by
p3(F n(X, Y, f)) (which is well-typed, since An+1 ≡ p1(F n(X, Y, f)) by unfolding the
definition of F). It is easy to show that (An, fn)n is a type-valued exact sequence, since
An+2 is (definitionally) the fiber of fn.

Note that by Lemma 4.1.5 there is a pointed equivalence ef : A3 '∗ ΩY . We define
the diagonal map δ :≡ p1 ◦ e−1

f : ΩY → fibf .

4.1.1.2 Step 2

Define the sequence B : N→ U and gn : Bn+1 → Bn by

B0 :≡ Y

B1 :≡ X g0 :≡ f

B2 :≡ fibf g1 :≡ p1

Bn+3 :≡ ΩBn g2 :≡ δ

gn+3 :≡ −Ωgn

Note that g2 has the correct type, since A3 ≡ B3.
Now we can show that (B, g) is a type-valued exact sequence by showing that it is

equivalent to (A, f).

Lemma 4.1.6. There is a natural equivalence (An, fn)n ' (Bn, gn)n. This means that
there are pointed equivalences ηn : An '∗ Bn such that for all n : N we have

ηn ◦ fn ∼∗ gn ◦ ηn+1.

Proof. We define the equivalence ηn by induction on n. Note that Ak ≡ Bk for k = 0, 1, 2.
Now suppose we have an equivalence ηk : Ak ' Bk. Then by Lemma 4.1.5 we have

Ak+3 ≡ fibfk+1

efk' ΩAk
Ωηk' ΩBk ≡ Bk+3.

We also show the naturality by induction on n.
For n ≡ 0 we have idY ◦ f ∼∗ f ◦ idX .

71

For n ≡ 1 we have idX ◦ p1 ∼∗ p1 ◦ idfibf .
For n ≡ 2 we have

idfibf ◦ p1 ≡ p1 ∼∗ (p1 ◦ e−1
f) ◦ ef ∼∗ δ ◦ (ΩidY ◦ ef).

Now suppose the naturality holds for k, then we get the following diagram.

ΩBk+1 ΩBk

ΩAk+1 ΩAk

Ak+4 Ak+3

−Ωgk

Ωηk+1 Ωηk
−Ωfk

efk+1 efk

fk+3

The bottom square can be filled by the second part of Lemma 4.1.5. The top square
can be filled by applying the functor Ω to the naturality for k and then noticing that
(−)−1 ◦ Ωηk ∼∗ Ωηk ◦ (−)−1, which is easily proven for an arbitrary pointed map.

4.1.1.3 Step 3

We now remove the inverses in our sequence. More precisely, we define a second sequence
hn : Bn+1 → Bn by

h0 :≡ f h1 :≡ p1 h2 :≡ δ hn+3 :≡ Ωhn.

To show that (B, h) is a type-valued exact sequence we use the following lemma.

Lemma 4.1.7. Suppose N is a successor structure and (B, g) is a type-valued exact
sequence over N . Suppose hn : Bn+1 →∗ Bn is another sequence of maps, and suppose
that there are pointed maps en, `n, rn : Bn →∗ Bn such that en is an equivalence and the
following diagrams commute as homotopies (not necessarily pointed):

Bn+1

Bn+1 Bn

hn
en+1

gn

Bn+1 Bn

Bn+1 Bn

hn

`n+1 en

hn

Bn+1 Bn

Bn+1 Bn

hn

en+1 rn

hn

Then (B, h) is a type-valued exact sequence over N .

72

Proof. First we need to show that for x : Bn+2 we have hn(hn+1(x)) = bn0 . We compute

hn(hn+1(x)) = rn(hn(en+1(hn+1(x))))
= rn(gn(hn+1(x)))
= rn(gn(gn+1(e−1

n+2(x))))
= rn(bn0)
= bn0 .

For exactness, suppose that y : Bn+1 such that hn(y) = bn0 . Then gn(e−1
n+1(y)) =

hn(y) = bn0 , therefore, by exactness of g there (purely) exists an x : Bn+2 such that
gn+1(x) = e−1

n+1(y). Now we compute

hn+1(`n+2(en+2(x))) = en+1(hn+1(en+2(x)))
= en+1(gn+1(x))
= en+1(e−1

n+1(y))
= y.

This finishes the proof.

Lemma 4.1.8. The sequence (B, h) is a type-valued exact sequence.

Proof. We first define for k ≥ 2 we the pointed equivalence εkn : Bn '∗ Bn by induction
on n. For n ≤ k εkn :≡ id : Bn '∗ Bn we define εkn+3 :≡ −Ωεkn : Bn+3 '∗ Bn+3 for
n + 3 > k. Now define en :≡ ε3

n and `n :≡ ε4
n and rn :≡ ε2

n. We apply Lemma 4.1.7
using these equivalences to obtain the desired result. To do this we need to check three
commuting triangles. We will check hn ◦ en+1 ∼ gn, the other two proofs are similar.
Apply induction on n. For n = 0, 1, 2 it is trivial, reducing to gn ◦ id ∼ gn. Suppose the
homotopy is true for n = k. Then

hk+3 ◦ ek+4 ≡ Ωhk ◦ −Ωek+1 ∼ −Ω(hk ◦ ek+1) ∼ −Ωgk ≡ gk+3.

4.1.1.4 Step 4

We now define a type-valued chain complex over N×fin3, which has a successor structure
by Example 4.1.4. Let ρX be the equivalence Ωn+1X '∗ Ωn(ΩX). We now define the
sequence C : N× fin3 and kn : Cn+1 → Cn by

C(n,0) :≡ ΩnY k(n,0) :≡ Ωnf

C(n,1) :≡ ΩnX k(n,1) :≡ Ωnp1

C(n,2) :≡ Ωn fibf k(n,2) :≡ Ωnδ ◦ ρX

In a diagram, (C, k) looks like the following.

73

YXF

ΩYΩXΩF

Ω2YΩ2XΩ2F

...

f

p1

δ

Ωf
Ωp1

Ωδ

Ω2f

Ω2p1

There is an equivalence e : N ' N × fin3 that sends n to its quotient and remainder
when dividing n by 3. The proof of the following lemma is straightforward and omitted.

Lemma 4.1.9. The sequence (B, h) is naturally equivalent to (C, k) over the equivalence
e. Therefore, (C, k) is a type-valued exact sequence.

4.1.1.5 Step 5

If we 0-truncate the sequences at step 4, we get the sequence (D, `) :≡ (‖C‖0, ‖k‖0).
This is exactly the sequence in Theorem 4.1.1. It is now easy to show that this is a
long exact sequence.

Proof of Theorem 4.1.1. First note that it is a chain complex by the following compu-
tation:

`n ◦ `n+1 ∼ ‖kn ◦ kn+1‖0 ∼ ‖0‖0 ∼ 0.

To show that it is exact, suppose given x : Dn+1 and p : `n(x) = dn0 . We need to
construct an element in a proposition, so we may assume by induction that x ≡ |y|0.
Now the type of p reduces to |kn(y)|0 = |cn0 |0, which is equivalent to ‖kn(y) = cn0‖−1
by the characterization of the identity type in truncations. Therefore, the latter type
is inhabited, and by induction, we may assume that we have a path kn(y) = cn0 . By
exactness of (C, k) we get an element z : Cn+2 such that q : kn+1(z) = y. Now we can
find |z|0 : Dn+2 and the path ap|−|0(q) : `n+1(|z|0) = x, showing exactness.

4.1.2 Computation of homotopy groups
An important application of the long exact sequence of homotopy groups comes in
combination with the Hopf fibration. Combining these tools, we can compute more
homotopy groups of spheres. The Hopf fibration was constructed in [Uni13, Theorem
8.5.1] and has been formalized by Ulrik Buchholtz. We will not give the construction
here.

Theorem 4.1.10 (Hopf Fibration). There is a pointed map S3 → S2 with fiber S1.

74

The quaternionic Hopf fibration has also been constructed in HoTT and formalized
in Lean [BR16]. This gives a fibration S7 → S4 with fiber S3.

Corollary 4.1.11. π2(S2) = Z and πn(S3) = πn(S2) for n ≥ 3.

Proof. We know by the connectedness of spheres that π1(S3) and π2(S3) are trivial, and
by the truncatedness of the circle that πk(S1) is trivial for k > 1 and Z for k = 1. We
now get the following long exact sequence, from which the result immediately follows.

00Z

π2(S2)00

π3(S2)π3(S3)0

π4(S2)π4(S3)0

...

The last ingredient we need is the Freudenthal Suspension Theorem. This has been
formalized before by Dan Licata in Agda, and our formalization is a direct port of that
proof to Lean. For the proof we refer to [Uni13, Section 8.6].

Theorem 4.1.12 (Freudenthal Suspension Theorem). Suppose that X is n-connected.
Then ‖X‖2n ' ‖ΩΣX‖2n.

We can combine these results to compute the following homotopy groups.

Corollary 4.1.13. πn(Sn) = Z and π3(S2) = Z

Proof. Note that Sn is (n − 1)-connected. Therefore, by the Freudenthal suspension
theorem we have

‖Sn‖2(n−1) ' ‖ΩSn+1‖2(n−1).

For n ≥ 2 we have 2(n− 1) ≥ n, and therefore we also have

‖Sn‖n ' ‖ΩSn+1‖n.

Taking the n-th homotopy group, we get

πn(Sn) ' πn+1(Sn+1).

Combining this with Corollary 4.1.11, we also get π3(S2) ' Z, as desired.

75

4.2 Eilenberg-MacLane Spaces
In this section we give an important equivalence between groups and Eilenberg-MacLane
spaces [EM45].19 Eilenberg-MacLane space are play an important role in homotopy
theory, since they are spaces with simple homotopy groups. Therefore, they can be used
to build up more complicated spaces with complicated homotopy groups. Also, they
can be used to define homology and cohomology in HoTT, see Sections 5.4 and 5.5.

We prove in this section that the category of n-connected (n+ 1)-truncated pointed
types is equivalent to the category of groups for n = 0 and the category of abelian
groups for n ≥ 1.

If G is a (pre-)groupoid, the groupoid quotient is a higher inductive type with
constructors

HIT groupoid-quotient(G) :=
• i : G0 → groupoid-quotient(G);
• p : (x y : G0)→ hom(x, y)→ x = y;
• q : (x y z : G0)→ (g : hom(y, z))→ (f : hom(x, y))→ p(g ◦ f) = p(f) · p(g);
• ε : is-1-type(groupoid-quotient(G)).
The groupoid quotient can be constructed purely from homotopy pushouts. The

untruncated version was constructed in Section 3.2. Then we can apply the 1-truncated
afterwards, and we can also construct truncations from homotopy pushouts [Rij17].

In [LF14] the authors define Eilenberg-MacLane spaces. We use the same approach
as in that paper. We first quickly review the results in that paper.

4.2.1 Construction of Eilenberg-MacLane spaces
If G is any group, the 1-dimensional Eilenberg-MacLane space K(G, 1) can be defined
by viewing G as a groupoid, and taking the groupoid quotient of G. It is not hard
to see that K(G, 1) is 0-connected and 1-truncated. Using an encode-decode proof,
we can show that ΩK(G, 1) ' G and that this equivalence sends concatenation to
multiplication. Hence the composite π1K(G, 1) ' ‖G‖0 ' G is a group isomorphism.

If G is abelian, the higher Eilenberg-MacLane spaces can be defined recursively as

K(G, n+ 1) :≡ ‖ΣK(G, n)‖n+1

for n ≥ 1. This definition is slightly different than the one given in [LF14], where
K(G, n+ 1) was defined using the iterated suspension as ‖ΣnK(G, 1)‖n+1. We chose to
modify the definition, since a lot of properties of Eilenberg-MacLane spaces are proven
by induction on n, so it is more convenient to have K(G, n + 1) defined directly in
terms of K(G, n).

It is easy to show that K(G, n) is (n− 1)-connected and n-truncated. It is trickier
to show that ΩK(G, n+ 1) ' K(G, n). This is done separately for n = 1 and for n ≥ 2.

19Some of the contents of this section have been published in [BvDR18]. The work in this section is
joint work with Ulrik Buchholtz and Egbert Rijke.

76

For n = 1 we need the result that for every type X with a coherent h-structure, the
type ‖ΣX‖2 is a delooping of X, which means that Ω‖ΣX‖2 ' X. If G is abelian, then
K(G, 1) can be equipped with a coherent h-structure, showing that ΩK(G, 2) ' K(G, 1).

For n ≥ 2, this can be done using the Freudenthal suspension theorem, Theo-
rem 4.1.12. Then the equivalence follows from the following chain of equivalences:

ΩK(G, n+ 1) ≡ Ω‖ΣK(G, n)‖n+1 ' ‖ΩΣK(G, n)‖n ' ‖K(G, n)‖n ' K(G, n).

The Freudenthal Suspension Theorem is applied in the third step, which is allowed
since K(G, n) is (n− 1)-connected and n ≤ 2(n− 1) for n ≥ 2.

This finishes the proof sketch that K-loop(G, n) : ΩK(G, n + 1) ' K(G, n). By
induction, ΩnK(G, n + 1) ' K(G, 1), hence we get the following group isomorphism
πn+1(K(G, n+ 1)) ' π1(K(G, 1)) ' G.

4.2.2 Uniqueness
In this section we prove that Eilenberg-MacLane spaces are unique, which means
that if X and Y are both (n − 1)-connected, n-truncated pointed types such that
πn(X) ' πn(Y), then X ' Y . Note that from these assumptions one can show that
πk(X) ' 1 ' πk(Y) for k < n since X and Y are (n− 1)-connected, but also for k > n
since X and Y are n-truncated. Hence from the assumptions we actually have that
πk(X) ' πk(Y) for all natural numbers k.

This is similar to Whitehead’s Theorem, which states that if f : X → Y is a pointed
map that induces an equivalence on all homotopy groups, then f is an equivalence.
Whitehead’s Theorem is not true in general, but it is true under the assumption that
both X and Y are n-truncated for some n. For the special case that X and Y are both
(n− 1)-connected and n-truncated one does not need to find a map between X and Y
to show that they are equivalent, as long as they have isomorphic homotopy groups.

We first give an elimination principle for K(G, n).

Definition 4.2.1. Suppose that X is an n-truncated pointed type, and suppose that for
some group G there is an map ϕ : G→ ΩnX that sends multiplication to concatenation.
Then there is a pointed map K-elim(ϕ, n) : K(G, n)→ X.

Construction. We construct this by induction on n. For n = 1 this follows directly
from the induction principle of K(G, 1). For n = k + 1 > 1 we can define the group
homomorphism ϕ̃ as the composite G ϕ−→ Ωk+1X ' Ωk(ΩX), and apply the induction
hypothesis to get a map K-elim(ϕ̃, k) : K(G, k)→∗ ΩX. By the adjunction Σ a Ω we
get a pointed map ΣK(G, k)→∗ X, and by the elimination principle of the truncation
we get a map K(G, k + 1) ≡ ‖ΣK(G, k)‖k+1 →∗ X.

Lemma 4.2.2. There is a pointed homotopy making the following diagram commute.

77

K(G, n) ΩK(G, n+ 1)

ΩX

∼

K-elim(ϕ̃, n) Ω(K-elim(ϕ, n+ 1))

Proof. This follows by unwinding the definition of the function K-elim(ϕ, n+1) in terms
of K-elim(ϕ, n).

Lemma 4.2.3. The following diagram commutes.

ΩnK(G, n) G

ΩnX

∼

Ωn(K-elim(ϕ, n)) ϕ

Proof. This follows by repeatedly applying Lemma 4.2.2.

Theorem 4.2.4. Suppose that X is an (n − 1)-connected n-truncated pointed type,
and suppose that for some group G there is an equivalence ϕ : G ' ΩnX that sends
multiplication to concatenation. Then the map K-elim(ϕ, n) : K(G, n) → X is an
equivalence. In particular this means that if X is an (n − 1)-connected n-truncated
pointed type, and there is a group isomorphism e : πn(X) ' G, then X '∗ K(G, n).

Proof. We apply Whitehead’s principle for truncated types. This states that a weak
equivalence (a map inducing an isomorphism on all homotopy groups) between truncated
types is an equivalence. The proof can be found in [Uni13, Theorem 8.8.3]. Since both
K(G, n) and X are (n− 1)-connected and n-truncated, the map K-elim(ϕ, n) trivially
induces an isomorphism on all homotopy groups for all levels other than n. It also
induces an isomorphism on level n by Lemma 4.2.3. This finishes the proof.

Corollary 4.2.5. The type of (n− 1)-connected, n-truncated pointed types is equivalent
to the type of groups for n = 1 and equivalent to the type of abelian groups for n ≥ 2.

Proof. The maps back and forth are K(−, n) and πn. The composites are homotopic to
the identity map, since πn(K(G, n)) ' G and K(πn(X), n) '∗ X (the last equivalence
comes from Theorem 4.2.4).

4.2.3 Equivalence of categories
Definition 4.2.6. If ϕ : G→ H is a homomorphism between groups, then there is a
pointed map K(ϕ, n) : K(G, n)→ K(H,n). This action is functorial, i.e. it respects
composition and identity maps.

78

Construction. The functorial action comes from Definition 4.2.1. We omit the proof of
the other properties.

To show that we get the desired equivalence of categories, we need to fill the following
naturality squares. We will omit the proofs here.

πn(K(G, n)) πn(K(H,n))

G H

πn(K(ϕ, n))

∼

ϕ

∼

X Y

K(πn(X), n) K(πn(Y), n)

f

∼

K(πn(f), n)

∼

These diagrams show the following result.

Theorem 4.2.7. K(−, n) is an equivalence from the category of (n − 1)-connected
n-truncated pointed types to the category of groups (for n = 1) or abelian groups (for
n ≥ 2).

Remark 4.2.8. In particular this shows that the type of pointed maps between two
(n− 1)-connected n-truncated types is a set. This is a special case of the more general
fact that the type of pointed maps from an n-connected type to a (n+ k+ 1)-truncated
type is k-truncated (for n ≥ −1).
Remark 4.2.9. It would be interesting, but a lot more work, to do this one level up. In
that case, it should be possible to show that crossed modules or 2-groups correspond
to pointed connected 2-types. Furthermore, pointed (n− 2) connected n-types should
correspond to braided 2-groups for n = 3 and to symmetric 2-groups for n ≥ 4. A start
of this project was given in [vR16].

4.3 The Smash Product
In this section we will discuss the smash product and its properties.20 The smash product
has many uses in homotopy theory. It can be used to define generalized homology
theory (see Section 5.5) and it is used to define the cup product for cohomology [Bru16,
Section 5.1].

The goal is to prove that the smash product defines a 1-coherent symmetric monoidal
product on pointed types [Bru16, Definition 4.1.1], which we repeat in Definition 4.3.3.

20The work in this section is joint work with Stefano Piceghello. Parts of this section are based on
ideas from Robin Adams, Marc Bezem, Ulrik Buchholtz and Egbert Rijke.

79

Our proof strategy is to show that the smash product is left adjoint to pointed maps
and then use a Yoneda-style argument to show that we get a 1-coherent symmetric
monoidal product.

This proof is known in 1-category theory [EK66, Chapter 2, Theorem 5.3]. Suppose
given a closed category21 C with internal hom [−,−] : Cop × C → C. Moreover suppose
that for every A,B : C the functor [A, [B,−]] : C → C is representable as a C-enriched
functor. This means that there is an object A ⊗ B : C and a C-enriched natural
transformation [A⊗B,C] ∼= [A, [B,C]]. Then C is a monoidal closed category. We will
spell out the precise formulation for pointed types in Definition 4.3.1, where we will call
U∗-enriched functors pointed functors and U∗-enriched natural transformations pointed
natural transformations.

In this section we will prove two main claims.

• We prove that A ∧ B represents the functor A→∗ B →∗ (−) on pointed types.
In other words, that we have a natural equivalence

(A ∧B →∗ C) '∗ (A→∗ B →∗ C).

• We prove that if we have a pointed natural equivalence

(A ∧B →∗ C) '∗ (A→∗ B →∗ C),

then the smash product forms a 1-coherent symmetric monoidal product on
pointed types.

There is still a gap in this argument: we still need to show that the natural equivalence
above is a pointed natural equivalence. We did not manage to do this, because of the
high level of the path algebra involved, but we do not expect theoretical difficulties.

In this section, all types, maps, homotopies and equivalences are pointed, unless
mentioned otherwise. We will denote pointed homotopies using equalities in diagrams.
We will start with defining some categorical properties of pointed types. We will use
the notation established in Section 2.2.5.

4.3.1 The Category of Pointed Types
Definition 4.3.1. Suppose we are given F : U∗ → U∗. We say that F is a 1-coherent
functor if

• F acts on pointed maps: given f : A→ A′, there is a pointed map Ff : F (A)→
F (A′);

• it respects identities: F (idA) ∼ idFA;
21A closed category is a category with internal hom-objects. We can view pointed types as a higher

closed category, where the internal hom-object is the type of pointed maps, pointed by the constant
map.

80

• it respects composition: F (f ′ ◦ f) ∼ Ff ′ ◦ Ff.

We will call a 1-coherent functor a functor for short.22 We say that a functor F is a
pointed functor if moreover F1 = 1, where 1 is the unit type (which is the zero object
in pointed types). In this case we can show that F (0A,B) = 0FA,FB, where 0A,B is the
constant map.

Let F , G be functors of pointed types and suppose that θ is a family of pointed maps
(X : U∗)→ F (X)→ G(X). We say that θ is a (1-coherent) natural transformation or
natural if for every f : A→ B there is a diagram:

F (A) F (B)

G(A) G(B)

F (f)

θA θB

G(f)

That is, a pointed homotopy

pθ(f) : θB ◦ F (f) ∼ G(f) ◦ θA.

We say that θ is pointed natural if θ is natural and pθ(0) = (pθ)0, where

(pθ)0 : G(0) ◦ θA ∼ 0 ◦ θA ∼ 0 ∼ θB ◦ 0 ∼ θB ◦ F (0)

is the canonical proof of the pointed homotopy G(0) ◦ θA ∼ θB ◦ F (0).
For n-ary functions F : U∗ → · · · → U∗ we define functoriality similarly. We say that

transformations between n-ary functors are natural if they are natural in all arguments.

Remark 4.3.2. We could define a notion of weak naturality, which is like naturality, but
where the homotopy is not required to be pointed. However, this is generally ill-behaved.
For example, if θ is weakly natural, neither X → θ nor θ → X needs to be weakly
natural.

Definition 4.3.3. A 1-coherent symmetric monoidal product for pointed types is a
binary operation ⊗ : U∗ → U∗ → U∗ that is functorial. Explicitly, this means that

• Given f : A→ A′ and g : B → B′, there is a map f ⊗ g : A⊗B → A′ ⊗B.

• It respects identities: idA⊗ idB ∼ idA⊗B .

• It respects composition: (f ′ ◦ f)⊗ (g′ ◦ g) ∼ (f ′ ⊗ g′) ◦ (f ⊗ g).

Furthermore, there is a pointed type I and natural equivalences
22While this is an abuse of terminology, it will not cause confusion in practice. Note that internally

in the language of HoTT it is an open problem whether we can even formulate the type of fully coherent
functors.

81

• α : (A⊗B)⊗ C ' A⊗ (B ⊗ C) (associativity of the smash product);

• λ : I ⊗B ' B (left unitor for the smash product);

• γ : A⊗B ' B ⊗ A (braiding for the smash product).

With pointed homotopies filling the following three diagrams.

((A⊗B)⊗ (C ⊗D))

(((A⊗B)⊗ C)⊗D) (A⊗ (B ⊗ (C ⊗D)))

((A⊗ (B ⊗ C))⊗D) (A⊗ ((B ⊗ C)⊗D))

αα

α⊗D

α

A⊗α

((I ⊗ A)⊗B) (I ⊗ (A⊗B))

(A⊗B)

α

λ⊗B λ

((A⊗B)⊗ C) (A⊗ (B ⊗ C)) ((B ⊗ C)⊗ A)

((B ⊗ A)⊗ C)) (B ⊗ (A⊗ C)) (B ⊗ (C ⊗ A))

α

γ⊗C

γ

α

α B⊗γ

We have a version of the Yoneda Lemma for pointed types.

Lemma 4.3.4 (Yoneda). Let A, B be pointed types, and assume, for all pointed types
X, a pointed equivalence ϕX : (B → X) ' (A → X), natural in X, i.e. for all
f : X → X ′ there is a homotopy

pϕ(f) : (A→ f) ◦ ϕX ∼ ϕ′X ◦ (B → f)

Then there exists a pointed equivalence ψϕ : A ' B.

Proof. We define ψϕ :≡ ϕB(idB) : A→ B and ψ−1
ϕ :≡ ϕ−1

A (idA). The given naturality
square for X :≡ B and g :≡ ψ−1

ϕ yields ψ−1
ϕ ◦ ϕB(idB) ≡ ψ−1

ϕ ◦ ψϕ ∼ ϕA(ψ−1
ϕ ◦ idB) ≡

ϕA(ϕ−1
A (idA)) ∼ idA, and similarly for the inverse composition.

Lemma 4.3.5. Assume A, B, ϕX and p as in Lemma 4.3.4, and assume moreover
that ϕX is pointed natural. Then there is a pointed homotopy (ψϕ → X) ∼ ϕX .

82

Proof. Let f : B → X. The underlying homotopy is obtained by:
(ψϕ → X)(f) ≡ f ◦ ψϕ

∼ ϕX(f ◦ id) (by pϕ(f)(id))
∼ ϕX(f) (by apϕX (uf))

To show that this is a pointed homotopy, we need to prove that the following diagram
commutes:

(ψϕ → X)(0) ϕX(0)

0

pϕ(0)(id)·apϕX (u0)

zψϕ (ϕX)0

where the top-left expression is definitionally equal to 0 ◦ ϕX(id), the horizontal path
comes from the underlying homotopy and (ϕX)0 is the canonical path from ϕX(0) to
0. Since ϕX is pointed natural, we have that pϕX (0)(id) = (pϕX)0(id), which is the
concatenation:

0 ◦ ϕX(id) = 0 (by zqX(id))
= ϕX(0) (by (ϕX)−1

0)
= ϕX(0 ◦ 1) (by (apϕX (zid))−1)

The diagram then commutes by cancellation of inverses and using that zid = u0.

4.3.2 Basic Properties of the Smash Product
Definition 4.3.6. The smash of A and B is the HIT generated by the point constructor
(a, b) for a : A and b : B and two auxiliary points auxl, auxr : A∧B and path constructors
gluela : (a, b0) = auxl and gluerb : (a0, b) = auxr (for a : A and b : B). A ∧ B is pointed
with point (a0, b0).
Remark 4.3.7. This definition of A∧B is basically the pushout of 2← A+B → A×B.
A more traditional definition of A ∧ B is the pushout 1 ← A ∨ B → A × B; here ∨
denotes the wedge product, which can be equivalently described as either the pushout
A← 1→ B or 1← 2→ A+B. These two definitions of A∧B are equivalent, because
in the following diagram the top-left square and the top rectangle are pushout squares,
hence the top-right square is a pushout square by applying the pushout lemma. Another
application of the pushout lemma then states that the two definitions of A ∧ B are
equivalent.

2 A+B 2

1 A ∨B 1

A×B A ∧B

83

Lemma 4.3.8. The smash product is functorial: if f : A→ A′ and g : B → B′, then
f ∧ g : A∧B → A′ ∧B′. We write A∧ g or f ∧B if one of the functions is the identity
function. Moreover, if p : f ∼ f ′ and q : g ∼ g′, then p ∧ q : f ∧ g ∼ f ′ ∧ g′; this
operation preserves reflexivities, symmetries and transitivies. We will write p ∧ g or
f ∧ q if one of the homotopies is reflexivity.

Lemma 4.3.9. The smash product preserves composition, which gives rise to the
interchange law:

i : (f2 ◦ f1) ∧ (g2 ◦ g1) ∼ f2 ∧ g2 ◦ f1 ∧ g1

for maps A1
f1−→ A2

f2−→ A3 and B1
g1−→ B2

g2−→ B3.

Proof. Let us denote the basepoints of Ai and Bi with ai and bi respectively. We first
apply induction on the paths that all the maps in the statement respect the basepoint.
We verify the underlying homotopy of i by induction on terms x of the domain A1 ∧B1
of the two maps; this can be defined on point constructors (a, b), auxl and auxr to be
the identity path. If x varies over gluela, we need to fill the following square:

(f2(f1(a)), b3) (f2(f1(a)), b3)

auxl auxl

1

ap(f2◦f1)∧(g2◦g1)(gluela) apf2∧g2◦f1∧g1 (gluela)

1

(4.3.10)

This reduces to proving that

ap(f2(f1(a)),−)(g2 ◦ g1)0 · gluelf2(f1(a)) = ap(f2(f1(a)),−)(apg2(g1)0 · (g2)0) · gluelf2(f1(a))

Since we assumed that (g1)0 and (g2)0 are the identity path, the claim is easily verified.
The case for x varying over gluerb is entirely analogous, giving the square:

(a3, g2(g1(b)) (a3, g2(g1(b))

auxr auxr

1

ap(f2◦f1)∧(g2◦g1)(gluerb) apf2∧g2◦f1∧g1 (gluerb)

1

(4.3.11)

The resulting homotopy is pointed, as i(a1, b1) ≡ 1 and the proofs that the two maps
respect the basepoint are assumed to be the identity path.
Lemma 4.3.12. There are homotopies

tg : 0 ∧ g ∼ 0 t′f : f ∧ 0 ∼ 0

such that the following diagrams commute for given homotopies p : g ∼ g′ and q : f ∼ f ′.

0 ∧ g 0 ∧ g′ f ∧ 0 f ′ ∧ 0

0 0

1∧p

tg tg′

q∧1

t′f t′
f ′

(4.3.13)

84

Proof. We will define the homotopy tg : 0 ∧ g, with 0 : A1 → A2 and g : B1 → B2
(with the notational convention for the basepoints as in Lemma 4.3.9); the definition
for t′f is analogous. First, we apply induction on the path that g respects the basepoint.
The underlying homotopy of tg is given by induction on terms x : A1 ∧B1. On point
constructors, we define:

tg(a, b) :≡ gluerg(b) · gluer−1
b2

: (a2, g(b)) = (a2, b2)
tg(auxl) :≡ gluel−1

a2
: auxl = (a2, b2)

tg(auxr) :≡ gluer−1
b2

: auxr = (a2, b2)

If x varies over gluela, after some reductions, we need to fill the following square:

(a2, g(b1)) (a2, b2)

auxl (a2, b2)

gluerb2 · gluer−1
b2

gluela2 1

gluel−1
a2

(4.3.14)

Similarly, if x varies over gluerb, we need to fill the following square:

(a2, g(b)) (a2, b2)

auxr (a2, b2)

gluerg(b) · gluer−1
b2

gluerg(b) 1

gluer−1
b2

(4.3.15)

The squares in (4.3.14) and (4.3.15) can both be filled by simple path algebra. The
resulting homotopy is pointed, as tg(a1, b1) is equal to the identity path and the proof
that g respects the basepoint is also assumed to be the identity path. Finally, for
p : g ∼ g′, the diagram on the left in (4.3.13) commutes by induction on p.

Lemma 4.3.16. Suppose that we have maps A1
f1−→ A2

f2−→ A3 and B1
g1−→ B2

g2−→
B3 and suppose that either f1 or f2 is constant. Then there are two homotopies
(f2 ◦ f1) ∧ (g2 ◦ g1) ∼ 0, one of which uses the interchange law and one that does not.
These two homotopies are equal. Specifically, the following two diagrams commute:

(f2 ◦ 0) ∧ (g2 ◦ g1) (f2 ∧ g2) ◦ (0 ∧ g1)

(f2 ∧ g2) ◦ 0

0 ∧ (g2 ◦ g1) 0

i

z′∧(g2◦g1)

(f2∧g2)◦tg1

z′

tg2◦g1

85

(0 ◦ f1) ∧ (g2 ◦ g1) (0 ∧ g2) ◦ (f1 ∧ g1)

0 ◦ (f1 ∧ g1)

0 ∧ (g2 ◦ g1) 0

i

z∧(g2◦g1)

tg2◦(f1∧g1)

z

tg2◦g1

Proof. We start by filling the diagram on the left. First apply induction on the paths
that f2, g1 and g2 respect the basepoint. In this case f2 ◦ 0 is definitionally equal to
0, and the canonical proof that f2 ◦ 0 ∼ 0 is (definitionally) equal to reflexivity. This
means that the homotopy (f2 ◦ 0) ∧ (g2 ◦ g1) ∼ 0 ∧ (g2 ◦ g1) is also equal to reflexivity,
and also the path that f2 ∧ g2 respects the basepoint is reflexivity, hence the homotopy
(f2 ∧ g2) ◦ 0 ∼ 0 is also reflexivity. This means we need to fill the following square:

(f2 ◦ 0) ∧ (g2 ◦ g1) (f2 ∧ g2) ◦ (0 ∧ g1)

0 ∧ (g2 ◦ g1) 0

i

1 (f2∧g2)◦tg1

tg1◦g2

For the underlying homotopy, take x : A1 ∧ B1 and apply induction on x. Suppose
x ≡ (a, b) for a : A1 and b : B1. With the notational convention for basepoints as in
Lemma 4.3.9, we have to fill the square (we use that the paths that the maps respect
the basepoints are reflexivity):

(a3, g2(g1(b))) (a3, g2(g1(b)))

(a3, g2(g1(b))) (a3, b3)

1

1 apf2∧g2 (gluerg1(b) · gluer−1
b2

)

gluerg2(g1(b)) · gluer−1
b3

(4.3.17)

Now aph∧k(gluerz) = gluerk(z), so by general groupoid laws we see that the path on the
bottom is equal to the path on the right, which means we can fill the square. For the
other point constructors, the squares to fill are similar. If x ≡ auxl, we have:

auxl auxl

auxl (a3, b3)

1

1 apf2∧g2 (gluel−1
a2)

gluel−1
a3

(4.3.18)

We can fill this square, as the path on the bottom is definitionally equal to gluel−1
a3 (as

we applied path induction on the path that f2 respects the basepoint) and the path on

86

the right also reduces to gluel−1
a3 using that aph∧k(gluelz) = gluelh(z). Similarly, we can

fill the square for x ≡ auxr, which is:

auxr auxr

auxr (a3, b3)

1

1 apf2∧g2 (gluer−1
b2

)

gluer−1
b3

(4.3.19)

If x varies over gluela, after some reductions, we need to fill the following cube, where
the front and the back are the squares in (4.3.17) for (a, b1) and (4.3.18) respectively;
the left square is degenerate; the other three sides are the squares in the definition of
i and t to show that they respect gluela (given in (4.3.10) and (4.3.14) respectively),
where we also apply f2 ∧ g2 to the square on the right. We suppress in the diagram the
arguments of gluer in gluer · gluer−1 (which match, so the concatenation results equal to
the identity path).

auxl auxl

(a3, b3) (a3, b3)

auxl (a3, b3)

(a3, b3) (a3, b3)

1

1

apf2∧g2 (gluel−1
a2)

gluela3

1

1

apf2∧g2 (gluela2)

gluel−1
a3gluela3

gluer · gluer−1

1

apf2∧g2 (gluer · gluer−1) (4.3.20)

Similarly, if x varies over gluerb, we need to fill the cube below: the front and the
back are the squares in (4.3.17) for (a1, b) and (4.3.19) respectively; the left square is
again degenerate; the other three sides come from the fact that i and t respect gluerb
(given in (4.3.11) and (4.3.15) respectively). Again, we omit the arguments of gluer in
gluer · gluer−1 (in this case, not a priori judgmentally equal).

auxr auxr

(a3, g2(g1(b))) (a3, g2(g1(b)))

auxr (a3, b3)

(a3, g2(g1(b))) (a3, b3)

1

1

apf2∧g2 (gluer−1
b2

)1

1

gluerg2(g1(b)) apf2∧g2 (gluerg1(b))

gluer−1
b3

gluer · gluer−1

gluerg2(g1(b))

apf2∧g2 (gluer · gluer−1)

1

(4.3.21)

87

In order to fill the cubes in (4.3.20) and (4.3.21), we generalize the paths and fill the
cubes by path induction. The cube in (4.3.20) can be generalized to a cube:

h(y) h(y)

h(x) h(x)

h(y) h(x)

h(x) h(x)

1

1

aph(p−1
l

)
1

1

ql aph(pl)

q−1
l

qr·q−1
r

ql

aph(pr·p−1
r)

1

for X and X ′ pointed types; a map h : X → X ′; terms x, y z : X; paths pl : x = y,
pr : x = z, ql : h(x) = h(y), qr : h(x) = h(z); and 2-paths sl : aph(pl) = ql (for the
back and the top) and sr : aph(pr) = qr (for the right side). This cube is filled by path
induction on sl, sr, pl and pr. The cube in (4.3.21) can be generalized to a similar cube:

h(y) h(y)

h(x) h(x)

h(y) h(z)

h(x) h(z)

1

1

aph(pb)
1

1

ql aph(pl)

qb

ql·qb

ql

aph(pl·pb)

1

for paths pl : x = y, pb : y = z, ql : h(x) = h(y), qb : h(y) = h(z) and for 2-paths
sl : aph(pl) = ql (for the top) and sb : aph(pb) = qb (for the back).

The diagram on the right is similar to the previous case. It is not hard to show that
these homotopies are pointed.

Theorem 4.3.22. Given pointed types A, B and C, the functorial action of the smash
product induces a map

(−) ∧ C : (A→ B)→ (A ∧ C → B ∧ C)

that is natural in A and B and dinatural in C.

The naturality and dinaturality means that the following squares commute for
f : A′ → A g : B → B′ and h : C → C ′.

88

(A→ B) (A ∧ C → B ∧ C)

(A′ → B) (A′ ∧ C → B ∧ C)

(−)∧C

f→B f∧C→B∧C
(−)∧C

(A→ B) (A ∧ C → B ∧ C)

(A→ B′) (A ∧ C → B′ ∧ C)

(−)∧C

A→g A∧C→g∧C
(−)∧C

(A→ B) (A ∧ C → B ∧ C)

(A ∧ C ′ → B ∧ C ′) (A ∧ C → B ∧ C ′)

(−)∧C

(−)∧C′ A∧C→B∧h
A∧h→B∧C′

Proof. First note that λf. f ∧ C preserves the basepoint so that the map is indeed
pointed.

Let k : A → B. Then as homotopy the naturality in A becomes (k ◦ f) ∧ C =
k ∧ C ◦ f ∧ C. To prove an equality between pointed maps, we need to give a pointed
homotopy, which is given by interchange. To show that this homotopy is pointed,
we need to fill the following square (after reducing out the applications of function
extensionality), which follows from Lemma 4.3.16.

(0 ◦ f) ∧ C (0 ∧ C) ◦ (f ∧ C)

0 ◦ (f ∧ C)

0 ∧ C 0
The naturality in B is almost the same: for the underlying homotopy we need to show
i : (g ◦ k) ∧ C = g ∧ C ◦ k ∧ C. For the pointedness we need to fill the following square,
which follows from the left pentagon in Lemma 4.3.16.

(g ◦ 0) ∧ C (g ∧ C) ◦ (0 ∧ C)

(g ∧ C) ◦ 0

0 ∧ C 0
The dinaturality in C is a bit harder. For the underlying homotopy we need to show

B ∧ h ◦ k ∧ C = k ∧ C ′ ◦ A ∧ h. This follows from applying interchange twice:

B ∧ h ◦ k ∧ C ∼ (idB ◦ k) ∧ (h ◦ idC) ∼ (k ◦ idA) ∧ (idC′ ◦ h) ∼ k ∧ C ′ ◦ A ∧ h.

89

To show that this homotopy is pointed, we need to fill the following square:

B ∧ h ◦ 0 ∧ C (idB ◦ 0) ∧ (h ◦ idC) (0 ◦ idA) ∧ (idC′ ◦ h) 0 ∧ C ′ ◦ A ∧ h

B ∧ h ◦ 0 0 ∧ (h ◦ idC) 0 ∧ (idC′ ◦ h) 0 ◦ A ∧ h

B ∧ h ◦ 0 0 0 0

The left and the right squares are filled by Lemma 4.3.16. The squares in the middle
are filled by (corollaries of) Lemma 4.3.8.

4.3.3 Adjunction
Lemma 4.3.23. There is a unit ηA,B ≡ η : A→ B → A ∧B natural in A and counit
εB,C ≡ ε : (B → C) ∧B → C dinatural in B and natural in C. These maps satisfy the
unit-counit laws:

(A→ εA,B) ◦ ηA→B,A ∼ idA→B εB,B∧C ◦ ηA,B ∧B ∼ idA∧B.

Note: η is also dinatural in B, but we do not need this.

Proof. We define ηab = (a, b). We define the path that ηa respects the basepoint as

(ηa)0 :≡ gluela · gluel−1
a0

: (a, b0) = (a0, b0).

Also, η itself respects the basepoint. To show this, we need to give η0 : η(a0) ∼ 0. The
underlying maps are homotopic, by

η0b :≡ gluerb · gluer−1
b0

: (a0, b) = (a0, b0).

To show that this homotopy is pointed, we need to show that the two given proofs of
(a0, b0) = (a0, b0) are equal, but they are both equal to reflexivity:

η00 : gluela0 · gluel−1
a0 = 1 = gluerb0 · gluer−1

b0 .

This defines the unit. To show that it is natural in A, we need to give the following
pointed homotopy pη(f) for f : A→ A′.

A (B → A ∧B)

A′ (B → A′ ∧B)

η

f B→f∧B
η

90

We may assume that f0 is reflexivity. For the underlying homotopy we need to define
for a : A that pη(f, a) : η(fa) ∼ f ∧ B ◦ ηa, which is another pointed homotopy. For
b : B we have η(fa, b) ≡ (fa, b) ≡ (f ∧B)(ηab). The homotopy pη(f, a) is pointed, since

(f ∧B ◦ ηa)0 = apf∧B(gluela · gluel−1
a0) = gluelfa · gluel−1

a′0
= (η(fa))0.

Now we need to show that pη(f) is pointed, for which we need to fill the following
diagram.

η(fa0) f ∧B ◦ ηa0

0B,A′∧B

pη(f,a0)

η0

f∧B◦η0

These pointed homotopies have equal underlying homotopies, since for b : B we have

pη(f, a0, b) · apf∧B(η0b) = 1 · apf∧B(gluerb · gluer−1
b0) = gluerb · gluer−1

b0 = η0b.

We will skip the proof that these homotopies respect the point in the same way.
To define the counit, given x : (B → C) ∧ B, we construct ε(x) : C by induction

on x. If x ≡ (f, b), we set ε(f, b) :≡ f(b). If x is either auxl or auxr, then we set
ε(x) :≡ c0 : C. If x varies over gluelf , then we need to show that f(b0) = c0, which is
true by f0. If x varies over gluerb, we need to show that 0(b) = c0 which is true by
reflexivity. Now ε0 :≡ 1 : ε(0B,C , b0) = c0 shows that ε is pointed.

We will skip the proof that the counit is dinatural in B and natural in C.
Finally, we need to show the unit-counit laws. For the underlying homotopy of

the first one, let f : A → B. We need to show that pf : ε ◦ ηf ∼ f . We define
pf(a) = 1 : ε(f, a) = f(a). To show that pf is a pointed homotopy, we need to show
that pf(a0) · f0 = apε(ηf)0 · ε0, which reduces to f0 = apε(gluelf · gluel−1

0), but we can
reduce the right hand side: (note: 00 denotes the proof that 0(a0) = b0, which is
reflexivity)

apε(gluelf · gluel−1
0) = apε(gluelf) · (apε(gluel0))−1 = f0 · 0−1

0 = f0.

Now we need to show that p itself respects the basepoint of A → B, i.e. that the
composite ε ◦ η(0) ∼ ε ◦ 0 ∼ 0 is equal to p0A,B . The underlying homotopies are the
same for a : A; on the one side we have apε(gluera · gluer−1

a0) and on the other side we
have reflexivity (note: this type checks since 0A,Ba ≡ 0A,Ba0). These paths are equal,
since

apε(gluera · gluer−1
a0) = apε(gluera) · (apε(gluera0))−1 = 1 · 1−1 ≡ 1.

Both pointed homotopies are pointed in the same way, which requires some path-algebra,
and we skip the proof here.

For the underlying homotopy of the second unit-counit law, we need to show for
x : A ∧B that q(x) : ε((η ∧B)x) = x, which we prove by induction to x. If x ≡ (a, b),

91

then we can define q(a, b) :≡ 1(a,b). If x is auxl or auxr, then the left-hand side reduces
to (a0, b0), so we can define q(auxl) :≡ gluela0 and q(auxr) :≡ gluerb0 . The following
computation shows that q respects gluela:

apε◦η∧B(gluela) · gluela0 = apε(gluelηa) · gluela0 = (ηa)0 · gluela0 = gluela · gluel−1
a0 · gluela0

= gluela .

To show that it respects gluerb we compute

apε◦η∧B(gluerb) · gluerb0 = apε(−,b)(η0) · apε(gluerb) · gluerb0 = apλf. fb(η0) · gluerb0

= η0b · gluerb0 = gluerb .

To show that q is a pointed homotopy, we need to show that (ε ◦ η ∧B)0 = 1, For this
we compute

(ε ◦ η ∧B)0 = apε(−,b0)(η0) = η0b0 = gluerb0 · gluer−1
b0 = 1.

Definition 4.3.24. The function e ≡ eA,B,C : (A → B → C) → (A ∧ B → C) is
defined as the composite

(A→ B → C) (−)∧B−−−−→ (A ∧B → (B → C) ∧B) A∧B→ε−−−−→ (A ∧B → C).

Lemma 4.3.25. The function e is invertible, hence gives a pointed equivalence

(A→ B → C) ' (A ∧B → C).

Proof. Define

e−1
A,B,C : (A ∧B → C) B→(−)−−−−→ ((B → A ∧B)→ (B → C)) η→(B→C)−−−−−−→ (A→ B → C).

It is easy to show that e and e−1 are inverses as unpointed maps from the unit-counit
laws (Lemma 4.3.23) and naturality of η and ε.

Lemma 4.3.26. The function e is natural in A, B and C.

Proof. Naturality of e in A. Suppose that f : A′ → A. Then the following diagram
commutes. The left square commutes by naturality of (−)∧B in the first argument and
the right square commutes because composition on the left commutes with composition
on the right.

(A→ B → C) (A ∧B → (B → C) ∧B) (A ∧B → C)

(A′ → B → C) (A′ ∧B → (B → C) ∧B) (A′ ∧B → C)

(−)∧B

f→B→C

A∧B→ε

f∧B→··· f∧B→C
(−)∧B A∧B→ε

92

Naturality of e in C. Suppose that f : C → C ′. Then in the following diagram
the left square commutes by naturality of (−) ∧B in the second argument (applied to
B → f) and the right square commutes by applying the functor A ∧B → (−) to the
naturality of ε in the second argument.

(A→ B → C) (A ∧B → (B → C) ∧B) (A ∧B → C)

(A→ B → C ′) (A ∧B → (B → C ′) ∧B) (A ∧B → C ′)

Naturality of e in B. Suppose that f : B′ → B. Here the diagram is a bit more
complicated, since (−) ∧ B is dinatural (instead of natural) in B. Then we get the
following diagram. The front square commutes by naturality of (−) ∧B in the second
argument (applied to f → C). The top square commutes by naturality of (−)∧B in the
third argument, the back square commutes because composition on the left commutes
with composition on the right, and finally the right square commutes by applying the
functor A ∧B′ → (−) to the naturality of ε in the first argument.

(A ∧B → (B → C) ∧B) (A ∧B′ → (B → C) ∧B)

(A→ B → C) (A ∧B′ → (B → C) ∧B′)

(A ∧B → C) (A ∧B′ → C)

(A→ B′ → C) (A ∧B′ → (B′ → C) ∧B′)

Remark 4.3.27. Instead of showing that e is natural, we could show that e−1 is natural.
In that case we need to show that the map A→ (−) : (B → C)→ (A→ B)→ (A→ C)
is natural in A, B and C. This might actually be easier, since we do not need to work
with any higher inductive type to prove that.

We have now obtained the following theorem

Theorem 4.3.28. There is an equivalence

(A→ B → C) ' (A ∧B → C)

natural in A, B and C.

Remark 4.3.29. We can state Theorem 4.3.28 as an adjunction (−) ∧B a B → (−) or
by saying that A ∧B represents the functor A→ B → (−).

In Section 4.3.4 we show that the smash product forms a 1-coherent symmetric
monoidal product from the assumption that this adjunction is pointed in C. Explicitly,

93

this means that the naturality of e in C applied to the map 0C,C′ : C → C ′ is equal to
the composite

(A ∧B → 0C,C′) ◦ eA,B,C ∼ 0 ◦ eA,B,C ∼ 0 ∼ eA,B,C′ ◦ 0 ∼ eA,B,C′ ◦ (A→ B → 0C,C′).

To prove this, we need that the counit ε is pointed natural in C. To prove that, we
need to show that the map (−)∧C, defined in Theorem 4.3.22, is pointed natural in B.
In order to prove that, we need to show that in the situation of Lemma 4.3.16, if both
f1 and f2 are (judgmentally) the constant map, then the two pentagons stated in that
lemma are equal (transported appropriately in order to make this equality type check).
This can be formulated as a 3-path in a type of pointed maps, which is hard to fill.

4.3.4 Symmetric monoidal product
In this section we will prove that the smash product is a 1-coherent symmetric monoidal
product Definition 4.3.3, from the assumption that the adjunction from Section 4.3.3
is pointed natural in C. We will need to following pointed equivalences. Without the
proof that e is pointed natural, parts of this section are still true. In particular, the
natural equivalences defined in Definition 4.3.33 do not require pointed naturality of e.

Definition 4.3.30. We define the pointed equivalences:

b : (S0 → X) ' X

where S0 is the type of booleans (pointed in 02) with underlying map defined with
b(f) :≡ f(12), and

tw : (A→ B → X) ' (B → A→ X)
with underlying map defined with tw(f) :≡ λb. λa. f(a)(b).

Using Lemma 4.3.4 (Yoneda) we can prove associativity, left and right unitality and
braiding equivalences for the smash product, in the following way.

Definition 4.3.31. The following pointed equivalences are defined for A, B, C and X
pointed types:

• αX : (A ∧ (B ∧ C) → X) ' ((A ∧ B) ∧ C → X) as the composition of the
equivalences:

A ∧ (B ∧ C)→ X ' A→ B ∧ C → X (e−1)
' A→ B → C → X (A→ e−1)
' A ∧B → C → X (e)
' (A ∧B) ∧ C → X. (e)

• λX : (B → X) ' (S0 ∧B → X) as the composition of the equivalences:

B → X ' S0 → B → X (b−1)
' S0 ∧B → X (e)

94

• ρX : (A→ X) ' (A ∧ S0 → X) as the composition of the equivalences:

A→ X ' A→ S0 → X (A→ b−1)
' A ∧ S0 → X (e)

• γX : (B ∧ A→ X) ' (A ∧B → X) as the composition of the equivalences:

B ∧ A→ X ' B → A→ X (e−1)
' A→ B → X (tw)
' A ∧B → X (e)

Remark 4.3.32. The equivalences in Definition 4.3.31 are natural in all their arguments
and from the assumption that e is pointed natural in C we can show that these maps
are all pointed natural in X.

Definition 4.3.33. We define the following equivalences, natural in all their arguments,
with inverses provided as in Lemma 4.3.4:

• α :≡ αA∧(B∧C)(id) : (A ∧ B) ∧ C ' A ∧ (B ∧ C) (associativity of the smash
product), with inverse α−1 :≡ α−1

(A∧B)∧C(id);

• λ :≡ λB(id) : S0 ∧ B ' B and ρ :≡ ρA(id) : A ∧ S0 ' A (left- and right unitors
for the smash product), with inverses λ−1 :≡ λ

−1
S0∧B(id) and ρ−1 :≡ ρ−1

A∧S0(id),
respectively;

• γ :≡ γB∧A(id) : A ∧ B ' B ∧ A (braiding for the smash product), with inverse
γ−1 :≡ γ−1

A∧B(id).

α, λ, ρ and γ are natural in all their arguments, as α, λ, ρ and γ are. Note that these
definitions do not require pointed naturality of e.

Lemma 4.3.34. There are pointed homotopies

αX ∼ α→ X λX ∼ λ→ X

ρX ∼ ρ→ X γX ∼ γ → X

Proof. This follows directly from Lemma 4.3.5 and Remark 4.3.32 (this does require
pointed naturality of e).

Theorem 4.3.35 (Associativity pentagon). For A, B, C and D pointed types, there is
a homotopy

α ◦ α ∼ (A ∧ α) ◦ α ◦ (α ∧D)

corresponding to the commutativity of the following diagram:

95

((A ∧B) ∧ (C ∧D))

(((A ∧B) ∧ C) ∧D) (A ∧ (B ∧ (C ∧D)))

((A ∧ (B ∧ C)) ∧D) (A ∧ ((B ∧ C) ∧D))

αα

α∧D

α

A∧α

Proof. We articulate the proof in several steps. A map homotopic to both sides of the
sought homotopy will be constructed via the equivalence

α4 : (A ∧ (B ∧ (C ∧D))→ X) ' (((A ∧B) ∧ C) ∧D → X)

(natural in all its arguments), defined as the composite:

A ∧ (B ∧ (C ∧D))→ X ' A→ B ∧ (C ∧D)→ X (e−1)
' A→ B → C ∧D → X (A→ e−1)
' A→ B → C → D → X (A→ B → e−1)
' A ∧B → C → D → X (e)
' (A ∧B) ∧ C → D → X (e)
' ((A ∧B) ∧ C) ∧D → X (e)

giving α4(id) : ((A∧B)∧C)∧D) ' A∧ (B ∧ (C ∧D)). Moreover, in order to simplify
the expressions of α ∧D and A ∧ α, we also define:

αR : ((A ∧ (B ∧ C)) ∧D → X) ' (((A ∧B) ∧ C) ∧D → X)

as the composite:

(A ∧ (B ∧ C)) ∧D → X ' A ∧ (B ∧ C)→ D → X (e−1)
' (A ∧B) ∧ C → D → X (α)
' ((A ∧B) ∧ C) ∧D → X (e)

and

αL : (A ∧ (B ∧ (C ∧D))→ X) ' (A ∧ ((B ∧ C) ∧D)→ X)

as the composite:

A ∧ (B ∧ (C ∧D))→ X ' A→ B ∧ (C ∧D)→ X (e−1)
' A→ (B ∧ C) ∧D → X (A→ α)
' A ∧ ((B ∧ C) ∧D)→ X (e)

also natural in their arguments. Evaluating these equivalences to the identity function,
we get new arrows that fit in the original diagram:

96

((A ∧B) ∧ (C ∧D))

(((A ∧B) ∧ C) ∧D) (A ∧ (B ∧ (C ∧D)))

((A ∧ (B ∧ C)) ∧D) (A ∧ ((B ∧ C) ∧D))

αα

α∧D
αR(id)

α4(id)

α

A∧α
αL(id)

The theorem is then proved once we show the chain of homotopies:

α ◦ α ∼ α4(id) ∼ αL(id) ◦ α ◦ αR(id) ∼ (A ∧ α) ◦ α ◦ (α ∧D) (4.3.36)

To verify the first homotopy in (4.3.36), we see that:

α ◦ α ≡ α(id) ◦ α(id)
∼ (α ◦ α)(id) (naturality of α)
≡ (e ◦ e ◦ (A→ e−1) ◦ e−1 ◦ e ◦ e ◦ (A→ e−1) ◦ e−1)(id)
∼ (e ◦ e ◦ (A→ e−1) ◦ e ◦ (A→ e−1) ◦ e−1)(id) (cancelling)
∼ (e ◦ e ◦ e ◦ (B → A→ e−1) ◦ (A→ e−1) ◦ e−1)(id) (naturality of e)
≡ α4(id)

The second homotopy in (4.3.36) is verified by (right-to-left):

αL(id) ◦ α ◦ αR(id) ≡ αL(id) ◦ α(id) ◦ αR(id)
∼ (αR ◦ α ◦ αL)(id)

(naturality of α and αR)
≡ (e ◦ α ◦ e−1 ◦ e ◦ e ◦ (A→ e−1) ◦ e−1 ◦ e ◦ (A→ α) ◦ e−1)(id)
∼ (e ◦ α ◦ e ◦ (A→ e−1) ◦ (A→ α) ◦ e−1)(id)

(cancelling)
∼ (e ◦ α ◦ e ◦ (A→ (e−1 ◦ α)) ◦ e−1)(id)

(functoriality of A→ −)
≡ (e ◦ e ◦ e ◦ (A→ e−1) ◦ e−1 ◦ e

◦ (A→ (e−1 ◦ e ◦ e ◦ (B → e−1) ◦ e−1)) ◦ e−1)(id)
∼ (e ◦ e ◦ e ◦ (A→ ((B → e−1) ◦ e−1)) ◦ e−1)(id)

(cancelling)
∼ (e ◦ e ◦ e ◦ (B → A→ e−1) ◦ (A→ e−1) ◦ e−1)(id)

(funct. of A→ −)
≡ α4(id)

In order to prove the last homotopy in (4.3.36), it is sufficient to show that αR(id) ∼

97

α ∧D and that αL(id) ∼ A ∧ α. We have:

αR(id) ≡ e(α(e−1(id)))
∼ e(α(η))
∼ e(η ◦ α(id)) (naturality of α)
≡ ε ◦ (η ◦ α) ∧D
∼ ε ◦ (η ∧D) ◦ (α ∧D) (distrib. of ∧)
∼ α ∧D (Lemma 4.3.23)

and, lastly,

αL(id) ≡ e(α ◦ e−1(id))
∼ e(α ◦ η)
∼ e((α→ A ∧ (B ∧ (C ∧D))) ◦ η) (Lemma 4.3.34)
∼ e((B ∧ (C ∧D)→ A ∧ α) ◦ η) (dinaturality of η)
∼ (A ∧ α) ◦ e(η) (naturality of e)
∼ A ∧ α (Lemma 4.3.23)

thus proving the desired homotopy.
Theorem 4.3.37 (Unitors triangle). For A and B pointed types, there is a homotopy

(A ∧ λ) ◦ α ∼ (ρ ∧B)

corresponding to the commutativity of the following diagram:

((A ∧ S0) ∧B) (A ∧ (S0 ∧B))

(A ∧B)

α

ρ∧B A∧λ

Proof. By an argument similar to the one for αL and αR in Theorem 4.3.35, one can
verify the homotopies A ∧ λ ∼ (e ◦ (A → λ) ◦ e−1)(id) and ρ ∧ B ∼ (e ◦ ρ ◦ e)(id),
simplifying the expressions in the sought homotopy. Then:

(A ∧ λ) ◦ α ∼ e(λ ◦ e−1(id)) ◦ α(id) (simplification)
∼ α(e(λ ◦ e−1(id)) (naturality of α)
≡ e(e(e−1 ◦ e−1(e(λ ◦ e−1(id)))))
∼ e(e(e−1 ◦ λ ◦ e−1(id))) (cancelling)
≡ e(e(e−1 ◦ e ◦ b−1 ◦ e−1(id)))
∼ e(e(b−1 ◦ e−1(id))) (cancelling)
≡ (e ◦ ρ ◦ e−1)(id)
∼ ρ ∧B (simplification)

gives the desired homotopy.

98

Theorem 4.3.38 (Braiding-unitors triangle). For a pointed type A, there is a homotopy
λ ◦ γ ∼ ρ

corresponding to the commutativity of the following diagram:

(A ∧ S0) (S0 ∧ A)

A

γ

ρ λ

Proof. We have:
λ ◦ γ ≡ λ(id) ◦ γ(id)

∼ (γ ◦ λ)(id) (naturality of γ)
≡ (e ◦ tw ◦ e−1 ◦ e ◦ b−1)(id)
∼ (e ◦ tw ◦ b−1)(id) (cancelling)
∼ (e ◦ (A→ b−1))(id)
≡ ρ(id) ≡ ρ

where the last homotopy is given by (A→ c)◦b ∼ tw : (S0 → A→ X)→ (A→ X).
Lemma 4.3.39. The following diagram commutes, for A, B, C and X pointed types:

(B ∧ C → A→ X) (B → C → A→ X)

(B → A→ C → X)

(A→ B ∧ C → X) (A→ B → C → X)

e−1

tw

B→tw

tw

A→e−1

Proof. Unfolding the definition of e−1, we get the diagram:

(B ∧ C → A→ X) ((C → B ∧ C)→ C → A→ X) (B → C → A→ X)

((C → B ∧ C)→ A→ C → X) (B → A→ C → X)

(A→ B ∧ C → X) (A→ (C → B ∧ C)→ C → X) (A→ B → C → X)

e−1

C→−

tw

η→C→A→X
(C→B∧C)→tw B→tw

η→A→C→X

tw tw

A→e−1

A→(C→−) A→(η→C→X)

where the squares on the right are instances of naturality of tw, while the commuta-
tivity of the pentagon on the left follows easily from the definition of tw.

99

Theorem 4.3.40 (Associativity-braiding hexagon). For pointed types A, B and C,
there is a homotopy

α ◦ γ ◦ α ∼ (B ∧ γ) ◦ α ◦ (γ ∧ C)

corresponding to the commutativity of the following diagram:

((A ∧B) ∧ C) (A ∧ (B ∧ C)) ((B ∧ C) ∧ A)

((B ∧ A) ∧ C)) (B ∧ (A ∧ C)) (B ∧ (C ∧ A))

α

γ∧C

γ

α

α B∧γ

Proof. The proof is structured similarly to the one for Theorem 4.3.35: the homotopies

B ∧ γ ∼ γL(id) with γL :≡ e ◦ (B → γ) ◦ e−1

γ ∧ C ∼ γR(id) with γR :≡ e ◦ γ ◦ e−1

can be proven in exactly the same way and, using these simplifications, we will show
that both sides of the sought homotopy are homotopic to the same equivalence. Indeed
we have:

α ◦ γ ◦ α ≡ α(id) ◦ γ(id) ◦ α(id)
∼ (α ◦ γ ◦ α)(id)

(naturality of γ and α)
≡ (e ◦ e ◦ (A→ e−1) ◦ e−1 ◦ e ◦ tw ◦ e−1 ◦ e ◦ e ◦ (B → e−1) ◦ e−1)(id)
∼ (e ◦ e ◦ (A→ e−1) ◦ tw ◦ e ◦ (B → e−1) ◦ e−1)(id)

(cancelling)
∼ (e ◦ e ◦ tw ◦ (B → tw) ◦ e−1 ◦ e ◦ (B → e−1) ◦ e−1)(id)

(Lemma 4.3.39)
∼ (e ◦ e ◦ tw ◦ (B → tw) ◦ (B → e−1) ◦ e−1)(id)

(cancelling)

100

and

(B ∧ γ) ◦ α ◦ (γ ∧ C) ∼ γL(id) ◦ α ◦ γR(id)
(simplification)

∼ (γR ◦ α ◦ γL)(id)
(naturality of α and γR)

≡ (e ◦ γ ◦ e−1 ◦ e ◦ e ◦ (B → e−1) ◦ e−1 ◦ e ◦ (B → γ) ◦ e−1)(id)
∼ (e ◦ γ ◦ e ◦ (B → e−1) ◦ (B → γ) ◦ e−1)(id)

(cancelling)
∼ (e ◦ γ ◦ e ◦ (B → (e−1 ◦ γ)) ◦ e−1)(id)

(functoriality of B → −)
≡ (e ◦ e ◦ tw ◦ e−1 ◦ e ◦ (B → (e−1 ◦ e ◦ tw ◦ e−1)) ◦ e−1)(id)
∼ (e ◦ e ◦ tw ◦ (B → tw) ◦ (B → e−1) ◦ e−1)(id)

(cancelling)

proving the commutativity of the diagram.

Theorem 4.3.41 (Double braiding). For A and B pointed types, there is a homotopy

γ ◦ γ ∼ id

corresponding to the commutativity of the following diagram:

(A ∧B) (B ∧ A)

(A ∧B)

γ

γ

Proof. Using that tw ◦ tw ∼ id, we get:

γ ◦ γ ≡ γ(id) ◦ γ(id)
∼ (γ ◦ γ)(id) (naturality of γ)
≡ (e ◦ tw ◦ e−1 ◦ e ◦ tw ◦ e−1)(id)
∼ id (cancelling)

as desired.

Finally we get the result of this section.

Theorem 4.3.42. ∧ is a 1-coherent symmetric monoidal product, assuming that e is
pointed natural in C.

Proof. This follows immediately from the theorems in this section.

101

Chapter 5

The Serre Spectral Sequence

Spectral sequences are important tools in algebraic topology.23 They give a relationship
between certain homotopy, homology and cohomology groups, in a way that generalizes
long exact sequences. This generalization comes at a cost of being a lot more complicated
than a long exact sequence.

In this chapter we will start the study of spectral sequences in homotopy type theory.
We will introduce the notion of spectral sequences, and then construct the Atiyah-
Hirzebruch and Serre spectral sequences for cohomology. We follow the construction
due to Michael Shulman given in [Shu13]. We will also give a sketch on how to construct
the analogues for homology, and look at some of the applications of these spectral
sequences.

There are a couple of notable differences between spectral sequences in homotopy
type theory compared to classical homotopy theory.

• As always, in HoTT all constructions have to be homotopy invariant, so we
cannot use classical constructions that are not homotopy invariant. For example,
the construction of the Serre spectral sequence for homology in [Hat04] uses
CW-approximation of a space and the skeleton of the obtained CW-complex to
construct the spectral sequence. These operations are not homotopy invariant,
and therefore cannot be performed in HoTT.

• Another difference is that homology and cohomology are defined differently
in HoTT than in classical homotopy theory. In classical homotopy theory
(co)homology is defined using singular (co)homology. Since the intermediate
steps in the construction of singular (co)homology is not homotopy invariant, we
use a different definition of (co)homology (see Definition 5.4.2), which impacts
the definition of spectral sequences involving (co)homology.

• The first page of a spectral sequence is often not homotopy invariant, and therefore
cannot be constructed in HoTT. For this reason, we start counting the pages of

23The work in this chapter is joint work with Jeremy Avigad, Steve Awodey, Ulrik Buchholtz, Egbert
Rijke and Mike Shulman.

102

spectral sequences at 2.

• HoTT offers a convenient language for formalizing proofs. Therefore, we have
formalized all constructed spectral sequences in this chapter.

The spectral sequences we construct are not the most general version of these
spectral sequences. The spectral sequences we construct are still more general than
the formulation of the Serre spectral sequence in many textbooks (we give a version
of generalized and parametrized cohomology), but there exist more general versions.
There are two places where we compromised on generality for the sake of making the
formalization easier. The first compromise is that we only formalized exact couples for
graded R-modules for a ring R (which is not graded). More generally we could do this for
any abelian category, which would require building up the theory of abelian categories
(this is done in UniMath [VAG+]). Furthermore, we did not look at convergence of
spectral sequences in the most general sense, since that can get quite complicated
and subtle. Instead, we only look at spectral sequences that are eventually constant
pointwise, so the ∞-page is just the eventual value. This restriction adds the condition
to the spectral sequences we construct that the coefficients are only in truncated spectra.

5.1 Spectral Sequences
A spectral sequence consists of a sequence of pages, each of them containing a two-
dimensional grid of abelian groups. There are maps between these groups, called
differentials. These differentials form (co)chain complexes, and the (co)homology of
these complexes determine the groups on the next page. In 5.1 we show an example of
two pages of a spectral sequence, where each dot represents an abelian group. In this
figure only the two first quadrants are shown, because in simple applications all other
groups are trivial, though that need not be the case in general.

Before we start, we define the notion of a graded abelian group. We will give a
nonstandard definition that is equivalent to the standard one.

Definition 5.1.1. For an abelian group G, an G-graded abelian group is a family of
abelian groups indexed over G. If M and M ′ are G-graded abelian groups, the type
of graded abelian group homomorphism from M to M ′ is a triple consisting of a degree
e : G ' G (this is an equivalence of types, not a group isomorphism), a proof of
(g : G)→ e(g) = g + e(0) and a term of type

{x y : I} → (p : e(x) = y)→Mx →M ′
y.

We will denote the type of homomorphisms as M → M ′. For ϕ : M → M ′ we write
degϕ for the first projection. We will often call degϕ(0) the degree of ϕ. For x : I we
will write

ϕx :≡ ϕreflx : Mx →M ′
degϕ(x)

103

p

q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(a) The page Ep,q2

p

q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(b) Ep,q3

Figure 5.1: Two pages of a spectral sequence.

and
ϕ[x] :≡ ϕpx : Mdeg−1

ϕ (x) →M ′
x

where px : degϕ(deg−1
ϕ (x)) = x is the proof obtained from the equivalence degϕ.

Remark 5.1.2. This definition looks a bit cumbersome, since the condition on e forces
e to be homotopic to the function λg. g + h for some group element h. Furthermore,
the type of ϕ is equivalently (x : I)→Mx →M ′

x+h. We will now discuss why we made
these choices.

To see why this is more convenient, we consider the composition of two graded
homomorphisms. Suppose we have two graded homomorphisms ϕ : M → M ′ and
ψ : M ′ →M ′′ of degrees h : G and k : G, respectively. Then the pointwise composition
λ(g :G). λ(m :Mg). ψg+h(ϕg(m)) has type (g : G) → Mg → M ′′

(g+h)+k. So to get a
graded homomorphism of degree h+ k, with the more straightforward representation,
we would need to transport along the equality (g + h) + k = g + (h + k). Since
compositions are ubiquitous, this would happen all over the place. However, in our
setting, the composite of two graded homomorphisms of degree e and e′ will have degree
e′ ◦ e, without using any transports.

We eliminated a transport to define composition, but there are other places where
we cannot get rid of them so easily. For example, given morphisms ϕ : M →M ′ and
ψ : M ′ →M ′′ with ψ ◦ ϕ = 0 (the graded map that is constantly 0), we are interested
in the homology of ϕ and ψ. This is the kernel of ψ quotiented by the image of ϕ in
M ′

x. However, if ϕx has type Mx →M ′
degϕ(x), there is no map that (without transports)

lands in M ′
x. We would need to transport along the path px : deg−1

ϕ (degϕ(x)) = x and
take the image of this composite:

Mdeg−1
ϕ (x)

ϕdeg−1
ϕ (x)

−−−−−→M ′
degϕ(deg−1

ϕ (x))
∼−→M ′

x.

104

For this reason, we allow graded homomorphisms to be applied to paths, so that we have
a “built-in” transport. Then we can define the homology as Hx :≡ ker(ψx)/ im(ϕ[x]), or
diagramatically

Mdeg−1
ϕ (x)

ϕ[x]−−→M ′
x

ψx−→M ′′
degψ(x).

For the construction of spectral sequences, we do not actually need the second
component of a graded homomorphism: all constructions also work if the degrees are
arbitrary equivalences of type I ' I, where I is an arbitrary set. This is the definition
used in the formalization. In this document we add this condition, so that our definition
is equivalent to the usual definition of graded morphism.
Definition 5.1.3. A spectral sequence consists of the following data.
• A sequence Er of abelian groups graded over Z × Z for r ≥ 2. Er is called the
r-page of the spectral sequence;

• differentials, which are graded morphisms dr : Er → Er such that dr ◦ dr = 0;

• isomorphisms αp,qr : Hp,q(Er) ' Ep,q
r+1 where Hp,q(Er) = ker(dp,qr)/ im(d[p,q]

r) is the
cohomology of the cochain complex determined by dr.

We use the notation for cohomologically indexed spectral sequences, since we will
construct spectral sequences in cohomology in this chapter. For the spectral sequences
in this chapter, the degree of dr will be (r, 1 − r), which signifies a cohomologically
indexed spectral sequence.

As mentioned before, we start counting the pages at 2, since the first page of the
spectral sequences we construct will not be homotopy invariant. In the formalization
we start counting at 0 for convenience. Also, in the formalization, we assume that the
grading of Er is over some set I instead of fixing it to Z× Z. It is not clear whether
this extra generality is useful. Instead of abelian groups, we could take objects of an
arbitrary abelian category, but for concreteness and to simplify things, we choose to
develop the theory only for abelian groups. In the formalization we developed the
theory for graded R-module for a (non-graded) ring R, but we have only applied it to
abelian groups so far.

Note that (Er, dr) determines Er+1 but not dr+1. Furthermore, Er is a subquotient
(subgroup of a quotient) of E2, so if Ep,q

2 is trivial, then Ep,q
r is trivial for all r.

In many cases, the spectral sequence will converge. That means that for a fixed
(p, q) : Z×Z the sequence Ep,q

r will be constant for r large enough. For example, suppose
that the degree of dr is (r, r − 1), and E2 is limited to the first quadrant. Now for any
(p, q) all differentials in or out of Ep,q

r will go out the first quadrant for sufficiently large
r. This means that the image of d[p,q]

r is trivial, and the kernel of dp,qr is the full group.
This implies that Ep,q

r+1 ' Ep,q
r , so the spectral sequence converges.

Whenever a spectral sequence converges, we write Ep,q
∞ for the eventual value of Ep,q

r

for r large enough. Now the power of spectral sequences is that there is often a relation
between Ep,q

2 and Ep,q
∞ . This relation does not specify Ep,q

∞ exactly, but specifies that
Ep,q
∞ build up some group Dn for the diagonals where p+ q = n.

105

Definition 5.1.4. Suppose given an abelian group D and a finite sequence of abelian
groups (En)n. We say that D is built from (En)n if there is a sequence of abelian groups
(Dn)n and short exact sequences

E0 →D → D1

...
Ek →Dk → Dk+1

Ek+1 →Dk+1 → Dk+2

...
Em →Dm → 0

The sequence (Dn)n is called a cofiltration of D, they are successive quotients of D.

Definition 5.1.5. Given a graded abelian group Dn and a bigraded abelian group
Cp,q, we write

Ep,q
2 = Cp,q ⇒ Dp+q

if there is a spectral sequence E such that

• Ep,q
2 = Cp,q;

• E converges to E∞;

• Dn is built from Ep,q
∞ where p+ q = n.

Remark 5.1.6. This definition implicitly requires that for p+ q = n only finitely many
Ep,q
∞ are nontrivial. This is sufficient for the spectral sequences we consider in this

chapter, but this condition can be relaxed in more general constructions of spectral
sequences.

5.2 Exact Couples
As we said before, the pair (Er, dr) in a spectral sequence specifies Er+1, but not dr+1.
If we have some more information about page r, then we can construct page r + 1 and
the extra information for page r+ 1. Now we can iterate this construction and obtain a
spectral sequence by forgetting about the extra information.

An exact couple exactly gives this extra information [Mas52]. From it, we can
compute the derived exact couple, which gives us the information next page of the
spectral sequence.

Definition 5.2.1. An exact couple is a pair (D,E) of Z × Z-graded abelian groups
with graded homomorphisms

106

D

E

D
i

jk

that is exact in all three vertices. This means that for all p : degj(x) =I y and
q : degk(y) = z that ker(kq) = im(jp), and similarly for the other two pairs of maps.

For an exact couple we will write ι :≡ degi and η :≡ degj and κ :≡ degk for the
degrees.

Lemma 5.2.2. Given an exact couple (D,E, i, j, k), we can define a derived exact
couple (D′, E ′, i′, j′, k′) where E ′ is the homology of d :≡ j ◦ k : E → E. The degrees of
the derived maps are degi′ ≡ ι, degk′ ≡ κ and degj′ ≡ η ◦ ι−1.

D′

E ′

D′
i′

j′k′

Proof. In this proof we will be explicit about the grading of D and E, which is a lot
trickier (at least in intensional type theory) than a proof without the grading. For a
proof that does not take the grading into account, see for example [Hat04, Lemma
1.1]. We define for x : Z× Z the graded abelian groups D′ and E ′ by D′x = im i[x] and
E ′x = ker dx/ im d[x]. Now i′x : D′x → D′ιx is defined as the composite

D′x ↪→ Dx
i−→ D′ιx.

This is sufficient to define i′ on all paths ιx = y as a function Dx → Dy.
We first define j′px : D′ιx → E ′ηx for the canonical path px : η(ι−1(ιx)) = ηx, which is
sufficient to define j′ in general. Note that D′ιx ≡ im i[ιx] ' im ix, so to define j′px it is
sufficient to define ̃ : Dx → E ′ηx such that (a : Dx)→ ix(a) = 0→ ̃(a) = 0. We define
̃(a) :≡ [jxa]. This is well-defined, since jxa ∈ ker dηx,24 because

dηx(jxa) = jκ(ηx)(kηx(jxa)) = jκ(ηx)0 = 0.

Now suppose that ix(a) = 0. Without loss of generality we may assume that x ≡ κy.
By exactness, this means that a ∈ im ky, so there is b : Ey such that ky(b) = a. Now
jxa = jx(kyb) ≡ dyb, so

jxa ∈ im dy ' im d[degd y] ≡ im d[ηx].

24We use the set-theoretical notation g ∈ H to say that a group element g : G is in subgroup H.
Formally, a subgroup H is an element of G → Prop (containing 0, and closed under addition and
negation) and g ∈ H is defined as H(g). Note that (g : G) × H(g) can be endowed with a group
structure, which is H viewed as a group.

107

This shows that ̃(a) = 0, completing the definition of j′. Note that j′px(ixa) = [jxa].
To define k′x : E ′x → D′κx, first note that if a ∈ ker dx, then kxa ∈ ker jκx = im i[κx] by
exactness. Now we need to show that if a ∈ im d[x], then kxa = 0. By assumption, we
have b : Eη−1κ−1x such that d[x](b) = a. Now we compute (using kxj[x] = 0)

kxa = kx(d[x]b) = kx(j[x](k[η−1x]b)) = 0.

This defines k.
Showing exactness of the derived couple involves some diagram chasing. To show

that j′i′ = 0 it is sufficient to show that for all a : D′ιx we have j′p(ιx)(i′ιxa) = 0. Since
a ∈ im i[ιx] ' ix we know that a = ixb for some b : Dx. We compute

j′p(ιx)(i′ιxa) = j′p(ιx)(iιxa) = [jιxa] = [jιx(ixb)] = [0] = 0.

To show that ker j′ ⊆ im i′, it is sufficient to show that ker j′p(κx) ⊆ im i′κx. Suppose
a : D′ι(κx) such that j′p(κx)(a) = 0, we know that a = iκx(b) for some b. Now

0 = j′p(κx)(a) = j′p(κx)(iκx(b)) = [jκx(b)],

which means that jκx(b) ∈ im d[κ(ηx)] ' im dx. This means that for some c : Ex we have
jκx(b) = dx(c) = jκx(kxc). This means that jκx(b− kxc) = 0, hence b− kxc ∈ ker jκx =
im i[κx]. This means that we can define b− kxc : D′κx. Now we compute

i′κx(b− kxc) = iκxb− iκx(kxc) = a− 0 = a,

which means a ∈ im i′κx, as desired.
We will omit the other cases, which are similar but easier.

Repeating the process of deriving exact couples, we get a sequence of exact couples
(Dr, Er, ir, jr, kr).25 We get a spectral sequence (Er, dr) where dr :≡ jr ◦ kr. Note that

degdr = degjr ◦ degkr = η ◦ ιr ◦ κ

Given some extra conditions on the exact couple, we can show that this spectral
sequence converges.
Definition 5.2.3. We call an exact couple bounded if for every x : Z× Z there is are
bounds Bx : N such that for all s ≥ Bx we have

Eι−s(x) = 0 and Dιs(x) = 0

Remark 5.2.4. The condition on D also shows that if you go sufficiently far in the
ι-direction, then E is trivial, since D j−→ E

k−→ D is exact and the occurrences of D will
be trivial. Converse, the condition on E shows that if you go sufficiently far in the ι−1

direction, i will be an equivalence, by the following exact sequence.

E
k−→ D

i−→ D
j−→ E

We call x : Z× Z a stable index whenever i[ι−sx] is surjective for all s ≥ 0.
25We will now put the grading of D, E and the maps as superscript, so that we can put the page as

subscript.

108

Given a bounded exact couple, the pages stabilize pointwise, which is the content of
the next lemma.

Lemma 5.2.5. For a bounded exact couple (D,E, i, j, k) we have for all sufficiently
large r that Dx

r+1 = Dx
r and Ex

r+1 = Ex
r .

Proof. Note that Ex
r+1 = ker dxr/ im d[x]

r . Since dr has degree η ◦ ιr ◦κ, and because Z×Z
is an abelian group, the degrees commute.26 The codomain of dxr is Eη(ιr(κx))

r = Eιr(η(κx))
r ,

which is trivial for sufficiently large r by Remark 5.2.4. Also, the domain of d[x]
r is

Eκ−1(ι−r(η−1x))
r = Eι−r(κ−1(η−1x))

r , which is trivial for sufficiently large r by the definition
of boundedness.

To show that D stabilizes, first note that if i[ι−1x]
r is surjective, then i[x]

r+1 is surjective.
The reason is that

ir+1 : Dι−1x
r+1

∼−→ Dι−1x
r → Dx

r+1

is now a composite of two surjective maps. This means that if the maps i[ι−sx]
r0 are

surjections for all s ≥ B + 1, then the maps i[ι
−sx]
r0+1 will be surjections for all s ≥ B. In

this case, for r ≥ r0 +B we have that i[x]
r is a surjection, hence that Dx

r+1 = Dx
r . Since

i
[ι−sx]
0 are surjections for sufficiently large s by Remark 5.2.4, we finish the proof.

By the proof of Lemma 5.2.5 we get explicit bounds BD
x and BE

x such that Dx
r = Dx

BDx

and Ex
r′ = Ex

BEx
for all r ≥ BD

x and r′ ≥ BE
x . We define Dx

∞ :≡ Dx
BDx

and Ex
∞ :≡ Ex

BEx
.

Both BD
x and BE

x will be the maximum of By for some sequence of indices y.

Theorem 5.2.6 (Convergence Theorem). Let (D,E, i, j, k) be a bounded exact couple
and let x be a stable index. Then Dκx is built from (Eιn(x)

∞)0≤n<Bκx.

Proof. Define Cn = Dκ(ιnx)
∞ . Let n : N be arbitrary, then for sufficiently large r the

following is a short exact sequence

0 jr−→ Eιnx
r

kr−→ Dκ(ιnx)
r

ir−→ Dι(κ(ιnx))
r

jr−→ 0.

This is the case, because for sufficiently large r the domain of j[ιnx]
r and the codomain

of jrι(κ(ιnx)) are contractible. Now (possibly by increasing r) these groups are in the
stable range, so we get a short exact sequence

0→ Eιnx
∞ → Cn → Cn+1 → 0.

Moreover, we have C0 ≡ Dκx
∞ = Dκx because x is a stable index. Lastly, for s ≥ Bκx

we know that Cs is trivial, because Dκ(ιn) is trivial by the condition of being bounded.
This shows that Dκx is built from (Eιn(x)

∞)0≤n<Bκx .
26In the formalization, we do not assume that the degrees are shifts by a group element, and we

explicitly assume that κι = ικ and ιη = ηι.

109

5.3 Spectra
We have not yet discussed how to get an exact couple in the first place. Recall that
from a pointed map we get a long exact sequence of homotopy groups. For a sequence
of pointed maps we get a sequence of long exact sequences. However, we do not want
to do this for pointed maps, but for maps between spectra.

You can think of a spectrum as a generalized space with negative dimensions.
Suppose we are given a pointed type X and a chosen delooping Y of X. That is, Y is
a pointed type such that ΩY '∗ X. Now the (n+ 1)-th homotopy group of Y is equal
to the n-th homotopy group of X. The 0-th homotopy group of Y is new information,
and we can think of it as the (−1)-th homotopy group of X. Spectra go further on this
idea: it is a pointed type with infinitely many deloopings.
Definition 5.3.1. A prespectrum is a pair consisting of a sequence of pointed types
Y : Z→ U∗ and a sequence of pointed maps e : (n : Z)→ Yn →∗ ΩYn+1. An Ω-spectrum
or spectrum is a prespectrum (Y, e) where en is a pointed equivalence for all n. We
will often just write Y for the pair (Y, e), and we denote the type of (pre)spectra by
Prespectrum and Spectrum.
A map between (pre)spectra (Y, e)→ (Y ′, e′) is a pair consisting of f : (n : Z)→ Yn →
Y ′n and p : (n : N)→ e′n ◦ fn ∼∗ Ωfn+1 ◦ en.
Remark 5.3.2. Usually a (pre)spectrum is indexed over N and not over Z. We index it
over Z so that we do not have to do a case split in — for example — the definition of
homotopy group of a spectrum, see Definition 5.3.4.
Example 5.3.3.
• If A is an abelian group, we have HA : Spectrum where (HA)n = K(A, n) for
n ≥ 0 and (HA)n = 1 for n < 0.

• Given Y : Spectrum and k : Z, we can define two new spectra ΩkY and ΣkY :
Spectrum with

(ΩkY)n :≡ Yn−k (ΣkY)n :≡ Yn+k

• Given a spectrum map f : X → Y , we have a spectrum fibf : Spectrum with
(fibf)n :≡ fibfn . Furthermore we have a spectrum map p1 : fibf → X. This follows
from the following two facts about fibers (which we will not prove here).

(i) Given a pointed map g : A→ B, there is a pointed equivalence e1 : Ω fibg '∗
with a pointed homotopy

Ω fibg

A

fibΩg

Ωp1

p1

e1

110

(ii) fib is a functor from pointed maps to pointed types and p1 is a natural
transformation. This means the following. Suppose we are given a square of
pointed maps and a homotopy filling the following square.

A A′

B B′

f

h
g

h′

Then there is a pointed map e2 : fibf → fibg, functorial in (h, h′). In particular
this means that if h and h′ are equivalences, then e2 is. The naturality of p1
means that we have the following pointed homotopy.

fibf A

fibg B

p1

e2
p1

h

Given an Ω-spectrum Y and n : Z, we define can the n-th homotopy group of Y to
be

πn(Y) := πn+k(Yk) : AbGroup
for any k such that n+ k ≥ 0. This is independent of k, because

πn+(k+1)(Yk+1) ' πn+k(ΩYk+1) ' πn+k(Yk).

For concreteness, in the following definition we pick k = 2− n. We make this choice so
that πn(Y) directly carries the structure of an abelian group.

The homotopy group of a prespectrum Y is a bit different, since πn+k(Yk) is not
independent of k. In this case, it is the colimit as k →∞. We make the substitution
` = n+ k − 2 to make the index of the homotopy group always positive.

Definition 5.3.4. Given an Ω-spectrum Y and n : Z, we define the n-th homotopy
group of Y as

πn(Y) :≡ π2(Y2−n).
For a prespectrum Y we define

πn(Y) :≡ colim`→∞(π`+2(Y`+2−n)).

Note that the homotopy group of a prespectrum is a set by Corollary 3.3.30(i), and
the colimit can be equipped with a group structure, making πn(Y) an abelian group for
a prespectrum Y .

The long exact sequence of homotopy groups for pointed types, constructed in
Section 4.1.1, induces one on spectra.

111

Theorem 5.3.5. Given a spectrum map f : X → Y with fiber F , we get the following
long exact sequence of homotopy groups indexed over Z× fin3.

πk(Y)πk(X)πk(F)

πk+1(Y)πk+1(X)πk+1(F)

πk+2(Y)πk+2(X)πk+2(F)

...

...

πk(f)

πk(p1)

πk+1(f)

πk+1(p1)

πk+2(f)

πk+2(p1)

We will use the following lemma. Recall the definition of successor structure from
Definition 4.1.2.

Lemma 5.3.6. Suppose given two successor structures N and M , and for each n : N
let Gn be a long exact sequence index by M . Let m : M and k ≥ 2. Suppose that

• for all n : N , Gn+1
m ' Gn

m+k and Gn+1
m+1 ' Gn

m+k+1

• for all n : N the following diagram commutes.

Gn
m+kGn

m+k+1

Gn+1
mGn+1

m+1

∼∼

Then there is a long exact sequence H : N × fink−1 → Set∗ with H(n,`) :≡ Gn
m+`

For k = 3 the hypotheses can be represented in the diagram below.

112

Gn
mGn

m+1Gn
m+2Gn

m+3Gn
m+4· · ·

Gn+1
mGn+1

m+1Gn+1
m+2Gn+1

m+3Gn+1
m+4· · ·

Gn+2
m

Gn+2
m+1Gn+2

m+2Gn+2
m+3Gn+2

m+4· · ·

...

...

∼∼

∼
∼

Proof (Lemma 5.3.6). The map H(n,`+1) → H(n,`) is defined to be the given map
Gn
m+`+1 → Gn

m+`. The map H(n+1,0) → H(n,k−1) is defined to be the composite

Gn+1
m

∼−→ Gn
m+k → Gn

m+k−1.

It is easy to check that this is a long exact sequence from the conditions.

Proof (Theorem 5.3.5). For each n : Z we get a long exact sequence of homotopy
groups for f2−n by Theorem 4.1.1. We splice them together using Lemma 5.3.6 with
N = (Z, λn. n+ 1) and M = (N, λn. n+ 1) and with k = 3 and m = (2, 0). This means
that the resulting sequence is

π2(Y2−n)π2(X2−n)π2(F2−n)

π2(Y2−(n+1))π2(X2−(n+1))π2(F2−(n+1))

π2(Y2−(n+2))π2(X2−(n+2))π2(F2−(n+2))

...

...

π2(f)

π2(p1)

π2(f)

π2(p1)

π2(δ)

π2(f)

π2(p1)

We still need to check the conditions for the Lemma. The first isomorphism is given by
the following composition

π2(Y2−(n+1)) ' π2(ΩY2−(n+1)+1) ' π2(ΩY2−n) ≡ π3(Y2−n),

113

The second isomorphism is the same, replacing Y by X. The square commutes because
the two isomorphisms are both natural in Y .

Suppose given a sequence of spectra A and a sequence of spectrum maps

· · · → As
fs−→ As−1

fs−1−−→ As−2 → · · ·

Let Bs :≡ fibfs . Then Dn,s :≡ πn(As) and En,s :≡ πn(Bs) are graded abelian groups
and the maps of the long exact sequences become graded homomorphisms. This gives
exactly the data of an exact couple.

For cohomology, it is customary to reindex the pages of the spectral sequence with
the base change (p, q) = (s− n,−s), or equivalently (n, s) = (−(p+ q),−q).

Theorem 5.3.7. Given a sequence of spectra

· · · → As
fs−→ As−1

fs−1−−→ As−2 → · · ·

with fibers Bs :≡ fibfs, suppose for all n there is a βn such that for all s ≤ βn we have
πn(As) = 0 and suppose that for all n there is a γn such that for all s > γn the map
πn(fs) is an isomorphism. Then the exact couple constructed from this sequence is
bounded. This spectral sequence gives

Ep,q
2 = π−(p+q)(B−q)⇒ π−(p+q)(Aγ−(p+q)).

Proof. Note that for this spectral sequence we have ι(n, s) ≡ degi(n, s) ≡ (n, s− 1) and
κ = id. This means that we need to show that for all (n, s) : Z× Z there is a bound
β′n,s such that for all t ≥ β′n,s we have

En,s+t ≡ πn(Bs+t) = 0 and Dn,s−t ≡ πn(As−t) = 0.

Note that the right equation holds if s− t ≤ βn, i.e. if t ≥ s− βn. By the long exact
sequence of homotopy groups we know that if fs : As → As−1 induces an equivalence
on both πn and πn+1, then πn(Bs+t) = 0. So if we define

β′n,s :≡ max(s− βn, γn − s, γn+1 − s),

we know that the exact couple is bounded with bound β′.
Now note that x = (n, γn) is a stable index, because πn(fγn+t) is surjective for all

t ≥ 0. Therefore, by Theorem 5.2.6 we know that Dn,γn is built from (En,γn−s
∞)0≤s≤β′n,γn .

If we apply the reindexing (p, q) = (s− n,−s), we get the desired relation

Ep,q
2 = π−(p+q)(B−q)⇒ π−(p+q)(Aγ−(p+q)).

114

5.4 Spectral Sequences for Cohomology
Cohomology groups are algebraic invariants of types. They are often easier to compute
than homotopy groups, but they can also be used to compute certain homotopy groups,
often via the universal coefficient theorem and the Hurewicz theorem (neither of which
have been proven in HoTT yet).

The intermediate steps of most classical constructions of the singular cohomology
are not homotopy invariant. Cellular cohomology is only defined for cell complexes and
not for arbitrary spaces, but it can be defined in HoTT [BH18]. Singular cohomology is
defined as a quotient of a large abelian group that is not homotopy invariant, which
makes this definition impossible in HoTT. However, classically, Eilenberg-MacLane
spaces represent cohomology, and we can use this fact as the definition of cohomology
in HoTT [Cav15].

Normally cohomology groups have coefficients in an abelian group, but more generally
they can have coefficients in a spectrum, or even a family of spectra. In this section we
will define cohomology groups and construct the Atiyah-Hirzebruch spectral sequence
for cohomology. This is a generalization of the spectral sequence defined in [AH61] in
the special case of topological K-theory. From the Atiyah-Hirzebruch spectral sequence
we can construct the Serre spectral sequence, sometimes also called the Leray-Serre
spectral sequence.
Definition 5.4.1. Suppose given X : U∗ and Y : X → Spectrum. We define (x :
X)→∗ Y x : Spectrum such that ((x : X)→∗ Y x)n :≡ (x : X)→∗ (Y x)n. If Y does not
depend on X, we write X →∗ Y .

For an unpointed type X : U and Y : X → Spectrum, we similarly define (x : X)→
Y x : Spectrum such that ((x : X)→ Y x)n :≡ (x : X)→ (Y x)n (this has as basepoint
the constant map into the basepoint of (Y x)n), and abbreviate this to X → Y if Y
does not depend on X.

These spectra are well-defined, since we have

Ω((a : A)→∗ (Ba)) ' (a : A)→∗ Ω(Ba)

and
Ω((a : A)→ (Ba)) ' (a : A)→ Ω(Ba).

Moreover, they satisfy the expected properties of dependent product. In particular, if
X : U∗ and Y, Z : X → Spectrum and moreover if we have a fiberwise spectrum map
f : (x : X)→ Y x→ Zx, this induces a map on the dependent products

Πf : ((x : X)→ Y x)→ ((x : X)→ Zx).

Definition 5.4.2. Suppose given X : U∗, Y : X → Spectrum and n : Z. We define the
geneneralized, parametrized, reduced cohomology of X with coefficients in Y as27

H̃n(X;λx. Y x) :≡ π−n((x : X)→∗ Y x) ' ‖(x : X)→∗ (Y x)n‖0.

27We will write λx. Y x in η-expanded form to remember that this is parametrized cohomology.

115

If Y does not depend on X, we have the unparametrized cohomology as

H̃n(X;Y) :≡ π−n(X →∗ Y x) ' ‖X →∗ Yn‖0.

If X : U is an arbitrary type, we define the unreduced cohomology as

Hn(X;λx. Y x) :≡ π−n((x : X)→ Y x) ' ‖(x : X)→ (Y x)n‖0 ' H̃n(X+;λx. Y+x).

Here X+ :≡ X + 1 : U∗ and Y+ : X+ → Spectrum is defined as Y+(inl(x)) :≡ Y x and
Y+(inr(?)) :≡ 1. If X : U∗ and A : X → AbGroup, we define the ordinary cohomology as

H̃n(X;λx.Ax) :≡ H̃n(X;λx.H(Ax).

We can combine the attributes ordinary/generalized, parametrized/unparametrized and
reduced/unreduced for cohomology however we want, leading to eight different notions.

We define
H̃n(X) :≡ H̃n(X;Z)

and similarly for unreduced cohomology.

Unparametrized cohomology satisfies the Eilenberg-Steenrod axioms for cohomology.
Although we will not use this fact in this chapter, for completeness we will state it here.

To give the definition we need to introduce one more concept.

Definition 5.4.3. A type X has n-choice for n ≥ −2 if for all P : X → U the canonical
map

‖(x : X)→ Px‖n → ((x : X)→ ‖Px‖n)

is an equivalence.

Note that in particular fink has n-choice for all k, n.

Definition 5.4.4. A unparametrized reduced cohomology theory is a contravariant
functor Ẽn : U∗ → AbGroup for every n : Z satisfying the Eilenberg-Steenrod axioms.
Functoriality means that for a pointed map f : X →∗ Y there is a map Ẽn(f) : Ẽn(Y)→
Ẽn(X) such that Ẽ(id) ∼∗ id and Ẽ(g ◦ f) ∼∗ Ẽ(f) ◦ Ẽg. The Eilenberg-Steenrod
axioms are

• (Suspension axiom) There is a natural transformation Ẽn+1(ΣX) ' Ẽn(X).

• (Exactness) Given a cofiber sequence X f−→ Y
g−→ Z, the sequence

Ẽn(Z) Ẽn(g)−−−→ ẼnY
Ẽn(f)−−−→ Ẽn(X)

is exact at Ẽn(Y).

116

• (Additivity) Suppose given a type I satisfying 0-choice and X : I → U∗. Then
the canonical homomorphism

Ẽn
(∨

i

Xi
)
→ ((i : I)→ Ẽn(Xi))

is an isomorphism.

A cohomology theory is called ordinary if it also satisfies the following axiom.

• (Dimension) If n 6= 0, then Ẽn(S0) is trivial.

The following theorem has been proven in [Cav15]. We will not repeat the proof
here.

Theorem 5.4.5. Unparametrized generalized reduced cohomology is a cohomology
theory. Ordinary cohomology also satisfies the dimension axiom.

We will not use Theorem 5.4.5 in the remainder of this chapter.
To construct the Atiyah-Hirzebruch spectral sequence, we need the Postnikov tower

of a spectrum.

Definition 5.4.6. We say that for k : Z a spectrum Y is k-truncated if Yn is (k + n)-
truncated for all n : Z (using the convention that any type is `-truncated for ` ≤ −2).

The k-truncation of a spectrum Y , written ‖Y ‖k, is defined as (‖Y ‖k)n :≡ ‖Yn‖k+n
where we define ‖A‖` = 1 for ` ≤ −2.

Lemma 5.4.7. The usual properties of truncations also hold for spectra. In particular
we will use that there is a spectrum map |−|k : Y → ‖Y ‖k and that if Z is k-truncated,
then a spectrum map f : Y → Z induces a spectrum map ‖Y ‖k → Z.

Proof. The underlying maps are the corresponding facts for pointed maps. The fact
that these maps are spectrum maps comes from the fact that these operations commute
with taking loop spaces. We omit the details here.

Lemma 5.4.8 (Postnikov Tower for spectra). For s : Z and Y : Spectrum there is a
spectrum map f s : ‖Y ‖s → ‖Y ‖s−1 that levelwise has fiber Σn(Hπs(Y)). That is,

(fibfs)k '∗ (Σs(Hπs(Y)))k.

We should be able to extend this equivalence to a spectrum equivalence, but we do
not need this strengthening for the remainder of the proof.

Proof. Note that ‖Y ‖s−1 is (s − 1)-truncated, and therefore s-truncated. By the
elimination of spectrum truncation in Lemma 5.4.7 we get a spectrum map f s : ‖Y ‖s →
‖Y ‖s−1. For the levelwise pointed equivalence, we need to show that

fibfs
k
'∗ K(πs(Y), s+ k)

117

To show this, by Theorem 4.2.4 we need to show that fibfs
k
is (s + k)-truncated,

(s+ k − 1)-connected and πs+k(fibfs
k
) ' πs(Y).

Note that f sk : ‖Yk‖s+k → ‖Yk‖s+k−1, so the truncatedness follows because the
domain and codomain of f sk are both (s + k)-truncated. For the connectedness, we
know that |−|s+k−1 : Yk → ‖Yk‖s+k−1 is (s + k − 1)-connected, and the elimination
principle for truncations preserve connectedness, therefore f sk is (s+ k − 1)-connected.
To compute the homotopy group, we look at a piece of the long exact sequence for
homotopy groups for f sk at level s+ k and s+ k + 1.

0πs+k(Y)πs+k(fibfs
k
)

00•

Since we have the exact sequence 0 → πs+k(fibfs
k
) → πs+k(Y) → 0, the middle map

must be an equivalence, which finishes the proof.

For a spectrum Y , we get the Postnikov tower

· → ‖Y ‖s → ‖Y ‖s−1 → ‖Y ‖s−2 → · · ·

This satisfies the conditions of Theorem 5.3.7, but unfortunately the spectral sequence
constructed from this is trivial. We need another ingredient to get an interesting spectral
sequence.

Lemma 5.4.9. Suppose given X : U∗ and two family of spectra Y, Z : X → Spectrum.
A family of spectrum maps

f : (x : X)→ Y x→ Zx

induces a spectrum map between the spectra of sections for Y and Z:

f ◦ (−) : ((x : X)→ Y x)→ ((x : X)→ Zx).

Moreover, the fiber of this spectrum map is levelwise (x : X)→ fibfx, that is

(fibf◦(−))n '∗ ((x : X)→ fibfx)n.

The levelwise equivalence should be extendable to a spectrum equivalence, but we
do not need that in this chapter.

Proof. We define (see Lemma 2.2.7.(vi))

(f ◦ (−))n :≡ fn ◦ (−) : ((x : X)→∗ (Y x)n)→∗ ((x : X)→∗ (Zx)n).

This is a spectrum map because of the pointed function extensionality mentioned in
Lemma 2.2.7.(viii).

By Lemma 2.2.7.(vi) the fiber of this map is levelwise (x : X)→ fibfx.

118

We now have all the ingredients of the Atiyah-Hirzebruch spectral sequence.

Theorem 5.4.10 (Atiyah-Hirzebruch spectral sequence for reduced cohomology). If
X : U∗ is a pointed type and Y : X → k -Spectrum is a family of k-truncated spectra
over X, then we get a spectral sequence with

Ep,q
2 = H̃p(X;λx. π−q(Y x))⇒ H̃p+q(X;λx. Y x).

Proof. Define As :≡ ((x : X)→∗ ‖Y x‖s) and consider the sequence of spectra

· · · → As
fs−→ As−1

fs−1−−→ As−2 → · · ·

where fs is the map induced by the Postnikov tower. By Lemma 5.4.9 and Lemma 5.4.8
fs levelwise has fiber Bs :≡ (x : X)→∗ ΣsHπs(Y x). We want to apply Theorem 5.3.7,
so we need to check the conditions of that theorem. For n : Z we define βn :≡ n− 1.
Notice that As is s-truncated, and thus for s ≤ Bn we have

πn(As) :≡ πn((x : X)→∗ ‖Y x‖s) = 0.

For n : Z define γn :≡ k. Then for s ≥ γn the spectrum As is levelwise equivalent to
(x : X)→∗ Y x, so for s > γn the map As → As−1 becomes levelwise the identity map
under that equivalence. This means that fs is an equivalence, so in particular πn(fs) is
an isomorphism. By Theorem 5.3.7 we now get the spectral sequence

Ep,q
2 = π−(p+q)(B−q)⇒ π−(p+q)(Ak).

We now compute

π−(p+q)(B−q) ' π−(p+q)((x : X)→∗ Σ−qHπ−q(Y x))
' H̃p+q(X;λx.Σ−qHπ−q(Y x))
' H̃p(X;λx. π−q(Y x))

and

π−(p+q)(Ak) ' π−(p+q)((x : X)→∗ ‖Y x‖k)
' π−(p+q)((x : X)→∗ Y x)
' H̃p+q(X;λx. Y x).

We also have the corresponding spectral sequence for unreduced cohomology.

Corollary 5.4.11 (Atiyah-Hirzebruch spectral sequence for unreduced cohomology).
If X : U is any type and Y : X → k -Spectrum is a family of k-truncated spectra over
X, then

Ep,q
2 = Hp(X;λx. π−q(Y x))⇒ Hp+q(X;λx. Y x).

119

Proof. Apply Theorem 5.4.10 to X+ and Y+ (defined in Definition 5.4.2).

From the Atiyah-Hirzebruch spectral sequence we can construct the Serre spectral
sequence.

Theorem 5.4.12 (Serre spectral sequence for cohomology). Suppose given B : U , a
family of types F : B → U and a spectrum Y : Spectrum that is k-truncated. Then

Ep,q
2 = Hp(B;λb.Hq(Fb;Y))⇒ Hp+q((b : B)× Fb;Y).

Proof. Apply Corollary 5.4.11 to the type B and and the family of spectra λb. Fb→ Y ,
which is k-truncated. Then we get

Ep,q
2 = Hp(B;λb. π−q(Fb→ Y))⇒ Hp+q(B;λb. Fb→ Y).

Note that π−q(Fb→ Y) ' Hq(Fb;Y), so the second page is the desired group, and for
the ∞-page we compute

Hp+q(B;λb. Fb→ Y) = π−(p+q)((b : B)→ Fb→ Y)
= π−(p+q)(((b : B)× Fb)→ Y)
= Hp+q((b : B)× Fb;Y).

Equivalent to the data given in Theorem 5.4.12 is a map X → B and a k-truncated
spectrum Y . In that case we get the spectral sequence

Ep,q
2 = Hp(B;λb.Hq(fibf (b);Y))⇒ Hp+q(X;Y).

Analogous to the proof of Theorem 5.4.12 we also have a version when Y is parametrized
over B. In that case we get

Ep,q
2 = Hp(B;λb.Hq(fibf (b);Y))⇒ Hp+q(X;λx. Y (fx)).

We get a useful special case of the Serre spectral sequence when the family
λb.Hq(Fb;Y) is constant. This happens in particular when B is simply connected.

Corollary 5.4.13. Suppose given a simply connected pointed type B : U∗, a family of
types F : B → U and a spectrum Y : Spectrum that is k-truncated. Then

Ep,q
2 = Hp(B;Hq(Fb0;Y))⇒ Hp+q((b : B)× Fb;Y).

Proof. Apply Theorem 5.4.12. The family λb.Hq(Fb;Y) : B → AbGroup is a family of
sets. Since B is simply connected, every such family is constant, so all fibers are equal
to Hq(Fb0;Y).

120

In the spectral sequences constructed we assumed that the spectra were truncated.
The reason we need this assumption is that the notion of convergence we used for
spectral sequence is the eventual value of the sequence. If we had a stronger notion of
convergence, we might be able to relax the truncatedness condition. However, there is
another reason why the spectral sequence can become (pointwise) eventually constant.
Instead of assuming that the spectra are truncated, we can pose a restriction on the
base space.

Definition 5.4.14. We say that X : U∗ satisfies weak pointed choice if there is a
natural number n such that for all families Y : X → U∗ of n-connected types the type
of dependent pointed maps (x : X)→∗ Y (x) is 0-connected.

Example 5.4.15.

• The spheres Sn satisfy weak pointed choice. The proof is easy for n = 0, which
we will skip. For Sn+1, note that

((x : Sn+1)→∗ Y (x)) ' ? =ΩnY (−)
surf ?

where surf : Ωn+1Sn+1 is the surface of Sn+1 and ? : ΩnY (base) is the basepoint.
Now if Y is a family of (n + 1)-connected types, then ΩnY (−) is a family of
1-connected types, and a pathover in that family is 0-connected, as desired.

• Suppose I is a type that satisfies 0-choice (see Definition 5.4.3). Then the collection
of types that satisfy weak pointed choice are closed under I-indexed wedges. This
follows from the dependent universal property of the wedge.(∨

i:I
Xi →∗ P (x)

)
' (i : I)→ (x : Xi)→∗ P (ini(x)).

Theorem 5.4.16. If X : U∗ satisfies weak pointed choice and Y : X → Spectrum is
any family of spectra, we get the spectral sequence in Theorem 5.4.10:

Ep,q
2 = H̃p(X;λx. π−q(Y x))⇒ H̃p+q(X;λx. Y x).

Proof. The proof is the mostly the same as for Theorem 5.4.10. The only difference is
in showing that the sequence stabilizes on homotopy groups when s is large. Suppose
X satisfies choice with respect to k-connected families. For n : Z define γn :≡ n + k.
Then for s > γn we know that the fiber of fs has as k-th homotopy group

π`(Bs) = π0(Ω`Bs) = ‖(x : X)→∗ K(πs(Y x), s− `)‖0.

This is a product into a family of (s − ` − 1)-connected types, which for ` = n and
` = n− 1 is a family of at least k-connected types. By the weak choice principle on X
this type is 0-connected, so these homotopy groups are trivial. Now by the long exact
sequence of homotopy groups for fs the map πn(fs) is an isomorphism, as required.

121

5.5 Spectral Sequences for Homology
Homology theory has not been developed as much as cohomology theory in HoTT. It is
known that the homology given by a prespectrum forms a homology theory [Gra17].
Lemma 18 in that paper was not proven carefully, but it follows from the results in
Section 4.3.

In this section, we sketch the construction of the Atiyah-Hirzebruch and Serre
spectral sequences for homology [Ser51]. The results in the section are not proven in
HoTT, and are therefore stated as remarks without proof.

If X : U∗ and Y : Prespectrum, we can define X ∧ Y : Prespectrum with

(X ∧ Y)n :≡ X ∧ Yn.

To show that it is a prespectrum, recall the adjunction between the suspension and the
loop. For pointed types X and Y we have a natural equivalence

(ΣX →∗ Y) ' (X →∗ ΣY).

Therefore, to characterize a prespectrum, it is sufficient to give a map fn : ΣYn → Yn+1.
This is given for the smash prespectrum as the composite

Σ(X ∧ Yn) ∼−→ X ∧ ΣYn
X∧fn−−−→ X ∧ Yn+1.

We can define reduced homology

H̃n(X;Y) :≡ πn(X ∧ Y).

For the construction of parametrized homology we need to generalize the smash product.

Definition 5.5.1. Given A : U∗ and B : A→ U∗, we define the parametrized smash

(x : A) ∧B(x)

to be the pushout

A+B 2

(x : A)×B(x) (x : A) ∧B(x)
•
a0

A

B
b0

B(a0)

Remark 5.5.2. The strategy for constructing the spectral sequences for homology is as
follows.

122

• The parametrized smash is (should be) left adjoint to pointed dependent maps.
That means that there is a natural equivalence

(((x : A) ∧Bx)→∗ C) ' (x : A)→∗ Bx→∗ C.

• From this we get (natural) equivalences

Σ((x : A) ∧Bx) ' ((x : A) ∧ Σ(Bx));

((x : A) ∧Bx) ∧ C ' (x : A) ∧ (Bx ∧ C);
(x : A+) ∧B+x) ∧ C ' (x : A)×Bx.

The proofs of these properties should be similar to the proofs in Section 4.3.4.

• Therefore, for X : U∗ and Y : X → Prespectrum we have a prespectrum (x :
X) ∧ Y x. The maps are given by the above equivalence.

• We can now define parametrized (reduced, generalized) homology as

Hn(X;λx. Y x) :≡ πn((x : X) ∧ Y x).

We can define unreduced homology by adding a point to X, in the same way as
for cohomology.

• As before, given X : U∗ and Y : X → Spectrum, we can again form the Postnikov
tower of Y x for any x : X. We now want to take the parametrized smash over X,
but there is no hope to compute the fiber of this spectrum.

• However, we should be able to do it when we work in spectra. The forgetful
functor Spectrum → Prespectrum has a left adjoint, called spectrification. The
spectrification LY of a prespectrum Y can be constructed either as a higher
inductive family of types [S+11] or as the colimit

(LY)n :≡ colimk→∞ΩkYn+k.

For neither definition a careful proof of the adjunction has been given.

• We can now define the parametrized smash of spectra as the spectrification of
the parametrized smash for prespectra. This should preserve cofiber sequences of
spectra, in the sense that if

Ax→ Bx→ Cx

is a family of cofiber sequences of spectra indexed by x : U∗, the following sequence
is also a cofiber sequence of spectra

((x : X) ∧ Ax)→ ((x : X) ∧Bx)→ ((x : X) ∧ Cx)

123

• A sequence of spectra should be a fiber sequence of spectra if and only if it is a
cofiber sequence of spectra. This is true classically, and should also hold in HoTT.

• Assuming that all the above properties have been proven, we can get the Atiyah-
Hirzebruch spectral sequence for reduced homology. Suppose given a pointed type
X and Y : X → Spectrum a family of spectra. We can apply Theorem 5.3.7 to
the iterated fiber sequence

((x : X) ∧ ΣnH)→ ((x : X) ∧ ‖Y x‖s)→ ((x : X) ∧ ‖Y x‖s−1).

To satisfy the conditions for that theorem we need to assume some conditions
on X and/or Y . In particular it is sufficient if Y is a family of truncated and
connected spectra, but weaker conditions might also suffice. Using homological
indexing (where p and q have their sign reversed) we get

E2
p,q = πp+q(Bq)⇒ πp+q(Aγp+q).

Now we compute

πp+q(Bq) ' πp+q((x : X) ∧ ΣqHπq(Y x))
' H̃p+q(X;λx.ΣqHπq(Y x))
' H̃p(X;λx. πq(Y x))

and

πp+q(Ak) ' πp+q((x : X) ∧ ‖Y x‖k)
' πp+q((x : X)→ Y x)
' H̃p+q(X;λx. Y x).

This gives the desired spectral sequence:

E2
p,q = H̃p(X;λx. πq(Y x))⇒ H̃p+q(X;λx. Y x).

• We get the Atiyah-Hirzebruch spectral sequence for unreduced homology in the
same way as for cohomology, by applying the version for reduced homology to X+
and Y+.

• We get the Serre spectral sequence for homology also in the same way. Suppose
given B : U and F : B → U and a truncated spectrum Y . Applying the Atiyah-
Hirzebruch spectral sequence for unreduced homology to the type B and the
spectrum λb. Fb ∧ Y we get

E2
p,q = Hp(B;λb. πq(Fb ∧ Y))⇒ Hp+q(B;λb. Fb ∧ Y).

124

The second page is what we want. For the ∞-page we compute

Hp+q(B;λb. Fb→ Y) = πp+q((b : B+) ∧ (F+b ∧ Y))
= πp+q(((b : B+) ∧ F+b) ∧ Y)
= πp+q(((b : B)× Fb) ∧ Y)
= Hp+q((b : B)× Fb;Y).

This gives the Serre spectral sequence for homology:

E2
p,q = Hp(B;λb.Hq(Fb;Y))⇒ Hp+q((b : B)× Fb;Y).

Remark 5.5.3. We can also use the parametrized smash to get a spectral sequence for
reduced homology and reduced cohomology. Suppose given B : U∗ and a family of
types F : B → U∗ and a spectrum Y : Spectrum that is k-truncated. Then we get the
following two spectral sequences

Ep,q
2 = H̃p(B;λb. H̃q(Fb;Y))⇒ H̃p+q((b : B) ∧ Fb;Y);

E2
p,q = H̃p(B;λb. H̃q(Fb;Y))⇒ H̃p+q((b : B) ∧ Fb;Y).

For homology, the proof is the same as above. For cohomology, we apply the Atiyah-
Hirzebruch spectral sequence for reduced cohomology to the pointed type B and the
family of spectra λb. Fb→∗ Y . We get the desired spectral sequence by the adjunction
between parametrized smash and dependent pointed maps.

These spectral sequences generalize Theorem 5.4.12 and the corresponding version
for homology: we get those versions back when we add a point to B and F . Whether
this extra generality is useful is unknown.

5.6 Applications of Spectral Sequences
Classically, there are many applications of the Serre and Atiyah-Hirzebruch spectral
sequences. Here we will list some of these applications, and give thoughts on how to
translate these results in HoTT. The results in this section have not been formalized.
Before we start, we compute the cohomology of spheres.

Lemma 5.6.1. If n ≥ 1, then

Hk(Sn;A) =

A if k ∈ {0, n}
0 otherwise.

(5.6.2)

This is a special case of the universal coefficient theorem, which we do not have
yet in HoTT. However, we can prove these equalities directly from the definition of
cohomology.

125

Proof. For k = 0 we have

H0(Sn;A) = ‖Sn → A‖0 = (Sn → A) = A,

where we use that Sn is 0-connected. For k 6= 0 we have

Hk(Sn;A) = H̃k(Sn + 1;A) = H̃k(Sn;A) = ‖Sn →∗ K(A, k)‖0 = ‖ΩnK(A, k)‖0.

Now for n < k the type ΩnK(A, k) is 0-connected, hence the result is contractible. For
n = k the result is A, and for n > k the type ΩnK(A, k) itself is contractible.

The first application is the path fibration. Suppose given a simply connected pointed
type B we have a map 1→ B that has fiber ΩB.28 In other words, we have the fiber
sequence

ΩB → 1→ B.

Now the Serre spectral sequence for cohomology gives (say, with integer coefficients)

Ep,q
2 = Hp(B;Hq(ΩB))⇒ Hp+q(1).

Note that the ∞-page vanishes, except when p+ q = 0, when the coefficient is Z. For
ordinary cohomology Hn is trivial for n < 0, which means that the second page is only
nontrivial in the first quadrant of the plane, hence this is true for all pages, including
the ∞-page. Therefore, the ∞-page has one group Z at the origin, and trivial groups
everywhere else, as shown in Figure 5.2.

p

q

0

1

2

0 1 2 3 4

Z

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 5.2: Ep,q
∞ for the path fibration.

This gives a relation between the cohomology of B and the cohomology of ΩB. If
we know the cohomology for one of the spaces one of them, then we can sometimes
compute the cohomology from the other using this. Using the Serre spectral sequence for
homology, we have the same relationship between the homology of B and the homology
of ΩB. The computations in the next example will work exactly the same for homology.

28It is called the path fibration because classically to get a Serre fibration we need to take the path
space PB instead of 1.

126

Example 5.6.3. As an example, we can compute the cohomology groups of B = K(Z, 2)
(which is the complex projective space CP∞). Its loop space is ΩK(Z, 2) = K(Z, 1) = S1,
and by Lemma 5.6.1 we have

Hn(S1) =

Z if n = 0, 1
0 otherwise.

The resulting second page of the spectral sequence is shown in Figure 5.3, all other
groups on the second page are trivial. Note that the shown differentials are the only

p

q

0

1

0 1 2 3 4

H0(B)

H0(B)

H1(B)

H1(B)

H2(B)

H2(B)

H3(B)

H3(B)

H4(B)

H4(B)

Figure 5.3: Ep,q
2 for the path fibration of K(Z, 2).

nontrivial differentials on the second page, and all differentials on all later pages are
also trivial. This means that E3 = E∞, depicted in Figure 5.2. Note that there are
no nontrivial differentials going in or out of the H0(B) and H1(B) in the bottom line.
This means that

H0(B) = E0,0
∞ = Z

and
H1(B) = E1,0

∞ .

All other groups displayed on the second page vanish on the ∞-page. Therefore, all
shown differentials must be isomorphisms. This means that Hn+2(B) = Hn(B), which
shows that Hn(B) is Z for even n and 0 for odd n.

Another simple application of the Serre spectral sequence is to compute the homology
and cohomology groups of ΩSn, given in [Hat04, Example 1.5]. In this case, we know
the (co)homology of the base space Sn, and from it we can deduce the (co)homology of
the loop space ΩSn. We will do the computation here for cohomology.
Example 5.6.4. If we take the Serre spectral sequence for the path fibration of B = Sn

for n ≥ 2, then the second page has entries

Ep,q
2 = Hp(Sn;Hq(ΩSn)) =

Hq(ΩSn) if p = 0, n
0 otherwise.

127

p

q

0 n

0

n− 1

2(n− 1)

3(n− 1)

H0(ΩSn)

Hn−1(ΩSn)

H2(n−1)(ΩSn)

H3(n−1)(ΩSn)

H0(ΩSn)

Hn−1(ΩSn)

H2(n−1)(ΩSn)

H3(n−1)(ΩSn)

Figure 5.4: Ep,q
n for the path fibration of Sn.

using Lemma 5.6.1. Therefore, the only nontrivial groups are in the columns p = 0 and
p = n. This means that by looking at the degree of the differentials, the only nonzero
differentials can occur in page n, as shown in Figure 5.4. Because all later differentials
are trivial, En+1 = E∞, which is depicted in Figure 5.2. This means that all differentials
on page n from the p = 0 column to the p = n column must be isomorphisms, except
for the differential from (0, 0) to (n,−(n− 1)). Hence we can conclude by induction
that

Hk(ΩSn)

Z if n− 1 | k
0 otherwise.

(5.6.5)

As a generalization of Example 5.6.3, we can construct the Gysin sequence from
the Serre spectral sequence [HP13, Theorem 3.3.3]. The Gysin sequence for homology
states that if f : E → B is a pointed map with fiber Sn−1 for n ≥ 2 and if B is simply
connected, then there exists a long exact sequence

· · · → Hi(E)→ Hi(B)→ Hi−n(B)→ Hi−1(E)→ · · · .

There is also an analogue for cohomology, which states that under the same assumptions
there exists a long exact sequence of cohomology groups

· · · → H i−1(E)→ H i−n(B)→ H i(B)→ H i(E)→ · · · .

The proof given in [HP13, Theorem 3.3.3] works the same in HoTT. An alternative
construction of the Gysin sequence in HoTT is given in [Bru16, Section 6.1], which was
used as a main ingredient to compute π4(S3).

We can also generalize Example 5.6.4 to get the Wang sequence. For homology this
states that if E → Sn is a pointed map for n ≥ 2 with fiber F , then there exists a long
exact sequence

· · · → Hi(F)→ Hi(E)→ Hi−n(F)→ Hi−1(F)→ · · · .

128

Again, a similar long exact sequence holds for cohomology, and the proof given in [HP13,
Theorem 3.3.6] works the same in HoTT.

As another application, we can prove the Hurewicz theorem from the Serre spectral
sequence [HP13]. The Hurewicz theorem only holds for homology, and requires the Serre
spectral sequence for homology. The theorem states that if X is a simply connected
pointed type, n ≥ 2 and πq(X) is trivial for q < n, then Hq(X) = 0 for q < n and
Hn(X) = πn(X). For n = 1 the Hurewicz theorem states that for a 0-connected pointed
type X, the first homology group H1(X) is the abelianization of π1(X). In the proof
given in the aforementioned reference, the case for n = 1 needs to be proven separately,
but then the case for n ≥ 2 follows from that using the Serre spectral sequence. Since
the case for n = 1 seems easier than the general case, this should be very helpful to
prove the Hurewicz theorem in HoTT.

An application for the Atiyah-Hirzebruch spectral sequence would be to compute co-
homology groups of generalized cohomology theories. One such generalized cohomology
theory is K-theory. Although K-theory has not been precisely defined yet in HoTT,
one possible idea by Ulrik Buchholtz is to define it using Snaith’s theorem [Sna81]. If
we have defined K-theory, we could try to compute its cohomology groups using the
Atiyah-Hirzebruch spectral sequence. With the current machinery, we can compute the
cohomology groups of all types that satisfy weak pointed choice (cf. Definition 5.4.14),
which probably includes all finite CW-complexes.

An application that is probably trickier in HoTT is the Serre class theorem. A
Serre class is a class C of abelian groups such that for every short exact sequence
0→ A→ B → C → 0 of abelian groups we have B ∈ C iff A,C ∈ C. In particular, any
Serre class is closed under taking subgroups and quotient groups. Classical examples of
Serre classes include

• finite abelian groups;

• finitely generated abelian groups;

• torsion abelian groups.

However, constructively, the first two classes are not closed under either taking subgroups
or quotient groups (torsion abelian groups do form a Serre class constructively).

The Serre class theorem is a theorem about certain Serre classes that satisfy some
extra properties. This include the three examples mentioned above. If C is such a Serre
class and if X is a simply connected type,29 then the theorem states that πn(X) ∈ C
for all n iff Hn(X) ∈ C for all n. More general is the Hurewicz theorem modulo a Serre
class, which states that if πi(X) ∈ C for all i < n, then the kernel and the cokernel of
the Hurewicz homomorphism h : πn(X)→ Hn(X) belong to C.

As a corollary of the Serre class theorem, we know that the homotopy groups of
the spheres are finitely generated, since their homology groups are finitely generated.

29or path-connected and abelian. A space X is abelian if the action of π1(X) on πn(X) is trivial for
all n ≥ 1.

129

Moreover, the homotopy groups of simply connected finite CW-complexes are also
finitely generated, using cellular cohomology [BH18]. A classical proof of the Serre class
theorem can be found in [Hat04, Section 1.1].

It is not straightforward to adapt the proof of the Serre class theorem to a proof in
HoTT. One difficulty is that the classical proof uses the universal coefficient theorem for
homology. This theorem is not yet proven in HoTT. The universal coefficient theorem
relates the homology group Hn(X;A) with coefficients in any abelian group A to the
the homology group Hn(X) with integer coefficients. There is also a dual universal
coefficient theorem for cohomology that relates the cohomology group Hn(X;A) with
the homology group Hn(X). It is not clear how to prove or even formulate the
universal coefficient theorem in HoTT. The universal coefficient theorem for homology
uses the Tor functor, whose definition requires projective resolutions. Similarly, the
universal coefficient theorem for cohomology uses the Ext functor, whose definition
requires injective resolutions. Basic properties of projective and injective resolutions
are classically proven with the axiom of choice [Bla79], so it is not clear whether we
can prove the universal coefficient theorem without the axiom of choice. Another
problem with proving the universal coefficient theorem is that classically it is proven
algebraically for chain complexes. Since homology and cohomology groups of spaces
are defined as the (co)homology of a chain complex, the universal coefficient theorem
then applies to spaces. Even if we could solve the issues with the axiom of choice,
and we could prove the universal coefficient theorem for chain complexes in HoTT, it
does not directly follow that it is true for spaces, since these groups are not defined as
the (co)homology of chain complexes.30 Therefore, in HoTT, it seems fruitful to prove
the universal coefficient theorem directly for spaces, using the definition in terms of
Eilenberg-MacLane spaces, but this is an open problem as of now. A good first step
might be to try to prove a special case of the universal coefficient theorem where the
Tor and Ext functors vanish, although that will not be sufficient to prove the Serre class
theorem.

Proving the Serre class theorem in HoTT will be tricky, and it might be necessary
to reformulate or weaken some notions to get a usable result in HoTT. If we manage
to prove these results in HoTT, we can get a lot of information about the homotopy
groups of spheres. One additional ingredient that is required is the fact that the cup
product structure of the cohomology groups respect the Serre spectral sequence. From
these ingredients we can classically show the following:

• The groups πi(Sn) are finite for i > n, except for π4k−1(S2k), which are the direct
sum of Z and a finite group [Hat04, Theorem 1.21].

• For a prime p the p-torsion subgroup of πi(S3) is 0 for i < 2p and Zp for
i = 2p [Hat04, Example 1.18].

• From the two above results we can immediately conclude that π4(S3) = Z2.
30Cellular (co)homology [BH18] is defined as the (co)homology of a chain complex, and therefore we

could prove it for finite CW complexes, but it would not follow for arbitrary types.

130

• Using additionally the localization of a space at a prime, we can show that for
p a prime, the p-torsion subgroup of πi(Sn+3) is 0 for i < n + 2p and Zp for
i = n+ 2p [Hat04, Theorem 1.28].

• We can compute more homotopy groups of spheres using significantly more
machinery. For this we need the EHP sequence, Steenrod squares and Serre’s
theorem, which computes the cohomology rings of K(Z2, n) and K(Z, n) and
K(Z2k , n) with coefficients in Z2. If we have all these results, we can compute
πn+i(Sn) for all n and i ≤ 3 [Hat04, Theorem 1.40].

131

Conclusion

In this dissertation I have shown that homotopy type theory is a practical language
to prove involved theorems in homotopy theory, most notably the construction of two
important spectral sequences: the Atiyah-Hirzebruch and the Serre spectral sequences
for cohomology. The discovery of these spectral sequences in classical homotopy theory
was an important milestone, and we expect that the corresponding proof in HoTT
will lead to many useful corollaries in synthetic homotopy theory. That said, many
applications of these spectral sequences require more machinery, such as the universal
coefficient theorem, Serre classes and the Hurewicz theorem. The first two of these
three results might be problematic to prove in HoTT, because of their dependence
on the axiom of choice. I hope that an adapted or weaker version of these theorems
can be found, which avoids the use of the axiom of choice, or alternatively, that when
looking at their applications, we can avoid the use of choice. For example, we cannot
prove constructively that finitely generated abelian groups form a Serre class, but it
is conceivable that we can still prove that all homotopy groups of spheres are finitely
generated without resorting to the axiom of choice. That said, we could also assume
the axiom of choice and continue proving results in synthetic homotopy theory using it.
However, then the resulting theorem would not hold anymore in all models of HoTT.

It would be interesting to see other spectral sequences proven in HoTT, such as the
Adams spectral sequence and the Eilenberg-Moore spectral sequences [Hat04].

Thoughts on formalization
This dissertation also shows that homotopy type theory provides a good language for
the computer formalization of results in homotopy theory.

Through the formal methods community there is a strong desire that formal methods
will be adopted in a large scale by general mathematicians. The main bottlenecks for
this adoption are

(i) the necessary expertise of formalization in the proof assistant of choice;

(ii) the vast number of proof assistant in existence;

(iii) the amount of work it takes to formalize mathematics compared to writing it on
paper.

132

It definitely takes time to learn a proof assistant, familiarize oneself with the library
and get enough practice to use a proof assistant efficiently. Moreover, in my experience,
learning to use a proof assistant takes longer than learning to use other programs, like
LaTeX or Mathematica. Still, I do not think this is the main bottleneck to the adoption
of proof assistants. Various courses that integrate the use of proof assistants have been
taught, and students taking those courses will get a level of proficiency of using that
proof assistant.

The second concern is the number of proof assistants in existence, each with a
separate library and the near-impossibility to translate theorems and proofs between
two proof assistants. There are translation procedures between some proof assistants,
such as [McL06], but such translations are often incomplete, and only specific to two
proof assistants.

However, I think the main bottleneck is the amount of extra time it takes to
formalize mathematics compared to writing a paper proof. Rough estimates for the
formalization time is about one week to formalize a page of a mathematical paper or
textbook [AC10]. My experience with formalizing synthetic homotopy theory specifically
is a little different. Paper proofs given in synthetic homotopy theory are often quite
detailed, and the techniques used are often very close to the underlying type theory.
I would argue that this is necessary; we do not have much experience with proving
theorems in synthetic homotopy theory yet, and it is not always clear which results
are hard to prove. Some results turn out more difficult to prove than initially thought.
For example, the “basic property” of the smash product that it forms a 1-coherent
symmetric monoidal product (see Section 4.3) was assumed with a vague proof sketch
in [Bru16] to prove π4(S3) = Z2, but this result is still open as of now. Another example
is Theorem 3.3.26, which was originally thought to be a basic result about colimits by
Egbert Rijke and me, but the proof turned out to be much harder than expected.

Because paper proofs in synthetic homotopy theory are often proven with many
details, in my experience, giving a fully formal proof is not much more work. In cases
where the formal proof is a lot more work, the paper proof sometimes omitted showing
the case of the path constructor when inducting over a HIT, which is the hardest —
but least enlightening — part of the proof. In the paper proofs of this dissertation, I
have also sometimes omitted these steps, because they are tedious to work through
and not very enlightening. However, the formal proofs (of course) contain all the
details. For some theorems the formalization did take substantially more work. For the
formalization of spectral sequences, a substantial algebra library had to be developed,
consisting of basic group theory, ring theory, modules over a ring and graded modules.
This took many man-hours of work, which would have no counterpart in a paper proof.

Another reason why formalization is more work, is that necessarily such proofs have
to be encoded in the corresponding logic, intensional type theory. Most of the time, this
is straightforward, but in some cases it takes a bit more work. Especially when dealing
with sequences of types, in intensional type theory one has to work explicitly with
transports (or its relatives, like pathovers or heterogenous equality), which is especially
laborious in the proof-relevant setting of HoTT. Sometimes an “encoding trick” is useful

133

when dealing with these dependent types. In this dissertation some of these tricks have
been given. In Section 4.1.1 we defined a chain complex over an arbitrary successor
structure, because we wanted to not only index chain complexes over N or Z, but also
over N× fin3 or similar types, to get a more convenient computational content. These
successor structures also turned out to be useful for spectra in Section 5.3, so that
we can apply the same notion to spectra indexed over N and spectra indexed over Z.
The reason that spectra indexed over Z are useful (traditionally they are only indexed
over N) is that for certain definitions, such as the homotopy group of a spectrum, no
case-splits are required when they are indexed over Z. Another encoding trick was
given in the definition of graded morphisms. In order to define the composition of
graded morphisms more easily, we defined the degree of a graded morphism to be an
automorphism of the indexing set. In order to avoid dealing with transports everywhere,
we defined a graded morphism to act on a path in the indexing set, see Section 5.1.

Formalizing in Lean is a fun activity, and Lean is a good language for formalization.
In Lean 2 one of the main annoyances when formalizing was the unpredictability of
the elaborator, which was greatly improved in Lean 3. Another issue was the ability to
simplify expressions. There was a tactic esimp that simplified by evaluation, but it was
quite slow, and would sometimes use 99% of the elaboration time of a proof. I do not
have enough experience with dsimp in Lean 3 to see whether it has similar issues.

In 2016 Leonardo de Moura decided that he would stop supporting homotopy type
theory in Lean 3. It was quite devastating to hear this. I am glad that Gabriel Ebner
has found a method to do homotopy type theory in Lean 3 safely, by avoiding the use
of Prop. Since then, I have been slowly working on porting the Lean 2 HoTT library to
Lean 3, although the progress has been slow. The main reasons for this are:

• The elaborator in Lean 3 is weaker to make it more robust, which causes many
proofs to break.

• Some tactics do not work without using Prop or the Prop-valued equality. Gabriel
Ebner has modified the simp and rewrite tactic to work in HoTT. I have written
an induction-tactic, since the default induction tactic does not allow custom
induction principles to eliminate to only non-Prop sorts.

• The notation ! has been removed in Lean 3. This was used in Lean 2 to turn
(some) explicit arguments into implicit ones.

• There are many small differences in Lean 2 and Lean 3 in syntax for tactics, proof
styles, attributes, universe levels and declarations. None of these issues take much
time to fix, but the sheer number of them add up.

Despite this, a significant part of the library has been ported, and I am planning to
continue this so that Lean 3 (and later Lean 4) can be used to formalize results in
homotopy type theory.

The current implementation in Lean is probably not the ultimate proof assistant for
HoTT in the long-term. Many cubical type theories have been developed over the last

134

few years, and a few proof assistants have been developed using a cubical type theory
as their underlying logic. Cubical type theory offers many advantages when reasoning
about higher inductive types and when doing higher path algebra, since more relations
hold strictly. For example, the computation rule of the induction principle for a higher
inductive type holds judgmentally in cubical type theory. This is very convenient when
working with HITs, especially HITs with higher path constructors. It is conceivable
that a cubical type theory can be implemented in Lean, although it will require some
hacking in the C++ code, and many features of Lean will need to be modified to work
well with the cubical structure. This will be a big project, and it is probably smart
not do this project until the different variants of cubical type theory have been studied
more. In particular, current versions of cubical type theory do not satisfy regularity,
which states that the induction principle for paths has judgmental computation rules.31
Some constructions in HoTT are done by doing a long string of path inductions, and
such proofs will be harder to reason with in cubical type theory. That said, it would be
interesting to perform some constructions of this dissertation in one of the cubical type
theories to see whether the proof would significantly simplify. In particular the proofs
in Section 3.2 would simplify when the induction principle of higher inductive types
reduces definitionally when applied to path constructors.

31It is possible to have two notions of paths: a path type with all the cubical structure, and an
identity type with an induction principle and a judgmental computation rule. However, in current
cubical type theories these cannot be the same type.

135

Acknowledgements

First and foremost I would like to thank my advisor Jeremy Avigad, who was always
ready to give useful feedback, proofread drafts of all my written work and provide
support. Futhermore, I would like to thank Steve Awodey for always being ready to
answer any questions I have about HoTT or category theory. I would like to thank Mike
Shulman for many helpful remarks and insights whenever I show my work. I also want
to thank Ulrik Buchholtz, Egbert Rijke, Jakob von Raumer, Stefano Piceghello and
Kristina Sojakova for the collaborations and discussions. I am grateful towards Leonardo
de Moura for all his help with getting me up to speed with Lean, and answering all
my stupid questions and ideas I brought up early in the development of Lean. I would
like to thank Marc Bezem and Dan Christensen to invite me for academic visits. More
generally, I would like to thank everyone in the HoTT community for maintaining such a
good research community. It is very nice to be part of such a friendly and collaborative
research community, where it is normal to have unfinished projects on Github or discuss
half-baked ideas on a mailing list.

For moral support, I would like to thank my parents, Peter van Doorn and Judith
van Wakeren, for supporting me during times when I was struggling. Dank jullie wel!
Lastly I would like to thank Cecilia Hornberger for the moral support over the last
months.

I gratefully acknowledge the support of the Air Force Office of Scientific Research
through MURI grant FA9550-15-1-0053. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the AFOSR.

The author would like to thank the Isaac Newton Institute for Mathematical
Sciences, Cambridge, for support and hospitality during the programme Big Proof
where work on this paper was undertaken. This work was supported by EPSRC grant
no EP/K032208/1.

This material is based upon work supported by the National Science Foundation
under Grant Number DMS 1641020.

136

Bibliography

[AB04] Steve Awodey and Andrej Bauer, Propositions as [Types], Journal of Logic
and Computation 14 (2004), no. 4, 447–471.

[AC10] Andrea Asperti and Claudio Sacerdoti Coen, Some considerations on the
usability of interactive provers, International Conference on Intelligent
Computer Mathematics, Springer, 2010, pp. 147–156.

[ACD+16] Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and
Fredrik Nordvall Forsberg, Quotient inductive-inductive types, ArXiv e-
prints (2016), arXiv:1612.02346.

[AH61] Michael F Atiyah and Friedrich Hirzebruch, Vector bundles and homo-
geneous spaces, Differential geometry, Proceedings of Symposia in Pure
Mathematics, no. 3, 1961, pp. 7–38.

[AHW17] Carlo Angiuli, Robert Harper, and Todd Wilson, Computational higher-
dimensional type theory, POPL ’17: Proceedings of the 44th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ACM, 2017, doi:10.1145/3009837.3009861.

[AKL15] Jeremy Avigad, Chris Kapulkin, and Peter LeFanu Lumsdaine, Homotopy
limits in type theory, Mathematical Structures in Computer Science 25
(2015), no. 05, 1040–1070.

[AW09] Steve Awodey and Michael A. Warren, Homotopy theoretic models of
identity types, Math. Proc. Camb. Phil. Soc., vol. 146, Cambridge Univ
Press, 2009, pp. 45–55.

[BCH14] Marc Bezem, Thierry Coquand, and Simon Huber, A model of type theory
in cubical sets, 19th International Conference on Types for Proofs and
Programs (TYPES 2013), vol. 26, 2014, pp. 107–128.

[BGLL+16] Andrej Bauer, Jason Gross, Peter LeFanu LeFanu Lumsdaine, Michael
Shulman, Matthieu Sozeau, and Bas Spitters, The HoTT Library: A
formalization of homotopy type theory in Coq, ArXiv e-prints (2016),
arXiv:1610.04591.

137

http://arxiv.org/abs/1612.02346
http://dx.doi.org/10.1145/3009837.3009861
http://arxiv.org/abs/1610.04591

[BH18] Ulrik Buchholtz and Kuen-Bang Hou (Favonia), Cellular Cohomology in
Homotopy Type Theory, ArXiv e-prints (2018), arXiv:1802.02191.

[BHC+] Guillaume Brunerie, Kuen-Bang Hou (Favonia), Evan Cavallo, Eric Finster,
Jesper Cockx, Christian Sattler, Chris Jeris, Michael Shulman, et al.,
Homotopy type theory in Agda, https://github.com/HoTT/HoTT-Agda.

[Bla79] Andreas Blass, Injectivity, projectivity, and the axiom of choice, Transacti-
ons of the American Mathematical Society 255 (1979), 31–59.

[BR16] Ulrik Buchholtz and Egbert Rijke, The Cayley-Dickson construction in
Homotopy Type Theory, ArXiv e-prints (2016), arXiv:1610.01134.

[Bru16] Guillaume Brunerie, On the homotopy groups of spheres in homotopy type
theory, Ph.D. thesis, University of Nice Sophia Antipolis, 2016, https:
//arxiv.org/abs/1606.05916.

[BvDR18] Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke, Higher Groups in
Homotopy Type Theory, ArXiv e-prints (2018), arXiv:1802.04315.

[Car18] Mario Carneiro, The type theory of Lean, 2018, online, https://github.
com/digama0/lean-type-theory/releases.

[Cav15] Evan Cavallo, Synthetic cohomology in homotopy type theory, Master’s
thesis, Carnegie Mellon University, 2015, http://www.cs.cmu.edu/
~ecavallo/works/thesis.pdf.

[CCHM] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg, Cubi-
cal type theory, code library, https://github.com/mortberg/cubicaltt.

[CCHM16] , Cubical type theory: a constructive interpretation of the univalence
axiom, November 2016, arXiv:1611.02108.

[CF58] Haskell B. Curry and Robert Feys, Combinatory logic vol. i.

[Cis14] Denis-Charles Cisinski, Univalent universes for elegant models of homotopy
types, ArXiv preprint arXiv:1406.0058 (2014).

[dMKA+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,
and Jakob von Raumer, The Lean Theorem Prover (system description),
CADE-25 (2015), 378–388.

[Dyb94] Peter Dybjer, Inductive families, Formal aspects of computing 6 (1994),
no. 4, 440–465.

[EK66] Samuel Eilenberg and G. Max Kelly, Closed categories, Proceedings of the
Conference on Categorical Algebra, Springer, 1966, pp. 421–562.

138

http://arxiv.org/abs/1802.02191
https://github.com/HoTT/HoTT-Agda
http://arxiv.org/abs/1610.01134
https://arxiv.org/abs/1606.05916
https://arxiv.org/abs/1606.05916
http://arxiv.org/abs/1802.04315
https://github.com/digama0/lean-type-theory/releases
https://github.com/digama0/lean-type-theory/releases
http://www.cs.cmu.edu/~ecavallo/works/thesis.pdf
http://www.cs.cmu.edu/~ecavallo/works/thesis.pdf
https://github.com/mortberg/cubicaltt
http://arxiv.org/abs/1611.02108

[EM45] Samuel Eilenberg and Saunders MacLane, Relations between homology and
homotopy groups of spaces, Annals of mathematics (1945), 480–509.

[EUR+17] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and
Leonardo de Moura, A metaprogramming framework for formal verification,
Proc. ACM Program. Lang. 1 (2017), no. ICFP, 34:1–34:29, doi:10.1145/
3110278.

[G+13] Georges Gonthier et al., A machine-checked proof of the odd order theorem,
pp. 163–179, Springer, 2013, doi:10.1007/978-3-642-39634-2_14.

[Gir72] Jean-Yves Girard, Interprétation fonctionelle et élimination des coupures
de l’arithmétique d’ordre supérieur, Ph.D. thesis, Université Paris Diderot,
1972.

[GMM06] Healfdene Goguen, Conor McBride, and James McKinna, Eliminating
dependent pattern matching, Algebra, Meaning, and Computation (2006),
521–540.

[Gon05] Georges Gonthier, A computer-checked proof of the four colour theorem.

[Gra17] Robert Graham, Synthetic Homology in Homotopy Type Theory, ArXiv
e-print 1706.01540 (2017), https://arxiv.org/abs/1706.01540.

[H+] John Harrison et al., The hol light theorem prover, https://github.com/
jrh13/hol-light.

[H+17] Thomas Hales et al., A formal proof of the Kepler conjecture, Forum of
Mathematics, Pi 5 (2017), doi:10.1017/fmp.2017.1.

[Hat04] Allen Hatcher, Spectral sequences in algebraic topology, Unpublished book,
2004, https://www.math.cornell.edu/~hatcher/SSAT/SSATpage.
html.

[HFLL16] Kuen-Bang Hou (Favonia), Eric Finster, Daniel R. Licata, and Peter Le-
Fanu Lumsdaine, A mechanization of the Blakers-Massey connectivity theo-
rem in Homotopy Type Theory, Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, ACM, 2016, pp. 565–574.

[Hou17] Kuen-Bang Hou (Favonia), Higher-dimensional types in the mechanization
of homotopy theory, Ph.D. thesis, Carnegie Mellon University, 2017.

[How80] William A. Howard, The formulae-as-types notion of construction, To H.B.
Curry: essays on combinatory logic, lambda calculus and formalism 44
(1980), 479–490.

139

http://dx.doi.org/10.1145/3110278
http://dx.doi.org/10.1145/3110278
http://dx.doi.org/10.1007/978-3-642-39634-2_14
https://arxiv.org/abs/1706.01540
https://github.com/jrh13/hol-light
https://github.com/jrh13/hol-light
http://dx.doi.org/10.1017/fmp.2017.1
https://www.math.cornell.edu/~hatcher/SSAT/SSATpage.html
https://www.math.cornell.edu/~hatcher/SSAT/SSATpage.html

[HP13] Maximilien Holmberg-Péroux, The serre spectral sequence, preprint (2013),
http://homepages.math.uic.edu/~mholmb2/serre.pdf.

[HS98] Martin Hofmann and Thomas Streicher, The groupoid interpretation of
type theory, Twenty-five years of constructive type theory (Venice, 1995),
Oxford Logic Guides, vol. 36, Oxford Univ. Press, New York, 1998, pp. 83–
111.

[HS16] Kuen-Bang Hou (Favonia) and Michael Shulman, The Seifert-van Kampen
theorem in homotopy type theory, 25th EACSL Annual Conference on
Computer Science Logic (CSL 2016), Leibniz International Proceedings in
Informatics (LIPIcs), vol. 62, 2016, pp. 22:1–22:16, doi:10.4230/LIPIcs.
CSL.2016.22.

[KECA14] Nicolai Kraus, Martín Escardó, Thierry Coquand, and Thorsten Altenkirch,
Notions of anonymous existence in Martin-Löf type theory, Submitted to
the special issue of TLCA’13 (2014).

[KL12] Chris Kapulkin and Peter LeFanu Lumsdaine, The Simplicial Model of
Univalent Foundations (after Voevodsky), ArXiv e-prints (2012), arXiv:
1211.2851.

[Kra15] Nicolai Kraus, The general universal property of the propositional trun-
cation, 20th International Conference on Types for Proofs and Programs
(TYPES 2014), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 39, 2015, pp. 111–145, doi:10.4230/LIPIcs.TYPES.2014.111.

[Kra16] , Constructions with non-recursive higher inductive types, Procee-
dings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, ACM, 2016, pp. 595–604.

[LF14] Daniel R. Licata and Eric Finster, Eilenberg-MacLane spaces in homotopy
type theory, Proceedings of the Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), ACM, 2014, p. 66.

[Lic11] Daniel R. Licata, Running circles around (in) your proof assis-
tant; or, quotients that compute, blog post, April 2011, http://
homotopytypetheory.org/2011/04/23/running-circles-around-in-
your-proof-assistant/.

[LS13] Daniel R. Licata and Michael Shulman, Calculating the fundamental group
of the circle in homotopy type theory, 2013 28th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2013), IEEE Computer
Soc., Los Alamitos, CA, 2013, pp. 223–232.

140

http://homepages.math.uic.edu/~mholmb2/serre.pdf
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.22
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.22
http://arxiv.org/abs/1211.2851
http://arxiv.org/abs/1211.2851
http://dx.doi.org/10.4230/LIPIcs.TYPES.2014.111
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/

[LS17] Peter LeFanu Lumsdaine and Michael Shulman, Semantics of higher
inductive types, ArXiv e-prints (2017), arXiv:1705.07088.

[Lum11] Peter LeFanu Lumsdaine, Higher inductive types: a tour of the menagerie,
blog post, April 2011, https://homotopytypetheory.org/2011/04/24/
higher-inductive-types-a-tour-of-the-menagerie/.

[Luo12] Zhaohui Luo, Notes on universes in type theory, preprint, 2012, http:
//www.cs.rhul.ac.uk/home/zhaohui/universes.pdf.

[Mas52] William S Massey, Exact couples in algebraic topology (parts i and ii),
Annals of Mathematics 56 (1952), no. 2, 363–396.

[McL06] Sean McLaughlin, An interpretation of Isabelle/HOL in HOL Light, In-
ternational Joint Conference on Automated Reasoning, Springer, 2006,
pp. 192–204.

[ML75] Per Martin-Löf, An intuitionistic theory of types: Predicative part, Studies
in Logic and the Foundations of Mathematics, vol. 80, Elsevier, 1975,
pp. 73–118.

[ML84] , Intuitionistic type theory, Bibliopolis, 1984, Notes by Giovanni
Sambin of a series of lectures given in Padova.

[Rez14] Charles Rezk, Proof of the blakers-massey theorem, 2014, http://www.
math.uiuc.edu/~rezk/freudenthal-and-blakers-massey.pdf.

[Rij17] Egbert Rijke, The join construction, ArXiv (2017), arXiv:1701.07538.

[RSS17] Egbert Rijke, Michael Shulman, and Bas Spitters, Modalities in homotopy
type theory, ArXiv e-prints (2017), arXiv:1706.07526.

[S+11] Michael Shulman et al., higher inductive type, 2011, nLab article, https:
//ncatlab.org/nlab/revision/higher+inductive+type/31.

[Ser51] Jean-Pierre Serre, Homologie singulière des espaces fibrés, Annals of Mat-
hematics (1951), 425–505.

[Shu11a] Michael Shulman, A formal proof that π1(s1) = Z, blog post, April 2011,
https://homotopytypetheory.org/2011/04/29/a- formal- proof-
that-pi1s1-is-z/.

[Shu11b] , Homotopy type theory, vi, forum post, April 2011, https://golem.
ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html.

[Shu11c] , An interval type implies function extensionality, blog post, April
2011, https://homotopytypetheory.org/2011/04/04/an-interval-
type-implies-function-extensionality/.

141

http://arxiv.org/abs/1705.07088
https://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie/
https://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie/
http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf
http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf
http://www.math.uiuc.edu/~rezk/freudenthal-and-blakers-massey.pdf
http://www.math.uiuc.edu/~rezk/freudenthal-and-blakers-massey.pdf
http://arxiv.org/abs/1701.07538
http://arxiv.org/abs/1706.07526
https://ncatlab.org/nlab/revision/higher+inductive+type/31
https://ncatlab.org/nlab/revision/higher+inductive+type/31
https://homotopytypetheory.org/2011/04/29/a-formal-proof-that-pi1s1-is-z/
https://homotopytypetheory.org/2011/04/29/a-formal-proof-that-pi1s1-is-z/
https://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html
https://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html
https://homotopytypetheory.org/2011/04/04/an-interval-type-implies-function-extensionality/
https://homotopytypetheory.org/2011/04/04/an-interval-type-implies-function-extensionality/

[Shu13] , Spectral sequences in HoTT, blog posts, August 2013, https://
ncatlab.org/homotopytypetheory/revision/spectral+sequences/5.

[Shu17] , Elementary (∞, 1)-topoi, blog post, April 2017, https://golem.
ph.utexas.edu/category/2017/04/elementary_1topoi.html.

[Sna81] Victor Snaith, Localized stable homotopy of some classifying spaces, Mat-
hematical Proceedings of the Cambridge Philosophical Society, vol. 89,
Cambridge University Press, 1981, pp. 325–330.

[Str14] Thomas Streicher, A model of type theory in simplicial sets: A brief
introduction to Voevodsky’s homotopy type theory, Journal of Applied
Logic 12 (2014), no. 1, 45 – 49, Logic Categories Semantics, doi:https:
//doi.org/10.1016/j.jal.2013.04.001.

[The18] The RedPRL Development Team, RedPRL – the People’s Refinement
Logic, 2018, http://www.redprl.org/.

[Uni13] The Univalent Foundations Program, Homotopy type theory: Univalent
foundations of mathematics, http://homotopytypetheory.org/book,
Institute for Advanced Study, 2013.

[VAG+] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al., UniMath —
Univalent Mathematics, code library, https://github.com/UniMath.

[vD16] Floris van Doorn, Constructing the propositional truncation using non-
recursive hits, Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs and Proofs, ACM, 2016, pp. 122–129.

[vDvRB17] Floris van Doorn, Jakob von Raumer, and Ulrik Buchholtz, Homotopy
type theory in lean, pp. 479–495, Springer, 2017, doi:10.1007/978-3-
319-66107-0_30.

[vG12] Benno van den Berg and Richard Garner, Topological and simplicial models
of identity types, ACM transactions on computational logic (TOCL) 13
(2012), no. 1, 3.

[Voe06] Vladimir Voevodsky, A very short note on the homotopy λ-calculus, on-
line, 2006, http://www.math.ias.edu/~vladimir/Site3/Univalent_
Foundations_files/Hlambda_short_current.pdf.

[Voe09] , Notes on type systems, online, 2009, http://www.math.ias.
edu/~vladimir/Site3/Univalent_Foundations_files/expressions_
current_1.pdf.

[Voe14] , The equivalence axiom and univalent models of type theory. (Talk
at CMU on February 4, 2010), arXiv:1402.5556.

142

https://ncatlab.org/homotopytypetheory/revision/spectral+sequences/5
https://ncatlab.org/homotopytypetheory/revision/spectral+sequences/5
https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html
https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html
http://dx.doi.org/https://doi.org/10.1016/j.jal.2013.04.001
http://dx.doi.org/https://doi.org/10.1016/j.jal.2013.04.001
http://www.redprl.org/
http://homotopytypetheory.org/book
https://github.com/UniMath
http://dx.doi.org/10.1007/978-3-319-66107-0_30
http://dx.doi.org/10.1007/978-3-319-66107-0_30
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/expressions_current_1.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/expressions_current_1.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/expressions_current_1.pdf
http://arxiv.org/abs/1402.5556

[Voe15] , Oxford lectures on UniMath, filmed by Kohei Kishida, available
at https://www.math.ias.edu/vladimir/Lectures, 2015.

[vR16] Jakob von Raumer, Formalizing double groupoids and cross modules in
the lean theorem prover, Mathematical Software – ICMS 2016, Springer
International Publishing, 2016, pp. 28–33.

[Zha17] Bohua Zhan, Formalization of the fundamental group in untyped set theory
using auto2, International Conference on Interactive Theorem Proving,
Springer, Springer, 2017, pp. 514–530, doi:10.1007/978-3-319-66107-
0_32.

143

https://www.math.ias.edu/vladimir/Lectures
http://dx.doi.org/10.1007/978-3-319-66107-0_32
http://dx.doi.org/10.1007/978-3-319-66107-0_32

	Front Matter
	Title Page
	Contents

	1 Introduction
	2 Preliminaries
	2.1 Martin-Löf Type Theory
	2.1.1 Function Types
	2.1.2 Pair Types
	2.1.3 Universes
	2.1.4 Inductive Types

	2.2 Homotopy Type Theory
	2.2.1 Paths
	2.2.2 Equivalences
	2.2.3 More on paths
	2.2.4 Truncated Types
	2.2.5 Pointed Types
	2.2.6 Higher Inductive Types

	2.3 Lean

	3 Higher Inductive Types
	3.1 Propositional Truncation
	3.2 Non-recursive 2-HITs
	3.3 Colimits

	4 Homotopy Theory
	4.1 Computing pi_3(S^2)
	4.1.1 The long exact sequence of homotopy groups
	4.1.2 Computation of homotopy groups

	4.2 Eilenberg-MacLane Spaces
	4.2.1 Construction of Eilenberg-MacLane spaces
	4.2.2 Uniqueness
	4.2.3 Equivalence of categories

	4.3 The Smash Product
	4.3.1 The Category of Pointed Types
	4.3.2 Basic Properties of the Smash Product
	4.3.3 Adjunction
	4.3.4 Symmetric monoidal product

	5 The Serre Spectral Sequence
	5.1 Spectral Sequences
	5.2 Exact Couples
	5.3 Spectra
	5.4 Spectral Sequences for Cohomology
	5.5 Spectral Sequences for Homology
	5.6 Applications of Spectral Sequences

	Conclusion
	Acknowledgements
	Bibliography

