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Abstract

Automata-theoretic decision procedures date back to Büchi’s work, leveraging finite

automata to decide sentences in weak theories of arithmetic. An extension of the original

procedure by adding automatic sequences is now implemented in the Walnut software to

check and discover theorems in combinatorics and number theory. However, automata-

based decision procedures do not generate efficiently checkable correctness guarantees

as they run, raising concerns regarding the reliability and trustworthiness of the results

they produce.

Towards addressing this issue, we are building an automata library in Lean, which

is both a proof assistant and a programming language. By formalizing executable

automata and proving their properties, we provide a foundation for trusted automata-

theoretic decision procedures. We begin with Chapter 1, which introduces the context

and motivation for this project. The basic mathematical theory of words and automata is

provided in Chapter 2, with their formalization explained. Chapter 3 presents a decision

procedure for automatic sequences, and reports the verification of crucial automata in-

volved. To our knowledge, this is the first exposition of a direct decision procedure for

automatic sequences in full mathematical detail, together with the first formally veri-

fied automata library designed to support a decision procedure for automatic sequences.

We conclude in Chapter 4 by summarizing our contributions and propose directions for

future work.
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1 Walnut and Lean

1.1 Automated Reasoning in Walnut

The quest to automate mathematical reasoning traces its roots to David Hilbert’s founda-
tional Entscheidungsproblem (decision problem), which sought an algorithm to decide with
certainty whether an arbitrary logical expression is universally valid [17]. While Turing and
Church’s negative resolution of the general decision problem for first-order logic marked a
pivotal moment in computability theory [26], the search for decision procedures—algorithms
that decide the truth of sentences in specific logical theories—has flourished. Today, de-
cision procedures underpin many automated reasoning tools, helping computer scientists
in safety-critical software verification and mathematicians in cutting-edge research. SAT
solvers, which implement sophiscated decision procedures for the satisfiability problem of
propositional logic formulae, have had huge success in solving century-old problems once
deemed intractable [15, 16]. Recently, another decision procedure has been implemented in
a software called Walnut, leveraging finite automata to decide properties of automatic se-
quences (roughly, sequences generated by finite automata) [23]. For example, consider the
infinite Thue-Morse sequence

t = (tn)n≥0 = t0t1t2 . . . = 011010011001011010010110 . . .

where tn is the parity of the number of 1s in the base-2 digits of n: tn = 1 if there are an
odd number of 1s, and tn = 0 otherwise. As we will see later, t can also be generated by
an automaton. It turns out that t is not eventually periodic, and this fact can be expressed
in the standard language of first-order arithmetic extended by a unary function T such that
T (i) = Ti when interpreted in the standard model:

¬∃n ≥ 0, ∃p ≥ 1, ∀i ≥ n, T (i) = T (i+ p)

When we give this formula to Walnut, it can tell us that this is true in under a second.
Mathematicians have been using Walnut to prove theorems in combinatorics of words and
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additive number theory, and as of May 2025 there has been over 100 papers, books, and
theses that have used Walnut in their work [1, 24].

1.2 Formal Verification in Lean

Complex computer programs have a notorious history of containing critical bugs [21, 27].
So, when they are answering mathematical questions, concerns arise naturally regarding
their trustworthiness. The SAT community addressed this issue by making the solvers pro-
duce relatively short proof certificates that can be verified by a tiny proof checker, which is
formally proven to have no bugs [14]. In this way, every solution a SAT solver produces
comes with a correctness guarantee. In contrast, the automata-based decision procedure in
Walnut does not generate formal correctness guarantees as they execute. While Walnut’s
outputs are empirically reliable, its internal automata operations and number representations
are prone to implementation errors, and a single bug could invalidate years of research built
atop Walnut’s results.

This problem calls for the formal verification of a decision procedure for automatic se-
quences in a suitable framework. Interactive theorem provers like Isabelle [20] and Lean [11]
usually have expressive logic implemented on a small trusted kernel, providing extremely
high confidence in the proofs written inside. Formalized proof is becoming the new standard
of mathematical rigor, with attempts to verify proofs in interactive theorem provers leading
to the discovery and correction of several errors [5, 13, 12]. Designed with the aim to bridge
the gap between interactive and automated theorem proving by situating automated tools and
methods in a framework that supports user interaction and the construction of fully specified
axiomatic proofs [3], and being both a programming language and an interactive theorem
prover [18], Lean is especially suitable for implementing and verifying a decision procedure
for automatic sequences.

We take the first step towards a trusted decision procedure for automatic sequences by for-
malizing relevant automata and proving their properties in Lean. Chapter 2 reviews the basic
mathematical theory of automata and how natural numbers are represented as words, with
our formalization of them explained. Then, we present a decision procedure for automatic
sequences in full mathematical detail, and report how the crucial automata involved have
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been formally verified. In reporting formalization, we assume basic knowledge of dependent
type theory and the syntax of Lean [4].

1.3 History and Related Works

By a decision procedure for automatic sequences, we mean a decision procedure for the
theory of natural numbers with addition Th(N,+), extended by certain functions for indexing
into automatic sequences, like the function T in the earlier example. Th(N,+) is also called
Presburger arithmetic. It is named after Mojżesz Presburger, who proved that the theory
is decidable using quantifier elimination in 1929 [22]. Later in the century, the work of
Büchi, Boudet and Comon lead to an automata-theoretic decision procedure for Presburger
arithmetic [9, 10, 7].

Bruyàre et. al fixed an error in Büchi’s work, leading to a way to code an automatic se-
quence into Presburger arithmetic extended by a function Vk such that Vk(x) = kn, where kn

is the largest power of k dividing x, and proved that the extension is still decidable using
automata, thus giving rise to a decision procedure for automatic sequences [8]. However, the
extension by the additional function and the coding of automatic sequence make the decision
procedure unnecessarily complicated. Shallit sketched a very rough (one sentence) augmen-
tation to the decision procedure for pure Presburger arithmetic that does not involve these
complications by directly computing automatic sequences in his Walnut book, The Logical
Approach to Automatic Sequences [23]. This book is our primary reference for Chapters 2
and 3. Mousavi, one of Walnut’s authors, described the decision procedure in more detail,
focusing on implementation [19]. Complementing the current literature, we will present a
decision procedure for automatic sequences in full mathematical detail, emphasizing theory
rather than implementation.

A formally verified implementation of the automata-theoretic decision procedure for pure
Presburger arithmetic exists in the interactive theorem prover Isabelle, thanks to Berghofer
and Reiter [6]. They built a library for automata on bit strings, with transitions stored as
binary decision diagrams for efficiency. So, their library and decision procedure are only
applicable to automata with a binary alphabet. This creates no problem for Presburger arith-
metic, but severely limits the possibility of extending this procedure to decide properties of
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automatic sequences, because many of them require non-binary alphabets (e.g. the Mephisto
Waltz sequence) [23]. Our automata library, therefore, aims to accommodate all automatic
sequences.

Lean’s math library Mathlib [25] contains limited formalization of finite automata, but they
use Set and noncomputable constructions extensively, making them undesirable for build-
ing decision procedures. Moreover, there are no formalizations of automata with output,
which is essential for defining automatic sequences. Our automata library references the for-
malization in Mathlib, with significant additions and changes geared towards an executable
decision procedure for automatic sequences, with proofs of their properties. To the best of
our knowledge, this is the first automata library built for decision procedures in Lean, and
the first automata library for verifying properties of automatic sequences in any interactive
theorem prover. Of course, our library would also support decision procedures for pure
Presburger arithmetic and Büchi’s related weak second-order theories.
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2 Words and Automata

2.1 Alphabets and Words

The concept of a word is essential to automata theory. Every word is defined over an alpha-
bet.

Definition 2.1 – Alphabet

An alphabet Σ is a set of symbols (also called letters).

In general, words can be infinite. For our purposes, we reserve the word "word" for finite
words.

Definition 2.2 – Word

A word over Σ is a finite sequence of symbols from Σ.

We write a word as w = a1a2 · · ·an with each ai ∈ Σ. When a letter has an exponent k, it
means that it is repeated k times. The length of w, denoted by |w|, is n. The unique word of
length 0 is the empty word, denoted by ε .

Let Σ∗ denote the set of all finite words over Σ. If w ∈ Σ∗ and v ∈ Σ∗, their concatenation
is the word wv ∈ Σ∗ obtained by appending v after w. Concatenation with ε has no effect:
wε = εw = w. The set of all finite words over Σ forms a monoid under the concatenation
operation.

A cartesian product of two alphabets can be used as a new alphabet, so we can have a product
of two words, if they have the same length.

Definition 2.3 – Product Words

For w = a1 · · ·an ∈ ∆∗ and x = b1 · · ·bn ∈ Σ∗, their product is:

w× x = (a1,b1)(a2,b2) . . .(an,bn) ∈ (∆×Σ)∗

When ∆ = Σ, we just write the product alphabet as Σ2, this can be generalized to cartesian
powers of alphabets. A word over Σn is just a finite sequence of n−tuples with elements
from Σ.
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We are particularly interested in alphabets that are initial segments of natural numbers, and
their cartesian powers. We use Σk = 0,1, . . . ,k−1 to denote the canonical k-letter alphabet
for k ≥ 2, and Σn

k for its n-th power.

In Lean, we take an alphabet to be a type inhabited by its symbols. The type Fin k

containing natural numbers less than k is used for Σk. A word over an alphabet α is
naturally taken to be a list of letters, of type List α . To access elements from tuples
easily, we use Fin n → Fin k for Σn

k , as opposed to using product types.

2.2 Number Representations

Representing natural numbers as words is essential for automata-theoretic decision proce-
dures, and we focus on base-b representations here. Recall, from elementary number theory,
that every natural number can be put uniquely in base b.

Theorem 2.1 – Base-b digits of a natural number

Let b ≥ 2. Every natural number n can be written uniquely as:

n = ∑
1≤i≤t

aibt−i,

where t ≥ 0, 0 ≤ ai < b for 1 ≤ i ≤ t, and at ̸= 0.

We can then represent a natural number n as a word (n)b = a1a2 · · ·at over Σb, called the
canonical base-b word of n. For example, (22)2 = 10110. The empty word ε represents
0. Note that adding leading zeros in base b digits does not change the natural number, so
infinitely many words over Σb represent the same natural number. For example, 10110 and
0010110 both represent 22 over Σ2. By the theorem above, number representations in base
b are unique up to adding leading zeros.

To obtain the canonical base-b word of a natural number n in Lean, we make use of Mathlib’s
Nat.digits function, which computes the base b digits of n into a list. This function puts

the least significant digits first, so we reverse it in defining our toBase function.
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def toBase (b n : N) : List N := (Nat.digits b n).reverse

We can also represent m-tuples of natural numbers as words over Σm
b . The idea is to take

the product over base-b words of every individual natural number. Since different natural
numbers might have different canonical word length, we need to find the longest word and
add leading zeros to all shorter words, before taking the product. This gives us the canonical
base-b word of a tuple. Similar to the case for a single natural number, adding tuples of zeros
at the beginning of a word does not change the tuple of natural numbers it represents.

We type m-tuples of natural numbers in Lean using the vector type Fin m → N . To obtain
the canonical base-b word of a tuple v, we first compute the canonical base-b word for every
element in the tuple.

def mapToBase (b : N) (v : Fin m → N) : Fin m → List N :=

fun i => toBase b (v i)

Then, we add necessary leading zeros so that every element is represented by a word with
uniform length. The names of addZeros and maxLenFin suggest their functions.

def stretchLen (ls: Fin m → List N) : Fin m → List N :=

fun i => addZeros (maxLenFin ls - (ls i).length) (ls i)

Finally, we zip the vector of lists into a list of vectors by recursion on the length of the words,
so they become words over Σm

b . Note that although we represent words as lists and tuples
as vectors, it is also possible to represent words as vectors and tuples as lists, because math-
ematically they are both sequences. In deciding between lists and vectors for representing
sequences in Lean, the key is whether we want to fix the length of the sequence in the type.
With a cartesian power alphabet Σn, we need letters to have a fixed length n. If we use lists of
elements from Σ to represent letters, then every letter needs to come with a proposition stat-
ing that its length is n. Using vectors avoids this by directly typing letters by Fin n → Σ .
On the other hand, using vectors to represent words is not ideal because we often need to
concatenate or decompose words, requiring frequent type casting for the length of vectors.
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Using lists avoids this problem, and can significantly simplify proofs throughout the library.

def zip (ls: Fin m → List N) (hlb: ∀ i, ∀ x ∈ ls i, x < (b + 2)) (hls : ∀ i

, (ls i).length = l) : List (Fin m → Fin (b + 2)) :=

match l with

| 0 => []

| m + 1 =>

(fun i =>

have : 0 < (ls i).length := by

rw[hls]

omega

⟨(ls i)[0], by apply hlb; exact List.getElem_mem this⟩) :: (zip (fun i

=> (ls i).tail)

(by apply zipTailHlb; exact hlb)

(by apply zipTailHls; exact hls))

Starting here, we work with base b + 2 in Lean. This simplifies the verification effort
because Lean can automatically infer that the base we are working with is at least 2. So if we
want to use base b = 2, we set b to 0. Unless otherwise specified, we will stick with using
b in our mathematical presentation, and use b + 2 for b in Lean. The proofs and theorems
appearing in this definition are there in order to correctly type the final word. Bringing all
of the steps together, we have a function that computes the canonical base-b word for an
m-tuple of natural numbers.

def toWord (v: Fin m → N) (b: N) : List (Fin m → Fin (b + 2)) :=

zip (stretchLen (mapToBase (b + 2) v)) (stretchLen_of_mapToBase_lt_base

_ _ (by omega)) (fun i => stretchLen_uniform _ _)
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2.3 Finite Automata

Finite-state automata are at the heart of automata-theoretic decision procedures. We begin
with DFAO, a basic type of finite automata.

Definition 2.4 – Deterministic Finite Automata with Output

Let Σ and Γ be nonempty alphabets. A deterministic finite automaton with output
(DFAO) is a sextuple

M = (Σ,Q,q0,δ ,Γ,ω),

where

– Σ is the input alphabet

– Q is a finite, nonempty set of states;

– q0 ∈ Q is the distinguished start state;

– δ : Q×Σ → Q is the transition function;

– Γ is the output alphabet

– ω : Q → Γ is the output function.

We formalize DFAO in a straightforward way, where α is Σ, state is Q, out is Γ,
transition is the curried δ , start is q0, and output is ω . Whenever we need to

use the fact that Q is finite, we supply an instance [Fintype state] . We often need the
[DecidableEq state] instance as well for reasoning about states. If a finite automaton

has n states, we usually take the canonical n-element type Fin n as its state type.

structure DFAO (α state out: Type) where

(transition : α → state → state)

(start : state)

(output : state → out)

We can evaluate words over the input alphabet of an automaton.
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Definition 2.5 – Evaluating Words

Given M = (Σ,Q,q0,δ ,Γ,ω), we can evaluate words over Σ by extending δ :

δ̂ (q,ε) = q, δ̂ (q,aw) = δ̂
(

δ (q,a), w
)

for w ∈ Σ
∗, a ∈ Σ,

and compute the function fM : Σ
∗ → Γ, fM(w) = ω

(
δ̂ (q0,w)

)
, which terminates

because w is finite.

Intuitively, the automaton transitions from a state to another (not necessarily distinct) state
after reading each letter. When it finishes reading the word, the state it ends up in will tell us
the output of this run. The function δ̂ is defined in Lean accordingly.

def DFAO.transFrom (dfao : DFAO α state out) (x : List α ) (s : state) :

state :=

match x with

| [] => s

| a::as => DFAO.transFrom dfao as (dfao.transition a s)

And the definition for fM, DFAO.eval , follows.

def DFAO.evalFrom (dfao : DFAO α state out) (x : List α ) (q : state) : out

:=

dfao.output (DFAO.transFrom dfao x q)

def DFAO.eval (dfao : DFAO α state out) (x : List α ) : out :=

DFAO.evalFrom dfao x dfao.start

DFA are very similar to DFAO, with the output alphabet and output function replaced by a
set of accepting states.

Definition 2.6 – Deterministic Finite Automata

Let Σ be a nonempty alphabet. A deterministic finite automaton (DFA) is a quintuple

M = (Σ,Q,q0,δ ,F),
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where

– Σ is the input alphabet

– Q is a finite, nonempty set of states

– q0 ∈ Q is the distinguished start state

– δ : Q×Σ → Q is the transition function

– F ⊆ Q is the set of accepting states

δ can be extended to δ̂ in the same way for DFAO. A word x is said to be accepted by M if
δ̂ (q0,x) ∈ F , and rejected otherwise. The set of all accepted words {x ∈ Σ∗|δ̂ (q0,x) ∈ F} is
called the language recognized by M, and is written L(M).

We observe that a DFA is essentially equivalent to a DFAO where Γ = {⊤,⊥} and ω = χF

with

χF(q) =

⊤ if q ∈ F,

⊥ otherwise.

in the sense that F and χF uniquely specify each other. In Lean, we implement DFA as
DFAO by using out in the DFAO as the characteristic function of the accepting set.

-- A DFA is a DFAO where the output is a boolean

abbrev DFA (α state : Type) := DFAO α state Bool

A celebrated theorem that we will use is the pumping lemma for DFA.
Theorem 2.2 – Pumping Lemma

Given a DFA M, let L = L(M) be the set of words it accepts. Then there is a constant n

such that for all z ∈ L with |z| ≥ n, there exists a decomposition z = uvw with |uv| ≤ n

and |v| ≥ 1 such that uviw ∈ L for all i ≥ 0.

Proof. Say M has n states. This n is the constant in the statement of the theorem. If
|z| ≥ n, consider the states encountered when reading the first n symbols of z, formally
{δ̂ (q0,z′) | z′ is an initial segment of z with length ≤ n}. Including the initial state, at least
n+ 1 not necessarily distinct states are encountered, so by the pigeonhole principle, some
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state is repeated. This means that reading a nonempty segment v of z on this state loops back
to itself. Write z = uvw, where u is the word that precedes the loop and w the word that
follows the loop. We can repeat looping (or not go through the loop at all) and still get an
acceptance path for the word uviw.

There is actually a more general version for DFAO, which we proved in Lean. The {b}*

means arbitrary exponent of b , in the sense that {a} * {b}* * {c} means the set {abnc|n∈
N}. We will use this notation in the next chapter. When reporting theorems, we will not show
their proofs.

theorem DFAO.pumping_lemma_eval [Fintype state] {dfao : DFAO α state out} {x

: List α } {o : out} (hx : dfao.eval x = o)(hlen : Fintype.card state ≤ x

.length) :

∃ a b c, x = a ++ b ++ c ∧ a.length + b.length ≤ Fintype.card state ∧ b

̸=[]

∧ ∀ y ∈ ({a} * {b}* * {c} : Language α ), dfao.eval y = o

So far, we have been looking at deterministic automata, where we transition to a single fixed
state upon reading a letter. There are also nondeterministic automata, where we can transition
to multiple states.

Definition 2.7 – Nondeterministic Finite Automata (NFA)

An nondeterministic finite automaton is a quintuple

M = (Q,Σ,δ ,Q0,F)

where:

– Q: Finite set of states

– Σ: Input alphabet

– δ : Q×Σ → 2Q: Transition function

– Q0 ⊆ Q: Initial state set

– F ⊆ Q: Accepting states

14



In formalizing NFA, we use lists without duplicates instead of sets for efficiency. The type
ListND state contains all lists of elements from state , with no duplicates. If state

is a finite type, then there is a bound on the length of elements of ListND state , making
the type finite as well. Formalizing 2Q as ListND state makes the state sets ordered,
so the total number of state sets is larger than needed. However, it allows the use of list
operation and related theorems in Mathlib, simplifying implementation and verification.

abbrev ListND (α : Type) := {l : List α // l.Nodup}

structure NFA (α state : Type) where

(transition : α → state → ListND state)

(start : ListND state)

(output : state → Bool)

For an NFA, the transition function δ is extended to δ̂ : 2Q ×Σ∗ → 2Q recursively:

– For Q′ ⊆ Q and w = ε ,
δ̂ (Q′,ε) = Q′

– For Q′ ⊆ Q, w ∈ Σ∗, and a ∈ Σ,

δ̂ (Q′,aw) = δ̂ (
⋃

q∈Q′
δ (q,a),w)

and M accepts a word w iff δ̂ (Q0,w)∩F ̸= /0.

In Lean, these are implemented in a way similar to the ones for DFAO above, but using list
operations. NFA.transList computes

⋃
q∈qs δ (q,a).
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def NFA.transList (nfa : NFA α state) (a : α ) (qs : ListND state) [

DecidableEq state] : ListND state :=

⟨(qs.val.flatMap fun q => nfa.transition a q).dedup, (by apply List.

nodup_dedup)⟩

def NFA.transFrom (nfa : NFA α state) (s : List α ) (qs : ListND state) [

DecidableEq state] : ListND state :=

match s with

| [] => qs

| a::as => NFA.transFrom nfa as (NFA.transList nfa a qs)

def NFA.evalFrom (nfa : NFA α state) (s : List α ) (qs : ListND state) [

DecidableEq state] : Bool :=

(nfa.transFrom s qs).val.any nfa.output

def NFA.eval (nfa : NFA α state) (s : List α ) [DecidableEq state] : Bool :=

NFA.evalFrom nfa s nfa.start

It turns out that for every NFA, we can construct an equivalent DFA, in the sense that they
accept the same words.

Definition 2.8 – Subset Construction

Let M = (Q,Σ,δ ,Q0,F) be an NFA. The subset construction produces a DFA

M′ = (2Q,Σ,δ ′,Q0,F ′)

where:

– States: 2Q (all subsets of Q)

– Initial state: Q0

– Transitions: For S ⊆ Q and a ∈ Σ,

δ
′(S,a) =

⋃
q∈S

δ (q,a)
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– Accepting states: F ′ = {S ⊆ Q | S∩F ̸= /0}

For an NFA with n states, the subset-constructed DFA has 2n states.

Using the transList function earlier, the subset construction is elegantly formalized in
Lean.

def NFA.toDFA (nfa : NFA α state) [DecidableEq state] : DFA α ListND state

where

transition := fun a qs => NFA.transList nfa a qs

start := nfa.start

output := fun qs => qs.val.any nfa.output

The equivalence between the NFA and its corresponding DFA can be proven.

Theorem 2.3 – Correctness of Subset Construction

Let M be an NFA and M′ its subset-constructed DFA. For all w ∈ Σ∗,
M accepts w iff M′ accepts w

Proof. By induction on w, prove that δ̂ ′(Q′,w) = δ̂ (Q′,w) for any Q′ ⊆Q. Base case: w= ε ,
we have δ̂ ′(Q′,ε) = Q′ = δ̂ (Q′,ε).
Inductive step: For w = ax, we have δ̂ ′(Q′,ax) = δ̂ ′(δ ′(Q′,a),x) = δ̂ ′(

⋃
q∈Q′ δ (q,a), x),

which, by IH, is the same as δ̂(
⋃

q∈Q′ δ (q,a), x) = δ̂ (Q′,ax).

In particular, we have δ̂ ′(Q0,w) = δ̂ (Q0,w). Then, M accepts w iff δ̂ (Q0,w)∩F ̸= /0 iff M′

accepts w.

We have established this equivalence in Lean.

theorem NFA.toDFA_eval (nfa : NFA α state) (s : List α ) [DecidableEq state]

: (nfa.toDFA).eval s = nfa.eval s

As a corollary, we have the pumping lemma for NFA.
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Corollary 2.1 – Pumping Lemma for NFA

Given an NFA M, let L = L(M) be the set of words it accepts. Then there is a constant
n such that for all z∈ L with |z| ≥ n, there exists a decomposition z= uvw with |uv| ≤ n

and |v| ≥ 1 such that uviw ∈ L for all i ≥ 0.

Proof. Using the subset construction, obtain an equivalent DFA for M, then apply the pump-
ing lemma for the DFA.

2.4 Automatic Sequences

Definition 2.9 – b-automatic sequence

Let b ≥ 2. An infinite sequence a = a0a1a2 . . . taking values in a finite alphabet ∆ ⊂N
is called b-automatic if there exists a DFAO M = (Q,Σb,δ ,q0,∆,ω), such that for
every n ≥ 0, for any base b word w of n, the output of fM(w) = an.

If a sequence s is b-automatic for some b, then it is automatic. There are more automatic
sequences produced related to different number representation systems, which we do not
discuss here. The Thue-Morse sequence is 2-automatic, generated by the following DFAO.
Automata are often depicted in transition diagrams like this, where states are displayed as
circles with their names and output inside, and transitions are displayed as labeled arrows.
For automata without output, only state names are displayed and accepting states are marked
with double circles.

q0/0start q1/1

0

1

0

1
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3 A Decision Procedure for Automatic Sequences

Before delving into the decision procedure, we have to understand the syntax of the formal
language1 in which problems are stated.

3.1 Presburger Arithmetic Extended by an Automatic Sequence

Instead of reviewing general first-order logic, we provide a minimal introduction to the lan-
guage of Presburger arithmetic extended by a function S for indexing into a b-automatic
sequence s, in classical first-order logic with equality.

First-order logic with equality contains the connectives ∧, ∨, ¬, →, and ↔; the quantifiers
∃, ∀; a countably infinite collection of variables x1, x2, . . . , y, z, . . . the two parentheses ),
(; and the equality symbol =. In Presburger arithmetic, we also have the binary function
symbol +(·, ·). Adding the unary function symbol S completes the building blocks we need.
We call this language LS.

Definition 3.1 – LS Terms

The set of LS-terms T is generated inductively by the following clauses

• For any variable v, v ∈ T

• For any t1, t2 ∈ T , then +(t1, t2) ∈ T

• For any t ∈ T , S(t) ∈ T

For example, +(x,S(x)) is a LS-term. When writing down terms, we can use the function
symbol + as in common mathematical practice, replacing +(x,y) as (x+ y). Syntactically,
it is important to keep the parentheses, although semantically + is associative. The set of
formulae is defined in the standard way.

1Unfortunately, the word "language" is used in both mathematical logic and automata theory, and they mean
different things. In this section, a language is just a collection of symbols, which we use to build terms and
formulae.
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Definition 3.2 – LS-formula

Finite strings of the following forms are called atomic formulae:

• t1 = t2, where t1 and t2 are LS-terms

The set of LS-formulae F is generated inductively by the following clauses:

• if φ ∈ F , then ¬(φ) ∈ F .

• if φ ∈ F and ψ ∈ F , then (φ)∨ (ψ),(φ)∧ (ψ),(φ)→ (ψ), and (φ)↔ (ψ) ∈
F .

• if φ ∈ F and v is a variable, then ∃v(φ) and ∀v(φ) ∈ F . We say φ is the scope
of the ∃ or ∀ quantifier.

A formula is quantifier-free if it does not contain any quantifiers. When no ambiguity
could arise, parentheses enclosing formulae can be dropped.

We need to distinguish free and bound variables in a formula.
Definition 3.3 – Free and bound variables, and sentence

A variable v is free in a formula if it is not in the scope of any ∃ quantifier. Otherwise
it is bound. If a formula contains no free variables, it is a sentence.

When talking about the number of free variables in a formula, we mean the number of distinct
free variables. For a formula φ with k free variables, we often write out φ(v1,v2, ...,vk)

to display the free variables explicitly. It is also common to write φ (⃗v) as a shorthand of
φ(v1,v2, ...,vk). For the sake of clarity, we do not allow the same variable to occur as both a
free variable and a bound variable in a formula (like in x = y∧∃x(x+y = z)) or meaningless
quantification (like in ∃x(y = z)). The decision procedure will construct automata for a
restricted class of LS-formulae, those in automata normal forms.

Definition 3.4 – Automata Atom

An atomic LS-formula is an automata atom if it has one of the following forms:

• v1 = v2

• S(v1) = v2,

• v1 + v2 = v3
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where v1, v2 and v3 must be variables, not general terms.

Definition 3.5 – Automata Normal Form

An LS formula is said to be in automata normal form (ANF) if it is in prenex form
(where all quantifiers appear at the beginning of the formula, followed by a quantifier-
free formula), and every atomic formula in it is an automata atom.

We now show that this restriction is superficial in the sense that for any LS formula, there
exists an equivalent one that is in ANF. We do not discuss semantics of first-order logic
here. Intuitively, the formulae are supposed to be talking about natural numbers and the
sequence s. When we say that two formulae (with the same free variables) are equivalent,
we mean that under identical assignment of free variables to natural numbers, one is true iff
the other is true. Every first-order formula can be put into prenex form, so it suffices to show
that for any atomic LS-formula, there exists an equivalent LS formula in which all atomic
formulae are automata atoms. Then for any formula, we can eliminate non-automata atoms
by replacing them with formulae that have only automata atoms. Then, we put the formula
in prenex form, turning it into ANF. For more details about semantics of first-order logic,
logical equivalence, and prenex form, see [2].

Theorem 3.1 – Eliminating Non-Automata Atoms

For any atomic LS-formula, there exists an equivalent LS formula in which all atoms
are automata atoms.

Proof. Consider an arbitrary atomic LS-formula t1 = t2. Notice that it is equivalent to the
formula ∃x,(t1 = x∧ t2 = x). So, we only need to show that for every atomic LS-formula of
the form t = x, there exists an equivalent LS formula with only automata atoms.

Consider a term t, we know S occurs in it finitely many times. By induction on this finite
number k, we prove that t = x is equivalent to an LS formula in which all non-automata
atomic formulae do not contain S. Base case is trivial. Inductive step: Consider the first S in
t that is not applied to a variable, it is applied to some term r, and S(r) is a subterm of t. Now
take fresh variables u,v and consider the formula ∃v∃u(t ′ = x∧ (S(u) = v∧u = r)), where t ′

is the term obtained by replacing all the occurrences of S(r) with v in t. This is equivalent
to t = x. But notice that S(u) = v is compliant, and the other two atomic terms have fewer

21



k many S: We took at least one S away from t ′, and r has one less S than S(r). Applying
inductive hypothesis completes this subproof.

So, we are left with the task of showing that for every term t not containing S, there exists
an LS formula with only automata atoms that is equivalent to t = x. This can be carried
out by induction on the number of + in t. Base case is trivial. Inductive step: Find a
subterm t1 + t2 that is not the same as t (if there are none, then there is only a single +,
and t = x is an automata atom already). Take a fresh variable v and consider the formula
∃v(t ′ = x∧ t1 + t2 = v), where t ′ is obtained by replacing all occurrences of t1 + t2 by v in t.
This is equivalent to t = x, but both t ′ and t1 + t2 have less + than t, so rewriting the formula
with inductive hypothesis closes the proof.

Corollary 3.1 – ANF Theorem

Every LS-formula is equivalent to one in automata normal form.

In the rest of this chapter, we present a decision procedure for the b-automatic sequence s.
For a LS-formula φ (⃗v) in automata normal form with m free variables v⃗, we build a DFA
with alphabet Σm

b that accepts base b-words of an m-tuple of natural numbers a⃗ iff φ (⃗a)

is true. Because ANF formulae are in prenex form, we consider the case where φ (⃗v) is
quantifier-free first. Fixing Σm

b as the input alphabet, we construct an automaton for each of
its subformula ψ (⃗v′). Note that every variable in v⃗′ is in v⃗, but it could be the case that some
variables in v⃗ are not in v⃗′. If that happens, with v′ containing n < m variables, we have an
injection I : {1,2, ...,n} → {1,2, ...,m} such that v′i = vI(i) for every i ≤ n. The automaton
we build for ψ (⃗v′) accepts base b-words of an m-tuple of natural numbers a⃗ iff ψ(a⃗′) is
true, where a⃗′ is the n-tuple such that a′i = aI(i). So, the automaton ignores all irrelevant
indices (corresponding to variables not in v⃗′) when reading input, and functions essentially
as an automaton over Σn

b. For convenience, we generalize the notation for formulae with free
variables, to allow ψ (⃗v) even when some variables in v⃗ do not appear in ψ . So, ψ (⃗v) is the
same as ψ (⃗v′). In contexts like the one above where the assignment of natural numbers to
variables is clear, we also take ψ (⃗a) to be the same as ψ(a⃗′). So, we can say that we want
to build a DFA for ψ (⃗v) that accepts base b-words of an m-tuple of natural numbers a⃗ iff
ψ (⃗a) is true, even when ψ actually does not contain some variables in v⃗. We call such a DFA
Mψ (⃗v). We now build Mφ (⃗v) by induction on φ .
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3.2 Boolean Automata

Before dealing with atomic formulae, we first build automata for boolean connectives. To
build M¬φ (⃗v) from Mφ (⃗v), we take the complement of the accepting set.

Definition 3.6 – Complement Automaton

Given a DFA M = (Σ,Q,q0,δ ,F), its complement is the DFA M = (Σ,Q,q0,δ ,Q\F)

Because the accepting set is represented as a function from Q to {⊤,⊥} in Lean, we can
formalize this by flipping the value of the function.

def DFA.negate (dfa: DFA α state) : DFA α state := {

transition := dfa.transition

start := dfa.start

output := fun x => ! dfa.output x

}

It is obvious that whenever M accepts, M does not.

Theorem 3.2 – Correctness of Complement

Fix M = (Σ,Q,q0,δ ,F). For any w ∈ Σ∗, M accepts w if and only if M does not
accept w.

Proof. M accepts w iff δ (q0,x) ∈ Q\F iff δ (q0,x) /∈ F iff M does not accept w.

The proof is also straightforward in Lean.

theorem negate_iff (dfa : DFA α state) (s : List α ) :

(dfa.negate).eval s = true ↔ ¬dfa.eval s = true

Let M¬φ (⃗v) be Mφ (⃗v). The correctness of M¬φ (⃗v) follows from the correctness of the comple-
ment automaton.
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Corollary 3.2 – Correctness of M¬φ (⃗v)

If Mφ (⃗v) accepts base b-words of an m-tuple of natural numbers a⃗ iff φ (⃗a) is true, then
M¬φ (⃗v) accepts base b-words of an m-tuple of natural numbers a⃗ iff ¬φ (⃗a) is true.

We also need conjunction and disjunction. To build M(φ∧ψ)(⃗v) or M(φ∨ψ)(⃗v) from Mφ (⃗v) and
Mψ (⃗v), we need to take their product.

Definition 3.7 – Product Construction for DFA

Let
M1 = (Σ, Q1, q1, δ1, F1), M2 = (Σ, Q2, q2, δ2, F2)

be deterministic finite automata over the same input alphabet Σ. Their product au-
tomaton is the DFA

M1 ×M2 =
(
Σ, Q1 ×Q2, (q1,q2), δ×, F×

)
,

where, for every a ∈ Σ and (r1,r2) ∈ Q1 ×Q2,

δ×
(
(r1,r2), a

)
=

(
δ1(r1,a), δ2(r2,a)

)
.

The accepting set F× is chosen to realise the desired Boolean combination of L(M1)

and L(M2):
(Intersection) F∩ = F1 ×F2

(Union) F∪ = (F1 ×Q2) ∪ (Q1 ×F2).

If |Q1|= m and |Q2|= n, the product automaton has mn states.

We formalize the intersection product and the union product separately.
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def DFA.intersection (dfa1 : DFA α state1) (dfa2 : DFA α state2) : DFA α (

state1 × state2) := {

transition := fun a q => ⟨dfa1.transition a q.1, dfa2.transition a q.2⟩,
start := (dfa1.start, dfa2.start),

output := fun (q1, q2) => dfa1.output q1 && dfa2.output q2

}

def DFA.union (dfa1 : DFA α state1) (dfa2 : DFA α state2) : DFA α (state1

× state2) := {

transition := fun a q => ⟨dfa1.transition a q.1, dfa2.transition a q.2⟩,
start := (dfa1.start, dfa2.start),

output := fun (q1, q2) => dfa1.output q1 || dfa2.output q2

}

Theorem 3.3 – Correctness of Product Construction

The product construction is correct. In other words, depending on the choice of F×,

F1 ×F2 =⇒ M1 ×M2 accepts w iff (M1 accepts w and M2 accepts w),

(F1 ×Q2) ∪ (Q1 ×F2) =⇒ M1 ×M2 accepts w iff (M1 accepts w or M2 accepts w).

Proof. This is immediate from the way that the state set and transition function are defined
for the product. By induction, we have δ̂×

(
(r1,r2), w

)
=

(
δ̂1(r1,w), δ̂2(r2,w)

)
. for any word

w in the shared alphabet. It then follows that if the accepting set is F1×F2, we have fM1×M2 =

⊤ iff ( fM1 = ⊤ and fM2 = ⊤). Similarly, if the accepting set is (F1 ×Q2) ∪ (Q1 ×F2), we
have fM1×M2 =⊤ iff ( fM1 =⊤ or fM2 =⊤).

We also write M1 ∩M2 and M1 ∪M2 for the products. The correctness of them has been
established in Lean.
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theorem intersection_iff (dfa1 : DFA α state1) (dfa2 : DFA α state2) (s :

List α ) :

(dfa1.intersection dfa2).eval s = true ↔ (dfa1.eval s = true ∧ dfa2.eval s

= true)

theorem union_iff (dfa1 : DFA α state1) (dfa2 : DFA α state2) (s : List α )

:

(dfa1.union dfa2).eval s = true ↔ (dfa1.eval s = true ∨ dfa2.eval s = true

)

Take Mφ (⃗v) ∩Mψ (⃗v) for M(φ∧ψ)(⃗v), the correctness of product construction implies the cor-
rectness of M(φ∧ψ)(⃗v).

Corollary 3.3 – Correctness of M(φ∧ψ)(⃗v)

If Mφ (⃗v) accepts base b-words of an m-tuple of natural numbers a⃗ iff φ (⃗a) is true and
Mψ (⃗v) accepts base b-words of an m-tuple of natural numbers a⃗ iff ψ (⃗a) is true, then
M(φ∧ψ)(⃗v) accepts base b-words of an m-tuple of natural numbers a⃗ iff (φ ∧ψ)(⃗a) is
true.

Similarly, we can take Mφ (⃗v)∪Mψ (⃗v) for M(φ∨ψ)(⃗v), but this is not necessary, because {¬,∧}
is already a complete set of boolean connectives, allowing us to express ∨, →, and ↔.

3.3 Atomic Automata

We now provide automata for automata atoms. The first case is M(vi=v j)(⃗v) for i, j ≤ m, where
the input alphabet is Σm

b . The automaton merely has to remember whether it has already seen
a pair of unequal digits in positions i and j.

Let
M(vi=v j)(⃗v) =

(
Σ

m
b , {qeq,qneq}, qeq, δ , {qeq}

)
,
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where the transition function

δ (qeq, t) =

qeq if ti = t j,

qneq otherwise,
δ (qneq, t) = qneq for all t.

This automaton is illustrated in the following transition diagram.

qeqstart qneq

ti = t j

ti ̸= t j

Σm
b

It is easily implemented in Lean.

def eqBase (b m: N) (i j : Fin m): DFA (Fin m → Fin (b + 2)) (Fin 2) := {

transition := fun v s => match s with

| 0 => if (v i).val == v j then 0 else 1

| 1 => 1

start := 0

output := fun x => x == 0

}

Theorem 3.4 – Correctness of the Equality Automaton

M(vi=v j)(⃗v) accepts base-b words of an m-tuple of natural numbers a⃗ iff (vi = v j)(⃗a) is
true, i.e. ai = a j.

Proof. (⇒) If ai = a j, then they will have the same base-b digits, so in the word, every ti = t j,
and the automaton will never leave qeq. Therefore, the automaton will accept in the end.
(⇐) If the automaton accepts, that means it has been staying at qeq (once it reaches qneq, it
cannot come back), so every ti = t j in the word, meaning the base-b digits of ai and a j are
the same, so ai = a j.

This has been formally verified, for the canonical (no leading zeros) word of v⃗.
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theorem eqBase_iff (b m: N) (v : Fin m → N) (i j : Fin m):

v i = v j ↔ (eqBase b m i j).eval (toWord v b)

But we should show this for not only the canonical base-b word of v⃗, but for every possible
base-b word. More generally, every automata we construct should not distinguish between
different base-b words of a tuple. Recall that all base-b words of a tuple differ only by
leading zeros.

Definition 3.8 – Zero-respecting Automata

We say that a DFA M over Σm
b is zero-respecting when for every word z, M accepts z

if and only if M also accepts 0∗z. Here, 0 denotes the m-tuple of zeros.

This is formalized as a proposition in Lean.

def DFA.respectZero (dfa : DFA (Fin m → Fin (b + 2)) state) : Prop := ∀ (x :

List (Fin m → Fin (b + 2))), ∀ n, dfa.eval x ↔ dfa.eval (padZeros n x)

To completely verify the correctness of the equality automaton, we have proven in Lean that
it is zero-respecting.

theorem equality_respectZero : (eqBase b m i j).respectZero

Moreover, we also verified that if Mφ (⃗v) and Mψ (⃗v) are zero-respecting, then so are M¬φ (⃗v),
M(φ∧ψ)(⃗v), and M(φ∨ψ)(⃗v), for the boolean automata we constructed previously.
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theorem DFA.negate_respectZero (dfa : DFA (Fin m → Fin (b + 2)) state) (h:

dfa.respectZero) : dfa.negate.respectZero

theorem DFA.intersection_respectZero (dfa1 : DFA (Fin m → Fin (b + 2))

state1) (dfa2 : DFA (Fin m → Fin (b + 2)) state2) (h1: dfa1.respectZero)

(h2: dfa2.respectZero) : (dfa1.intersection dfa2).respectZero

theorem DFA.union_respectZero (dfa1 : DFA (Fin m → Fin (b + 2)) state1) (

dfa2 : DFA (Fin m → Fin (b + 2)) state2) (h1: dfa1.respectZero) (h2: dfa2

.respectZero) : (dfa1.union dfa2).respectZero

We now move on to build M(S(vi)=v j)(⃗v), by exploiting the fact that s only takes values in a
finite ∆⊂N . Observe that if we extend the language of LS by elements1 of ∆⊂N , referring
to those natural numbers, then S(vi) = v j is equivalent to

∨
k∈∆(S(vi) = k∧ v j = k). Because

we already have boolean automata, it suffices to build M(S(vi)=k)(⃗v) and M(v j=k)(⃗v) for every
k ∈ ∆.

Building M(v j=k)(⃗v) requires the base-b digits of k. Let (k)b = d1d2 · · ·dt

Because leading zeros are irrelevant, the automaton only needs to verify that, after stripping
an arbitrary number of leading zeros on the j-th index, the remaining word is exactly (k)b.

Let
M(v j=k)(⃗v) =

(
Σ

m
b ,Q, q0, δ , {qt}

)
,

where the state set is
Q = {q0,q1, . . . ,qt ,q⊥}.

Intuitively qr means “matched the first r significant digits of (k)b”; q0 processes leading

1We are actually adding constants which are being interpreted as those elements, but it is convenient to blur
the difference here.
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zeros and q⊥ is the rejecting state. For a letter t = (t0, . . . , tm−1) ∈ Σm
b put

δ (qr, t) =



qr if r = 0 and t j = 0,

qr+1 if 0 ≤ r < t and t j = dr+1,

q0 if k = 0 and t j = 0,

q⊥ otherwise

δ (q⊥, t) = q⊥.

Theorem 3.5 – Correctness of M(v j=k)(⃗v)

M(v j=k)(⃗v) accepts base b-words of an m-tuple of natural numbers a⃗ iff v j = k.

Proof. By construction, the only way for M(v j=k)(⃗v) to end up in its accepting state qt is for it
to stay at q0, then visit q1,q2, ...,qk sequentially without repetition. In other words, M(v j=k)(⃗v)

accepts a word iff the j-th element of every tuple consists of exactly the digits of k in base b,
with leading zeros, iff v j = k.

To construct M(S(vi)=k)(⃗v), let Ms = (Q,Σb,δ ,q0,∆,ω) be the DFAO that generates the b-
automatic sequence s. We obtain MS(vi) = (Q,Σm

b ,δ
i,q0,∆,ω) by letting δ i(t,q) = δ (ti,q),

and then take M(S(vi)=k)(⃗v) = (Q,Σm
b ,δ

i,q0,F) where

F = {q ∈ Q|ω(q) = k}

We claim that this M(S(vi)=k)(⃗v) is correct.

Theorem 3.6 – Correctness of M(S(vi)=k)(⃗v)

M(S(vi)=k)(⃗v) accepts base b-words of an m-tuple of natural numbers a⃗ iff S(ai) = k.

Proof. Let w be a base-b word of a⃗. M(S(vi)=k)(⃗v) accepts w iff fMS(vi)
(w)= k iff S(ai)= k.

Verification of this depends on the specific choice of s that one want to implement the deci-
sion procedure on. However, the last step of building M(S(vi)=k)(⃗v) out of MS(vi) involves an
interesting general operation that turns a DFAO into a DFA, which we have verified.
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def DFAO.toDFA (dfao : DFAO α state out) (o: out) [DecidableEq out]: DFA α

state := {

transition := dfao.transition,

start := dfao.start,

output := fun s => (dfao.output s) == o

}

theorem DFAO.toDFA_eval (dfao : DFAO α state out) (o: out) (s : List α ) [

DecidableEq out] :

(dfao.toDFA o).eval s = (dfao.eval s == o)

We are left with building M(vi+v j=vk)(⃗v). The automaton checks addition digit by digit, con-
sidering carries.

Let

M(vi+v j=vk)(⃗v) =
(
Σ

m
b , Q, q0, δ , {q0}

)
,

where Q = {q0,q1,q⊥} , q0 means “no carry needed”, and q1 means “need carry 1”. with
transition function defined for t = (t0, . . . , tm−1) ∈ Σm

b , as

δ (q0, t)=


q0 ti + t j = tk,

q1 ti + t j +1 = tk,

q⊥ otherwise;

δ (q1, t)=


q1 ti + t j +1 = tk +b,

q0 ti + t j = tk +b,

q⊥ otherwise,

δ (q⊥, t)= q⊥.

Intuitively, in state q0 we check the digit sum without an incoming carry; if it needs a carry
we go to q1 for the next more significant digits. In state q1 we go to the rejecting state if no
carry is produced, and check if another carry is needed from the next digits.
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q0start q1

q⊥

ti + t j = tk

ti + t j +1 = tk

else

ti + t j +1 = tk +b

ti + t j = tk +b

else

Σm
b

The addition-checking automaton is implemented in Lean exactly as above:

def addBase (b m : N) (i j k : Fin m) :

DFA (Fin m → Fin (b + 2)) (Fin 3) :=

{ transition := fun f s =>

match s with

| 0 =>

if (f i).val + f j == f k then 0 else

if (f i).val + f j + 1 == f k then 1 else 2

| 1 =>

if (f i).val + f j + 1 == f k + b then 1 else

if (f i).val + f j == f k + b then 0 else 2

| 2 => 2,

start := 0,

output := fun s => s == 0 }

Theorem 3.7 – Correctness of the Addition Automaton

For every m-tuple of natural numbers a⃗,

M(vi+v j=vk)(⃗v) accepts a base-b word of a⃗ iff ai +a j = ak.

Proof. Leading zeros clearly do not affect acceptance of the automaton, so we can as-
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sume that we are working with a canonical word of a tuple of natural numbers. Write n

for the length of the input word, and let the digits in the i, j,k-th indices in the tuples be
xn−1 . . .x0, yn−1 . . .y0, and zn−1 . . .z0 . The automaton reads the word left-to-right (xn−1,yn−1,zn−1

first).
(⇒) Because the automaton accepts in the end, we can assume it never goes to q⊥. By
induction, we prove the following invariant:

After reading the first ℓ letters (0 ≤ ℓ≤ n) the automaton is in state qr, r ∈ {0,1} if and only
if

n−1

∑
p=n−ℓ

b p(xp + yp
)
=

n−1

∑
p=n−ℓ

b pzp + r bn−ℓ. (⋆ℓ)

Base case is ℓ= 0. Before the first letter the automaton is in q0, we have the empty sum on
both sides and the initial state is q0, i.e. r = 0, so (⋆0) holds.

Inductive step: Assume we are currently at state qr and the next letter supplies digits x :=
xn−ℓ−1, y := yn−ℓ−1, z := zn−ℓ−1. The transition function does an exhaustive case analysis
on the next state r′:

qr′ = δ (qr,(. . . ,x, . . . ,y, . . . ,z, . . .)) =



0 if x+ y = z and r = 0,

1 if x+ y+1 = z and r = 0,

0 if x+ y = z+b and r = 1,

1 if x+ y+1 = z+b and r = 1,

q⊥ otherwise.

A direct check of the four non-rejecting cases shows that it is always the case that

xbn−ℓ−1 + ybn−ℓ−1 = zbn−ℓ−1 + r bn−ℓ− r′ bn−ℓ−1.

Adding this to (⋆ℓ), which we have by IH, yields (⋆ℓ+1). After reading the final letter and
setting r = 0, (⋆ℓ) is equivalent to ai +a j = ak.

(⇐) We prove the contrapositive. Suppose the automaton does not accept a base-b word of
a⃗. This means that in reading the word it transitioned into q⊥. Assume it first reached q⊥
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after reading the l + 1-th letter (this +1 is safe because it cannot reach q⊥ without reading
anything), then the invariant in the forward direction

n−1

∑
p=n−ℓ

b p(xp + yp
)
=

n−1

∑
p=n−ℓ

b pzp + r bn−ℓ. (⋆ℓ)

still holds after reading the l-th letter and in state qr, r ∈ {0,1}. We case on r, and abbreviate
x := xn−ℓ−1, y := yn−ℓ−1, z := zn−ℓ−1. When r = 0, we know neither x+ y = z nor x+ y+

1 = z, so x+ y > z or x+ y < z− 1. Together with the simplified (⋆ℓ), a straightforward
computation shows that it is impossible for the rest less significant digits to make up the
difference, so ai +a j ̸= ak. The case where r = 1 is similar.

It is easy to check that M(v j=k)(⃗v), M(S(vi)=k)(⃗v), and M(vi+v j=vk)(⃗v) are zero-respecting. In par-
ticular, M(S(vi)=k)(⃗v) is zero-respecting because Ms is, by definition of b-automatic sequences.
At the time of writing this thesis, we have not yet verified these atomic automata.

3.4 Projection and Fixing Leading Zeros

With the boolean and atomic automata in place, we are done with the quantifier-free part
of LS formulae. Now, given a formula φ (⃗v) with m + 1 free variables v⃗, its automaton
Mφ (⃗v) with alphabet Σ

m+1
b , and a variable vi in v⃗, we want to build a DFA M∃vi(φ (⃗v)) with

alphabet Σm
b that accepts base b-words of an m-tuple of natural numbers a⃗ iff ∃vi(φ(a⃗v

i )) is
true, where φ(a⃗v

i ) is φ(a1, ...,ai−1,vi,ai, ...,am), assigning the a⃗ to the variables in v⃗ other
than vi sequentially. The automata operation we are going to use is called projection.

Definition 3.9 – Projection

Given a DFA M =
(
Σ

m+1
b , Q, q0, δ , F

)
, Let

πi(M) =
(
Σ

m
b , Q, {q0}, ∆i, F

)
,
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where πi(M) is an NFA whose transition relation is ∆i : Q×Σm
b → 2Q is

∆i
(
q, t

)
=

{
δ
(
q, inserti(x, t)

) ∣∣ x ∈ Σb
}
,

and inserti(x, t) means inserting the symbol x as the i-th component of the m-tuple t,
moving ti, ..., tm one position towards the right, resulting in an m+1 tuple. Intuitively,
πi(M) nondeterministically guesses the digits of the i-th natural number, and simu-
lates M on the completed word.

This requires a careful formalization in Lean.

def project (i : Fin (m + 1)) (dfa : DFA (Fin (m + 1) → Fin (b + 2)) state)

[DecidableEq state] :

NFA (Fin m → Fin (b + 2)) state := {

transition :=

fun a q => ⟨(List.map (fun (x : Fin (b + 2)) => dfa.transition (Fin.

insertNth i x a) q)

(FinEnum.toList (Fin (b + 2)))).dedup, by apply List.nodup_dedup⟩
start := ⟨[dfa.start], List.nodup_singleton dfa.start⟩
output := dfa.output

}

The words that πi(M) accepts satisfy the following property.

Theorem 3.8 – Projection Property

Let M =
(
Σ

m+1
b , Q, q0, δ , F

)
be a DFA and fix an index i ≤ m. For a letter t ∈ Σ

m+1
b

write πi(t) ∈ Σm
b for the tuple obtained by deleting the i-th component, and extend πi

to words by mapping it letter-wise. Then for every word w ∈ (Σm
b )

∗,

πi(M) accepts w iff there exists w′ ∈ (Σm+1
b )∗ such that w = πi(w′) and M accepts w′.

Proof. (⇒) Assume πi(M) accepts w. By definition of the NFA πi(M) there is a sequence of
symbols x0x1 . . .x|w|−1 in Σb such that if we insert xk as the i-th component of the k-th letter
wk we obtain a word w′ := inserti(x0,w0) inserti(x1,w1) . . . which is clearly accepted by M.
By construction w = πi(w′), establishing the existence.
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(⇐) Conversely, suppose there exists w′ with w = πi(w′) and M accepts w′. By induction on
w′, we can prove that δ̂ (q0,w′) ∈ ∆̂i({q0},w), because for every letter a in w and every state
q, we have that

{
δ
(
q, inserti(x,a)

) ∣∣ x ∈ Σb
}

= ∆i
(
q,a

)
. Therefore, πi(M) accepts w.

And we have this property proven in Lean.

theorem project_eval_iff [DecidableEq state](dfa : DFA (Fin (m + 1) → Fin (b

+ 2)) state) (i : Fin (m + 1)) (l : List (Fin m → Fin (b + 2))) : (

project i dfa).eval l ↔ ∃ (l : List (Fin (m + 1) → Fin (b + 2))) , l = l

.map (Fin.removeNth i) ∧ dfa.eval l

By the subset construction, we can treat πi(M) as a DFA. In the rest of this section, we do not
distinguish DFA and NFA. However, πi(Mφ (⃗v)) is not yet M∃vi(φ (⃗v)), because it is not zero-
respecting. Consider the formula ∃v3,v1+v2 = v3. M∃v3,v1+v2=v3 in base-2 should accept the
word (1,1) because 1+ 1 = 2. Consider, on the other hand, the projection πv3

(
Mv1+v2=v3

)
During its simulation it has to guess one symbol for the v3-position at every letter. If w

has length 1 the guess is forced to a single digit x ∈ {0,1}. But addition automaton for
Mv1+v2=v3 in the previous section shows that with inputs a = 1 and b = 1 no single digit x

yields an accepting transition:

1+1 = 0 (carry 1), 1+1 = 2 (not a base-2 digit).

Consequently, every run of the projected automaton on w is trapped in the rejecting state,
so πv3(Mv1+v2=v3) rejects (1,1). On the other hand, if the input word is (0,0)(1,1), then
πv3(Mv1+v2=v3) would accept, because the additional leading zeros allows the automaton to
guess (2)2 = 10. More generally, we have the following theorem.

Theorem 3.9 – πi(Mφ (⃗v)) is Partially Correct

If Mφ (⃗v) accepts the base-b word of the m+1 tuple of natural numbers a⃗, then πi(Mφ (⃗v))

will accept some base-b word of the m-tuple removei(⃗v), where removei(⃗v) =

(v1, ...,vi−1,vi+1, ...,vm+1)

Proof. By removing the i-th index of the base-b word of v⃗, we obtain a word that is a base-b
word of the m-tuple removei(⃗v), which πi(Mφ (⃗v)) accepts by the projection property.
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Intuitively, this means that if we pad enough number of leading zeros, then πi(Mφ (⃗v)) will
accept a a base-b word of the m-tuple removei(⃗v). We now show that it is possible to fix the
problem of πi(Mφ (⃗v)). Although πi(Mφ (⃗v)) is generally not zero-respecting, it has a weaker
property that we can exploit.

Definition 3.10 – Zero-accepting Automata

We say that a DFA M over Σm
b is zero-accepting when for every word z, if M accepts

z then M also accepts 0∗z. Here, 0 denotes the m-tuple of zeros.

def DFA.acceptZero (dfa : DFA (Fin m → Fin (b + 2)) state) : Prop := ∀ (x :

List (Fin m → Fin (b + 2))), (dfa.eval x → ∀ n, dfa.eval (padZeros n x))

As demonstrated in the last section, we can assume that Mφ (⃗v) is zero-respecting, and show
that πi(Mφ (⃗v)) is zero-accepting.

Theorem 3.10 – πi(Mφ (⃗v)) is Zero-accepting

If a DFA M with alphabet Σ
m+1
b is zero-respecting, then πi(M) is zero-accepting. So,

given Mφ (⃗v) is zero-respecting, πi(Mφ (⃗v)) is zero-accepting.

Proof. Suppose πi(M) accepts a word w, then by the projection property there exists a cor-
responding word w′ that M accepts. Because M is zero-respecting, it accepts 0∗w′ Applying
the projection property again proves the theorem.

In Lean, we have a similar acceptZero proposition for NFA, and this theorem.

theorem project_acceptZero [DecidableEq state] (dfa : DFA (Fin (n + 1) → Fin

(b + 2)) state) (h: DFA.acceptZero dfa) (m : Fin (n + 1)) : NFA.

acceptZero (project m dfa)

The crucial insight now is that there is a bounded number of leading zeros we need to pad,
for πi(Mφ (⃗v)) to accept a a base-b word of the m-tuple removei(⃗v), where the word of v⃗ is
accepted by Mφ (⃗v).
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Theorem 3.11 – Bounded Acceptance

Suppose a DFA M with alphabet Σm
b is zero-accepting. Then there exists a natural

number n, such that if M accepts 0mz for some arbitrary m and z, then M accepts 0nz.

Proof. Use the n given by the pumping lemma.

Case 1: If m ≤ n, then by assumption M accepts 0nz.

Case 2: If m > n, by pumping lemma there exists a decomposition 0mz = uvw with |uv| ≤ n

and |v| ≥ 1 such that M accepts uviw for all i≥ 0. Now since |uv| ≤ n and m> n, u and v must
contain only zeros. Take i = 0, we have that M accepts 0m−|v|z, where |v| ≥ 1. Repeating
this process will eventually reduce to case 1.

With the pumping lemma at hand, we are able to prove this in Lean.

theorem DFA.bounded_accept [Fintype state] (dfa : DFA (Fin m → Fin (b + 2))

state) (x : List (Fin m → Fin (b + 2)))(h: dfa.acceptZero): ∀ z, (∃ k,

z = padZeros k x) ∧ dfa.eval z → dfa.eval (padZeros (Fintype.card state)

x)

We observe that padding leading zeros to all inputs of an automaton is equivalent to a change
of initial state.

Definition 3.11 – Fix Leading Zeros

Suppose a DFA M =
(
Q,Σm

b ,δ ,q0,F
)

is zero-accepting. Let n be given by the previous
theorem. Define the DFA M0 to be (Q,Σm

b ,δ ,q
′
0,F) where q′0 = δ̂ (q0,0n).

In Lean, we define the equivalent of this for NFA.

def NFA.fixLeadingZeros [Fintype state] [DecidableEq state] (nfa : NFA (Fin m

→ Fin (b + 2)) state) : NFA (Fin m → Fin (b + 2)) state := {

transition := nfa.transition

start := nfa.transFrom (padZeros (Fintype.card ListND state) []) nfa.start

output := nfa.output

}
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We can show that M0 behaves in the way we want.

Theorem 3.12 – Correctness of M0

Suppose a DFA M =
(
Q,Σm

b ,δ ,q0,F
)

is zero-accepting. Then M0 satisfies the follow-
ing:

1. If 0∗x∩L(M) ̸= /0, then 0∗x ⊆ L(M0).

2. If 0∗x∩L(M) = /0, then 0∗x∩L(M0) = /0

Proof. Note that by definition, M′ accepts x if and only if M accepts 0nx.

1. For every x ∈ Σk, if 0∗x∩L(M) ̸= /0 then M accepts 0nx by the previous theorem, so M′

accepts x. Then by assumption 0∗x ⊆ L(M′).

2. If 0∗x∩L(M) = /0, then M does not accept 0ny for any y ∈ 0∗x since 0ny ∈ 0∗x. Therefore,
M′ does not accept any y ∈ 0∗x.

This means that M0 accepts all representations of a tuple of natural numbers, iff it originally
accepts any. It follows immediately that M0 is zero-respecting. In particular, (πi(Mφ (⃗v)))0 is
zero-respecting.

Corollary 3.4 – M∃vi(φ (⃗v)) is Zero-respecting

(πi(Mφ (⃗v)))0 is zero-respecting.

And we have this in Lean.

theorem project_fix_respectZero [Fintype state][DecidableEq state] (dfa : DFA

(Fin (m + 1) → Fin (b + 2)) state) (i : Fin (m + 1)) (h: dfa.respectZero

) : (project i dfa).fixLeadingZeros.respectZero

The final thing we need is its correctness of M∃vi(φ (⃗v)).

Theorem 3.13 – Correctness of M∃vi(φ (⃗v))

Suppose Mφ (⃗v) is correct. Let M∃vi(φ (⃗v)) := (πi(Mφ (⃗v)))0,

i.e. projection followed by the leading–zero fix described above. For every m-tuple of

39



natural numbers a⃗ = (a1, . . . ,am) and for every base-b word w of a⃗ we have

M∃vi(φ) accepts w iff there exists n ∈ N such that φ(a1, . . . ,ai−1,n,ai, . . . ,am) is true.

Proof. Recall that M∃vi(φ) is zero-respecting. Hence it is enough to argue for one base-b
representation of a⃗. But we have shown that πi(Mφ (⃗v)) is partially correct.

This is the major achievement of our verification effort in Lean.

theorem project_iff [Fintype state] [DecidableEq state] (v : Fin m → N) (i :

Fin (m + 1)) (dfa : DFA (Fin (m + 1) → Fin (b + 2)) state) (hres: dfa.

respectZero):

(project i dfa).fixLeadingZeros.eval (toWord v b) ↔ (∃ (x : N), dfa.eval (

toWord (Fin.insertNth i x v) b))

Replacing every ∀ with the equivalent ¬∃¬ in an ANF formula, we can now build Mφ (⃗v) for
any φ (⃗v) by repeatedly projecting, fixing leading zeros, and complementing on automata.

Note that it is possible to reorder the variables in the input tuple according to the order in
which they are quantified over in the formulae, so that in building the final automaton, it is
always the first variable in the input tuple that gets projected away. In this way, it suffices
to implement a simplified projection function that projects out the first element in an input
tuple. As a result, we can avoid dealing with inserting or removing things from a vector, and
just use Matrix.vecCons , Matrix.vecHead , and Matrix.vecTail .

def project (dfa : DFA (Fin (n + 1) → Fin (b + 2)) state) [DecidableEq state

] : NFA (Fin n → Fin (b + 2)) state := {

transition := fun a q => ⟨(List.map (fun (x : Fin (b + 2)) => dfa.

transition (Matrix.vecCons x a) q)(FinEnum.toList (Fin (b + 2)))).

dedup, by apply List.nodup_dedup⟩,
start := ⟨[dfa.start], List.nodup_singleton dfa.start⟩,
output := dfa.output

}
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4 Conclusion and Future Work

We have established the following decision procedure for sentences in LS, the language of
Presburger arithmetic extended by a function S for indexing into a b-automatic sequence s:

1. Put a sentence φ in automata normal form.

2. Build an automaton for its quantifier-free fragment, by combining atomic automata for
its atoms using boolean automata constructions.

3. Build automata for each quantifier using projection, complement, and fixing leading
zeros.

The final automaton Mφ has an empty input alphabet Σ0
b. We know that for any LS-formula

ψ (⃗v) in automata normal form with m free variables v⃗, the automaton we build accepts base
b-words of an m-tuple of natural numbers a⃗ iff ψ (⃗a) is true. So, Mφ accept the trivial base
b-word of the trivial 0-tuple of natural numbers iff φ is true. We simply inspect whether the
starting state is accepting for an answer.

The decision procedure can be easily extended to include multiple b-automatic sequences,
by taking care of atomic formulae properly. We have verified all automata constructions in
the decision procedure that corresponds to the semantic components of first-order logic with
equality. This means that our library already supports some basic theorem-proving in Lean.
For example, we can show that for every natural number, there exists a natural number that is
equal to it, by building and substituting automata for the Lean expression inductively. In the
end, we use rfl’ or native_decide to check whether the final automaton is accepting.

theorem demo : ¬∃ x : N, ¬∃ y, x = y := by

-- Build x = y

have : ∀ x y : N, x = y ↔ (eqBase 0 2 1 0).eval (toWord ![y, x] 0 ) := by

intro x y

rw[eqBase_iff]

simp_all

simp_rw [this]
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-- Build ∃ y, x = y

have : ∀ x, ((∃ y, (eqBase 0 2 1 0).eval (toWord ![y, x] 0)) ↔ (project (

eqBase 0 2 1 0)).fixLeadingZeros.toDFA.eval (toWord ![x] 0)) := by

intro x

rw[project_iff]

exact equality_respectZero

simp_rw [this]

-- Build ¬∃ y, x = y

have : ∀ x, ((¬ (project (eqBase 0 2 1 0)).fixLeadingZeros.toDFA.eval (

toWord ![x] 0) = true) ↔ (project (eqBase 0 2 1 0)).fixLeadingZeros.

toDFA.negate.eval (toWord ![x] 0) = true) := by

intro x

rw[negate_iff]

simp_rw [this]

--Build ∃ x, ¬∃ y, x = y

have : (∃ x, DFAO.eval (project (eqBase 0 2 1 0)).fixLeadingZeros.toDFA.

negate (toWord ![x] 0) = true) ↔ ((project (project (eqBase 0 2 1 0)).

fixLeadingZeros.toDFA.negate).fixLeadingZeros.toDFA.eval (toWord ![] 0)

= true) := by

rw[project_iff]

apply DFA.negate_respectZero

apply project_fix_toDFA_respectZero

exact equality_respectZero

simp_rw[this]

-- Finally, build ¬∃ x, ¬∃ y, x = y

have : ¬(project (project (eqBase 0 2 1 0)).fixLeadingZeros.toDFA.negate).

fixLeadingZeros.toDFA.eval (toWord ![] 0) =

true ↔ (project (project (eqBase 0 2 1 0)).fixLeadingZeros.toDFA.negate).

fixLeadingZeros.toDFA.negate.eval (toWord ![] 0) = true := by

rw[negate_iff]

simp_rw[this]

-- Check acceptance

rfl’ -- or native_decide
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There is much more work to be done towards a practically useful decision procedure for au-
tomatic sequences in Lean. Atomic automata other than the equality checking one need to be
verified. Some meta-programming on Lean expressions to automatically generate proofs like
the one shown above is desirable. The naive procedure described here also has an astronom-
ical worst-case runtime, because the subset construction exponentiates the number of states
whenever a quantifier is processed. In practice, Walnut’s runtime is often much faster than
the theoretical worst-case [23]. To have a relatively efficient tactic, we need to implement
and verify optimizations such as the minimization algorithm for automata, used in Walnut.
There are also automatic sequences depending on other number representation systems, e.g.
the Fibonacci system. To prepare decision procedures for these automatic sequences, we
need to implement their number representation systems.

Despite all of these remaining challenges, we hope that our library provides a solid, veri-
fied foundation for future work. It is publicly accessible at https://github.com/Aeacu2/
Automata.
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