
A Constructive Version of the

Hilbert Basis Theorem

Aaron Hertz

May 7, 2004

1 Introduction

The Hilbert Basis Theorem was the first major example of a non-constructive
proof recognized in mathematics. Gordan said, on the subject of the theo-
rem, “das ist keine Mathematik, das ist Theologie!” — “this is not Math-
ematics, this is Theology!” [8] Although there are several equivalent state-
ments of the theorem, in this paper we will consider the version which states,
in essence, that all rings of polynomials over countable fields are finitely gen-
erated. (More generally, the theorem holds for polynomial ideals over any
Notherian ring. All the proofs in this paper can easily be adapted to this
more general situation.)

In this paper, we will consider two different constructive proofs. Each
is accomplished by applying Gödel’s Dialectica Interpretation to a classical
proof of the theorem. Both yield algorithms that are instances of primi-
tive recursive functionals of finite types, essentially a simple programming
language in which one can only express total functions. The first, from a
standard proof, yields a constructive version requiring higher-type primitive
recursion. The second, obtained by applying the interpretation to a proof
by Simpson [9], yields a more efficient algorithm in a sense which will be
explained later.

An overview of this thesis is as follows: In sections 2 and 3 we present
logical and algebraic preliminaries, respectively. In section 4 we present our
first proof of Dickson’s Lemma. In section 5 we show how to derive the
Hilbert Basis Theorem from Dickson’s Lemma. Finally, in section 6 we give
our second, more elegant constructive proof of Dickson’s Lemma.

1

2 Logical Preliminaries

The main result of this paper is the application of a formal translation from
a classical proof of the Hilbert Basis Theorem to a constructive version of
the theorem, and the extraction of an algorithm from that proof. In order
to perform that translation, we must understand the logical fundamentals of
the systems we are working in, and the details of how the translation works.

2.1 Theories of arithmetic

The set of primitive recursive functions is the smallest set of functions from
the natural numbers to the natural numbers (of various arities) containing
0, the successor function S(x) = x + 1, projections pn

i (x1, . . . , xn) = xi, and
closed under composition and primitive recursion. Here, primitive recursion
means that given two functions g and h, one can define a new function f by

f(0, ~z) = g(~z), f(x + 1, ~z) = h(f(x, ~z), x, ~z)

With the primitive recursive functions one can define functions that deal
with ordered pairs and sequences, and then code integers, rational numbers,
lists, graphs, trees, finite sets, and so on. The theory primitive recursive
arithmetic (PRA) has symbols for all the primitive recursive functions. The
axioms consist of the defining equations and a principle of induction,

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)) → ∀x ϕ(x),

for quantifier-free formulas ϕ. Note that we never explicitly reason in these
systems, so we do not present the axioms for these systems.

First-order arithmetic, or Peano arithmetic (PA), is a formal theory in
the language with symbols 0, S,+,×, <, which are intended to denote the
usual operations on the natural numbers. The axioms consist of

• defining equations for the basic symbols

• induction for all formulas in the language.

Heyting arithmetic, or HA, is the same theory based on intuitionistic logic.
Since in these theories one can define the primitive recursive functions and
prove their defining axioms, it is convenient to act as though PA and HA
are extensions of PRA.

These theories suffice to handle most reasoning about finitary objects.
For dealing with infinitary objects like real numbers, functions from the

2

natural numbers to the natural numbers, infinite sequences of natural num-
bers, and so on, we need a more expressive framework. The finite types are
defined as follows:

• N is a finite type

• If σ and τ are finite types, so are σ × τ and σ → τ

For example, the real numbers can be represented as objects of type N→ N,
and sequences of real numbers can be represented as objects of type N →
(N→ N). The set of primitive recursive functionals of finite type allows the
following principles of definition:

• λ abstraction, application, pairing, projection

• Higher-type primitive recursion:

F (0) = G, F (n + 1) = H(F (n), n)

The theory PRAω axiomatizes these, just as PRA axiomatizes the primitive
recursive functions. Gödel called PRAω by the name T instead. HAω and
PAω are extensions of PRAω which allow full induction, differing in the
same way as PA and HA differ. Using higher type primitive recursion, we
can define functions, such as Ackermann’s function, which are not primitive
recursive [1]. Restricted primitive recursion yields only functions of type
N → N which are primitive recursive. Our first proof of Dickson’s Lemma
uses the more general form of primitive recursion, while the second uses the
“sharper” restricted primitive recursion.

2.2 The Dialectica interpretation

In a 1958 paper in the Swiss journal Dialectica [4], Gödel presented a trans-
lation which translates formulas ϕ in HAω to formulas ϕD in PRAω of the
form ∃x ∀y ϕD(x, y), where ϕD is a quantifier-free formula, and x and y
are sequences of variables. (For convenience, we will drop the underlining.)
Furthermore, the structure of the translation makes it easy to extract an
algorithm which explicitly witnesses ϕD.

The translation translates ϕ to ϕD, which is a formula of the form
∃x ∀y ϕD, where ϕD is a quantifier-free formula in the language of PRAω.
Here the free variables of ϕD are those of ϕ, together with the (possibly
empty) tuples of variables x and y. If one or more of the free variables z
of ϕ are exhibited, as ϕ(z), then we write ϕD(x, y, z) for ϕD. Similarly, the

3

free variables of ψD are the free variables of ψ, together with the (possibly
empty) sequences u and v. The associations ()D and ()D are defined
inductively as follows, where

ϕD = ∃x ∀y ϕD and ψD = ∃u ∀v ψD.

1. For ϕ an atomic formula, x and y are both empty and ϕD = ϕD = ϕ

2.
(ϕ ∧ ψ)D = ∃x, u ∀y, v (ϕ ∧ ψ)D

= ∃x, u ∀y, v (ϕD(x, y) ∧ ψD(u, v))

3.
(ϕ ∨ ψ)D = ∃z, x, u ∀y, v (ϕ ∨ ψ)D

= ∃z, x, u ∀y, v ((z = 0 ∧ ϕD(x, y)) ∨ (z = 1 ∧ ψD(u, v)))

4. (∀z ϕ(z))D = ∃X ∀z, y (∀z ϕ(z))D = ∃X ∀z, y ϕD(X(z), y, z)

5. (∃z ϕ(z))D = ∃z, x ∀y (∃z ϕ(z))D = ∃z, x ∀y ϕD(x, y, z).

6.
(ϕ → ψ)D = ∃U, Y ∀x, v (ϕ → ψ)D

= ∃U, Y ∀x, v (ϕD(x, Y (x, v)) → ψD(U(x), v))

Since we define ¬ϕ to be ϕ → ⊥, from 6 we obtain

7. (¬ϕ)D = ∃Y ∀x (¬ϕ)D = ∃Y ∀x ¬ϕD(x, Y (x)).

The types of x and y in the final translation depend only on the structure
of ϕ. We recursively define TEX (ϕ) to be the type of x in the final transla-
tion, and TFA(ϕ) to be the type of y in the final translation. Here, we let
∅ be the “empty type”, with the property that for any type ρ, ρ × ∅ = ρ,
ρ → ∅ = ∅, and ∅ → ρ = ρ.

1. TEX (ϕ) = TFA(ϕ) = ∅ if ϕ is an atomic formula.

2. TEX (ϕ ∧ ψ) = TEX (ϕ)× TEX (ψ)
TFA(ϕ ∧ ψ) = TFA(ϕ)× TFA(ψ)

3. TEX (ϕ ∨ ψ) = N× TEX (ϕ)× TEX (ψ)
TFA(ϕ ∨ ψ) = TFA(ϕ)× TFA(ψ)

4. TEX (∀z ϕ(z)) = ρ → TEX (ϕ) where ρ is the type of z ρ
TFA(∀z ϕ(z)) = ρ× TFA(ϕ) where ρ is the type of z

5. TEX (∃z ϕ(z)) = ρ× TEX (ϕ) where ρ is the type of z
TFA(∃z ϕ(z)) = TFA(ϕ)

4

6. TEX (ϕ → ψ) = (TEX (ϕ) → TEX (ψ)) × ((TEX (ϕ) × TFA(ψ)) →
TFA(ϕ))
TFA(ϕ → ψ) = TEX (ϕ)× TFA(ψ)

7. TEX (¬ϕ) = TEX (ϕ) → TFA(ϕ)
TFA(¬ϕ) = TEX (ϕ)

Theorem 2.1 If HAω proves a formula ϕ, then PRAω proves ϕD.

Proof. See [6][7.4] and [1][2.4.1].

2.3 The double-negation interpretation

The Dialectica Interpretation takes HAω to PRAω. To extend our transla-
tion to PAω, we use the Gödel-Gentzen double-negation translation. The
“double negation” translation provides the first (and simplest) translation
of classical logic into intuitionistic logic. It was discovered independently by
Gödel [3] and Gentzen [2].

This translation works as follows: A is translated to AN , where is defined
inductively as:

1. ϕN = ¬¬ϕ , if ϕ is an atomic formula

2. ⊥N=⊥
3. (ϕ ∧ ψ)N = ϕN ∧ ψN

4. (ϕ ∨ ψ)N = ¬(¬ϕN ∧ ¬ψN)

5. (ϕ → ψ)N = ϕN → ψN

6. (∀x ϕ)N = ∀x (AN)

7. (∃x ϕ)N = ¬∀x (¬AN)

Theorem 2.2 If some set A of axioms prove ϕ, the set AN of translations
of A prove ϕN .

Proof. See [10][2.3.4] ¤

Corollary 2.3 If PAω proves ϕ, HAω proves ϕN .

Corollary 2.4 If PAω proves ϕ, PRAω proves the Dialectica Interpretation
of ϕN .

Proof. By Corollary 2.3 and Theorem 2.1. ¤

5

2.4 The no-counterexample interpretation

Suppose the formula we are translating is in prenex normal form, that is, of
the form

A = ∃x1 ∀y1 . . .∃xn ∀yn A0(x1, y1, . . . , xn, yn)

where A0 is quantifier free. Then the Double Negation-Dialectica interpre-
tation (“ND interpretation”) is equivalent to a simpler interpretation, the
‘no-counterexample interpretation,’ due to Kreisel [7]:

∃Φ1, . . . ,Φn ∀f A0(Φ1f, f1(Φ1f), . . . ,Φnf, fn(Φ1f, . . . , Φnf))

where f is an n-tuple of functions, such that f1 is a function of 1 variable,
f2 is a function of two variables, and so on.

Suppose that A is of the form above. Then, it is clear that ¬A is classi-
cally equivalent to:

∀x1 ∃y1 . . .∀xn ∃yn ¬A0(x1, y1, . . . , xn, yn)

So a counterexample to A is given by functions f1, . . . , fn such that

∀ x¬A0(x1, f1(x1), . . . , xn, fn(x1, . . . , xn)) (1)

Hence, functionals Φ which satisfy the no-counterexample interpretation
provide a counterexample to (1), and thus show that no counterexample
can exist to the (intuitionistic version of the) original formula.

The key statements which occur in the proofs of the Hilbert Basis The-
orem we consider are in prenex normal form, so the no-counterexample
interpretation applies. This provides a guide in our search for functionals
that satisfy the conditions of the translation.

2.5 Applying the Dialectica interpretation

The logical ideas just discussed provide a method of translating many non-
constructive theorems of mathematics into constructive versions: apply the
ND-interpretation to the statement of the theorem, and then every line of
the proof.

In practice, one usually does not need a fully formalized representation
of the entire proof. It suffices to translate the main lemmas and intermedi-
ary statements, and then, informally, try to find the appropriate Dialectica
witnesses. This is the methodology we will follow below.

All the associated algorithms will be described precisely but informally.
They could be described more formally by terms of the language of PRAω,
but since the goal is ultimately to obtain an ordinary mathematical proof,
we do not need to do this here.

6

3 Preliminaries from Algebra

In this section we discuss various ideas from abstract algebra necessary to
understand the Hilbert Basis Theorem, and our proof of it. We assume that
the reader is familiar with the basic definitions of groups, rings, and fields.

3.1 Polynomials

Informally, we define the ring of polynomials over a ring R by analogy to
the familiar polynomials over the natural numbers.

Definition 3.1 (Ring of Polynomials R[x]) Let R be a ring and let R[x]
denote the set of all sequences of elements of R (a0, a1, . . .) such that ai = 0
for all but a finite number of indices i. We call R[x] the ring of polynomials
in x over R. We interpret an element p ∈ R[x] as p0+p1x+ · · ·+pnxn+ · · · .
We define addition and multiplication in the usual manner.

Theorem 3.2 If R is a commutative [resp. a ring with identity or a ring
with no zero divisors], then so is R[x]. In particular, if R is a field, R[x] is
a ring with no zero divisors and an identity (i.e. an integral domain).

Proof. See [5][III.5.1] ¤

The ring of polynomials in two variables is viewed simply as the ring of
polynomials in the second variable over the ring of polynomials in the first
variable over the base ring. That is, R[x1, x2] = (R[x1])[x2], and analogously
for any number of variables.

For ease of notation, we define xα, where x and α are vectors of length
n to mean xα1

1 xα2
2 · · ·xαn

n .
A polynomial of the form xα is called a monomial. If, for two monomials

xα and xβ we have that for each i < n, αi ≤ βi then we say xα divides xβ,
written xα|xβ.

Definition 3.3 (Degree of a Monomial) Let xα be a monomial in n vari-
ables. The degree of xα (deg(axα)) is defined to be

∑n
i=1 αi. The degree in

xk of xα (degk(xα)) is defined to be αk.

3.2 Ideals

Since the Hilbert Basis Theorem makes a statement about ideals and their
generators, it is necessary to understand what an ideal is.

7

Definition 3.4 (Ideal) Let R be a ring, and S a non-empty subset of R
that is closed under the operations of multiplication and addition in R. If
S is itself a ring under these operations then S is called a subring of R. A
subring I of a ring R is an ideal if for all r ∈ R and for all x ∈ I, rx ∈ I
and xr ∈ I.

The most intuitive example of an ideal is the even numbers (2N) in
the natural numbers (N). The even numbers are a subring of the natural
numbers, and the product of any even number by any natural number yields
another even number. Furthermore, for every ring R, two trivial ideals exist:
R itself and {0R}.

Definition 3.5 (Ideal Generated by a Set) Let X be a subset of a ring
R. Let {Ai : i ∈ I} be the family of all ideals in R which contain X. Then⋂

i∈I Ai is called the ideal generated by X. This ideal is denoted 〈X〉.

If X = {x1, x2, . . . , xn} then 〈X〉 is said to be finitely generated. In a
commutative ring, a ∈ 〈x1, x2, . . . , xn〉 if and only if there are a1, a2, . . . , an ∈
R such that a = a1x1 + a2x2 + · · ·+ anxn. In a field, every ideal is finitely
generated [5][III.2.21].

3.3 The Division Algorithm

Let k be a countable field. The division algorithm for polynomials in n
variables lets us express a polynomial f ∈ k[x1, x2, . . . , xn] in terms of given
polynomials f1, f2, . . . , fs ∈ k[x1, x2, . . . , xn] to get a result of the form

f = a1f1 + a2f2 + · · ·+ asfs + r

where a1, a2, . . . , as and r ∈ k[x1, x2, . . . , xn].
First, we must make some definitions:

Definition 3.6 (Lexicographic Ordering on Monomials) Let xα and
xβ be two monomials in n variables. We say xα <lex xβ if for some i ≤ n
αi < βi and for all j such that 0 ≤ j < i, αj = βj.

Definition 3.7 (Leading Term of a Polynomial) Let P ∈ k[x1, . . . , xn]
be a polynomial. Let M be the set of monomials in P (that is, P =∑

m∈M amm, where am ∈ k and am 6= 0). The leading term of P (LT (P))
is the monomial of highest degree which is lexicographically first.

8

Theorem 3.8 Let F = (f1, . . . , fs) be an ordered s-tuple of polynomials in
k[x1, . . . , xn]. Then every f ∈ k[x1, . . . , xn] can be written as

f = a1f1 + · · · asfs + r

where ai, r ∈ k[x1, . . . , xn] and either r = 0 or r is a linear combination,
with coefficients in k, of monomials in k, none of which is divisible by any
of LT (f1), . . . , LT (fs). We call r a remainder of f on division by F .

Proof. from Cox, Little & O’Shea 2.3.3. We will present only the algorithm.
Input: f1, . . . , fs, f
Output: a1, . . . , as, r

a1 := 0; . . . ; as := 0; r := 0
p := f
WHILE p 6= 0 DO

i := 1
divisionoccurred := false
WHILE i ≤ s AND divisionoccurred = false DO

IF LT (fi)|LT (p) THEN
ai := ai + LT (p)/LT (fi)
p := p− (LT (p)/LT (fi))fi

divisionoccurred := true
ELSE

i := i + 1
IF divisionoccurred = false THEN

r := r + LT (p)
p := p− LT (p) ¤

We note that this algorithm can be expressed primitive recursively.

4 A Constructive Proof of Dickson’s Lemma

Both proofs of the Hilbert Basis Theorem which we will consider follow the
same pattern. First we prove the ND-interpretation of Dickson’s Lemma,
which states that all monomial ideals are finitely generated. Then, we prove
that given the ND-interpretation of Dickson’s Lemma we can prove the ND-
Interpretation of Hilbert Basis Theorem.

The constructive version of Dickson’s Lemma we will be proving is that
for a given sequence of monomials I, for any function M of type N → N

9

there is an n ∈ N and an i < n such that I(i)|I(M(n)). Furthermore, n can
be calculated as N(M), where N is a functional of type (N→ N) → N.

4.1 Some Notes on Notation

In this proof, we will use a small amount of non-standard notation in order
to make some of the concepts of this proof more clear. In this section, we
will explain those notations

Formally, a sequence of elements in a set S is a mapping of the type
N → S. Traditionally, a sequence is written using subscript indices (so
that a sequence might have terms p0, p1, p2, . . .). Instead, to make the
functional nature of a sequence more clear, we will write sequences us-
ing directly functional notation (so the terms of such a sequence would be
P (0), P (1), P (2), . . .).

Additionally, normal sequences are not allowed to have gaps. It is useful
for our purposes to allow a sequence to simply not take a value at an index.
If a sequence P does not take a value at an index i, we write P (i) = ∗, where
∗ is an element not in S.

Given that we will be using sequences of monomials, which may have
gaps in them, we must slightly redefine our definition of divisibility of mono-
mials to allow divisibility to make sense in this context. If s and t are are
either monomials or “∗”, we define s|t to mean “if t 6= ∗ then s 6= ∗ and s|t”
where the second “|” is the standard divisibility relation for monomials.

4.2 Classical Statement and Proof

The first step in our translation is to prove the classical version of Dickson’s
Lemma, which states that every monomial ideal is finitely generated. The
classical proof we will be translating follows:

Theorem 4.1 Given a sequence of monomials I, there is an n such that
for every m, there is an i < n such that I(i)|I(m).

Proof. By induction on k ≥ 1, where k is the number of variables. When
k = 1, I is a sequence of monomials in one variable. Let r be the least degree
of x which appears in the sequence. Let j be the first index such that the
degree of x in I(j) is r. Set n = j + 1. Since for each i, I(j)|I(i), n satisfies
the conditions of the theorem.

Inductively, suppose that the theorem holds for k variables. We wish to
show that the theorem holds for k + 1 variables.

10

So, suppose I is a sequence of monomials in k + 1 variables. For clarity,
we will call the k + 1st variable y.

Define I∞ to be the projection of I into k variables. That is, if I(i) =
xαyr, then I∞(i) = xα. Define

I l(i) =
{

xα if I(i) = xαyl

∗ otherwise

By the induction hypothesis, we may choose an n such that for all m
there is an i < n such that

I∞(i)|I∞(m) (2)

Let some index m be given, and suppose

degk+1 I(m) ≥ max{degk+1 I(j) : j < n}
By (2) we can choose an i < n such that I∞(i)|I∞(m). Then, for each j in
1 . . . k + 1, degj I(i) < degjI(m). Therefore, I(i)|I(m).

Therefore, there is an n such that for all m there is an i < n such that

degk+1I(m) ≥ max{degk+1I(j) : j ≤ n} → I(i)|I(m)) (3)

For any l, we can apply the induction hypothesis to I l , and choose an n(l)

such that for all m there is an i < n(l) such that (I l(i)|I l(m)). For any l,
we define n(l) = max{n(j) : j ≤ l}. We claim that for any l n(l) satisfies the
condition that for all m there is an i < n such that

degk+1 I(m) < l → I(i)|I(m) (4)

Let some l and m be given such that degk+1 I(m) < l. Let j = degk+1 I(m).
By the definition of n(j), there is an i < n(j) (and thus less than n(l)) such
that I(i)|I(m). Thus the condition is satisfied.

Pick n0 which satisfies (3), and let l0 = max{degk+1I(j) : j < n0}.
Also, pick n1 which satisfies (4) for l0, that is n1 = n(l0). Finally, set
n = max{n0, n1}.

Let m be given. If degk+1I(m) ≥ l0, then n suffices by (3). Otherwise,
n suffices by (4). Therefore, this n works for any m, as required. ¤

We note that this proof is inherently non-constructive. The basis of
the induction argument requires us to find the minimal degree of x which
appears in the sequence. This requires an unbounded search of the sequence,
and there is no way to do this computably, since any algorithm can consider
only finitely many terms. For the same reason, the entire theorem is non-
constructive — any proof would suffer from a similar problem.

11

4.3 Applying the Dialectica Interpretation

In this section, we will formalize the important steps of the classical proof,
and show what the Dialectica interpretation of these statements is. It would
be cumbersome to formally translate every step of the classical proof. There-
fore, we will only translate the most important steps of the proof. In the
following section, we will show how to use these ideas to find a constructive
proof of Dickson’s Lemma.

The formal statement of the classical version of Dickson’s Lemma is:

∃n ∀m ∃i < n (I(i)|I(m)) (5)

The ND-interpretation of this statement is:

∃N ∀M ∃i < N(M) (I(i)|I(M(N(M)))) (5a)

where N is a functional of type (N→ N) → N and M is a function of type
N→ N.

We show directly that (5) holds if I is a sequence in 1 variable, and
suppose as our induction hypothesis that (5) holds if I is a sequence in k
variables. As we will see, the constructive version will be almost the same.

The next step is to apply our induction hypothesis to I∞, and find

∃n ∀m ∃i < n (I∞(i)|I∞(m)) (6)

which translates to

∃N ∀M ∃i < N(M) (I∞(i)|I∞(M(N(M)))) (6a)

From this we conclude

∃n ∀m ∃i < n (degk+1(I(m) ≥
max{degk+1I(j) : j ≤ n} → I(i)|I(m))) (7)

which has the translation:

∃N ∀M ∃i < N(M) (degk+1 I(M(N(M))) ≥
maxj<N(M) degk+1 I(j) → I(i)|I(M(N(M)))) (7a)

Similarly, for any given l we apply the induction hypothesis and find
∃n ∀m ∃i < n I l(i)|I l(m). We apply induction, and find

∀l ∃n ∀m ∃i < n degk+1 < l → I(i)|I(m) (8)

12

which translates to

∀l ∃N ∀M ∃i < N(M) degk+1 < l → I(i)|I(M(N(M))) (8a)

As above, we choose n0, l0, n1 and n. By either (7) or (8) (as appropri-
ate), n satisfies (5) for the given sequence I. Similar reasoning applies in
the constructive case.

4.4 Our Constructive Proof of Dickson’s Lemma

Using the previous section as a guide, we present our proof of the construc-
tive version of Dickson’s Lemma.

Theorem 4.2 Let I be a sequence of monomials in k variables. Then, for
any function M of type N→ N there is an n ∈ N and an i < n such that

I(i)|I(M(n)) (9)

and n can be calculated by applying a functional N of type (N → N) →
(N→ N) → N to I and M , so that n = N(I, M). For notational clarity, we
suppress the parameter I.

Proof. By induction on k.
First, we show that we can find a functional N1 which works for se-

quences in one variable. We define:

N ′(a,M) =
{

a if ∃i ≤ a I(i)|I(M(a))
N ′(M(a),M) otherwise

and define N1(M) = N ′(0, M) + 1. Note that at each step, if the algorithm
does not terminate the degree of I(M(a)) must be less than the degree of
I(a). Otherwise, I(a)|I(M(a)). Therefore, the algorithm will stop in at
most deg1I(0) steps.

Now, by the induction hypothesis, we choose N0 which satisfies the con-
ditions of the theorem for I∞. Let any M be given. By our hypothesis, we
can find an i < N0(M) such that I∞(i)|I∞(M(N0(M))). Suppose that

degk+1I(M(N0(M))) ≥ max{degk+1I(j) : j < N0(M)}

Then, I(i)|I(M(N0(M))).
For any given j, we apply the induction hypothesis, and find a functional

N (j) which satisfies the theorem for the sequence Ij . For a given l we define

13

N1(l, M) = max{N j(M) : j < l}. Suppose that j = degk+1I(M(N1(M))) <
l. Then, we can find an i < N j(M) (and hence less than N1(M)) such that
I(i)|I(M(N1(M))).

For a given M , we define the following:

• n0 = N0(M)

• l0 = max{degk+1 I(j) : j < n0}
• n1 = N1(l0,M)

• n̂ = max{n0, n1}
We define N(M) = n̂.

To show that this satisfies the conditions of the theorem for the given
sequence I, we need to consider two cases:

Case 1: degk+1I(M(n̂)) ≥ l0. By the definition of n̂, n̂ ≥ n0, so we
can choose an i < n̂ such that I∞(i)|I∞(M(n̂)). But, since degk+1I(i) ≤
degk+1I(M(n̂)), I(i)|I(M(n̂)), as required.

Case 2: degk+1I(M(n̂)) < l0. Let l = degk+1I(M(n̂)). We note that n̂ ≥
n1. By the definition of n1, we may choose an i < n̂ such that I l(i)|I l(M(n̂)).
But, therefore I(i)|I(M(n̂)), as required. ¤

Note that the passage from a function that works for sequences in k
variables to a function which works for sequences in k+1 variables is uniform.
Therefore, using higher type primitive recursion, one can define a single
function N̂(k, I, M) that works for every k.

5 From Dickson’s Lemma to the Hilbert Basis The-
orem

Finally, we come to the main result of this paper. We will use the same
format to present this proof as we did in the proof of Dickson’s Lemma.

5.1 Classical Statement and Proof

The following method of going from Dickson’s Lemma to the Hilbert Basis
Theorem comes from Simpson [9].

Theorem 5.1 Let F be a sequence of polynomials in K[x1, . . . , xl], where
K is a countable field. Then there is an n such that for all m

F (m) ∈ 〈F (1), . . . , F (n)〉 (10)

14

Proof. We define H to be another sequence of polynomials, such that each
element of H is of the form H(j) = g1F (1) + g2F (2) + · · ·+ glF (l) for some
l ∈ N. (We can let H(j) = g1F (1) + g2F (2) + · · ·+ glF (l) if j is the Gödel
coding of a tuple (g1, g2, . . . , gl), and 0 if the j codes no such tuple).

We define LT (i) to be the sequence of leading terms of H(i) (that is,
the lexicographically first term of highest total degree). LT is a sequence of
monomials in l variables, so by Dickson’s Lemma, there is an n such that
for all m there is an i < n such that LT (i)|LT (m).

We claim that this n also suffices for H. Suppose not. Then, there is
some j such that H(j) /∈ 〈H(1), . . . , H(n)〉. Using the division algorithm,
we can write H(j) = g1H(1) + g2H(2) + · · ·+ gnH(n) + r, where for every
i < n, LT (i) - LT (r). But, by the construction of H, r = H(a) for some a.
Therefore, by the definition of n, there is an i < n such that LT (i)|LT (r).
This contradicts the definition of r. Therefore, n must satisfy the conditions
of the theorem.

Let n̂ be the maximum j such that F (j) appears in the definition of
H(1), . . . , H(n). Clearly, this fulfills the requirement of the theorem for F .
¤

5.2 Dialectica Interpretation of the Hilbert Basis Theorem

Again, we will present a sketch of a formal version of the proof, with key
equations and their translations highlighted.

The formal version of the theorem we wish to prove is: For a given
sequence F ∈ k[x1, . . . , xl], where k is a countable field,

∃n ∀m F (m) ∈ 〈F (1) . . . F (n)〉 (11)

which translates to:

∃N ∀M F (M(N(M))) ∈ 〈F (1) . . . F (N(M))〉 (11a)

Where N is a functional of type (N→ N) → N and M is a function of type
N→ N.

We define H and LT in the same fashion as before. By Dickson’s Lemma,

∃n ∀m ∃i < n LT (i)|LT (m) (12)

which translates to

∃NLT ∀M ∃i < NLT (M) (LT (i)|LT (NLT (M(NLT)))) (12a)

15

We choose such an n, and let an m be given. By the division algorithm,
we can write H(m) = g1H(1) + · · ·+ gnH(n) + r, such that for each i ≤ n,
LT (i) - LT (r). But, r = H(m) − g1H(1) − · · · − gnH(n), so for some j
r = H(j). But, by (12), ∃i < n(H(i)|H(j)). Therefore, it must be the case
that r = 0, so H(m) ∈ 〈H(1), . . . ,H(n)〉.

We define n̂ the same way as in the informal proof. It is clear that n̂
satisfies (11). ¤

5.3 A Constructive Proof of the Hilbert Basis Theorem

In this section, we present our constructive proof of the Hilbert Basis theo-
rem from the constructive version of Dickson’s Lemma.

Theorem 5.2 For a given sequence F in k[x1, . . . , xl], and for any function
M of type N→ N there is an n such that

F (M(n)) ∈ 〈F (1) . . . F (n)〉

Furthermore, n can be computed from F and M by a functional N of type
(N→ N) → (N→ N) → N, i.e. n = N(F, M).

Proof. We define H to be another sequence of polynomials, such that each
element of H is of the form H(j) = g1F (1) + g2F (2) + · · ·+ glF (l) for some
l ∈ N. (We can let H(j) = g1F (1) + g2F (2) + · · ·+ glF (l) if j is the Gödel
coding of a tuple (g1, g2, . . . , gl), and 0 if the j codes for no such tuple).

We define LT (i) to be the leading term of H(i) (that is, the lexicograph-
ically first term of highest total degree). LT is a sequence of monomials in l
variables. Therefore, by Dickson’s Lemma we may choose a functional NLT

such that for any function M of type N → N there is an i < NLT (M) such
that:

LT (i)|LT (NLT (M(NLT)))

Given an M which finds counterexamples on H, we wish to find an M̂
that finds counterexamples on LT . That is, we wish it to have to property
that for any n, if H(M(n)) 6∈ 〈H(1), . . . ,H(n)〉 then there is no i < n such
that LT (i)|LT (M(n)).

We define it as follows: M̂(n) = 0 if M(n) ∈ 〈H(1), . . . ,H(n)〉. Other-
wise, using the division algorithm, we can write H(M(n)) = g1H(1) + · · ·+
gnH(n) + r, where r = H(j) for some j, and for each i < n, LT (i) - LT (j).
Define M̂(n) = j.

16

Define N(M) = NLT (M̂). Suppose that

H(M(N(M))) 6∈ 〈H(1), . . . , H(N(M))〉

Then, by the above, there is no i < NLT (M̂) such that LT (i)|LT (M̂(NLT (M̂))).
But, this contradicts our constructive version of Dickson’s Lemma. There-
fore,

H(M(N(M))) ∈ 〈H(1), . . . , H(N(M))〉
¤

6 A More Refined Proof via Ordinal Numbers

In his 1988 paper [9], Simpson presents a proof that the Hilbert Basis The-
orem is equivalent to the well-orderedness of ordinals less than ωω. The
latter can be expressed by saying that there is no infinitely decreasing se-
quence of ordinals below ωω. He does this by defining an explicit mapping
from “bad” sequences of polynomials to decreasing sequences of ordinals.
We will present his proof, and show how we can use it to find a proof of
our constructive version of the Hilbert Basis Theorem. The resulting proof
uses only the restricted form of primitive recursion defined in Section 2.1,
in contrast to the previous proof.

6.1 Definitions

In order to present this proof, we must define several concepts. First, we
define an ordering on k-tuples in Nk.

Definition 6.1 We say a ¹ b if for every i in 1 . . . k, ai ≤ bi.

It is clear that ¹ is a partial order on Nk. A major step in the proof
will be to show that this is a well partial order - that there is no infinite
descending sequence of tuples. Note that if α, β ∈ Nk such that α ¹ β, then
xα|xβ.

Standard definitions of addition and multiplication on ordinals are not
commutative. In order to define arithmetic which better reflects our intu-
ition of arithmetic on tuples of natural numbers, we define the natural sum
and natural product as follows:

17

Definition 6.2 We define the natural sum of ordinals as follows:

(ωα1 + · · ·+ ωαm) + (ωβ1 + · · ·+ ωβn) = ωγ1 + · · ·+ ωγm+n

where 〈γ1, . . . , γm+n〉 is a permutation of 〈α1, . . . , αm, β1, . . . , βn〉 such that
γ1 ≥ . . . ≥ γm+n. The natural product is defined by

(ωα1 + · · ·+ ωαm)× (ωβ1 + · · ·+ ωβn) =
m∑

i=1

n∑

j=1

ωαi+βj

Essentially, for the natural product and natural sum we treat an ordinal
as merely a polynomial in ω. Note that when referring to ordinals, we will
always mean natural sum and natural product when we use + and ×.

We define Bad(Nm) to be the set of all (finite or infinite) sequences S of
elements in (N)m such that for all i and j, if i < j then S(i) 6¹ S(j).

For sequences s and t, we define ŝ t to be t appended to s. For any finite
sequence s of elements in Nm, we define (Nm)s to be {a ∈ Nm : ŝ 〈a〉 ∈
Bad(Nm)}.

Additionally, we define two additional pieces of notation. For u ≤ v ≤ ω
we write [u, v) = {a : u ≤ a < v}. Finally, given an m-fold Cartesian
product

∏m
i=1[ui, vi) with ui ≤ vi ≤ ω for each i, we define

∣∣∣∣∣
m∏

i=1

[ui, vi)

∣∣∣∣∣ =
m∏

i=1

(vi − ui)

where on the right-hand side
∏

denotes the natural product as defined
above. Note that by the definition of ordinal subtraction, ω− k = ω for any
natural number k.

6.2 Mapping bad sequences to ordinals

In this section, we wish to show that ¹ is a well partial order. This means
that for any sequence of tuples A, there are an i and j such that i < j
and A(i) ¹ A(j) (so there cannot be a sequence such that each element
is either less than or incomparable with each previous element). To do so,
we create what Simpson calls a reification from “bad” finite sequences of
tuples to (that is, finite sequences which do not satisfy the above prop-
erty) and ordinals. A reification is defined as a function f with the prop-
erty that if 〈a1, . . . , an〉 and 〈a1, . . . , an, an+1〉 are both bad sequences, then
f(〈a1, . . . , an〉) > f(〈a1, . . . , an, an+1〉). That is, as we add elements to a
bad sequence, the associated ordinal decreases.

18

Lemma 6.3 Suppose that 〈a1, . . . , am〉 ∈
∏m

i=1[ui, v1) where ui ≤ vi ≤ ω
for each i. Let

∑
denote the natural sum, σ = 〈σi : 1 ≤ i ≤ m〉 range over

all m-tuples of zeros and ones that do not consist entirely of ones, and

[ui(σ), vi(σ)) =
{

[ui, ai) if σi = 0
[ai, vi) if σi = 1

Then,
∑

σ

∣∣∣∣∣
m∏

i=1

[ui(σ), vi(σ))

∣∣∣∣∣ <

∣∣∣∣∣
m∏

i=1

[ui, vi)

∣∣∣∣∣ (13)

Proof. Let k be the number of i′s such that vi = ω. Suppose that k = 0. In
this case, the lemma follows by observing that the disjoint union

⋃
σ

m∏

i=1

[ui(σ), vi(σ))

is a proper subset of the set
∏m

i=1[ui, vi), which has finite “measure”.
Suppose that k > 0. The right hand side of (13) is of the form ωk × n

where n < ω. Let us say that σ is wild if σi = 0 for some i such that vi = ω,
otherwise σ is tame. If σ is wild, the contribution of σ to the left-hand side of
(13) is of the form ωk′ ×n′, where k′ < k and n′ < ω. Hence, since any sum
of ordinals less than ωk will be strictly less then ωk, the total contribution
of all wild σ’s is < ωk. On the other hand, the total contribution of all the
tame σ’s is of the form ωk × n′′ where n′′ < n. (The inequality n′′ < n
follows from the special case k = 0, which was proved above.) Thus the
total left hand side is less than ωk + (ωk × n′′) ≤ ωk × n. ¤

Lemma 6.4 For each m ∈ N there is a reification of Nm by ωm.

Proof. Fix m ∈ N. We will define a reification f : Bad(NM) → ωm + 1. For
s ∈ Bad(Nm) we will define f(s) ≤ ωm by primitive recursion on the length
of s. The value of f(s) will be defined in terms of a decomposition of (Nm)s

into a disjoint union,

(Nm)s ⊆
⋃

j∈J

m∏

i=1

[uij , vij)

where J is a finite index set, and uij ≤ vij ≤ ω for all j ∈ J and i = 1, . . . , m.
We then define

f(s) =
∑

j∈J

∣∣∣∣∣
m∏

i=1

[uij , vij)

∣∣∣∣∣ (14)

19

We begin with the trivial decomposition (Nm)〈 〉 = Nm =
∏m

i=1[0, ω),
and accordingly we define

f(〈 〉) =

∣∣∣∣∣
m∏

i=1

[0, ω)

∣∣∣∣∣ = ωm

Now, fix s ∈ Bad(Nm), and assume inductively that we have already
defined f(s) according to a decomposition (14) of (Nm)s. Given s′ = ŝ 〈a〉 ∈
Bad(Nm), we want to define f(s′). Since by definition a ∈ (Nm)s, there
is a unique j′ ∈ J such that a = (a1, . . . , am) ∈ ∏m

i=1[uij′ , vij′). As our
decomposition of (Nm)s′ we take (14) with

∏m
i=1[uij′ , vij′) replaced by

⋃
σ

m∏

i=1

[uij′(σ), vij′(σ))

as in Lemma 6.3. It is easy to check that this provides a decomposition of
(Nm)s′ . The fact that f(s′) < f(s) follows from Lemma 6.3. ¤

Theorem 6.5 ¹ is a well partial order on Nm for any m ∈ N.

Proof. By Lemma 6.4, any bad sequence in Nm can be mapped to a de-
creasing sequence of ordinals less than ωm + 1. Therefore, an infinite bad
sequence in Nm could be mapped to an infinite descending sequence in or-
dinals less ωm + 1. But, we know the ordinals are well-ordered, so this is a
contradiction. Therefore, there can be no infinite bad sequence in Nm, and
therefore ¹ is a well-partial order. ¤

6.3 Dickson’s Lemma, via Ordinals

With the use of Lemma 6.5, we can prove a version of Dickson’s Lemma.

Theorem 6.6 For any countable partial ordering ¹ on a set S, the follow-
ing assertions are equivalent:

1. ¹ is well partially ordered

2. For all infinite sequences A of elements in S, there exists an n such
that for all m there exists an i ≤ n such that A(i) ¹ A(m).

20

Proof. The implication from 2 to 1 is trivial. To prove the implication from
1 to 2, let S be given such that ¹ is a well partial order on S. Suppose the
conclusion of 2 fails. Then, for every n there is an m such that for every
i < n, A(i) 6¹ A(m). We define a subsequence A(i0), A(i1), . . . as follows:
Set i0 = 0, and in+1 to be an m such that for every i < in, A(i) 6¹ A(m).
But, then A(in) must have the property that for each n and each j < n,
A(ij) 6¹ A(in). This contradicts the assumption that ¹ is a well partial
order. ¤

If we apply this theorem to ¹ on Nm, we get Dickson’s Lemma, from
which we can find the Hilbert Basis Theorem, as in the previous section.

6.4 A Constructive Version of the Ordinal Principles

Once again, we apply the Dialectica Interpretation (specifically the no-
counterexample interpretation) to find specific algorithms witnessing the
interpreted version of Dickson’s Lemma.

The first step of the proof is to demonstrate that the ordinals are well
ordered, and specifically a functional which witnesses the fact.

The standard statement of the well orderedness of the ordinals is that,
given a sequence of ordinals A,

∀A ∃i, j (i < j ∧A(i) ≤ A(j))

Note that the Dialectica interpretation of this statement is simply

∃I, J ∀A (I(A) < J(A) ∧A(I(A)) ≤ A(J(A))

which has no “counterexample function.” Therefore, we should be able to
find a primitive recursive functional which witnesses that statement outright.

The theorem we wish to prove is:

Theorem 6.7 For any sequence of ordinals A, there is an i and j such that
i < j and A(i) ≤ A(j). Furthermore, we can explicitly calculate i and j for
each A.

Proof. We wish to define a functional O(A,m, o, d) which maps from se-
quences of ordinals to N. If A is a sequence of ordinals less than ωm, then
there is an i and j ≤ O(A,m, 0, 0) such that i < j and A(i) ≤ A(j). That
is, O provides a bound on how long the sequence can decrease. We can then
find an exact i and j by a finite search. For compactness of notation, we
will omit the first parameter in our definition.

We define the arguments to the functional as follows:

21

• m is an upper bound on ordinals in the sequence — that is, all ordinals
in the sequence have value less than ωm (after applying the other
arguments).

• o is an offset into the sequence. That is, instead of considering the
sequence starting at 0, we consider the sequence starting at o.

• d, an ordinal, is a displacement of the sequence — essentially, we sub-
tract d from the value of each term before performing our calculations.

First, we define

O(1, o, d) =
{

A(o)− d if A(o) ≥ d
0 otherwise

A sequence of ordinals less than ω is a sequence of natural numbers. In the
worst case, the sequence will decrease by 1 at each step, and will reach 0 in
A(o)− d steps (given our interpretations of o and d).

Suppose inductively that we have defined O(m− 1, o, d), and we wish to
define O(m, o, d).

O(m, o, d) =

O(m− 1, o, d) if A(o)− d < ωm−1

O(m− 1, o, d + ωm × n) if O(m, o + O(m− 1, o,
d + ωm × n), d) ≥ A(o)

O(m− 1, o, d + ωm × n)+
O(m, o + O(m− 1, o,
d + ωm × n), d) otherwise

This functional works in a straightforward fashion. It divides the se-
quence into an initial part (with leading term ωm × n), and the rest of the
sequence, with leading term at most ωm× (n− 1). Since at each step either
the coefficient of ωm or the value of m is decreasing, this functional will
eventually terminate. Clearly, we can find an i and j less than or equal to
O(m, 0, 0) such that i < j and A(i) ≤ A(j) by finite search. ¤

The next step in the classical proof is to show that for sequences of
m-tuples,

∀N ∃i, j (i < j ∧N(i) ¹ N(j))

which translates to

∃I, J ∀N (I(N) < J(N) ∧N(I(N)) ¹ N(J(N)))

Again, there is no counterexample term, so we should be able to find a
functional witnessing the translation outright. Therefore, we need to prove:

22

Theorem 6.8 For any sequence N of elements of Nm, there is an i and j
such that i < j and N(i) ¹ N(j). Furthermore, we can explicitly calculate
such an i and j for each N .

Proof. Our strategy will be the same as in the previous section. We will
define a functional T (N, m) which finds an upper bound on an i and j,
which can then be found by finite search.

Given a sequence N of m-tuples in Nm, we define a sequence of ordinals
A such that O(A,m, 0, 0) gives us a bound for N . For a given n, we define

A(n) =
{

f(〈N(0), . . . , N(n)〉) if 〈N(0), . . . , N(n)〉 ∈ Bad(Nm)
0 otherwise

where f is the reification function defined in Lemma 6.4. Note that f is
primitive recursive.

Finally, we define T (N, m) = O(A,m + 1, 0, 0). By the previous theo-
rem, we know that any sequence longer than T (N,m) will not be “bad.”
Therefore, we can find an i and j less than or equal to T (N,m) satisfying
the theorem by bounded search. ¤

6.5 Another Constructive Proof of Theorem 5.2

The next step of our constructive proof is the translation of Theorem 6.6.
The formalized version of the classical proof goes from the statement that
(for a given A)

∃i, j (i < j ∧A(i) ¹ A(j))

to the statement
∃n ∀m ∃i < n (A(i) ¹ A(m))

The Dialectica Interpretation of these statements is (again for a given
A):

∃i, j (i < j ∧A(i) ¹ A(j)) (15)

and
∃N ∀M ∃i < N(M) (A(i) ¹ A(M(N(M)))) (16)

So, we wish to prove:

Theorem 6.9 Let A be a sequence in Nm. For any function M of type
N→ N there is an n such that there is an i < n such that A(i) ¹ A(M(n)).
Furthermore, we can find a primitive recursive functional N of type (N →
N) → (N→ N) → N which calculates such an n for each A and M .

23

Proof. Our goal is to find a functional N , depending on A, of type (N →
N) → N such that given a function M of type N → N trying to find coun-
terexamples to (16), N foils it. Let such an M be given.

First, we define N(M) = 0 if M(0) = 0 (that is, if M cannot find
an effective counterexample, we have no need to continue). Otherwise, we
define a sequence Q in N as follows:

Q(0) = 0

Q(n) =
{

M(Q(n− 1)) if ¬∃i < M(Q(n− 1)) (A(i) ¹ A(M(Q(n− 1)))
0 otherwise

Furthermore, we define a sequence S in Nm as S(n) = A(Q(n)).
By the previous section, we can constructively find an i and a j such

that i < j and S(i) ¹ S(j). But, this means that there is an k < Q(j)
such that A(k) ¹ A(M(Q(j))). Set N(M) = Q(j). Then, N satisfies the
conditions of the theorem. ¤

7 Conclusions

In this paper we have presented two constructive proofs of the Hilbert Ba-
sis Theorem, corresponding to two different classical proofs of Dickson’s
Lemma. The standard proof of Dickson’s Lemma leads us to a constructive
version requiring “higher type” primitive recursion, while a more compli-
cated (and direct) proof of Dickson’s Lemma leads to a constructive version
requiring only standard primitive recursion.

Of course, this is only a simple example of the proof mining possibilities
which arise from the Dialectica Interpretation (especially given that we only
use the no-counterexample interpretation, and not the full power of the
Dialectica Interpretation). Nevertheless, it is interesting to see that this
interpretation allows us to find a straightforward and expressive constructive
form of one of the most famous examples of a nonconstructive proof.

References

[1] Avigad, J. and Feferman, S. “Gödel’s Functional (‘Dialectica’) Inter-
pretation,” Handbook of Proof Theory, S. R. Buss, Editor. 338–400.
Elsevier, 1998.

24

[2] Gentzen, G. “Über das Verhältnia zwische intuitionistischer und
klassicher Logik,” Archiv für Mathematische Logik und Grundlagen-
forschung, 16:199-132, 1974.

[3] Gödel, K. “Zur intuitionistischen Arithmetik und Zahlentheorie,”
Ergebnisse eines mathematischen Kolloquiums, 4:34–38, 1933.

[4] Gödel, K. “Über eine bisher noch nicht benüzte Erweiterung des finiten
Standpunktes,” Dialectica, 12:280–287, 1958.

[5] Hungerford, T. Algebra. Springer Press, 1974.

[6] Kohlenbach, U. Proof Interpretations and the Computational Content
of Proofs. Unpublished Draft, 2002.

[7] Kreisel, G. “On the interpretations of non-finitist proofs, part I,” Jour-
nal of Symbolic Logic, 16:241–267, 1951.

[8] Noether, M. “Paul Gordan,” Mathematische Annalen, 75:1–41, 1914.

[9] Simpson, S. “Ordinal numbers and the Hilbert basis theorem,” Journal
of Symbolic Logic, 53:961–974, 1988.

[10] Troelstra, A.S. and Schwichtenberg, H. Basic Proof Theory. Cambridge
University Press, 1996.

25

