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Overview

Bertrand Russell’s original goal in writing Principia Mathematica was to
show that mathematics could be reduced to logic. He aimed to present a
general theory of logic which captured all of mathematics. In this paper,
we will explain Russell’s system and consider how it progressed through the
two editions of Principia Mathematica. We will also look at Russell’s later
responses to Frank Ramsey’s criticism.

To complete this logicist goal of showing that all mathematics follows
from logical premisses and all mathematical concepts are definable in logical
terms alone, Russell had to both characterize a logical system and interpret
mathematics in these terms. In the first edition of Principia Mathematica,
Russell aimed to present a general logical system. In order for it to be
general, his logical system needed to account for all functions, including
intensional ones. Two propositional functions are said to be co-extensive if
their values have the same truth value for any argument. In particular, two
propositions are co-extensive if they have the same truth value. For example,
Russell believed that “The sky is blue” and “Clouds are white” are different
propositions, but they are co-extensive. Extensional propositional functions
are those that have co-extensive values given co-extensive arguments. An
intensional function is one which is not extensional: such a function may
have different values given co-extensive arguments. “Bertrand believes that
P” is an example of an intensional function. Russell interpreted mathematics,
which is extensional, within his intensional logic by showing how one can
interpret extensional classes in terms of intensional propositional functions.
In a system which allows intensional functions, propositional functions can
take on different values given co-extensive arguments; a consequence of this
is the extensions of such functions depend on more than the extensions of
their arguments.

In order to avoid paradoxes arising from “vicious circles,” Russell devised
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a ramified theory of types. His ramified theory of types took account of
the quantified variables in a function’s definition. In such a theory of types,
one could not quantify over all propositional functions which some object
satisfies, or makes true. This quantification is necessary for mathematics, and
he introduced the axiom of reducibility in order to allow such quantification
indirectly.

Russell and others thought the assumptions of this system, most notably
the axiom of reducibility, compromised its logical validity. For the second
edition of Principia Mathematica, Russell minimized his reliance upon the
axiom of reducibility. However, in order to do so he had to reduce the scope
of the system by limiting the role of intensional phenomena. In this edition,
he only allowed that propositions be arguments to truth functions, or those
whose truth value depends only on the truth value of its arguments. More
generally, it is only a function’s extension which plays a role in determining
the extension of any function of that function. Russell did not fully endorse
an extensional view, for he retained his ramified theory of types, which dis-
tinguishes functions based on their order, even when they are extensionally
equivalent. Although the logical nature of this system was less doubtful, it
was insufficient as a basis for mathematics. Russell did not provide an al-
ternative powerful enough to allow one to generalize over functions satisfied
by some object, or made true when given the object as argument, within a
ramified theory of types.

In both editions, Russell did not clearly distinguish his system’s syntax
from its semantics. Instead of specifying its syntax, he presented the semantic
domain of individuals, propositions, and propositional functions, and then
referred to such objects as if they were syntactical objects. Ramsey, a critic
of Russell’s system, more clearly distinguished the syntax and semantics of
his system. The referents of the symbols in his language are individuals,
propositions, and propositional functions. Ramsey’s variables range over
propositions themselves, not linguistic representations of them, and he saw
no need to introduce a ramified type theory. Ramsey endorsed an extensional
view: objects, such as propositional functions, are defined based on their
values, and intensional distinctions between them which are not reflected
in different values are of no consequence to his logical theory. This means
that co-extensive propositional functions with different representations are
nonetheless the same function.

Russell was not satisfied with the second edition, and later he endorsed
an extensional view in which logic need not account for intensional phenom-
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ena. Although he disagreed with Ramsey on certain points—most notably
identity—he accepted Ramsey’s criticism that the stratifications of Russell’s
theory of types were unnecessarily severe and that simple type theory suffices
to prevent the paradoxes. By replacing ramified type theory with simple type
theory, neither the axiom of reducibility nor an alternative axiom is neces-
sary to allow quantification over functions satisfied by some object. Since
this view does not account for intensional functions, it is less general than
Russell’s initial goal; however, it does give him the desired result of reducing
mathematics to a logical system.
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Chapter 1

The system of Principia
Mathematica ’s first edition

1.1 Basic principles of the logical system

Alfred North Whitehead and Bertrand Russell’s Principia Mathematica is
a monumental contribution to logic and the foundations of mathematics.
The three volumes of the first edition were published between 1910-1913,
and those of the second edition between 1925-1927. Although the work was
a collaboration, the philosophical foundations which we will consider here
were primarily the work of Russell.1

Logicism

Principia Mathematica had the logicist goal of reducing mathematics to logic.
In Russell’s words: “The principle aim of Principia Mathematica was to show
that all pure mathematics follows from purely logical premisses and uses only
concepts definable in logical terms.”2 By defining mathematical concepts in

1In [44], Whitehead states: “The great labour of supervising the second edition of the
Principia Mathematica has been solely undertaken by Mr. Bertrand Russell. All the new
matter in that edition is due to him, unless it shall be otherwise expressly stated. It is also
convenient to take this opportunity of stating that the portions in the first edition—also
reprinted in the second edition—which correspond to this new matter were due to Mr.
Russell, my own share in those parts being confined to discussion and final concurrence.
The only minor exception is in respect to *10.”(Section *10 gives the “The Theory of
Propositions containing one Apparent Variable.”)

2[38] pg. 57
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terms of logical ones, we can justify them by logical principles alone, and
deduce all mathematical theorems from logical axioms using logical inference
rules. Russell also believed that one may not stand outside the logical system.
This perspective does not allow one to make meta-logical statements, for all
logical reasoning falls within the system itself and is subject to its rules. In
order to show this reduction of mathematics to logic, Principia Mathematica
must both explain a logical system and show how to interpret mathematics
within such a system.

Although Russell did not give a precise specification of characteristics
that he took a logical system to have, he did discuss general traits which he
associates with a logical system. Such traits include generality and neces-
sity. Logical propositions should be general, and not involve any specifics.
They should be expressible using just variables and logical constants, such as
logical connectives and quantifiers, which express the form of a proposition.
Additionally, logical propositions should be tautological. He stated that the
axiom of infinity is an example of a proposition which can be stated in just
logical terms but is not a logical proposition for it is not necessarily true. In
Principia Mathematica, he stated that the “proof of a logical system is its
adequacy and its coherence.”3 A system is coherent if it does not lead to
contradictions. Russell offered a circular explanation of what it means for
a system to be adequate: it “must embrace among its deductions all those
propositions which we believe to be true and capable of deduction from log-
ical premises alone, though possibly they may require some slight limitation
in the form of an increased stringency of enunciation.”4

Formal system

Russell builds up his system from undefined concepts and basic propositions
that govern them. Such concepts and propositions are primitive. Using
primitive propositions and concepts, we can prove all of the theorems of the
system. Russell writes “Pp” to identify a primitive proposition when it is
introduced.

The notational conventions of Principia Mathematica are different from
other logical systems. Dots are used both as conjunction symbols and as
brackets separating propositions. A greater number of dots indicates a
broader scope of the separation. Parentheses and brackets are also used

3[45] pg. 12
4[45] pgs. 12-13
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to separate the arguments to a propositional function and to separate the
portion of a proposition to be negated. For example, Russell writes

`: .p ⊃ q.p ⊃ r. ⊃: p. ⊃ .q.r

where, in modern notation, we would write

` ((p→ q) ∧ (p→ r)) → (p→ (q ∧ r)).

He writes
`: .(x).φx : (x).ψx :⊃ .(x).φx.ψx

where we would write

` (((∀x)φx) ∧ ((∀x)ψx)) → ((∀x)φx ∧ ψx).

The language of Principia Mathematica uses unrestricted variables, sym-
bols which stand for any object the name of which can be substituted in place
of the symbol to make a significant statement. We shall return shortly to
what makes a statement significant. Russell gives three principles governing
the use of variables5: a variable ambiguously denotes, a variable’s identity
does not shift within a single context, and the possible values, or determi-
nations, of two variables may be identical. Two variables may also have a
different range of possible values, in which case it is meaningless to substitute
a name for a possible value of one variable for the other.

Violation of the use/mention distinction

Throughout Principia Mathematica, Russell frequently violates the distinc-
tion between the use and mention of signs. He does not talk about formulas
as linguistic symbols denoting objects, as one presenting a modern formal
system would, but instead conflates a concept with its representation. While
outlining his system, he often gives an intuitive motivation for a concept,
and then gives axioms to reflect what is intuitively expressed by such quasi-
linguistic entities. He then talks about the syntactical properties of these
quasi-linguistic entities as if they were objects in a formal syntax. For exam-
ple, he might characterize a proposition, not an expression of the proposition,
by whether it contains some variable. He does not give a rigorous and formal

5[45] pg. 4

8



syntactical specification of how formulas are put together, and assumes that
it is clear based on their intended interpretation. The signs are not them-
selves objects in the formal theory, but their referents are. However, he is
not clear in distinguishing the signs from their referents. An example of this
violation is that Russell frequently states that some vague concept is equiv-
alent to an axiom, even though the concept is given semantically and the
axiom syntactically, and does not discuss the relation between the semantics
and the syntax. This is further complicated because Russell’s system is an
intensional one, where variables range over generalized expressions, not the
extensions of the expressions. For example, a variable which ranges over
propositions ranges over more than the referents of propositions, which are
either ‘true’ or ‘false.’ However, Russell never specifies what it means for
the variable to range over propositions, and whether these are formulas or
objects.

Kurt Gödel criticizes Russell for failing to provide a rigorous formal syn-
tax:

It is to be regretted that this first comprehensive and thor-
oughgoing presentation of a mathematical logic and the deriva-
tion of Mathematics from it is so greatly lacking in formal pre-
cision in the foundations [..], that it presents in this respect a
considerable step backwards as compared with Frege. What is
missing, above all, is a precise statement of the syntax of the
formalism. Syntactical considerations are omitted even in cases
where they are necessary for the cogency of the proofs, in par-
ticular in connection with the “incomplete symbols.” These are
introduced not by explicit definitions, but by rules describing how
sentences containing them are to be translated into sentences not
containing them. In order to be sure, however, that (or for what
expressions) this translation is possible and uniquely determined
and that (or to what extent) the rules of inference apply also to
the new kind of expressions, it is necessary to have a survey of all
possible expressions, and this can be furnished only by syntactical
considerations.6

6[13] pg. 114
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Primitive concepts and propositions

One primitive concept is that of elementary propositions7. These involve
no variables, and hence no quantifiers. This concept is an example where
Russell confuses use and mention. The intuitive idea is that an elementary
proposition is one which is expressed by a formula containing no variables;
however, Russell only mentions propositions themselves, and does not talk
about formulas expressing some proposition. Elementary propositions may
be combined using the propositional connectives to form other elementary
propositions. In the first edition of Principia Mathematica, the connectives
disjunction and negation are primitive. To say that proposition p is true, we
assert it; this is written “` .p.”8

A proposition must unambiguously denote to have a truth value. State-
ments such as φx (where x is a variable) have no truth value, for x is am-
biguous. An example is a statement such as “x is red”—we will have a
proposition once we substitute an individual for x. This makes the state-
ment an ambiguous value of a propositional function. A unary propositional
function, or a statement which will become a proposition once a name for a
definite object is substituted for its variable, is expressed as φx̂. In the above
example, “x is red” is an ambiguous value of the propositional function“x̂
is red”. In Russell’s notation, φx̂ and φŷ refer to the same propositional
function. Elementary propositions are formed from propositional functions
by assigning values to all of the variables within a propositional function.
A propositional function may also be an argument to another propositional
function. ψ(φx̂) denotes the result of applying ψx̂ to the argument φx̂.

W.V. Quine notes Russell’s confusion between a sign and its referent, and
comments on Russell’s “failure to focus upon the distinction between ‘propo-
sitional functions’ as attributes, or relations-in-intension, and ‘propositional
functions’ as expressions, viz., predicates or open sentences.”9 Propositional
functions are an essential concept in Principia Mathematica; as is common
throughout the work, Russell provides an intuitive understanding of what he
means by the concept of propositional function, but does not give a formal
specification. Although he never specifies the syntax, he gives enough infor-
mation to allow us to figure it out, and talks about propositional functions
as if they were syntactic entities.

7[45] pg. 91
8[45] pg. 92
9[35] pg. 383
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Some symbols are defined in terms of other symbols whose meaning is
understood within the system. Definitions serve to simplify the system, for
they allow certain combinations of symbols to be expressed in shorter forms.
For example, implication is defined in terms of negation and disjunction,
which are primitive. Implication is not itself primitive, but once it is defined
the symbol may be used in the system. When a symbol or notation is first
introduced, Russell writes “Df.” The left of the equals sign is the definien-
dum, which is what is being defined; the definiens is to the right of the equals
sign and is the meaning of the definiendum.

All propositional functions have a range of values which results from sub-
stituting for variables. A value satisfies a propositional function if taking
this value as argument makes the propositional statement true. If propo-
sitional function φx̂ has values such that all satisfy φx̂, then we have that
(x).φx is true. This tells us the resulting proposition is true for any signifi-
cant argument. If the range contains some true propositions, then we have
(∃x).φx is true, and if the range is only false propositions we have (x). ∼ φx
is true. In these cases, x is an apparent variable, or, in modern terminology,
a bound variable. (∃x).φx is not taken as a primitive, but is defined as equal
to ∼ (x). ∼ φx.

One primitive proposition corresponding to the inference rule modus po-
nens states: “Anything implied by a true elementary proposition is true.”10

The related syntactical primitive proposition states: “When φx can be as-
serted, where x is a real variable, and φx ⊃ ψx can be asserted, where x is a
real variable, then ψx can be asserted, where x is a real variable.”11 In formal
notation, this means that if we have ` .φx and ` .φx ⊃ ψx we can derive
` .ψx. This can be generalized for functions of more than one variable.

The primitive proposition which serves as an inference rule for elementary
propositions may be extended for propositions containing apparent variables.
This primitive proposition states that “What is implied by a true premiss is
true.”12 This is the more general rule corresponding to modus ponens, and
lets us infer ` .ψx from ` .φx and ` .φx ⊃ ψx, even in cases where the values
of φx̂ and ψx̂ contain apparent variables. This also holds in the more general
case of propositional functions taking more than one argument.

Another concept is formal equivalence: functions are formally equivalent

10[45] pg. 94
11[45] pg. 95
12[45] pg. 132
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when their values imply each other. The definition of equivalence of propo-
sitions is:

p ≡ q. = .p ⊃ q.q ⊃ p Df.13

For propositional functions, φx ≡x ψx is defined to mean that (x).φx ≡ ψx.14

These functions share an extension, for whatever satisfies one satisfies the
other.

Incomplete symbols

Certain symbols within Principia Mathematica are incomplete. This means
that they only have meaning in a particular context, not independently of
a defining context. The three most important groups of incomplete symbols
are descriptions, classes, and relations; we will later discuss classes, which
are relevant to the current discussion. Incomplete symbols differ from sym-
bols which also have meaning in isolation, and thus need not have the same
characteristics. Most importantly, incomplete symbols need not adhere to
formal rules of identity; whether they do adhere to such rules is dependent
on the particular interpretation. Once we have determined their meaning in
a context, we can consider their equivalence as we would consider whether
symbols are identical in isolation.

1.2 The theory of types

In his 1908 paper “Mathematical Logic as Based on the Theory of Types,”
Russell’s main motivation is to present a type theory which is not troubled
by contradictions. The particular contradictions in question are the self-
referential ones, such as the liar paradox, the paradox of the least indefinable
ordinal, and the paradox of the class of classes that are not elements of
themselves.

A type theory is a syntactical specification of a language where the in-
tended domain of discourse is divided into kinds, or “types.” Variables and
constants in the language have a type, and a statement is well-formed if
each of it constituents is of the proper type, as given by the type theory.
Variables are restricted to range over exactly one totality—this is the vari-
able’s type. This means if some variable x ranges over individuals, then in

13[45] pg. 115
14[45] pg. 139
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this context x can only stand for an individual. Violations of type lead to
meaningless statements—they are neither true nor false. There are different
type theories. Simple type theory is one such theory, which I will explain
below. Russell’s, as given in “Mathematical Logic as Based on the Theory
of Types” and Principia Mathematica, is another such theory. Russell’s type
theory is more discriminant than simple type theory, for it does not allow
certain statements which are legitimate within simple type theory.

Simple theory of types

In the 1974 paper Russellian Simple Type Theory, Alonzo Church gives a
formulation of simple type theory which is similar in ontology to Russell’s
logic. Namely, “the propositional and functional variables have intensional
values but the values of the individual variables remain extensional.”15 We
will later consider what it means for a variable to have an intensional value.
Church’s presentation is similar in formulation to Church’s presentation of
Russell’s type theory, which we will look at below. His presentation accounts
for the fact that a propositional function may take more than one argument.
In this presentation, individuals are of type i. Whenever β1, β2, ..., βm are
types, (β1, β2, ..., βm) is a type, intended to denote the type of the propo-
sitional function that takes objects of the types β1, β2, ..., βm as arguments.
f(a1, a2, ..., am) is well-formed whenever f is a variable or constant of type
(β1, β2, ..., βm), and aj is a variable or constant of type βj for all j ≤ m.

Simple type theory prevents any propositional function from directly tak-
ing itself as argument. For example, φ(φx̂) will never be a legitimate state-
ment. φx̂ has some type (β); this means its argument must be of type β.
Since φx̂ is of type (β), it cannot be an argument to φx̂. However, we will
later consider a case allowed in simple type theory where a function φx̂ takes
as argument another propositional function which was defined using φx̂.

Russell’s theory of types

In Principia Mathematica Russell gives a theory of types different from the
simple type theory mentioned above. Critics, including Hermann Weyl, Ram-
sey, and Quine, have claimed that Russell’s theory is an unnecessarily com-
plicated version of simple type theory. However, Russell developed his theory

15[5] pg. 25
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independently of a simple theory of types and one should approach it as a
self-contained theory. Hylton, for example, states:

I have avoided the expression ‘ramified type theory’ because
it seems to me tendentious. It strongly suggests that the theory
is best understood as the result of of imposing complications (or
ramifications) upon a simpler underlying theory. Once this is
accepted, it becomes natural to ask whether we cannot avoid the
complications by using only the simpler theory.16

Vicious circle principle

The self-referential paradoxes which motivated Russell to create his type
theory result from a vicious circle. A vicious circle can occur when an element
of a collection is only definable in terms of the entire collection. Russell17

gives the example of statements about “all propositions.” Such statements
refer to the totality of propositions, so presuppose their existence. However,
they are themselves propositions, so should belong to this totality. Vicious
circles result from cases such as this, where a collection contains elements
which presuppose the entire collection. In order to avoid these, a system
must not allow such statements to be legitimate. While simple type theory
does not allow a propositional function to take itself as argument, it does not
prevent the formation of totals whose members presuppose the total. Russell
aims to avoid the formation of such totals. According to Russell, simple type
theory, which allows one to speak of all propositional functions taking some
object as argument, does not discriminate enough to prevent vicious circles.

Propositions. . .must be a set having no total. The same is
true. . . of propositional functions, even when these are restricted
to such as can significantly have as argument a given object a. In
such cases, it is necessary to break up our set into smaller sets,
each of which is capable of a total. This is what the theory of
types aims at effecting.18

Using quantifiers, we can form statements in simple type theory where a
propositional function’s argument is formed from this function. This violates

16[17] pg. 311
17[45] pg. 37
18[45] pg. 37
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versions of the vicious circle principle. If y ranges over individuals and φ is
a constant, type ((i)) propositional function,

ψ(y) ≡ (∃χ)(∃θ)(θ(χ) ∧ φ(χ) ∧ χ(y))

is a legitimate propositional function of type (i), for its only argument, y,
ranges over individuals. χ ranges over propositional functions of type (i),
for it takes an individual as argument; θ ranges over propositional functions
of type ((i)) and φ is a particular propositional function of type ((i)), for
each takes a type (i) propositional function as argument. We can thus state
φ(ψx̂), because ψx̂ is of the proper type to be a legitimate argument for φ.
However, ψx̂ is constructed from φ. This is an example where the argument
to a function is constructed using the function. Propositional functions such
as ψx̂, which quantify over propositional functions of the same (or higher)
type (in this case θ), allow for an argument to a function to depend upon
the function.

By adhering to the vicious circle principle—“whatever involves all of a
collection must not be one of the collection” or “whatever contains an appar-
ent variable must not be a possible value of that variable”—Russell’s theory
of types denies the legitimacy of the paradoxical propositions. Although some
of these statements may appear to involve classes or relations, Russell shows
how the paradoxes can be understood in terms of propositional functions,
and makes sure that they are not allowed in his system.

1.2.1 A formal presentation of Russell’s type theory

Church’s presentation

Church’s formulation of Russell theory of types follows. This differs slightly
from Russell’s presentation in ways which will be discussed. This presenta-
tion accounts for the fact that propositional functions may take many argu-
ments, and treats propositions as propositional functions with no arguments.
In this presentation, the most fundamental stratification is what Church calls
r-types. To say that two propositional functions are in the same place in the
hierarchy is to say that they share an r-type. We consider the r-types of a
statement’s variables and constants to determine whether it is well-formed.
This formulation also requires us to identify the level and the order of a
variable, which will be defined shortly.
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Individuals are of r-type i. Whenever β1, β2, ..., βm are r-types, m ≥ 0,
and n ≥ 1, (β1, β2, ..., βm)/n is an r-type of level n. The variable with such
an r-type is an m-ary propositional function.

Individuals are of order 0. A variable ranging over propositional functions
of r-type (β1, β2, ..., βm)/n is of order N + n, where N = 0 if m = 0 and
otherwise N is the greatest order of β1, β2, ..., βm. A functional variable’s
level is thus the difference in order between the variable in question and the
order of its highest-ordered argument. Since n ≥ 1, the functional variable’s
order must be at least one larger than the order of its largest argument.
However, n may be larger than 1, in which case there is a larger gap in order
between the propositional function and its arguments.

We can compare the r-types of different variables; (α1, α2, ..., αm)/k is
directly lower in r-type than (β1, β2, . . . , βm)/n if αj = βj for j ≤ m and
k < n. Thus r-types with the same arguments can be compared by comparing
their level or order (since the r-types of the arguments are the same, these
r-types will differ from each other the same amount in both order and level).

The main way in which Church’s presentation diverges from Russell’s
is that a variable ranges over values of its r-type and directly lower ones.
Because of this feature, Church’s formulation is cumulative, while Russell’s
is not.

Church provides an abbreviation schema for this recursive formulation.
A string of i’s (the r-type of individuals) can be replaced by the number of
i’s within the set of parentheses. For example, a level n proposition will
have no arguments. Its r-type is thus ( )/n , or 0/n. A binary propositional
function of level 3 which takes individuals as arguments is r-type (i, i)/3, or
2/3. A level 1 binary propositional function, whose arguments are a level 2
proposition and a unary, level 2 propositional function taking an individual
as argument, is r-type (( )/2, (i)/2)/1, or (0/2, 1/2)/1. This is a third order
propositional function. This means that the range of such a variable is binary
propositional functions of level 1 with arguments of r-types 0/2 and 1/2.

Variables of r-type 0/n are well-formed formulas for all n. f(a1, a2, . . . , am)
is well-formed exactly when f is a variable or constant of r-type (β1, β2, ..., βm)/n,
m > 0, and aj is a variable or constant with r-type equal to or directly lower
than the r-type βj for all j ≤ m. Well-formed formulas may be combined
using propositional connectives to form other well-formed formulas. Well-
formed formulas may also be formed by instantiating apparent variables
with variables or constants of appropriate r-type, and by quantifying over
real variables or constants.
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In Russell’s presentation, one determines a variable’s r-type by analyzing
a well-formed formula containing the variable; Church gives comprehension
axioms. The first axiom, which is the specific case for propositions, is:19

(∃p).p ≡ P.

Here, p is a propositional variable, meaning that its r-type is 0/n, where
n ≥ 1. In this scheme, the apparent variables of P must be of order less than
n, and the other variables and constants in P are of order less than or equal
to n. The more general comprehension axiom is:

(∃f).f(x1, x2, . . . , xm) ≡x1,x2,...,xm P.

Here, f is a functional variable with r-type (β1, β2, . . . , βm)/n, x1, x2, . . . , xm
different variables of r-types β1, β2, . . . , βm, P ’s apparent variables are of order
less than the order of f , and P ’s free variables and constants are of order
less than or equal to the order of f . These axioms illustrate the importance
of order within Russell’s type theory—the order of all constituent variables
and constants is essential to determining the r-type of another variable.

For further clarification of these distinctions, here are some examples of
unary propositional functions of different r-types. If φ is a variable over
functions which take as argument individuals, φ is of r-type 1/n, where n
is this functional variable’s level. The order will be the same as the level.
Any value (greater than or equal to 1) is a possible value for n. If n is
1, then individuals are the only totality presupposed by φ. The theory of
types was motivated to avoid vicious circles, and distinguish propositional
functions taking the same arguments but presupposing different totalities. A
propositional function presupposes a totality of higher order by quantifying
over such a totality. If n is 3, then φ is a propositional function of order
and level 3. This means that it presupposes the totality of order 2 variables;
for example, its definition may have been obtained by quantifying over some
second order variable. This function takes individuals as arguments, but it
is distinct from a variable of r-type 1/1 because it has a different order and
level. The r-type 1/1 is directly lower than 1/3.

A function of r-type (1/1)/2 is of level 2 and order 3. It takes as argument
order 1 (and level 1) propositional functions taking individuals as arguments.
Since its level is 2, we know that its order is two larger than that of its
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argument. In this case, this means that it presupposes the totality of second
order propositional functions even though its argument is first order. An
example of such a propositional function is: (∀φ)(φ(ψx̂)), where ψ is of r-type
1/1, and φ of some second order r-type. A function of r-type (1/2)/1 is also
of order 3, but its level is 1. As argument, it takes a propositional function
of the second order (and level) which accepts individuals as argument. This
propositional function is of the lowest possible order for such an argument.
We have so far mentioned three r-types of order 3. There are exactly four
unary, third order r-types, because there are 4 ways to sum up to 3 using this
formulation. The one not yet mentioned is r-type ((1/1)/1)/1. A variable
of this r-type has level 1, and ranges over first-level propositional functions
whose arguments are second order, first level propositional functions taking as
argument first order, first level propositional functions which take individuals
as arguments.

Avoidance of a vicious circle

Let us return to the example from simple type theory where the argu-
ment to a propositional function depended upon the function. In Rus-
sell’s type theory, such a function is illegitimate. The example we had was
ψ(y) ≡ (∃χ)(∃θ)(θ(χ) ∧ φ(χ) ∧ χ(y)) where y ranges over individuals and
χx̂ is a propositional function of r-type 1/n. We do not need to specify n’s
value; we know that the r-type will fit this form because χx̂ takes one in-
dividual as argument. Assuming that φ(χ) is well-formed, φx̂ must be of
r-type (1/n+)/m, where n+ is some number equal to or greater than the n
of χx̂’s level, and m is some number greater than or equal to 1. φx̂’s order
is n+ +m. φx̂ is a constant, and we can say that the apparent variable θx̂,
which also takes χ as argument, is of the same r-type as φx̂. The r-type of
ψx̂ is 1/b, where b is some number greater than or equal to n+ +m+ 1. ψx̂
takes individuals as arguments, but its level must be large enough to account
for θx̂’s order. We shall see that ψx̂ is a not a legitimate argument to φx̂.
φx̂ is r-type (1/n+)/m. For φ(ψx̂) to be well-formed, ψx̂’s r-type must be
equal to or directly lower than r-type 1/n+. This is not the case, for the
lowest possible level for ψx̂ is n+ +m+1, making the r-type neither equal to
nor directly lower than 1/n+. We previously saw that φ(ψx̂) is well formed
in simple type theory. Unlike simple type theory, Russell’s type theory does
not allow such statements where a propositional function’s argument depends
upon the function itself.

18



Predicativity

Predicativity is an important concept in Principia Mathematica. Using
Church’s formulation, predicative propositional functions are those of the
first level. This means the function’s order is one more than the highest or-
der of any of its arguments, which is the lowest possible order for the function
given these arguments. The highest order of the arguments is the highest
order totality presupposed by a predicative function. By definition, non-
predicative propositional functions presuppose some totality which is higher
in order than any of their arguments. Of the third order propositional func-
tions mentioned above, r-types ((1/1)/1)/1 and (1/2)/1 are both predicative
r-types, while the others are not. Both of these third order r-types take sec-
ond order arguments. In the former case, this second order argument is itself
a predicative propositional function—that of r-type (1/1)/1. However, in
the latter case the second order argument—1/2—is not itself predicative. As
predicativity is defined in the Introduction to Principia Mathematica, this
distinction is unimportant. Predicative propositional functions must be of
the first level, but their arguments may have higher levels. Russell gives a
definition of predicativity in terms of assumed totalities:

[A] predicative function of a variable argument is one which
involves no totality except that of the possible values of the ar-
gument, and those that are presupposed by any of the possible
arguments.20

We write that a propositional function φx̂ is predicative by writing φ!x̂. φ!x
represents a value of predicative propositional function φ!x̂.

This is the definition of predicativity generally attributed to Russell.
However, in section *12 of Principia Mathematica, Russell gives a more re-
strictive characterization of predicativity. It is not a formal characterization,
and is a case where he violates the use/mention distinction, for he charac-
terizes propositional functions based on their properties as symbols. He calls
functions with no apparent variables matrices, and states that a “function is
said to be predicative when it is a matrix.”21 This sense of predicative func-
tion is stricter, for it requires that a predicative function be a function that
cannot be written with any apparent variables. This bars the comprehension
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axiom (∃ψ)(∀x)(ψ!(x) ≡ φ(x)) where φ has any quantified variables. An ele-
mentary proposition also contains no apparent variables, and an elementary
function only has values which are elementary propositions.22 If we take this
definition of predicativity, then predicative function, elementary function,
and matrix are different names for the same thing—a function without any
apparent variables.

1.2.2 The axiom of reducibility

Russell’s theory of types tells us that if x is a variable, then it has some
r-type β, and x is a legitimate argument to all propositional functions of
r-type (β)/n, where n ≥ 1. In this theory, we are not allowed to make
statements about “all properties of x,” because these properties are defined
by propositional functions of various r-types. We can generalize over all
statements of a particular r-type, but any variable is a legitimate argument
to propositional functions of infinitely many r-types. This means that we
cannot talk about all propositional functions taking some variable as input,
but only about all propositional functions of a particular r-type.

If the system of Principia Mathematica is the basis for mathematics,
then it is essential that we can speak of all statements which are true of
some argument. For example, we shall see that rules of identity require us to
say that two distinct objects cannot share all of their properties, or satisfy all
of the same propositional functions. Induction and analysis also require us
to generalize over propositional functions which an object satisfies. Simple
type theory allows us to generalize in this way, for a particular object is
only a valid argument to one type of function (if the object is of type β,
then it is only a legitimate argument to functions of type (β)). However, the
distinctions made by Russell’s theory of types prevent us from generalizing
over all functions taking some type of arguments. Russell solves this problem
by introducing the axiom of reducibility.

The axiom of reducibility states that any function φx̂ is formally equiv-
alent to a predicative function. In Church’s notation, this means that any
propositional function is co-extensive with, or satisfied by the same argu-
ments as, some level 1 propositional function. The axiom does not claim that
we can always define such a propositional function, but that it exists. As
we saw, there are different notions of predicativity. This axiom is a stronger
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assumption if we take the more restrictive sense of predicativity.
The axiom for unary propositional functions is:23

`: (∃f) : φx. ≡x .f !x Pp

There are analogous axioms for propositional functions of more than one
input. For a binary propositional function φ(x̂, ŷ) it is:

`: (∃f) : φ(x, y). ≡x,y .f !(x, y) Pp

Bernard Linksy gives a general form of the axiom using Church’s notation24:

(∃f (β1,...,βn)/1)(∀x1) . . . (∀xn)[φ(x1, . . . , xn) ≡ f(x1, . . . , xn)]

where the r-types of x1, . . . , xn are β1, . . . , βn respectively. The axiom thus
says that φ, a propositional function of r-type (α1, α2, ..., αm)/k, is co-extensional
with f , one of r-type (β1, β2, ..., βm)/1, where αj = βj for j ≤ m. The or-
der of f is 1 plus the order of the highest-order argument; the order of φ
is unspecified, but it is at least as large as the order of f . This is an in-
stance of Russell’s notion of ‘typical ambiguity’. Typical ambiguity means
that the r-type of variables is not specified and thus a variable may be of any
r-type; the statement is well-formed because we assume that any variable is
of one particular r-type. In this case we are not quantifying over functions
of different r-types, but are asserting a proposition involving φ, a function of
unspecified r-type.

1.3 Identity

Identity is a defined concept in Principia Mathematica, not a primitive one.
Definition 13.01 states that:

x = y. =: (φ) : φ!x ⊃ φ!y Df

This says that x and y are identical when every predicative function satisfied
by one is satisfied by the other. Russell’s theory of types prevents us from
making statements about every function satisfied by some variable, because
a variable may satisfy functions of different orders so we cannot quantify over
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them. However, the axiom of reducibility suffices to tell us that, if x = y, a
function satisfied by x is also satisfied by y. Using the axiom of reducibility,
we can prove proposition 13.101:

`: x = y. ⊃ .ψx ⊃ ψy

In this case, ψ is not necessarily a predicative function. We can make this
statement within the system of Principia Mathematica because it does not
require us to quantify over all propositional functions of arbitrary order. This
is another instance of ‘typical ambiguity’, for the r-type of ψ is unspecified.
The axiom of reducibility guarantees that there is a predicative propositional
function co-extensive with a propositional function of arbitrary r-type. This
means that if there is some higher-order propositional function satisfied by
x but not by y, then there is some predicative function satisfied by x but
not by y. Thus if x and y satisfy all of the same predicative functions, there
is not a higher-order propositional function which one satisfies but the other
does not.

Properties of identity

Principia Mathematica has propositions stating that identity is reflexive,
symmetrical, and transitive. There are also propositions, for one and two
variables, asserting that the statement that x has some property is equivalent
to the statement that something identical with x has that property. For
conventional use, there are definitions related to identity, such as x 6= y.

1.4 Classes

We can think of a class as a collection of objects with a certain property.
One of Russell’s main motives for assuming the axiom of reducibility in the
first edition of Principia Mathematica is that it allows him to make no as-
sumptions about class existence. Instead of talking about a class of objects
with some property, we can interpret this idea in terms of the propositional
function defining this property. Russell states that the axiom of reducibility
replaces the assumption that classes exist, and gives the same results with-
out other problems which arise in a system which assumes that classes exist.
These problems include “the one and the many”:
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If there is such an object as a class, it must be in some sense one
object. Yet it is only of classes that many can be predicated.
Hence, if we admit classes as objects, we must suppose that the
same object can be both one and many, which seems impossible.25

Russell saw this problem as an example of the paradoxical situations which
can arise by assuming that classes are actual objects. He thought it was a
paradox that a collection was simultaneously one class and many objects
forming the class.

Role of classes

Although Russell does not assume class existence, classes still play a role
in the system of Principia Mathematica. This role is a pragmatic one—they
allow us to speak in a certain way, without asserting anything about the exis-
tence of such objects. Russell aims to “[reduce] statements that are verbally
concerned with classes and relations to statements that are concerned with
propositional functions.”26 Once we have a way to represent classes, we can
explore their properties, and apply mathematical principles to them (such
as combining them and looking at complements). Propositional functions
are the basic constituents of the semantics of Russell’s system, but we can
speak of whatever satisfies a propositional function. A propositional func-
tion is satisfied by whatever arguments make it true. We can think of a
class as everything which satisfies a particular propositional function; this
means every propositional function determines a class (although it may be
the empty class). Classes are key to interpreting mathematics, which is ex-
tensional, within Russell’s intensional logic. We write x̂(φx) to represent the
class which satisfies the propositional function φx̂. This is an incomplete
symbol, and does not have a meaning in isolation.

Extensionality

An extensional function ψx̂ of an argument φ, where φ is an individual or a
propositional function, is one whose truth depends only on the extension of
φ. This means that φ’s truth value is a factor in determining ψ(φ)’s, but no
other properties of φ are relevant. In the language of Principia Mathematica,
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we express that a function f of functions is extensional as follows:27

φx. ≡x .ψx :⊃φ,ψ: f(φẑ). ≡ .f(ψẑ)

This tells us that for φx̂ and ψx̂ which are equivalent for legitimate argu-
ments, f holds of the function φx̂ exactly when it holds of ψx̂. This function
f will have the same values so long as the class determined by φx̂ is constant.
In other words, only the values that satisfy φx̂, and not the definition of φx̂,
are important in determining the truth of f(φx̂).

Functions which are not extensional are intensional; an example is the
function ψ(φ̂): “Bertrand believes that φ”. φ ranges over propositions, so
has r-type 0/n. ψx̂ ranges over propositional functions taking a proposition
as argument, so has r-type (0/n+)/m, where n+ is a natural number greater
than or equal to n. If F is the constant standing for ‘France is less populated
than India’, and G represents ‘Canada is less populated than the United
States’, they are each of r-type 0/1 so we can substitute F or G for φ in
ψ(φ̂). Bertrand may believe that France is less populated than India, but
not believe that Canada is less populated than the United States. In both
cases, our argument φ has a positive truth value, but ψ(F ) is true while
ψ(G) is not, so they have different extensions. With intensional functions,
it may be the case that arguments with the same extension give different
values (the extension will be a truth value in the case of arguments which are
propositions). This is never the case with extensional functions—arguments
with the same extension will give the same value. The function “If Bertrand
lives in Britain, then φ” is an extensional function. Given any propositions
with the same truth value as argument, the value of the function will be the
same.

Definition 20.01 defines what it means to apply a function f to an in-
complete symbol representing a class:

f{ẑ(ψz)}. =: (∃φ) : φ!x. ≡x .ψx : f{φ!ẑ} Df

Saying that the function f holds of the class of arguments which satisfy
ψ is defined to mean that some predicative function φ holds of the same
arguments as ψ, and the function f (which is not necessarily extensional)
holds of φ. Using the formal rules of propositional and quantifier logic as
given in Principia Mathematica and assuming that ψx. ≡x .χx, we can prove
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that
f{ẑ(ψz)}. ≡ .f{ẑ(χz)}

This tells us that if f{ẑ(ψz)} is viewed as a function of ψẑ, then this function
of functions is extensional. Russell explains:

every proposition about a class expresses an extensional property
of the determining function of the class, and therefore does not
depend for its truth or falsehood upon the particular function
selected for determining the class, but only upon the extension of
the determining function.28

Russell’s concept of classes requires that the value of f , when given
{ẑ(ψz)} as argument, depends only on the extension of ψẑ. Although Defi-
nition 20.01 gives us that a function such as f is extensional with the class
defined by the function ψẑ as argument, we have not shown that all functions
of functions are extensional.

Russell uses the definition of identity (x = y. =: (φ) : φ!x. ⊃ .φ!y) to
prove proposition 20.15:29

ψx. ≡x .χx :≡ .ẑ(ψz) = ẑ(χz)

This is what distinguishes classes—two propositional functions satisfied by
the same objects determine the same class. The proof of the reverse direction
of this equality—ẑ(ψz) = ẑ(χz) :⊃ . `: .ψx. ≡x .χx—uses the axiom of re-
ducibility to guarantee the existence of a co-extensive predicative function.30

Class membership

Russell uses Peano’s notation; xεẑ(ψz) expresses that x is a member of the
class determined by propositional function ψẑ. Definition 20.02 says31:

xε(φ!ẑ). = .φ!x Df

Interpreting xε(φ!ẑ) analogously to the treatment of the function appli-
cation in definition 20.01, we obtain:
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xεẑ(ψz). ≡: (∃φ) : ψy. ≡y .φ!y : φ!x

The axiom of reducibility tells us that for all functions ψy, there is a co-
extensive predicative propositional function; this is the left conjunct of the
definiens of the above definition. Since this is an axiom it always holds, so
xεẑ(ψz) must be formally equivalent to φ!x, which is formally equivalent to
ψx. This substitition gives us 20.332:

xεẑ(ψz). ≡ .ψx

This proposition is the statement which we would like to hold of classes—to
say x is a member of the class determined by some function is to say that
this function holds of x.

Properties of classes

Russell states that characteristics about classes are of three sorts: the basic
characteristics, those involving classes and descriptions, and the propositions
which show that the characteristics of classes of individuals apply to classes
of classes as well.

The basic characteristics have to do with requirements for class iden-
tity and consequences of this. Although classes are incomplete symbols and
do not have meaning in isolation, we can still talk about their equivalence
within a context. The main proposition about classes tells us that for-
mally equivalent functions determine identical classes and identical classes
are defined by formally equivalent functions. This is proposition 20.15,
ψx. ≡x .χx :≡ .ẑ(ψz) = ẑ(χz), which we saw above.

Using the axiom of reducibility, we can use this proposition to prove that:

(∃φ).ẑ(ψz) = ẑ(φ!z)

This means that any class is defined by a predicative function, and we can
quantify over all the classes to which a term belongs, for it is a legitimate
totality. We can think of classes as “quasi-things.”33 We represent them with
a name and think of them as having an r-type, although they are not actual
objects so the name and r-type are only conveniences. Since the axiom of
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reducibility guarantees that a class can be defined by a predicative function,
a class’s r-type is entirely determined by the r-types of its members, those
objects which satisfy the predicative function defining the class.

Other basic propositions about classes tell us that identical classes share
all members (and all classes with this set of members are identical) and all
properties, and that something is a member of a class exactly when it satisfies
the function which defines the class. Class identity is reflexive, symmetrical
and transitive.

The second sort of propositions have to do with descriptive expressions;
such as (ιz)(φx), which stands for “the x satisfying φx̂”. Russell explores
this in depth in his Theory of Definite Descriptions. These expressions may
be treated as typical members of a class in certain circumstances. Also, we
can use a descriptive phrase about a class to express something about the
class satisfying some function. A class variable is an abbreviation for an
expression about a defining function, so the properties are analogous.

The third set of propositions state that there is nothing unique about
classes of individuals, and classes of classes share their properties. These
proofs are analogous to previous ones, and tell us that the relation between a
class and a class of classes is analogous to the relation between an individual
and a class of individuals.
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Chapter 2

The axiom of reducibility and
the second edition of Principia
Mathematica

2.1 Justification in the first edition for the

axiom of reducibility

In the first edition of Principia Mathematica, Russell admits that one should
be hesitant to accept the assumption of the axiom of Reducibility. Nonethe-
less, he offers a pragmatic justification of the axiom:

That the axiom of reducibility is self-evident is a proposition
which can hardly be maintained. But in fact self-evidence is never
more than a part of the reason for accepting an axiom, and is
never indispensable. The reason for accepting an axiom, as for
accepting any other proposition, is largely inductive, namely that
many propositions which are nearly indubitable can be deduced
from it, and that no equally plausible way is known by which these
propositions could be true if the axiom were false, and nothing
which is probably false can be deduced from it. . . In the case of the
axiom of reducibility, the inductive evidence in its favour is very
strong, since the reasonings which it permits and the results to
which it leads are all such as appear valid. But although it seems
very improbable that the axiom should turn out to be false, it is
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by no means improbable that it should be found to be deducible
from some other more fundamental and more evident axiom.1

He then provides an example in which the assumption seems a safe one.
Consider the higher-order assertion: “Napoleon had all the qualities that
make a great general.” We can speak of the totality of predicative properties
held by great generals. Since there are a finite number of great generals,
we can form a predicative property unique to great generals by disjoining a
predicative property unique to each great general. This predicative property
is co-extensive with “holding all the qualities of a great general,” for it will
hold in the same instances. The axiom of reducibility is just the assumption
that there is always such a predicative property equivalent to a higher-order
property. Russell uses the word order to mean what Church calls level in
Church’s formulation of Russell’s type theory—the amount of slack between a
propositional function and its arguments. Predicative propositional functions
have no slack; we will call these first order to correspond to Russell’s usage.
In Church’s usage, such propositional functions are first level (and also first
order in cases where the arguments are individuals).

Also in favor of the axiom is the fact that, according to Russell, it is a
weaker assumption than that of class existence, which would require aug-
menting the system with variables and axioms to specify the use of classes as
independently existing objects. Assuming class existence would allow us to
reduce a propositional function’s order—taking a propositional function φx̂
of any order, the assumption of class existence gives us a first order state-
ment which asserts that x is an element of the class of objects satisfying φx̂.
This means that we could reduce all propositional functions which a certain
variable satisfies to a minimal order, such that each propositional function
has order one larger than the variable itself. Such propositional functions
are predicative, and we could then generalize over them for they share an
order (and also, in Church’s formulation, an r-type). Russell introduced the
axiom of reducibility to allow this generalization over all functions which an
object satisfies, so this axiom would not be necessary were there other ways
to make such generalizations.

Both the axiom of reducibility and the assumption of class existence allow
us to assume that a propositional function is co-extensive with a predicative
one, but the axiom of reducibility is a weaker assumption, for it does not
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require including additional objects in the system. Were Russell to claim that
predicative functions were extensional, then he could no longer distinguish
between classes and propositional functions, and his assumption would be no
weaker than that of class existence. However, the axiom of reducibility only
guarantees that there is some predicative propositional function co-extensive
with any other propositional function, not that such a predicative function is
an extensional one. The intensional characteristics of Russell’s propositional
functions are not negated by the axiom of reducibility.

Russell states that the “axiom of classes” is an alternate name for the
axiom of reducibility. However, the axiom avoids complications that arise
from assuming classes exist, such as the problem of “the one and the many,”
which was discussed above. Russell believes that this problem arises from
assuming that classes are actual objects, and does not arise if classes are
merely convenient ways to talk about what satisfies a propositional function.
The axiom of reducibility minimizes the ontological assumptions of Russell’s
logical system, for it allows him to remain agnostic on the issue of class
existence. Similarly, the axiom of reducibility for binary functions may be
called the ‘axiom of relations,’ for the assumption is like the assumption that
a statement of any order about two variables gives us a relation between the
variables.

2.1.1 Introduction to Mathematical Philosophy

Between the two editions of Principia Mathematica Russell published In-
troduction to Mathematical Philosophy, a book on logic for a more general
audience. He expressed doubts about the axiom of reducibility in this book
as well, but did not entirely reject it. He states that the axiom is a “gener-
alised form of Leibniz’s identity of indiscernibles.”2 Two objects are Leibniz
identical if they share all properties. This means that two distinct objects
cannot have all their properties in common, for then they would be the same
object. Leibniz identity is a special case of the axiom of reducibility, for it
states that if some property distinguishes x and y, then there is a predicative
propositional function which holds of one and not the other (for example,
the property of “being x”). Since the axiom of reducibility implies this, the
axiom is a stronger assumption.

Russell does not intend the comparison to Leibniz identity as justification
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of the axiom, for he believed that Leibniz’s identity of indiscernibles was not
a logical truth, but an empirical one. Since the axiom of reducibility implies
Leibniz’s principle, this implies that the axiom could contingently be false. If
the axiom is not necessarily true, then he did not think it should be assumed
within a logical system. However, at the time of Introduction to Mathematical
Philosophy, Russell still included the axiom in his system.

I do not not see any reason to believe that the axiom of reducibil-
ity is logically necessary, which is what would be meant by saying
that it is true in all possible worlds. The admission of this axiom
into a system of logic is therefore a defect, even if the axiom is
empirically true. It is for this reason that the theory of classes
cannot be regarded as being as complete as the theory of descrip-
tions. There is need of further work on the theory of types, in
the hope of arriving at a doctrine of classes which does not re-
quire such a dubious assumption. But it is reasonable to regard
the theory outlined in the present chapter as right in its main
lines, i.e. in its reduction of propositions nominally about classes
to propositions about their defining functions. The avoidance of
classes as entities by this method must, it would seem, be sound
in principle, however the details may still require adjustment.3

2.2 Reaction to the first edition

The completion of Principia Mathematica was a tremendous achievement,
and was recognized as such by members of the international logical commu-
nity. In accordance with Russell’s own take on the project, the axiom of
reducibility was the most controversial aspect of the work. Ramsey speaks
of the “serious objections which have caused its rejection by the majority
of German authorities, who have deserted altogether its line of approach.”4

These objections centered around the axiom of reducibility.

2.2.1 Hilbert school

In a 1914 lecture, David Hilbert’s student Heinrich Behmann took Principia
Mathematica to be the first unification of two traditions: constructing logic

3[39] pg. 193
4[37] pg. 164

31



by mathematical means and analyzing logic’s role in mathematics’ construc-
tion.5 However, Behmann was critical of aspects of Russell’s work, particu-
larly the theory of types. He believed the stratification was too severe, and
prohibited propositions which are not paradoxical, such as the proposition
“All propositions are either true or false.”6

Behmann was not dismissive of the axiom of reducibility:

“The axiom thus states that in this one order there already are
enough functions to define all possible classes; it can therefore be
viewed as a kind of completeness axiom for predicative functions.7

This comparison was to Hilbert’s completeness axiom, which is a maximality
axiom stating that the system of the real numbers is the largest system
satisfying the properties of arithmetic.

Behmann was also sympathetic towards Russell’s “no classes” theory; like
Russell, he preferred minimal assumptions about ontological existence:

The classes—and by the same token, incidentally, the numbers—
are thus. . . nothing else than figures of speech extremely useful
for ease and clarity in presenting arithmetic, but can nonetheless
become quite problematic as soon as one takes them seriously
and, in violation of their nature, takes them for the names of
objects.8

In his understanding of the foundations of mathematics, Behmann aimed
to minimize ontological assumptions about abstract entities such as classes
and emphasize the role of concrete objects like individuals and empirical
facts. He believed this approach could ground the approach of Principia
Mathematica. Like Russell and Hilbert, he held individuals to be basics
which could not be further analyzed, and aimed for a “de-ontologization of
mathematics.”9 He preferred minimal assumptions about the existence of
abstract objects, such as natural numbers.

Initially, Hilbert was also not dismissive of the axiom of reducibility. In
1917-1918, his goal was still the logicist one of reducing mathematics to logic,
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and he believed Russell had been successful in axiomatizing logic, a key step
in the logicist program.10 In notes from these years, he agreed with Russell’s
introduction of the axiom as a way to retain a type theory which avoids
vicious circle paradoxes in a system powerful enough to serve as a basis for
mathematics. He did recognize that the axiom does not fit a constructivist
picture, for it assumes that predicative propositional functions exist indepen-
dently, even in cases where it may not be possible to give a definition of the
predicative function.11 In 1918, Hilbert expressed agreement with Behmann’s
comparison of the axiom to Hilbert’s own arithmetic completeness axiom.12

With time, Hilbert became more critical of the axiom of reducibility. By
the end of 1921, he rejected the axiom, and also the logicist goal of reducing
mathematics to logic. He rejected the axiom for reasons he earlier noted: it
assumes that the totality of predicative propositional functions is prior, and
there must be predicative propositional functions which satisfy the demands
of the axiom—namely, predicative propositional functions co-extensive with
all other functions. The necessity of such constraints, namely the existential
character of the axiom, conflicts with the logicist goal, and compelled Hilbert
to abandon the logicist goal, and instead return to the goal of establishing
consistent formal theories.13

Hilbert continued to criticize the axiom of reducibility. In a 1929 arti-
cle, Hilbert claimed his consistency proof allows the description of arithmetic
propositions without requiring, as Russell’s did, “the help of the very prob-
lematic axiom of reducibility.”14 In 1931, as justification for his proof theory,
Hilbert criticized other programs for the assumptions which they require.
His proof theory does not require axioms such as Russell’s axioms of infinity
and reducibility, which he called “real, contentual presuppositions, not com-
pensated for by proofs of consistency, and of which the latter [the axiom of
reducibility] is not even plausible.”15

In a 1930 paper, Die Philosophie der Mathematik und die Hilbersche Be-
weistheorie, Paul Bernays was also critical of the axiom of reducibility. He
denied the possibility of it being a logical law—this would mean that the as-
sumption would hold independently of the range of propositional functions,
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and that impredicative definitions could not enlarge the domain of predica-
tive ones. He claimed that one could construct counter-examples, where an
impredicative definition is not co-extensive with any predicative one. If the
axiom of reducibility is not a logical law, then Bernays claimed it must be an
assumption outside of the bounds of logic; as such it limits the construction
of predicates to adhere to this assumption. He proposed to use the concept
of logical function instead of predicate, and stated that we can speak of the
totality of logical functions so the axiom of reducibility is unnecessary.

2.2.2 Weyl

In 1918, Weyl wrote Das Kontinuum. Weyl was not a logicist, and his goal
was not to reduce mathematics to logic. In Das Kontinuum, Weyl devel-
oped a version of a predicative foundational stance, on which mathematical
concepts could be defined in terms of more basic ones, but he held that the
natural numbers were primitive. Recursive definitions and inductive proofs
were also basic principles, and natural numbers could be treated like a com-
pleted totality. In Das Kontinuum, Weyl criticized aspects of Russell’s view.
He objected to Russell’s theory of types, stating a “ ‘hierarchical’ version of
analysis is artificial and useless.”16 Instead he proposed a “narrower iteration
procedure”; this is consistent with his view that the natural numbers are pri-
mary and may be assumed. Weyl also stated that Russell missed the “crucial
point”—Weyl believed that the “the principles of definition must be used to
give a precise account of the sphere of the properties and relations to which
the sets and mappings correspond.”17 Russell does not use such “principles
of definition”—he never gives a formal syntactic presentation of the ranges
of the symbols in his language. Weyl was particularly critical of the axiom of
reducibility and Russell’s defining the natural numbers as equivalence classes;
according to Weyl, this indicates the “veritable abyss” separating him from
Russell.18 Given Weyl’s different primitives, the complications of Russell’s
type theory are unnecessary. Russell only needs to assume the axiom of
reducibility because Russell’s type theory prohibits certain generalizations—
the stratifications of his type theory prevent quantifying over all propositional
functions satisfied by some individual or propositional function. Were it not
for the stratifications of his type theory, there would be no need to assume
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the axiom of reducibility. Thus, any position, such as that of Weyl, which
does not espouse a ramified theory of types has no need of the axiom of
reducibility.

In a paper from 1925-1927, Weyl considered the problems of Russell’s
ramification of type theory. He discussed the problem of the least upper
bound—the upper bound of a set of first order numbers would itself be of
higher order. He notes that the dilemma would be avoided if there were
a co-extensional predicative property, which is the issue which motivated
Russell’s to introduce the axiom of reducibility. Weyl questioned the propo-
sition stating the existence of such a co-extensive predicative propositional
function:

Yet, a proof for this has never been attempted, and there is not
the slightest indication that one could put up construction prin-
ciples for the properties of first level that would be far-reaching
enough to ensure the correctness of the proposition; indeed this
is from the outset so monstrously improbable that no one could
reasonably be expected to look for such principles. Russell has
chosen a rather abstruse way out, namely to postulate this com-
pletely unintuitive proposition as an axiom (axiom of reducibil-
ity).19

2.2.3 Wittgenstein

In his Tractatus Logico-Philosophicus, Ludwig Wittgenstein took issue with
aspects of Principia Mathematica. These criticisms center around Russell’s
confusion of the use and mention of signs, and Russell’s attempts to avoid
meta-logical claims: “Russell’s error is shown by the fact that in drawing
up his symbolic rules he has to speak about the things his signs mean.”20

Wittgenstein thought this was an impossible task: “[it] is clear that the laws
of logic cannot themselves obey further logical laws.”21 In particular, there
is only one law of contradiction. This differs from the views of Russell, who
believed that the law of contradiction is itself a statement within the system
without special status and thus type theory requires that there be a law of
contradiction for every type. Additionally, Wittgenstein criticized the axiom

19[30] pg. 132
20[46] pg. 42
21[46] pg. 95

35



of reducibility in a similar manner to Russell’s questioning in Introduction
to Mathematical Philosophy—Wittgenstein claimed that the axiom is not a
logical truth. While the axiom may happen to be true, it is not a logical
proposition and could just as well be false.22

2.2.4 Other criticism

Another criticism of the axiom of reducibility is that it undoes the ramifica-
tion of Russell’s theory of types, and reinstates the self-referential paradoxes
which motivated Russell’s type theory. Russell’s type theory avoids the para-
doxes because, within the theory, such seemingly contradictory definitions
are not well-formed statements. He claimed that the order hierarchy was
necessary to bar the paradoxes, and that a hierarchy which does not take ac-
count of quantified variables would allow vicious circles. However, the axiom
of reducibility guarantees that there is a predicative propositional function
co-extensive with any higher-order one. This may seem to negate any role
played by the order hierarchy, for it states that any propositional function is
co-extensive with a propositional function of the minimal order allowed by
its arguments. One might argue that there is no reason for a type theory to
characterize certain propositional functions as of a higher order if the theory
guarantees that there always exists a lower-order propositional function sat-
isfied by the same arguments (although we may not know what such a pred-
icative function is). If the order hierarchy is necessary to bar vicious circles
and, with the axiom of reducibility, the order hierarchy is shown to not add
anything to the system, then it would seem that Russell’s system still allows
the paradoxes. This argument is fallacious because the axiom of reducibility
does not remove the importance of the order hierarchy—the axiom does not
state that there is an equivalent predicative propositional function to every
propositional function, but only a co-extensive one. Although there are no
extensionally unique propositional functions which cannot be expressed as a
predicative function, there are propositional functions which are not inten-
sionally equivalent to any predicative function, and the order hierarchy is
necessary to express such functions.

In his 1976 paper, Church retracted his earlier criticism that the axiom
of reducibility reinstates the paradoxes and undoes the ramification of type
theory. He notes that the higher order propositional functions do differ in-
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tensionally from the co-extensive predicative ones guaranteed by the axiom
of reducibility. Russell’s type theory, with the axiom of reducibility, does
differ from simple type theory; although objects of higher order are formally
equivalent to predicative ones, they are not identical and may differ regarding
intensional properties: “it is only in intension that we are to think of addi-
tional values of the functional variables as arising at each new level.”23 In
a 1984 article, Church states that this criticism of the axiom of reducibility
was “based on a confusion between material equivalence. . . and identity of
propositions.”24 Thus, even with the axiom of reducibility, type theory still
intensionally distinguishes between propositional functions of different orders
and prevents intensional vicious circles, but no longer distinguish extensional
ones: “the rejection of impredicative definition is annulled in extensional but
not intensional matters.”25

2.3 Changes made for the second edition

The first volume of the second edition of Principia Mathematica was pub-
lished in 1925. Due to these criticisms and personal doubts, Russell made
alterations for it. He did not change the body of the text, but added an
introduction and three appendices. However, some of these changes have
broad consequences for the logical system of Principia Mathematica. We will
consider the motivations and effects of Russell’s suggestions.

First, we will consider the relatively minor changes. Due to Sheffer’s
discovery that a single propositional connective suffices to define the others,
Russell took this to be his only primitive connective.26 Russell also denied
any distinction between real and apparent variables. Thus ` .fx, where x is
an arbitrary variable, means ` .(x)fx. He realized that asserting something
about ‘any’ value is equivalent to asserting it about ‘all’ values (of a single
r-type). Any real variables in the first edition are to be read as apparent
variables where the scope is the entire asserted proposition.

23[7] pg. 758
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26Goldfarb, in [14], takes Russell’s emphasis of the importance of the Sheffer stroke

as evidence of Russell’s disdain for meta-theory. Goldfarb claims that Russell thought
contributions to logic must be internal to the system, so an internal discovery such as the
Sheffer stroke was an important advancement.
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The crucial change in the second edition involved the axiom of reducibil-
ity. In his philosophical autobiography, Russell states:

My chief purpose in this new edition was to minimise the uses of
the ‘axiom of reducibility.’27

His doubts about the axiom impelled him to find an alternative for the axiom;
in this edition, he instead assumed a principle of extensionality which allowed
him to reach similar results as in the first edition. It seems he was motivated
more by the lack of reasons to keep the axiom than by specific reasons to
discard it. The principle of extensionality does not give all the results which
the axiom of reducibility did, but Russell still found it to be a preferable
alternative. In the introduction to the second edition, he says of the axiom
of reducibility:

This axiom has a purely pragmatic justification: it leads to the
desired results, and to no others. But clearly it is not the sort of
axiom with which we can rest content. On this subject, however,
it cannot be said that a satisfactory solution is as yet obtainable.28

2.3.1 The principle of extensionality

In 1922, Russell wrote the Introduction to Wittgenstein’s Tractatus Logico-
Philosophicus. In this introduction, Russell explained the principle of exten-
sionality. First, let us consider a definition of truth functions:

A truth-function of a proposition p is a proposition containing p
and such that its truth or falsehood depends only upon the truth
of falsehood of p.29

Wittgenstein’s view, the principle of extensionality, is that all functions of
propositions are truth-functions and all functions of functions depend only
on the extension of their arguments to determine their extension. It may
seem that the functions of propositions which Russell labeled as intensional
are exceptions to this. But Wittgenstein denies this:
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. . . it is clear that “A believes that p”, “A thinks p”, “A says p”,
are of the form “ ‘p’ says p”: and here we have no co-ordination
of a fact and an object, but a co-ordination of facts by means of
a co-ordination of their objects.30

Russell explains Wittgenstein’s argument in terms of propositional attitudes.
In such propositions as “A believes p,” the proposition p occurs “as a fact on
its own account,”31 which is distinct from the the fact of the proposition’s
truth value. The role played by proposition p in “A believes p” is distinct
from its role in “q ⊃ p”; in the former p occurs as a fact, while in the
latter it occurs as a proposition whose meaning results from the meaning of
its parts. In modern terms, we would say that p is mentioned in the first
case, and used in the second. Wittgenstein aims to give a general account
of propositions. If one accepts that all functions of propositions are truth-
functions, then propositions can be defined in terms of atomic propositions.
An atomic proposition is a proposition which asserts an atomic fact, or “a
fact which has no parts that are facts”32—such as “Bertrand is British.”

The assumption that a function only occurs through its values

In the introduction to the second edition of Principia Mathematica, Russell
credits Wittgenstein with offering a principle of extensionality as a replace-
ment for the axiom of reducibility. Russell expresses some doubts about this,
but overall finds it to be satisfactory. “There are difficulties in the way of
this view, but perhaps they are not insurmountable...We are not prepared to
assert that this theory is certainly right...”33

By assuming that a function of propositions is always a truth function,
and that a function only occurs in a proposition through its values, we are
saying that functions of functions are extensional. To say that a function
only occurs in a proposition through its values means that we can substitute
a co-extensive value of a function into a proposition without altering the
extension of the proposition. If some formula φ contains the propositional
function f , and f is co-extensive with propositional function g (which means
that (∀x)(f(x) ≡ g(x))), we can substitute g for f in φ and this will not
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affect the value of φ. To evaluate φ, we must evaluate the extension of its
constituents; since f and g are co-extensive, their values are equivalent and
hence φ will have the same values in either case. If functions of functions are
extensional, “A believes p” is not a function of p, for it may have a different
value if we substitute a co-extensive proposition in place of p.

Russell states the assumption which replaces the axiom of reducibility
as: “a function can only appear in a matrix through its values.”34 This
assumption is another case where Russell blurs the use and mention of signs.
The definition of a matrix, which follows, is key to his presentation of the
assumption. However, Russell’s definitions characterize atomic propositions,
elementary propositions, general propositions and matrices, all of which he
treats as semantic entities, by their syntactic properties.

Atomic propositions cannot be further broken down into propositions, and
do not contain quantifiers.35 Elementary propositions36 include both atomic
and molecular propositions, which are composed of atomic propositions and
logical connectives. A matrix is a function whose values are elementary
propositions.37 Thus once we supply the appropriate number of arguments
to a matrix, we have an elementary proposition. Matrices cannot contain
apparent variables; however, we may generalize over a matrix by iteratively
quantifying over one or more variables. The result is a general proposition,
which may contain apparent variables.

Despite Russell’s failure to distinguish the use and mention of a sign, the
assumption that a function only occurs through its values involves the dis-
tinction between the use and mention of a propositional function. A propo-
sitional function may be mentioned (and not used) in some context, but only
its values, not the propositional function itself, can actually occur (or be
used) in a logical statement. For example, the propositional function φx is
mentioned in the statement “Bertrand believes that φx”, but only its val-
ues occur in the logical statement φx ⊃ ψx. This assumption tells us that
φ!x, a propositional function, cannot itself occur as an argument in a logical
matrix; it can only occur as a generalization of its individual values. Thus
there cannot be a logical matrix of a form like f !(φ!ẑ) because the “only
matrices in which φ!ẑ is the only argument are those containing φ!a, φ!b, φ!c,
. . . , where a, b, c, . . . are constants; but these are not logical matrices, being
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derived from the logical matrix φ!x.”38

A new axiom

The assumption that a function only appears in a matrix through its values
tells us that a general proposition resulted from generalizing over some matrix
(the proposition was possibly the result of more than one generalization over
different variables). In Russell’s representation, we can use the new variable
φ1x to express a propositional function which was derived by generalizing over
a matrix containing only individual variables; its values are what he calls
“first-order propositions.” An example of such a function is (y).φ!(x̂, y).39

This is derived from the matrix φ!(x, y) by making y an apparent variable.
We also may have cases where we generalize over a variable of higher order.
φ2x represents a function with argument x which contains φ1 as apparent
variable; it is a “second-order function.”

Russell again blurs the distinction between the use of a sign and its men-
tion in his attempt to formalize this assumption. He gives the general intu-
itive idea of his assumption, and then gives a formal axiom corresponding to
this intuition. Russell claims that, given our assumption, a function φ1 does
not express anything that some matrix does not express. Instead of writing
φ1, we could express the propositional function as an infinite conjunction or
disjunction of matrices. This is similar to the axiom of reducibility, for it
tells us that there is always a corresponding matrix. Russell expresses this
as:40

(φ1).f !(φ1ẑ, x). ≡ .(φ).f !(φ!ẑ, x)

This is not a primitive proposition, or axiom, but an equivalence that Russell
claims can be proved for any particular function from the assumption that
only a function’s values are used to determine a matrix. The axiom, or
primitive proposition, which he introduces is for the general case:41

`: (φ).f !(φ!ẑ, x). ⊃ .f !(φ1ẑ, x) Pp.

In the first edition, there was no need for this axiom, since it can be derived
from the axiom of reducibility. Having given up the axiom of reducibility in
the second edition, Russell now has to add this an independent axiom.
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Russell then discusses propositional functions whose values may be sec-
ond order propositions, which we may write as φ2x. Such a function either
equals (φ).f !(φ!ẑ, x) or (∃φ).f !(φ!ẑ, x). He considers whether we can derive
(φ2).f !(φ2ẑ, x) from (φ).f !(φ!ẑ, x). In cases where (φ).f !(φ!ẑ, x) is true be-
cause it is the value of a tautological stroke function, then (φ2).f !(φ2ẑ, x) is
also true. However, this is not always this case, so the inference does not
always hold.

Classes

The extensional assumption of the second edition—a function can only occur
through its values—alters the concept of classes in Principia Mathematica.
Two co-extensive propositional functions will provide the same values when
they are passed as an argument to another function f ; since we have assumed
that any function of functions f is extensional, its value will be the same when
it takes as argument these co-extensive functions. We can formally express
the assumption that an arbitrary function f of functions is extensional as:42

φx ≡x ψx. ⊃ .f(φẑ) ≡ f(ψẑ)

Assuming φẑ and ψẑ have the same value when used as arguments to exten-
sional functions, there is nothing to distinguish φẑ from ψẑ. Thus, given our
definition of identity, we can prove that they are equal:43

φx ≡x ψx. ⊃ .φx̂ = ψx̂

The assumption of extensionality thus removes any difference between
functions and classes—x̂(φx) now expresses the same concept as φx̂. “Thus
classes, as distinct from functions, lose even that shadowy being which they
retain in *20.”44 In the first edition, classes were incomplete symbols dis-
tinct from propositional functions. Since it is not meaningful to talk about
the identity of incomplete symbols for they have no meaning in isolation,
a class could not be equal to a propositional function. Their status as in-
complete symbols prevented such statements: “ẑ(φz) = ψ!ẑ is not a value of
x = y.”45 In the second edition, a class does not retain any characteristics
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distinguishing it from the propositional function which determines it; classes
are thus no longer incomplete symbols and can be used interchangeably with
propositional functions in any context.

In the first edition of Principia Mathematica, classes were not treated
as existing objects, but as a convenient notation. Although a class did not
have an r-type, we could think of it as having an r-type, which was just the
r-type of its members (which was always the same, for the members were
what satisfied some predicative propositional function whose existence was
guaranteed by the axiom of reducibility). In the second edition, this is more
complicated for we have classes containing members of the same r-type but
themselves having different r-types. For example, we could have a class of
individuals (r-type 1) satisfying some predicative function (r-type 1/1) and
another class of individuals (also r-type 1) satisfying a second-order function
(r-type 1/2). These two classes have members of the same r-type but are
defined in terms of propositional functions of different r-types.

In most cases, this complication is inconsequential. Some proofs from the
first edition must be rewritten, but the same theorems may be proven. How-
ever, Russell is unable to prove that 2n > n without the axiom of reducibility
in cases where n is infinite.

Truth-functions

In Appendix C of the second edition, Russell defends the assumption that a
function can only occur in a matrix through its values. He does not claim
that the assumption is always true, but that mathematics is confined to
cases where it holds. Thus, mathematics only contains extensional functions
of functions, or those whose value depends only on the values of the functions
it takes as arguments. In Appendix C, he considers whether it is the case
that the assumption is generally true, and that all functions of functions are
extensional. We will first consider the specific case of whether all functions
of propositions are truth-functions.

Russell states that there is a distinction between “propositions consid-
ered factually” and “propositions as vehicles of truth and falsehood.”46 This
is the same distinction Russell made in the Introduction to Wittgenstein’s
Tractatus Logico-Philosophicus. A proposition such as “ ‘Canada’ occurs in
the proposition ‘Canada is larger than France’ ” is one in which we consider
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the word ‘Canada’ factually. We are not talking about a specific occurrence
of the word ‘Canada’, but a member of a class of similar occurrences. These
similar occurrences include mentions of words which appear like the word
‘Canada.’ To assert something about a proposition—for example that it is
false or long or occurs in some context—is distinct from asserting the propo-
sition. When one asserts something about a proposition, the proposition
should be considered factually, or as a member of the class of occurrences
of this proposition. When one asserts a proposition, the truth values alone
should be considered.

Logic is only concerned with propositions as vehicles of a truth-value. In
these cases, we are concerned with a particular occurrence of the proposi-
tion. We assert the proposition itself—we do not assert any properties of an
instance or representation of the proposition (for example, its length or color
or even its truth). The proposition itself does not occur when asserted, but
its components do.

Russell states that another key feature of the role of propositions in truth
functions is that they occur transparently.47 By this Russell means that we do
not assert anything about the actual proposition, but use it to say something
about something else. When a symbol (or proposition) occurs in a truth-
function, we are not speaking about the asserted symbol (or proposition),
but using the symbol (or proposition) to speak about another thing, its
components.

Russell emphasizes the distinction between factual and assertive proposi-
tions to show that propositions only occur in truth functions. His argument
is that it only seems that propositions occur in other functions because we
confuse assertions of a proposition and assertions about a proposition. Once
we limit ourselves to the assertion of propositions, we only consider transpar-
ent occurrences of propositions, and thus only occurrences in truth-functions.
We can then generalize to Russell’s assumption that a propositional function,
“a symbolic convenience in speaking about certain propositions,”48 only oc-
curs through its values. If propositions, the extensions of propositional func-
tions, are only arguments to truth-functions, then it is only the extension
of a propositional function which is relevant in determining the extension of
another function taking the propositional function as argument.
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2.3.2 The success of the second edition

The question remains whether it is satisfactory to replace the axiom of re-
ducibility with a principle of extensionality. Extensionality is an assumption
which Russell and others find to be less offensive; does it lead to the necessary
results?

Russell does not think so:

It appears that everything in Vol. I remains true (though often
new proofs are required); the theory of inductive cardinals and
ordinals survives; but it seems that the theory of infinite Dedekin-
dian and well-ordered series largely collapses, so that irrationals,
and real numbers generally, can no longer be adequately dealt
with. Also, Cantor’s proof that 2n > n breaks down unless n is
finite. Perhaps some further axiom, less objectionable than the
axiom of reducibility, might give these results, but we have not
yet succeeded in finding such an axiom.49
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Chapter 3

Further critiques of Principia
Mathematica

3.1 Ramsey’s views

3.1.1 Background considerations

Frank Ramsey’s critique of Principia Mathematica influenced Russell in mak-
ing changes for the second edition. Russell explicitly credits only Wittgen-
stein for proposing the principle of extensionality, but Bernard Linsky, a
contemporary Russell scholar, states that Ramsey “served as an intermedi-
ary”1 between Russell and Wittgenstein, and that it was the influence of
Ramsey, who helped Russell as a proof-reader,2 which encouraged Russell to
take an extensional approach in the second edition. In a later review and
in his philosophical autobiography, Russell accepts many of the proposals
Ramsey offers to alter the system of Principia Mathematica.

Ramsey’s principle work relating to Principia Mathematica was The Foun-
dations of Mathematics. Although it was published in 1925, after Ramsey
had read the changes Russell made for the second edition of Principia Math-
ematica, much of the criticism focuses on the axiom of reducibility. Ramsey
criticizes the details of Principia Mathematica, but is in general sympathetic
to the logicist goal. However, he notes a flaw with Russell’s general goal:
namely, Russell’s view that all true general propositions are logical ones.
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Ramsey believed that the logical status of a proposition is based on its form,
for certain propositions may happen to always be true without being nec-
essarily true. He believed that logic should consist of tautologous general
statements—those true by virtue of their form, not their content. Such state-
ments are a subset of true general statements.

Like Wittgenstein, Ramsey believed that logic is extensional. At the ba-
sis of his system are atomic propositions, which cannot be further broken
down. He gives the example that, if we consider ‘Socrates’ and ‘wise’ as
names, ‘Socrates is wise’ is an atomic proposition.3 A group of n atomic
propositions has 2n truth possibilities, for each one may be true or false. We
form propositions which are not atomic by asserting some combinations of
atomic propositions are true. For example, to assert the non-atomic propo-
sition P ∨ Q is to assert the combinations which assert either the atomic
proposition P or the atomic proposition Q. A truth-function of proposi-
tional arguments (possibly infinitely many) is a proposition which is true or
false depending upon the truth values of the propositions which it takes as
argument. For example, P ∨ Q is the same truth-function of P and Q as
R ∨ S is of R and S. General propositions, or those formed by quantifying
over a variable, are truth functions in which the arguments are not explicitly
enumerated. For example ‘All birds have feathers’ should be interpreted as
the logical product of all values of ‘If x is a bird, x has feathers.’4

The two ways of building up propositions—by combining atomic propo-
sitions with logical connectives and by generalizing, lead to truth functions.
This supports the extensional view that all propositions are truth functions
of atomic propositions. This does not mean that a proposition like “A be-
lieves p” is a truth-function of p, but that it is a truth-function of some
atomic propositions. Since there are 2n truth possibilities of n atomic propo-
sitions, there are 22n

subclasses of truth possibilities, each corresponding
to a truth function. Following Wittgenstein, he allows propositions to be
truth functions of infinitely many propositions. The truth-functions of these
arguments which come out true given all possible truth values for the argu-
ments are tautologous propositions, and those which always come out false
are contradictory ones. Ramsey’s view is that mathematics consists of only
tautologies.

If two symbols standing for propositions agree with the same sets of

3[37] pgs. 168-169
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truth-possibilities of atomic propositions, then they are instances of the same
proposition, even if they are expressed in different ways. For example, P and
P ∧ P are ways of writing the same proposition. This view distinguishes
the symbol from the proposition which it represents, and we can thus say
that P and P ∧ P stand for the same proposition, even though they are
symbolically different. Russell does not clearly differentiate a symbol from
its referent; although he would say that P and P ∧ P are formally equiv-
alent, he would not say that they are instances of the same proposition.
An intensional system like Russell’s distinguishes what is represented by dif-
ferent symbols. In contrast, Ramsey’s system is extensional. He believes
that a propositional function’s extension is a class, and that mathematics
involves classes, not propositional functions.5 The propositions of mathe-
matics assert propositions regarding extensions, so mathematics is a calculus
of extensions. Ramsey’s goal is to reduce the calculus of extensions to a
calculus of truth-functions. The demonstration of this reduction would show
that the extensional propositions of mathematics are just tautological state-
ments; by showing that mathematics just consists of tautologies, we have
filled the logicist goal of reducing mathematics to logic.

3.1.2 Ramsey’s critique of Principia Mathematica

Ramsey believed that Principia Mathematica offers a generally successful
method of showing that the propositions of mathematics are tautologies.
However, in The Foundations of Mathematics he lists three main faults of
Principia Mathematica. Ramsey claimed that his approach solves these prob-
lems, and in doing so successfully reduces a calculus of extensions to one of
truth-functions, and shows that mathematics consists of only tautologies.

The first of these faults of Principia Mathematica stems from Russell’s
belief that every class is defined by a propositional function. Ramsey thought
it was possible that some infinite class has no defining property, but such a
class should still be included when we quantify over classes.

Ramsey claimed that the second fault of Principia Mathematica is Rus-
sell’s Theory of Types. Ramsey discussed the paradoxes which motivated
Russell to provide his theory of types. Ramsey claimed that the paradoxes
can be divided into two sorts: those involving logical and mathematical
terms, such as the paradox of “the class of all classes which are not members
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of themselves,” and those involving linguistic, epistemic or symbolic notions,
such as the liar’s paradox, or the paradox of “the least integer not nameable
in fewer than nineteen syllables.”6 Ramsey believed that simple type theory
suffices to avoid the first group of paradoxes, for it prevents a propositional
function from taking itself as argument. He claimed that the paradoxes of
the second sort result from epistemic or linguistic confusions, and the ambi-
guity of epistemic and linguistic terms. Once such terms are given a formal
meaning, the contradictions are solved without requiring a ramified type the-
ory. In order to avoid the paradoxes of the second sort, Russell presented
a ramified type theory, or one which discriminated more finely than simple
type theory based on quantified variables. If a logical system alone need not
account for these paradoxes (because we give special consideration due to the
peculiarities arising from the non-logical epistemic components), then type
theory need not discriminate more than simple type theory. This simplifica-
tion removes the need for the axiom of reducibility, which was introduced to
allow generalizations barred by the ramifications of Russell’s type theory.

Ramsey claimed that the ramifications of Russell’s type theory discrimi-
nates propositional functions based on their presentation as well as properties
of the functions. The presentation is not an essential property of a function,
and should not affect its characterization. A variable’s order is, in Peano’s
terminology, a “pseudo-function.”7 Ramsey distinguishes the use and men-
tion of a sign, and thinks that the symbolic presentation of a propositional
function is just an instance of the function itself, and a propositional function
can be symbolized in different ways. He draws an analogy with fractions. The
value 2

3
can have infinitely many different numbers in its numerator without

changing its value so long as the denominator’s value changes accordingly; it
would be wrong to characterize this number by the value in the numerator,
which is merely a result of this particular reduced presentation. A proposi-
tional function of r-type 1/3 takes individuals as arguments. Such a function
is characterized as r-type 1/3 because it quantifies over second order proposi-
tional functions (and possibly first order ones as well). According to Ramsey,
this is contingent upon the particular presentation; particular instances of a
function, not the function itself, have an order. Other instances of it are of
different orders, just as other instances of the value of 4

6
have numerators

other than 4. We can think of trivial cases where characterizing a proposi-
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tional function as of a higher order does not affect its value. For example, the
function R(x) ≡ (∀φ)((φ(x)∨¬φ(x))∧ χ(x)) (where x ranges over individu-
als, χ is r-type 1/1, and φ r-type 1/2) is r-type 1/3, but is co-extensive with
χx̂. Although this quantifies over the totality of second order propositional
functions, its value is not dependent on this totality. Although the func-
tions χx̂ and Rx̂ are co-extensive, we cannot say that they are intensionally
equivalent.

Ramsey’s third and final criticism of Principia Mathematica is its use of
identity. Ramsey claimed that identity is misinterpreted in Principia Math-
ematica—Russell’s definition does not capture what is meant by identity.
Ramsey’s claim is that it is logically possible for distinct objects to be indis-
tinguishable, and a logical system must not exclude the possibility of such
objects.

3.1.3 Ramsey’s proposal

In attempting to solve the problems of Principia Mathematica, Ramsey is
more careful than Russell to avoid violating the use/mention distinction. He
notes that:

[The] expressions ‘function of functions’ and ‘function of individu-
als’ are not strictly analogous; for, whereas functions are symbols,
individuals are objects, so that to get an expression analogous to
‘function of functions’ we should have to say ‘functions of names
individuals’. On the other hand, there does not seem any simple
way of altering ‘function of functions’ so as to make it analogous
to ‘function of individuals’, and it is just this which causes the
trouble. For the range of values of a function of individuals is
definitely fixed by the range of individuals, an objective totality
which there is no getting away from. But the range of arguments
to a function of functions is a range of symbols, all symbols which
become propositions by inserting in them the name of an indi-
vidual. And this range of symbols, actual or possible, is not
objectively fixed, but depends on our methods of constructing
them and requires more precise definition.8

Russell makes no distinction between symbols and objects, and thus treats
functions of individuals and functions of functions in the same manner.

8[37] pgs. 199-200
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Ramsey realized that while the range of individuals is fixed, the symbols
which are the range of arguments to a function of functions is not fixed, and
must be defined. Russell defines this range by how functions are constructed;
the domain of a function f cannot include any function whose definition pre-
supposes a totality that includes f . In other words, every function f is
constructed at some level, or stage of development; all variables occurring in
the definition of f must range over objects constructed at a lower level, or
at a prior stage of development. In particular, the arguments to f must be
of a lower level. To avoid vicious circles in such a theory, Russell introduced
his ramified theory of types, whose restrictions require him to introduce the
axiom of reducibility. Ramsey aims to treat functions of functions similarly
to functions of individuals, while noting that they are not analogous notions.
Instead of determining which symbols are possible arguments based on how
they are constructed, he wants to determine the symbols in the range based
on the meanings of the symbols, just as the signs which are possible argu-
ments to a function of individuals are determined based on their meaning as
the names of individual objects. The meanings of function symbols result
from the propositions which are their values when supplied with arguments.
This method also allows us to include propositions which are meaningful but
which we do not know how to construct.

A key defined term in Ramsey’s theory is a predicative function, which has
a different meaning than that given by Russell. Ramsey’s definition states:
“A predicative function of individuals is one which is any truth-function of
arguments which, whether finite or infinite in number, are all either atomic
functions of individuals or propositions.”9 He notes that “Before ‘proposi-
tions’ we could insert ‘atomic’ without narrowing the sense of the definition.
For any proposition is a truth-function of atomic propositions, and a truth-
function of a truth-function is again a truth function.”10 Ramsey claims that
this includes more functions of individuals than any range in Russell’s sys-
tem, for it includes both what Russell, in the first edition of Principia Math-
ematica calls predicative functions (these are functions which Ramsey calls
elementary functions—functions whose values are truth-functions of finitely
many atomic propositions) and also functions with an infinite number of ar-
guments, which Russell does not allow. The range of allowable arguments
to a function is not determined by the way the function is defined or con-
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structed, but by the meaning of the definition. He says that he will “call
such functions ‘predicative’ because they correspond, as nearly as a precise
notion can to a vague one, to the idea that φa predicates the same thing of
a as φb does of b.”11

Ramsey’s goal is to deal with functions of functions in a similar man-
ner. A predicative function of functions is a truth-function of the values of
its arguments and constant propositions. Given this definition, it is only the
values of a function which are relevant in determining the values of a predica-
tive function which may contain it. Generalization over a variable can never
create a non-predicative function, because generalizing a truth-function just
groups together its instances. If we start with a predicative function, we
cannot generalize to form a non-predicative one. Russell’s justification of the
axioms of Principia Mathematica still stands even if we restrict our attention
to the functions of individuals which are predicative in Ramsey’s sense. We
can generalize over such functions which an individual satisfies, so there is
no need for an axiom like Russell’s axiom of reducibility.

Ramsey has defined the range of functions not by what we, as humans,
can express, but “by how the facts their values assert are related to their ar-
guments.”12 Generalization neither forms non-predicative functions nor leads
to vicious circles. Although a propositional function may seem to presuppose
some totality of propositional functions of which it is a possible member, this
is a result of how we have described the propositional function, not a vicious
circle. Any value of the propositional function is some proposition, whose
meaning does not presuppose a totality of functions. For example, (φ).φa as-
serts all propositions of the form φa, and is itself a member of that totality.
However, we have only expressed it as a universal generalization because of
the empirical impossibility of writing a conjunction of infinite length. There
is no vicious circle, but use of a convention for expressing the logical product
of a set of propositions. Similarly, we may talk about the tallest man in a
room, which refers to him by reference to a totality containing the man.

3.1.4 Functions in extension

So far we have only considered functions of individuals which are predica-
tive. As mentioned above, Ramsey disagreed with Russell’s take on identity
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in Principia Mathematica. Ramsey believed that two objects could satisfy
all of the same atomic functions, and hence all predicative ones, but still be
different objects. To account for this, he introduces non-predicative func-
tions. In order to introduce such functions, Ramsey makes them entirely
extensional, “[dropping] altogether the notion that φa says about a what
φb says about b”.13 A function in extension of individuals is an arbitrary
correlation between an individual and a proposition. For example:

φ(Socrates) may be Queen Anne is dead,

φ(Plato) may be Einstein is a great man;

φx̂ being simply an arbitrary association of propositions φx to
individuals x.14

We can note that a function is a function in extension by writing it as φe.
Predicative functions are a subset of functions of extension. It is important
to distinguish this subset for higher-order cases, as we shall see.

Ramsey claimed that Wittgenstein’s suggestion to remove the = sign from
the logical system and use the convention that different symbols stand for
different objects does not allow us to define classes not definable by a pred-
icative function. Ramsey claimed that the introduction of non-predicative
functions in extension allows him to express that two symbols stand for the
same object, or satisfy all of the same functions, which is necessary to define
all classes. It solves the problem of Russell’s approach, for quantifying over
all functions in extension of individuals includes all correlations between an
individual and a proposition, not just those functions which correspond to
describing some property. We can define x = y to mean:

(φe).φex ≡ φey

This is a tautology when x = y, and a contradiction otherwise; this definition
of identity guarantees that x and y satisfy all of the same functions, not just
predicative ones.

Introducing functions in extension also solves the first fault Ramsey iden-
tified within Principia Mathematica—the issue of undefinable infinite classes.
When considering functions of individuals, the range of functions to consider
is the functions of extension. Any class will be defined by some function in
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extension (although we may not be able to describe it), and the totality of
classes is the totality of functions in extension. This means that we include
all classes, even those whose members do not have some property in common.

Functions of functions

The case is different with functions of functions, and Ramsey shows there is
no need to include functions of extension in their range, for predicative func-
tions suffice. We do not need to consider identity in such cases—identity of
classes defined by functions of functions can be reduced to the issue of func-
tional equivalence. While it is necessary to distinguish different individuals
which share all properties in order to define what it means for individuals
to be identical, there is no need to define what it means for functions to be
identical. Instead, we can consider identity of classes, or equivalence between
the functions defining the classes. The logical equivalence of functions can
be defined without the introduction of arbitrary extensional functions.

Another reason why predicative functions of functions suffice as the range
of functions of functions is that we need not consider classes of functions, for
instead we can consider classes of classes. Although we require extensional
functions of individuals to define all classes of individuals (which includes
those without a property in common), we can define any class of classes with
a predicative function, although it may not be finitely expressible. Here is
such a predicative function f :15

f(φex̂) = Σψ(φex ≡x ψex).

Here ψx̂ in the summation ranges over exactly those functions in extension
which make f true. The extensional functions of individuals ψex̂ define any
class, even those without a common property. We can define a class of such
classes (which may have no common property) by taking the logical sum of
functions equivalent to functions ψex̂; each function ψex̂ defines a class which
is an element of this class of classes.

Limiting ourselves to predicative functions of functions includes all of
the functions of Principia Mathematica. These functions are extensional as
defined in Principia Mathematica—if the range of f(φ̂x̂) is that of predicative
function of functions, it is a truth-function of the values its arguments, so we
have that:

φex ≡x ψex :⊃: f(φex̂) ≡ f(ψex̂).

15[37] pg. 218
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Ramsey states that by treating functions of individuals and functions of
functions differently—the former’s range being functions in extension and the
latter’s being predicative functions—he obtains a complete theory of classes
and the general system of Principia Mathematica. This is in keeping with
his general goal of reinterpreting Russell’s system:

And in thus preserving the form while modifying the interpre-
tation, I am following the great school of mathematical logicians
who, in virtue of a series of startling definitions, have saved math-
ematics from the skeptics, and provided a rigid demonstration of
its propositions. 16

3.2 Russell’s response to Ramsey

In a 1931 review in Mind and in My Philosophical Development, Russell
commented on Ramsey’s analysis of Principia Mathematica. In the journal
review, he outlines The Foundations of Mathematics. He agrees with Ram-
sey’s point that logic should include only tautologous generalizations. He also
admits the first two faults Ramsey finds with his work: the assumption that
all classes can be defined by propositional functions and that distinguishing
the two sorts of contradictions allows type theory to be greatly simplified. In
the second edition of Principia Mathematica, Russell was not satisfied with
his proposal, for retaining his type theory without the axiom of reducibility
prevents analysis dependent upon Dedekind sections. Ramsey’s alternative
solves this problem by proposing a simple type theory. Russell defended
Ramsey’s introduction of functions in extension, realizing that although we
cannot give examples of such functions, they still occur when we generalize
over all functions.

However, Russell disagreed with Ramsey’s criticism of the treatment of
identity within Principia Mathematica. Their disagreement comes down to
a disagreement regarding the identity of indiscernibles—Ramsey believed it
was possible for two things to have all properties in common, while Russell
believed that by definition two things must differ in regards to some property.
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My Philosophical Development

In his philosophical autobiography, Russell discussed Ramsey’s criticism in
more depth. He stated that Ramsey’s main point—“that mathematics must
be rendered purely extensional and that the troubles of the Principia arose
from an illegitimate intrusion of an intensional point of view”17—should be
further studied. He did not got so far as to agree with the argument, but
noted that it is worthy of consideration. Russell also claimed to be undecided
regarding Ramsey’s introduction of functions of extensions.

I feel that a correlation of entities to propositions which is wholly
arbitrary is unsatisfactory. Take, for example, the inference from
‘fx is true for all values of x’ to ‘fa’. With Ramsey’s explanation
of the concept ‘fx’ we cannot tell what ‘fa’ may be. On the
contrary, before we can know what ‘fx’ means, we have to know
‘fa’ and ‘fb’ and ‘fc’ and so on, throughout the whole universe.
General propositions thus lose their raison d’être since what they
assert can only be set forth by enumeration of all the separate
cases. Whatever may be thought of this objection, Ramsey’s
suggestion is certainly ingenious, and if not a complete solution
of the difficulties, is probably on the right lines. Ramsey himself
had doubts.18

In both cases above, Russell held back from fully endorsing Ramsey’s views,
but takes them to be worthy criticism. Regarding the theory of types, Russell
fully endorsed Ramsey’s views. Russell stated that the distinctions between
order are unnecessary, and categorizing propositional functions based on the
simple type hierarchy suffices to avoid the paradoxes. Since the axiom of re-
ducibility was only introduced to allow generalizations prevented by Russell’s
ramified theory of types, neither it nor an alternative axiom is necessary.

3.3 Other responses to the second edition

Church

We saw that in his 1976 paper “Comparison of Russell’s Resolution of the
Semantical Antinomies with That of Tarski,” Church defends the axiom of
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reducibility, noticing that it claims the existence of a co-extensive predicative
function within an intensional logic, and hence does not undo the distinctions
of type theory. In a 1928 review of the second edition of Principia Math-
ematica, he states disagreement with the proposed changes of the second
edition:

If for no other reason than that it leads to important results
to which the other does not, the axiom of reducibility seems to
be distinctly preferable to the postulate which Whitehead and
Russell now propose as a substitute for it.19

He believed that if Russell wants to retain his type theory, he should also
retain the axiom of reducibility, which allows analysis in a ramified type
theory. In his 1984 paper, he stated:

If, following the early Russell, we hold that the object of an asser-
tion or a belief is a proposition and then impose on propositions
the strong conditions of identity which this requires, while at
the same time undertaking to formulate a logic that will suffice
for classical mathematics, we therefore find no alternative except
ramified type theory with axioms of reducibility, and with axioms
and axiom schemata 1-15 appropriately modified.20

The axioms and axiom schemata Church mentions are his axiomatization of
Russell’s theory. The strict identity conditions he mentions are those of the
first edition of Principia Mathematica, where two propositions with the same
truth value are not identical, for an intensional function may have different
values when given the propositions as arguments.

Bernard Linsky

Bernard Linsky argues that the principle of extensionality limits the rami-
fication of type theory. The first edition of Principia Mathematica includes
such extensive ramification of propositional functions because propositional
functions are characterized by their intension. However, if a function only
depends upon the extensions of its arguments, the need for such ramification
is limited. The distinction between identity and equivalence only arises in
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an intensional logic; in an extensional one, two objects which are formally
equivalent, or co-extensive, are identical. Bernard Linsky makes the point
that the theory of types is affected by the principle of extensionality:

With the principle of extensionality anything true of one propo-
sitional function will be true of every coextensive one, so the only
thing on which a propositional function can depend is its exten-
sion, and so the type theory will not be so extensively ramified. A
function may be identified by the functions used to define it, but
that really means only on the extensions of the functions used to
define it.21

Linsky emphasizes the intensionality of Russell’s system. He believes that
the full ramified theory is necessary to “capture intensional phenomena.”22

He believes that in the first edition of Principia Mathematica all proposi-
tional functions, including predicative ones, are intensional, and the predica-
tive ones are a subset which act as a theory of classes. These predicative
propositional functions are sufficient to define all the properties of objects in
the world, but the higher-order propositional functions still have a purpose:
“Higher type propositional functions do not really introduce new proper-
ties of things. They may characterize new ways of thinking of or classifying
them, but they do not introduce any new real universals.”23 Linsky believes
that the changes introduced for the second edition—denying the intensional
aspects of the system by accepting the principle of extensionality—was too
extreme and undid what made Principia Mathematica such an important
work: namely that it provided a system which both “captured intensional
phenomena” and provided a logical system to which mathematics could be
reduced.

Other reviews

In 1926, B.A. Bernstein reviewed the second edition of Principia Mathemat-
ica. His main criticism was one which was made about both editions of the
work: “the distinction between propositional logic as a mathematical sys-
tem and as a language must be made.”24 In a 1931 review, Rudolf Carnap
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notes that much of the generality of Principia Mathematica is lost by the
assumption of extensionality in the second edition.25 Russell’s original goal
was to give a system more general than just the extensional domain of math-
ematics but, with the principle of extensionality, he limits his domain to an
extensional one.

In a 1936 paper Quine argued that the axiom of reducibility and the prin-
ciple of extensionality together undo the ramification of Russell’s type theory.
However, we should note Irving Copi’s point that Russell never simultane-
ously defended the axiom of reducibility and the principle of extensionality.26

Quine and Gödel agreed with Ramsey, and later Russell, that simple type
theory is sufficient to avoid the paradoxes. The necessity of the axiom of
reducibility is no longer an issue without a ramified theory of types.
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Concluding Remarks

We can summarize the historical developments discussed in this thesis as
follows. Principia Mathematica was an ambitious attempt to culminate the
logicist goal. The work was successful to some degree—it outlined a system
which reduced mathematics to basic axioms of a logical character. However,
Russell did not provide a formal syntactic specification of the system, and
this flaw led to some looseness in his arguments. Also, the first edition
relied upon the axiom of reducibility, which both Russell and critics thought
compromised the system as a logical one.

In hopes of retaining the overall system, Russell discarded this axiom for
the second edition, and instead assumed a principle of extensionality. This
alternative was not fully satisfactory to either Russell or to critics. Not only
did the system no longer allow methods of analysis, but it compromised
much of the generality of the first edition by limiting propositional functions
to extensional ones, and no longer capturing intensional phenomena as the
first edition did.

Another alternative, proposed by Ramsey and eventually accepted by
Russell, was to simplify the theory of types, and hence remove any need
for the axiom of reducibility. This simplified system no longer characterizes
propositional functions by their definition, and allows analysis and other
methods of mathematics without requiring a means to reduce the order of
propositional functions (for functions no longer have an order). This view
does not preclude that the full ramified theory may be necessary to capture all
intensional phenomena; however, it assumes that such intensional phenomena
are not inherent in propositional functions, but only in their representation,
and that these intensional phenomena need not be considered as a part of
mathematics.
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