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From ancient times to the beginning of the nineteenth century, mathemat-
ics was commonly viewed as the general science of quantity, with two main
branches: geometry, which deals with continuous quantities, and arithmetic,
which deals with quantities that are discrete. Mathematical logic does not
fit neatly into this taxonomy. In 1847, George Boole [1] offered an alter-
native characterization of the subject in order to make room for this new
discipline: mathematics should be understood to include the use of any
symbolic calculus “whose laws of combination are known and general, and
whose results admit of a consistent interpretation.” Depending on the laws
chosen, symbols can just as well be used to represent propositions instead
of quantities; in that way, one can consider calculations with propositions
on par with more familiar arithmetic calculations.

Despite Boole’s efforts, logic has always held an uncertain place in the
mathematical community. This can partially be attributed to its youth;
while number theory and geometry have their origins in antiquity, math-
ematical logic did not emerge as a recognizable discipline until the latter
half of the nineteenth century, and so lacks the provenance and prestige of
its elder companions. Furthermore, the nature of the subject matter serves
to set it apart; as objects of mathematical study, formulas and proofs do
not have the same character as groups, topological spaces, and measures.
Even distinctly mathematical branches of contemporary logic, like model
theory and set theory, tend to employ linguistic classifications and measures
of complexity that are alien to other mathematical disciplines.

The Birth of Model Theory, by Calixto Badesa, describes a seminal step
in the emergence of logic as a mature mathematical discipline. As its ti-
tle suggests, the focus is on one particular result, now referred to as the
Löwenheim-Skolem theorem, as presented in a paper by Löwenheim in 1915.
But the book is, more broadly, about the story of the logic community’s
gradual coming to the modern distinction between syntax and semantics,
that is, between systems of symbolic expressions and the meanings that can
be assigned to them. A central characteristic of logic is that it deals with
strings of symbols, like “2 + 2” and “∀x ∃y (x < y),” that are supposed
to represent idealized mathematical utterances. We take the first string to
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denote the natural number 4, assuming we interpret “2” and “+” as the
natural number, 2, and the operation of addition, respectively; and we take
the second string, which represents the assertion that for every x there is a
y satisfying x < y, to be true, assuming, say, the variables x and y range
over natural numbers and < denotes the less-than relation. Model theory
provides a rigorous account of how syntactic expressions like these denote
objects and truth values relative to a given interpretation, or model.

The model-theoretic notions of denotation and truth have influenced
both the philosophy of language and the philosophy of mathematics. As
Harold Hodes colorfully put it, “truth in a model is a model of truth.”
The tendency to view mathematics as a primarily syntactic activity un-
derlies nominalist accounts of mathematics in scholastic and early modern
philosophy, as well as contemporary versions of formalism. These are con-
trasted with accounts of mathematical practice that focus not on the lin-
guistic practice, but, rather, on what it is that the linguistic terms denote;
and contemporary formulations of these positions are typically guided by a
model-theoretic understanding.

But the simplicity of the model-theoretic viewpoint belies the fact that it
arrived relatively late on the scene. Gottlob Frege distinguished between the
“sense” of an expression and its “reference” in the late nineteenth century,
but he viewed his system of logic as an ideographic representation of the
universal laws of correct judgment, with axioms that are simply true with
respect to the domain of logical objects. There was no stepping outside the
system; he had no reason to treat either strings of symbols or the structures
that interpret them as mathematical objects in their own right. In the latter
half of the nineteenth century, algebraic treatments of logic from Boole to
Peirce and Schöder were in a position to support multiple interpretations
of symbolic expressions, but they were not always careful to distinguish the
expressions themselves from their interpretations in the algebraic structures.
In his landmark Grundlagen der Geometrie [Foundations of Geometry ] of
1899, Hilbert explored various interpretations of geometric axioms, but the
axioms were formulated in ordinary mathematical language and he relied on
an intuitive understanding of what it means for an axiom to “hold” under
a given interpretation.

In the winter of 1917–1918, Hilbert, with Paul Bernays as his assistant,
gave a series of lectures in which the syntactic presentation of a formal
system is clearly distinguished from its interpretation in a given domain.
(For a discussion of these lectures, see [4].) In his Habilitationsschrift of 1918,
Bernays showed the the propositional calculus is complete in the modern
sense that “[e]very provable formula is a valid formula, and vice-versa.” The
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question as to whether the usual deductive systems for first-order logic are
complete in the same sense is clearly articulated in Hilbert and Ackermann’s
Grundzüge der theoretischen Logik [Principles of Theoretical Logic] of 1928,
which is based on Hilbert’s 1917–1918 lectures.

The distinction between syntax and semantics is not limited to logic.
For example, consider x2 + 2x + sinx + cos(x + π/2) and 2x + x2. Are
these both polynomials? Are they the same polynomial? In contemporary
practice, we are apt to dissolve the confusion by distinguishing between
polynomial expressions and the polynomial functions they denote. Although
“x2+2x+sinx+cos(x+π/2)” is not a polynomial expression, it denotes the
same polynomial function of x as the expression “2x+x2.” We tend to forget
that this is a relatively modern way of thinking, and that the distinction is
often muddied in nineteenth century work on logic.

This discussion provides some context to Löwenheim’s 1915 paper, “Über
Möglichkeiten im Relativkalkül” [“On Possibilities in the Calculus of Rela-
tives”]. (A translation, as well as translations of the papers by Skolem and
Gödel discussed below, can be found in [5].) The paper’s second and most
important theorem is stated as follows:

If the domain is at least denumerably infinite, it is no longer the
case that a first-order fleeing equation is satisfied for arbitrary
values of the relative coefficients.

In modern terms, a “first-order fleeing equation” is a first-order sentence
that is true in every finite model, but not true in every model. Löwenheim’s
theorem asserts that such a sentence can be falsified in a model whose ele-
ments are drawn from a countably infinite domain. Since a sentence is true
in a model if and only if its negation is false, we can restate Löwenheim’s
theorem in its modern form: if a sentence has a model, it has a countable
model (that is, one whose domain is finite or countably infinite). The theo-
rem thus expresses an important relationship between a syntactic object —
a sentence — and the class of possible models. In the context of the logic of
the time, even stating such a theorem was novel, and Badesa is justified in
marking this as the birth of model theory.

The logician Thoralf Skolem presented papers in 1920 and 1922 that
clarify and strengthen Löwenheim’s theorem. In particular, he showed that
the theorem holds not just for single sentences, but also for any countably
infinite set of sentences. Most importantly, he made clear that there are two
ways of stating the theorem. It is, in fact, the case that if a sentence has
an infinite model M, then the countable model in question can always be
chosen as a submodel M′ of M — that is, a restriction of the functions and
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relations of M to a countable subset of the domain. In 1920, Skolem proved
this stronger version of the theorem, using the axiom of choice. In 1922, he
gave an alternative proof of the weaker version, which does not use choice.

In 1929, Gödel proved the completeness theorem for first-order logic, in
his doctoral dissertation at the University of Vienna (see [3]). In order to
understand Löwenheim’s 1915 paper, it will be helpful to work backwards
through Gödel’s and Skolem’s results. Gödel proved the completeness theo-
rem in a form that is analogous to the statement of Löwenheim’s theorem:
if a sentence is not refutable in a formal system of deduction for first-order
logic, then it has a countable model. In outline, the proof proceeds as fol-
lows:

1. First, assign to any first-order sentence ϕ a sentence ϕ′ in a certain
normal form.

2. Show that for any sentence ϕ, the assertion “if ϕ is not refutable, then
it has a countable model” follows from the corresponding assertion for
ϕ′.

3. Prove the assertion for sentences ϕ′ in normal form.

The key idea is that any first-order sentence ϕ is equivalent, in a precisely
specifiable sense, to a sentence ϕ′ of the form

∃R1, . . . , Rl ∀x1, . . . , xm ∃y1, . . . , yn θ,

where θ is a formula without quantifiers, and R1, . . . , Rl range over relations
on the first-order universe. This reduces the task to proving the complete-
ness theorem for sentences of a restricted form. Gödel’s proof is sketched in
the box that accompanies this article.

The weak version of the Löwenheim-Skolem theorem is a consequence of
the completeness theorem: if ϕ has a model, then it is not refutable, and
so ϕ has a countable model. In fact, if we replace “not refutable” by “has
a model” in the second step of Gödel’s argument, we end up with, more or
less, Skolem’s 1922 proof. In letters to Jean van Heijenoort and Hao Wang
in the 1960’s, Gödel indicated that he knew only of the results of Skolem’s
1920 paper when he wrote his dissertation, but he acknowledged that the
completeness theorem is implicit in Skolem’s 1922 paper — it simply did
not occur to Skolem to state it.

Recall that Skolem’s 1920 paper proves a stronger form of the Löwenheim-
Skolem theorem: if M is any model satisfying ϕ, there is a countable sub-
model of M satisfying ϕ. Here, the key idea is to use the alternative normal
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form,
∃f1, . . . , fl ∀x1, . . . , xm θ, (1)

where θ is quantifier-free and f1, . . . , fl are now function variables. Today,
a sentence of this form is said to be in Skolem normal form, and functions
witnessing the existential quantifiers are called Skolem functions for ϕ.

We can now describe Löwenheim’s proof of his main theorem. Like
Gödel’s, it has three steps:

1. Replace the sentence in question by one in a specific normal form.

2. Show that if the original sentence is satisfied in some infinite domain,
then so is the one in normal form.

3. Show that if a sentence in normal form is satisfied in some infinite
domain, then it is satisfied in a countable domain.

The following three questions form the central thrust of Badesa’s investiga-
tion:

1. Which version of the theorem did Löwenheim intend to prove, the
strong version or the weak one?

2. Is Löwenheim’s normal form essentially Skolem normal form?

3. Is the proof essentially correct?

As far as the first question is concerned, Löwenheim stated only the weak
version of the theorem, and his construction, on the surface, is similar to the
ones used later used by Skolem in 1922 and Gödel in 1929. The conventional
answer is therefore that Löwenheim aimed to prove the weak version.

As far as the second question is concerned, the issue is largely notational.
Building on Schröder’s notation, Löwenheim uses the formula

ΠiΣkA(i, k) = ΣkiΠiA(i, ki)

to express the equivalence between ∀x ∃y θ(x, y) and its Skolem normal form,
∃f ∀x θ(x, f(x)). At times, Löwenheim seems to suggest that one should
think of Σki as a sequence of quantifiers Σk1Σk2Σk3 . . . where 1, 2, 3, . . .
run through the elements of the domain. But this has the net effect of
making the function i 7→ ki a Skolem function. The conventional wisdom
has therefore held that however Löwenheim thought of the quantifier Σki,
he was, in effect, working with Skolem functions.
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Just as in Skolem’s and Gödel’s constructions (described in the accom-
panying box), at the final stage of the proof, Löwenheim needed to pass from
the satisfiability of each of a sequence of formulas ψ1, . . . , ψn to their joint
satisfiability. But where Skolem and Gödel appeal to what is now known as
König’s lemma, Löwenheim simply makes the inference without comment.
Conventional wisdom has therefore held that Löwenheim overlooked the fact
that an argument is needed to justify the inference.

Badesa’s account is interesting in that it goes against the conventional
wisdom, on all three counts. With a careful and thorough analysis not only
of Löwenheim’s paper but also the historical context in which he worked,
Badesa argues forcefully for a novel reading of Löwenheim’s proof. Accord-
ing to Badesa, the hypothesis that the original formula is true in a model
does more than guarantee consistency at each stage of a syntactic construc-
tion, as in Skolem’s 1922 proof; the domain of the model constructed does
not consist of syntactic objects, but, rather, elements of the model that one
started with. The resulting proof is thus an amalgam of Skolem’s proofs
of 1922 and 1920; one starts with a syntactic construction, but then uses
that construction to pick out a subdomain of the original model. This elimi-
nates the need to appeal to König’s lemma. As a result, Badesa argues that
Löwenheim offered an essentially complete and correct proof of the strong
version of the theorem.

At the heart of the ambiguity is precisely the lack of a clean separation
between syntax and semantics. What allows for the two readings is the
fact that in Löwenheim’s notational and conceptual framework, it is not
always easy to tell whether he is referring to symbols or the elements they
denote under a particular interpretation. Badesa further notes that this
can result in an important difference between the use Skolem functions and
Löwenheim’s quantifiers Σki. If the indices to variables k1, k2, k3, . . . are
considered to be symbols rather than elements of an underlying domain, it
is possible, say, for k17 and k23 to denote different elements, even though 17
and 23 may stand for the same element of that domain.

In the end, Badesa’s analysis illuminates not just Löwenheim’s proof, but
the importance of a conceptual framework that we take for granted today.
With his careful analysis of the route by which we arrived at the modern
model-theoretic understanding, Badesa has provided us with an insightful
account of the emergence of a new field of mathematical inquiry.
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Appendix: Gödel’s and Skolem’s proofs. Gödel first proved the completeness
theorem in the form “if a sentence ϕ is not refutable, then it has a model.” In
doing so, he considered languages without function symbols or the equality
symbol. The absence of function symbols is not a serious restriction, since
functions can be interpreted in terms of relations. He then extended the
result to infinite sets of sentences, by proving what is now known as the
“compactness” theorem; and to first-order logic with equality, essentially
using the modern method of taking a quotient structure.

I know of no contemporary textbook that presents Gödel’s proof, which
is a shame, since the argument is elegant and direct. The central idea is
that any first-order sentence ϕ is equivalent to a sentence of the form

∃R1, . . . , Rl ∀x1, . . . , xm ∃y1, . . . , yn θ, (2)

where θ is a quantifier-free formula, and R1, . . . , Rl range over relations on
the first-order universe. Saying that θ is quantifier-free means that it is a
Boolean expression involving the variables x1, . . . , xm, y1, . . . , yn, the relation
symbols R1, . . . , Rl, and symbols in the language of ϕ. This normal form was
used by Skolem in 1920. Since first-order logic does not allow quantification
over relation symbols, (2) is not first-order. But fixing R1, . . . , Rl and letting
ϕ′ denote

∀x1, . . . , xm ∃y1, . . . , yn θ(x1, . . . , xm, y1, . . . , yn), (3)

Gödel showed:

• ϕ′ → ϕ is provable in first-order logic. Thus if ϕ′ has a countable
model, so does ϕ.

• If ϕ′ is refutable, then so is ϕ.

This reduces the task of proving the completeness theorem to proving it for
sentences of the form (3).

To carry out this last step, Gödel first expanded the language by adding
a countable sequence of new constant symbols. Let c0, c1, c2, . . . enumerate
both the new constant symbols and the original constant symbols in ϕ′;
in fact, it is these (syntactic!) objects that will constitute the domain of
the desired model. In order to satisfy (3), Gödel enumerated all m-tuples
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of these constants, ~c1,~c2,~c3, . . .. He then recursively defined a sequence of
formulas

ψ0 = θ(~c1, ck0+1, . . . , ck0+n)
ψi+i = ψi ∧ θ(~ci+1, cki+1+1, . . . , cki+1+n),

where each ki is chosen large enough so that the constants cki+1, . . . , cki+n

are “fresh,” i.e. have not appeared in ψ0, . . . , ψi−1.
Now, each ψi is a Boolean combination of atomic formulas, that is, formu-

las of the form R(ci0 , . . . , cil−1
), where R is a relation symbol and i0, . . . , il−1

is any sequence of indices. Gödel showed that if any of the ψi are refutable,
then, in fact, so is ϕ′. On the other hand, if this is not the case, then by
the completeness theorem for propositional logic there is a way of assigning
truth values to each atomic component in any ψi so that the formula comes
out true. These satisfying truth assignments can be arranged into a tree,
where the ith level of the tree has all the truth assignments that satisfy ψi,
and the descendants of a truth assignment are simply those in the tree that
extend it. Each level of the tree is finite, and, by hypothesis, there is at
least one assignment at each level. By König’s lemma, there is an infinite
path through this tree: recursively, at each level i, choose any assignment
extending the previous with infinitely many descendants. Now consider the
model whose domain consists of the constants, where each atomic formula
R(ci0 , . . . , cil−1

) is interpreted as true if and only if this atomic formula is
interpreted as true at the first level where it appears. This provides a model
of ψ0, ψ1, ψ2, . . ., and hence ϕ′, since for each possible instantiation ~ci of
the universal quantifiers in (3) we have chosen constants cki+1, . . . , cki+n to
witness the existential quantifiers.

This proves the completeness theorem. The weak version of the Löwenheim-
Skolem theorem is a consequence: if ϕ has a model, then it is not refutable,
and so ϕ has a countable model. In fact, if we replace “not refutable” by
“has a model” in the second step of Gödel’s argument, we end up with,
more or less, Skolem’s 1922 proof. Skolem’s 1920 proof differs in that it uses
the axiom of choice, but establishes a stronger result: if M is any model
satisfying ϕ, there is a countable submodel of M satisfying ϕ. This theorem
makes no mention of provability, and it turns out that in this case there is
a more convenient choice of normal form. Consider a first-order sentence of
the form ∀x ∃y θ(x, y). If this is true in a model, then for every element
a in the domain, there is an element b such that θ holds of a and b in the
interpretation. If f is a function which for every a chooses such a b, we
have ∀x θ(x, f(x)). In other words, using the axiom of choice, we can see
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that ∀x ∃y θ(x, y) is true in a model if and only if there is a function, de-
noted by f , such that ∀x θ(x, f(x)) is true in the same model. By iterating
this move, one can show that every first-order formula ϕ is equivalent, in
an appropriate sense, to a formula of the form ∃f1, . . . , fl ∀x1, . . . , xm θ,
where θ is quantifier-free. Now suppose ϕ is true in some model M. Choose
interpretations of f1, . . . , fl making ∀x1, . . . , xm θ true. Starting with any
element a of the domain of M, consider the submodel of M generated by a
and the functions f1, . . . , fl. This is a countable submodel of M satisfying
∀x1, . . . , xm θ, and hence ϕ, as required.
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